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MONOTONICITY PROPERTIES OF-INTERPOLATION SPACES 

by Michael Cwikel 

ABS TRACT. - For any interpolation pair (A 
O

, A 1), Peetre I s K-functional is 

defined by: 

K(t,a ; A
0

,A 1) = inf lla
0

IIA + tlla 1 llA . 
a=a

0
+a 1 o 1 

We show that an interpolation spaces A for the pair (LP ,L q) are characterised by 

the property of K-monotonicity, that is, if aE:A and K(t,b ; LP,L q) ~ K(t,a ; LP,L q) 

for an positive t then bE:A also. This extends results of Calderon and of Lorentz 

and Shimogaki. Sedaev and Semenov also showed that an the interpolation spaces for a 

pair of weighted Lp spaces and for a pair of Hilbert spaces have analogous characte­

risations. We give a necessary (but not sufficient) condition for an interpolation pair to 

have its interpolation spaces characterised by K-monotonicity. We describe a weaker form 

of K-monotonicity which holds for an the interpolation spaces of any interpolation pair 

and show that it is in a sense the strongest form of. monotonicity which holds in such gene­

rality: 

0. INTRODUCTION. 

In the study of interpolation spaces the point of departure is usuany a pair of 

Banach spaces A 
O 

and A 1 which are both continuously embedded in some Hausdorff 

topological vector space Jl. We referto the couple (A
0

,A 1) as an interpolation pair; 

For such. a pair the vector spaces A 
0
n A 

1 
and A 

O 
+A 1 are wen defined and, 

when normed by llal!A nA = maxdlallA , llallA ) and 
o 1 o 1 

llallA A = inf dla)IA + lla1 IIA ), become Banach spaces continuously embedded 
o+ 1 a=a

0
+a

1 
o 1 

in JG. 



A
0 

+ A1 can be equivalently renormed by Peetre' s 11K-functional" 

K(t,a ; A
0

,A 1) = inf dla)IA + tl·la1 IIA. ) 
.a=a

0
+a 1 o 1 

for any positive number t. The abbreviated notation K(t,a) is also used where there 

is no risk of ambiguity. For each fixed a€ A
0 

+A
1

, K(t,a) is a continuous non decrea­

sing concave function of t. (see [1] p. 167). 

A vector space A is called intermediate if A
0
nA

1
cAcA

0
+A

11 
the inclusions 

being continuous embeddings if A is topologised. An intermediate space A is an 

interpolation space if all linear operators on A
0 

+ A
1 

which map A
0 

continuously 

into itself and A 1 continuously into itself also map A into itself (continuously if A 

is topologised). 

We shall be c6ncerned here with the characterisation of ail interpolation spaces for 

a given couple (A 
0
,A 1). The first result of this type was obtained by Calderon [4] 

for. the pair (L 1 , L 
00

). Subsequently Lorentz and Shimogaki [9] treated the pair 

(LP,L
00

) with 1 < p < oot and Sedaev and Semenov [13], [14], dealt with a pair of 

LP spaces with different weights, and also with a pair of Hilbert spaces. For each of 

these interpolation pairs it was found that the corresponding interpolation spaces could be 

characterised as those spaces possessing a property which we shall call K-monotonicity. 

DEFINITION 1. The space A is K-monotone with respect to the pair (A
0

,A 1) 

it follows that bE:A. 

In view of the above series of results we also introduce the f ollowing terminology. 



DEFINITION 2 . The interpolation pair (A 
O

, A 1) will be called a Calderôn pair if 

every intermediate space is an interpolation space if and only if it is K-monotone. 

In section II of this paper we show that (LP, L q) is a Calderon pair for any choice 

of p and q in [ 1, J . The proof is given for an arbitrary measure space, thus 

dispensing with some restrictions imposed in the above-mentioned studies of (i: , L 
00

) 

( p 00 
and L ,L ). We remark that this result enables a reformulation of a theorem about 

norm convergence of Fourier series in rea~rangement invariant Banach spa~es. (See L5] . 

(We refer to [9] for an alternahve characterisation of the interpolation spaces of (L 1, LP 

obtained by dualising the results for (LP' , L 
00

) .) 

In sectionsIII and IV we study the interplay of K-monotonicity and interpolation in the 

general setting. A necessary condition for an interpolation pair to be Calderon is describe< 

in section III. This condition is not sufficient. In section IV we show that for an arbitrary 

interpolation pair (A
0

,A 1 ), every interpolation space A satisfies a weak form of 

K-monotonicity: if aE:A and bE.A
0 

+A1, then b is· also in A if the inequality 

K(t, b) :::;. w(t)K(t,a) holds for all positive t, where w(t) is a positive measurable 

00 

function satisfying J min(e:, w(t))dt/t < oo for some positive constant E, This result 
0 . 

seems very close to the best possible. It will be seen that the hypothesis on w( t) cannot 

00 

be weakened to J
0 

min (E, w(tf) dt/t < oo for some p·> 1. 

I. PRELIMINARIES. 

For any pair of Banach spaces A and B, ~(A, B) will de note the class of an 



bounded linear operators mapping A into B, and .lÀ (A, B) will denote the 

subclass of .l(A,.B) of operators with norm not exceeding À. Let :l(A) = .l(A,A) 

Let R + denote the positive real line equipped with Lebesgue measure. Where it is 

necessary to indicate the underlying measure space of the space Lp we shall write 

Given an interpolation pair (A
0

,A 1). there are two important special methods 

of constructing interpolation spaces. 

(i) The real method (see for example [1] Chapter 3) : For O < e < 1 and 

such that 

llall(A A ) = <J
00 

[t-° K(t,a ; A ,A 1 )] q dt/t) 1/q < oo. 
o' 1 e ,q o ·0 

(A ,A
1 

)8 00 
is defined similarly by the norm sup t-° K(t,a). 

o , t>O 

(ii) The complex method (see for example [3]) : Let 1 (A
0

,A 1) . be the space of 

A
0
+A1 -valued functions f(z) continuous in the str 1ip O :::;. Re z :::; 1 and analytic in 

its interioi' such that 

llïll<l, = max { sup l!f(iy)IJA , · sup llf( 1+iy)/JA } < co. 
a· -oo<y<oo o -oo<y<oo 1 

Then the complex interpolation space [A
0

,A 1] 8 is defined by [A
0

,A 1] 0 = 

{f(0) If€~}, and as norm we usually take llal!0 = irrr{l!f(z)llg. !f(0) =a}. 

The notation <D(t,f).,-,.._,'1-'(t,f) shall mean that there exists a positive constant C 

independent of t and f such that c- 1 <D(t,f):::; '1,'(t,f):::; C <D(t,f). 



K(t, Ta ; A
0

,A 1) :5 rnax(cx, /j)K(t,a ;A
0

,A 1 ). Thus any K-rnonotone space is necessarilv 

an interpolation space with respect to (A
0

,A 1 ). The non trivial part of the proof that a 

given pair (A 
O

, A 1 ) is Calderon is to show that if f, g are in A 
O 
+A 1 with 

K(t,g) :5 K(t,f) for all positive t, then there exists an operator T È ,,.e,(A
0

) (î::l(A1) 

with Tf = g and so every interpolation space is K-rnonotone. Théorern 4 will give such 

an operator for the pair (LP(µ ) , L q(µ ) ) where 1 s p, q s· oo and (X,~,µ) is an 

arbitrary rneasure space. 

For any rneasurable function f on (X,~,µ,) we let f-l<·(t) denote the non-increa­

sing rearrangernent of If I on R +. · Then 

t 
K(t,f ; L 1 ,L 

00
) = J

0 

f*(s) ds · (Peetre [10]) 

and K(t,f ; LP ,L 00
) ,__, (jtP f*(sf ds) 1/p (Krée [s] ). 

0 

For O < p < q < oo, Holmstedt [ 6 J has shown that : 
ex 

K(t,f ; Lp ,L q)l"'v (jt f*(sf ds) 1/p + t(J:f*(s)q ds) 1/q 
0 t 

where 1/cx = 1/p - 1/q. 

THEOREM 1. Let p € [ 1, oo) and let f, g be non-negative non-increasing simple 

functions on R such that : 
+ 

jt Jt . 
0 

g(sf ds :5 
0 

f(sf ds for an positive t. 

· Then there exists an operator T € ~(LP(R)) n J'
1

(L
00

(R)) sùch that Tf = g. 



6. 

Proof: This is exactly Lemma 4 of [9]. (The case p = 1 was treated in [4] ). 

THEOREM 2. Let q E: ( 1, oo) and let f, g be non-negative non-increasing simple 

functions on R such that: 
+ 

(1) for all positive t. 



7. 

Then there exists an opePator T E: ::l /L 1 (R)) n .t 1 (L q(R)) such that Tf = g. 

Proof ! We proceed via two lemmas . 

LEMMA 2A. Let cp , If> be two measurable functions on a fini te measure space such 

that <p is a constant and let q > 1 • Then Iliµ Il q < ll<pll, q implies 
L L 

Proof: Simple application of Holder I s inequality. 

LEMMA 2B. Let f be a non-negative non-increasing simple function on R+ taking 

a constant value ex on an interval [a,b). Then for any 

an operator S E: .e 1 (L 1 (R)) n ::l 1 (L q(R)) such that : 

(i) f is non-negative and non-increasing 

(ii) Sf = ex on [a' , b) 

00 00 

(iii) Jt (Sf)q ds = jt fq ds for all o :s; t:::; a" 

a' 
' 

0 < a' :::; a, there exists 

where . [a 11 , a' ) is the interval of constancy of S f precedtng [a' , b) 

(iv) 
The number of different values taken by Sf on [o, a' ) does not exceed the number 

of different values ta ken by f on [o, a). 

N 

Proof : Let f = S
1 

aj X [a. 
1 

, a . ) + a X [a, b) + f X [b, 00 ) 

J= J- J 
where O = a 

O 
< a 1 < ... 

•• <8N=:=a, and o:1 >~ ... >~>ex. Foreach uE: [aN_ 1,aN) definethefunction 

fu to equal ex on [u,aN) and t6 equal À(u}~ on [aN,u), where À(u) > 1 is 

chosen to give 

JaN· f~ ds = JaN fq ds. 
8
N-1 

8
N-1 

ByLemma 2A, J"N l',, ds:,; j"N f ds. 
8 N-1 aN-1 

Clearly À (u) is a continuous decreasing function of u. Let uN be the smallest 



define the operator S by : u 

= h elsewhere, 

· for àll h € L 1 + L q. 

It is easy to see that 

on 

S f = f on u u 

8. 

and equals f elsewhere. Thus S} satisfies (i), (ii), (iii) and (iv) with a 1 = u and 

[a 11 , a 1 ) = · [aN _ 1, u). If the. given number a I satisfies a 1 ? ~ this completes the 

proof of the lemma. If instead a 1 < l1N the process must be reapplied as follows. Let us 

redefine 3N _ 1 to be ~. Then 

N-1 
s f=.[:cx.:xr. )+<XX[ b)+fxr,b )· 

UN j=1 J Laj-1'aj aN-1' . U ,oo 

We may apply the preceding argument to the function S f and construct a new function 
. . ~ 

S (s f) which equals ex on the interval [u,b). This construction will be valid.for 
u ~ 

all u € [uN_ 1, uN) whère uN_ 1 is determined by conditions analogous to those above 

which fix ~. Again Su will be an operator in the class J:/L 1) n :t./L q) and 

consequently the composed operator S S will also be in this class. Reiterating this 
u~ 

argument as many times as necessary we can, so to speak, move the point u back to any 

point a' >O byanoperator S=Sa 1 S s ... su..' suchthat ·SE:;;:l1(L 1)nL. 1(Lq) 
UM UM+1 N 

and s f satisfies (i), (ii), . (iii) and (iv) . 

. Proof of Theorem 2 : Let f and g be funétions satisfyin:g the hypotheses of the 

N 
theorem. Let f = r=

1 
aj X[c. 

1
,c.)' with O == c

0 
< c 1 < c2 ... < cN and c:1>°2> ... >°N 

J= J- J 



9. 

W e shall perform induction on N . g must vanish outside 

Jc1 jc1 By Lemma 2A we then have 
O 

g ds :s; 
0 

f ds 

and the desired operator T is given by Th = (- 1 - Je 1 h ds) g for all h € L 1 + L q. 
cx1c1 o / 

Now suppose the theorem is proven in the case where f has N-1 different positive 

N 
values and consider f = Lex. x r ) and g as above such that ( 1) holds for all 

. j= 1 J LCj-l'Cj 

t > 0. It follows that g(s) must vanish for s > cN and so : 

(2) J"N gq ds,:; J"N fq ds = {("r, - "N-1). 

CN-1 CN-1 

At this point we must consider two possible cases. 

CASE 1. Suppose that j ;1 gq ds ,:; { "N . Then, by Lemma 2A, J: g ds ,:; lln "N 

and the operator T can be obtained in the form Th ::;; (; jcN h/f cts) g. 
· N o 

CASE 2 . Alternatively we have : 

(3) 

From (2) and (3) and the fact that g is non-increasing we deduce that there exists a 
number a' €(0, cN-1] for which 

(4) JcN gq ds = ~(cN_- a')= J~ (Sf)q ds, 
a' a' 

where S € d'..1(L 1) n .,~
1
(L q) is an operator of the type constructed in Lemma 28,chosen to 

give Sf ~ ~ on [a' , ~). Furthermore Sf is a non-negative non-increasing simple 

function vanishing on ( ~ , oo) and 

(5) for ail t :s; a 11 

where [a 11, a' ) is the interval of constancy of Sf preceding a' . In fact (5) will be 

shown to hold for ail positive t. If t 2:: ~ 



10. 

from (4) and the fact that g is non-increasing .. It remains to consider t € [a 11, a 1 ) • 

On this interval j ~ (Sf )q ds is a linear function and J~ gq ds is a convex function since 

its gradientis increasing (becoming less negative). The inequality (5) holds for t = a 11, 

t = a' , and so holds for ail t € [a 11 , a I J . 

Using (4) and the constancy of Sf on [a 1 ,cN) we see that the operator u, 

defined by 

lJh = X [ü,a') h + C"Nc~-al il~ h cts) X[a• ,cN) g 

is in J:/L 
1
) n J: 1(L q) and USf = X [ü,a') Sf + X[a' ,cN) g .. X[o,a•) Sf is a non-increa­

sing simple function taking no more than N-1 different non-zero values (by (iv) in Lemma 2A: 

and fPom (4) and (5), 

r [x [ü,a')g]q ds O> J~ [X[o,a•) Sf]q ds for ail t ~ O. 

By the inductive hypothesis there exists an operator V€ J:,{L 1) n J:
1
(L q) with 

V(x [o,a,} Sf) = X[o,a,) g. 

Let T be the operator 

Th= X[o ,a 1) V [x[o,a l) Sh] +. X[a 1 ,~) Ü Lxca t ,cN) Sh] 

for all h € L 1 + L q_ Then T € J:
1

(L 1) n J:,{L q) and Tf = g, proving Theorem 2 .. 

THEOREM 3. Let 1 :5 p < q < oo and let the number a: be given by 1/a: = 1/p - 1/q. 

Let f and g be non-negative non-increasing simple functions on R . such that - -----'----------'--~------ + 
·rfX: 1/p 00 1/q . tex: 1/p 00 1/q 

(6) (j
0 

gP ct~) + t (Jtcx gq cts) :5 (J
0 

fp cts) + t (Jtcx: fq cts) 

. for all positive t. Then ther•e exists an operator 

such that Wf = g. 



11. 

. t Joo Proof: Let P(t) = j fp - gP ds and Q(t) = fq - gq ds. Let 
0 . t 

A = { tE:R+ J P(t) > 0}, B = { tE:R+ ] Q(t) ?:0 }.. By (6) AU B = R+. A is a union of· 

disjoint intervals Ai i = 1 •.• n with P(t) = 0 ai_ each end point. Similarly 

m . ~ .. · 
B == U B. where {B, 's are disjoint intervals with Q(t) = 0 at the end points . 

. 
1 

l 1 
1= 

In the following it will be convenient to use a second copy of R+ which we shall 

denote R0
• R U R0 will denote the measure space consisting of the disjoint union of 

+ + + 

R + and R~ each equipped with Lebesgue measure. Let i:p be the measure preserving 

map of R + U R~ onto itself which interchanges each point t of R+ with the correspon­

ding point t0 of R 0 

+· 

The operator W will be constructed as the composition of three operators 

(7) 

(8) 

(9) 

From this is follows of course that W E: ;l 
1
/ (Lp(R )) n -L 1/ (L q(R )). 

2 p + 2 q + 
For each 

h E: LP(R) + L q(R), W 1 puts a copy of h onto both R+ and R~, that is : 

W 
1
h(t) = XR (t) h(t) + X (t) h(<;,t) 

+ R~ 

Then (7) is obvious. 

for all t E: R UR o . 
+ + 

Since P(t) = O at the 1eft end point ai of the interval Ai it follows that 

t t J (xA_gf ds ~ j (xA_ff ds for an t?: aï • Thus, using Theorem 1 and an obvious 
a. 1 a. 1 

1 1 p 00 
translation, there exists an operator Ui E: ;l/L (R)) n -L,(L (R)) suèh that 



12. 

Then the operator U given by 

n 
Uh = L xA u.(xA n) . 1 . 1 . 

1= 1 l 

00 00 

end point of the interval B. we also have J (x
8 

g)q dx ~ J (x
8 

f)q dx for all t, and 
l t i t i 

a translation of Theorem 2 gives us an operator V. E: ...e.
1 
(L 1 (R )) n .e.

1 
(L q(R ) ) such that 

1 + + 
m 

Then Vh = L x8 V.(x
8 

h) defines an operator in .t
1
(L 1(R }) n 

. 1 . 1 . + 
1= 1 1 

V/x 8 _f) = x8 _g. 
1 1 

...e.
1
(L q(R)). 

Let v0 denote the operator which is a copy of V acting on functions defined on 

R~ instead of on R+. Then w2 is defined by: 

w2h = u(xAh) + v
0

(xcp(sl). 

(8) can readily be deduced with the help of the Riesz-Thorin theorem. { b6] Chapter XII} 

Finally W 3 collects up pieces of function on R+ and R~ and patches them together 

and all t € R . 

Clearly (9) holds and Wf = W 
3 
W 2 W 1 f = g, completing the proof of the theorem. 

REMARK. This proof of theorem 3 does not seem to use the full strength of condition . 

(6). Possibly a more refined proof would enable'the sharpened conclusion W € .t 1(LP) n 

.l /L q). 

THEO REM 4. Let p, q € [ 1 , oo] and let f and g be complex valued functions in 

Lp + L q on a measure space (X, I;,µ) · such that 



(10) 

Then there exists an ope~ator TE: L~(LP(µ)) n ;t~(L q(µ )), where ~ and r, are 

constants depending only on . p and q, such that Tf = g. 

Proof: The operator éI>, éî>h = <ph where 

13. 

;t, 1(L q) and soit suffices to treat the case where f and g are non-negative. Also, since 

K(t,a ; A
0

,A 1) = tK(1/t,a ; A1'A
0

) we can suppose without loss of generality that p < q. 

In view of the estimates given above for ~(t,f ; LP ,L q) there exists a constant À depen-

ding only on p and q, such that : 

tŒ 1/p oo 1/q tO'. 1/p oo 1/q 
·(J (g*f ds) + t (j (g*)q cts) =::; (J (Àf*f cts) + t (J (Àf*)q ds) 

o tex o ta: 
( 11) 

for all t > O, where 1/a: = 1/p - 1/q and the L q integrals are understood to be zero 

if q = oo. 

STEP l. If f and g are simple functions thenTheorems 1 and 3 together with (11) 

give an operator T2 in ::l~(LP(R+)) n ;t,
11

(L q(R)) which niaps f* to g*. ~ and r, 

depend only on p and q (for example ~ = 2 1/PÀ, r, = 2 1/qÀ if q < oo). One can 

easilyfindanoperator T 1 in ;t,(L 1(µ),L\R))n::l 1(L
00

(µ),L
00

(R+)) taking f to f* 

andanother, T3 in ::l1(L\R+),L 1(µ))n :i'.1(L
00

(R),L
00

(µ)) taking g* to g. (cf. 

L.emma 2 in [4] ). Using the Riesz-Thorin theorem we obtain that T == T
3

T2T 1 E: ::le(LP(µ)) 

n ::l
17 

(L q(µ, ) ) and of course Tf = g: 

STEP 2. If only g is simple then, given any E, O < E < 1, we shall construct 

TE: .L e(LP) n L-
11

(L q) with Tf = (1-:-e)g where ~ and 11 are as estimated in step 1. 

If q = oo it is easy to see thatthere exists a simple function fE =::; f such that 



14. 

s: [( 1-s) g*] P ds s J: (f :)P ds for ail t>O. Thus the desired operator is obtained by 

first multiplying by (f E/f )X{x I f(x)>O} and then applying the operator in z! ç (LP) n d:-
77 

(L 
00

) 

which maps fe: to (1-c:)g. For q < oo more care is needed. We must fu,st examine the 

behaviour of the function K(t,g) = K(t,g ; LP,L q) near t = 0 and t = oo. For each 

t > o, there exist functions ut , vt such that ut+ vt = g, 0 :s; ut::; g, 0 :s; vt::; g and 

(12) !lutll + t!!vtll - min(t
2

, 1/t
2

) < K(t,g) :s; mindlgll , tllg/1 ). 
Lp L q Lp L q 

Consequently lim llvtll = lim llutl! = O. Thus there are subsequences 
t➔oo L q t~O Lp 

{us(n)};=l which tend to zero almost everywhere. (limt(n) = oo, lim s(n) = 0). 
n➔oo n~oo 

By 

dominated convergence ut(n) ~ g in LP and v s(n) ➔ g in . L q. K(t,g) and 

f K(t, g) = K(1/t,g ; L q, LP) are each continuous monotone functions. So using (12) again 

we deduce that 

and 

In pàrticular, given E, 0 < e: < 1 , there exist positive numbers a and a 
0 00 

such that : 

and 

for all t < a 
0 

for all t > a
00

• 

We seek to construct a continuous piecewise linear function H(t) with finitely many 

vertices such that K(t,(1-e:)g) < H(t)< K(t,g) for all t > O. From the above estimates 

we may take H(t) = (1-e:/2)llgll t on (O,a ] 
Lq o 

[a , oo). 
00 

Since K(t,g) is continuous and strictly positive on the compact interval [a , a ] it is 
0 00 



easy to extend the definition of H(t) to the whole of (O,oo) 

segments. 

Let (fn);= 1 be an increasing sequence of simple functions, 

15. 

tN:l~~rn ny linear 

0$f 
n f n+ 1 :5 f with 

lim fn == f a. e. Since f E: LP + L q, fn tends to f in LP +L q norm also and thus 

lim K(t,f ) == K(t,f) for each positive t. Also K(t,f ) $ K(t,f 
1

) .•. :5K(t,f) since 
n n M n.,.oo 

multiplication by the function (fn+ 1/fn) x { x I fn(x)>O} is an operatorîn .e.,(LP) n .e. 1(L q). 

Let v P v2 ... vM be the values of t wher~ H(t) has its vertices. For some sufficiently 

· large n we have K(v. ,f ) > H(v.) for i = 1, 2 ... M. But K(t,f ) is concave and 
1 n 1 n 

so for an t > 0 K(t,fn} > H(t) > K(t, (1-e:)g). It follows that 

t(X 1/p 00 1/q t(X . 1/p 00 1/q 
(f ((1-e:) g*f ds) + t (J ((1-e:) g*)qds) :5 (J (Àf*f ds) + t (J (Àf*)qds) 

o tex o n to: n 

for all positive t, and so, as for q = oo, wa have an operator in .e.~(LP) n .e.
17

(L q) 

taking f to ( 1-e:)g. 

STEP 3. Proof of the theorem under the assumption that the measure space is a-.finite: 

Let (g )
00

_ 1 be a sequence of simple functions which tend monotonically almost everywhere n n- . 

to g from ~low. Then using step 2, let Tn be an operator in .e.~(LP) n .e.
17

{L q) with 

T f = ( 1-1 / n) g . Let w be a continuous lineari functional of norim one on J, 
00 

such n n 

that w( { a
11

) = lim . an for every convergent sequence { an} . Define the bilinear 
n+-f-00 

functional T actiµg on pairs of simple functions, by 

Of course T ( cp, 1/; ) is défined also for cp and 1/; ranging over larger classes of functions 

In particular 

for ail <,0E:L P , 1/; E:Lp 
1 
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and for all cpE:L q , I/J€L q'. 

Thus for a fixed <.p E:L q T ( cp, If;) is a continuous linear f unctional on L q 
I 

and so, 

since q > 1 , there exists a function hep €.L q determined by ep uniquely to within a set of 

zero measure, such that T ( cp, 1/J) = J hep ljJ dµ for ail 1/J E:L q 
1 

• The above estima tes for 

T imply that llh Il ::s; 11llcpll and if cp E: LPnL q wealso have llh)l P < ~llcpl] p· 
epLq Lq. . · L L 

The operator T, Tep= hep is thus in ~
11

(L q) and its restriction to LPn L q e:xtends 

uniquely to an operator in ~ ~ (LP) which we may also denote by T. If 1/J E:LPni, q, 

r(cp,1/J) isdefinedfor cpE:LP+Lq and r(cp,l/;)= j(Tcp)l/;dµ. ·1nparticular 

and since this is true for all ljJ € Lp(îL q it follows that Tf = g. 

S TEP 4. Proof of the theorem for an arbitrary measure s pace: If q < co then the 

subset of the measure space where f and g are non zero is a-finite and the methods 

of step 3 apply immediately. Thus we need only consider the case q = oo. Given positive 

. t t 
functions f, g E: Lp + L 

00 
whkh satisfy ( 10), it follows that J (g* )P ds ::s; J . (À f* f ds 

0 0 

for all t > O. 

Let o: = lim g*(t) = lim {f Jt (g*f ds) 1/p. 
t➔OO t➔OO 0 

Then G = {x !g(x) > a} is O'-finite and 

(gXc)*(t) < g*(t) for all positive' t. 

. t / 
Let S = lim f*(t) = lim (t j (f*f ds) 1 P. 

t➔oo t~oo O 

Then F
0 

= { x lt(x) > /3} is o--finite. 

Case 1. If {3 == O, then a= 0 and both f and g have o--finite support. Step 

3 is irnrnediately applicable. 

Case 2. {3 > o. ·case 2A. If µ(F 
0

) = oo then (f Xp )*(t) = r*(t) and there exists an 
0 

operator T 
O 

E: ~À (L11 n ~À (L 
00

) which maps f x F 
O 

to g Xe. Let 
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F n = { x I f(x) > {3+ 1/n} . and let w be the functional introduced in step 3. Define the 

operator T 
1 

by 

Then T 1 maps Lp to { 0} and maps L 
00 

into itself with norm bounded by o:/ f3 ::::; À . 

Theoperator T, Th= Xe T
0

(xph)+T
1
h, isin -LÀ(LP)n-LÀ(L

00

) and Tf=g. 

Case 2B. µ (F ) < oo. Then for each n, the set 
0 

En= {x I f3 ~ f(x) > /3-1/n} has infinite measure. 

µ(E) = oo 

Case 2B (i). Suppose that each measurable subset E of E with n 

has a subset of finite positive measure. Then each E n 
00 

has a subset D , 
n 

F = F U U D . F is o--finite and (f Xp)*(t) = f*(t). Muchas 
o n=1 n 

before we can obtain T
0 

€ d\ (LP) n -LÀ (L
00

) which maps f Xp to g Xe, and T 1 , 

given by 

Th= 1 

and T, Th = x G T 
O 
(x Fh) + T 1 h is the reql}ired operator. 

Case 2B (ii). The only remaining possibility is that the above defined.sets 

En for each integer bigger than some integer m contain measurable subsets en such 

that every measurable subset of · en has either zero or infinite measure. Let L 
00

{en) 

be the subspace of L 
00 

(µ ) consisting of functions which are a. e. zero on X \ en. 

Let .R, be a continuous linear functional of norm n 1 
00 . 

on L (e ) such that n 

.R, (x C f) = Il Xe tll. 
00

• Let (Y ,S, v) be a measure space consisting of the disjoint union 
n n n L 
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of F equipped with µ-measure together.with a sequence (R )
00 

of disjoint 
o n~ 

copies of the real line, each equipped with Lebesgue measure. We define an operator 
00 

Q € d::1(LP(µ),rY(v)) n ;;t 1 (L 
00

(µ),L 
00

(v)) by Qh = Xp
0
h +~X~ tn(Xcnh). 

In fact XC h = 0 a. e. for any h€LP(µ). Q has the further property that 
n 

(Qf)*(t) = f*(t), and since (Y,~, v) is a-finite we may use the arguments of case 2B(i) 

to construct an operator TE: ;:tÀ (LP(v ),LP(µ)) n ~À (L 
00

(v),L 
00

(µ )) which maps Qf to 

g. TQ is then the required operator and the proof of theorem 4 is complete. 

COROLLARY. (LP(µ) , L q(µ J) .. is a Calderon pair. 

III. INTERPOLATION PAIRS WHICH ARE NOT CALDERON. 

Define A
0

+oo. A 1 to be the space of all elements a€ A
0
+A

1 
for< which 

llal!A A = lim K(t,a ; A ,A 1) is finite. 
0 +oo • 1 t➔oo O 

Let A1+oo.A
0 

be defined analogously, so that 

llallA A = lim K(t,a ; A1 ,A ) = lim t! K(t,a ; A ,A 1). 
1+

00
• 0 t-tOO O t7'0 ° 

It is not very difficult to see that A 
O 
+oo. A 

1 is a Banach space which contains A ' 0 

and that for each aE:A 
0 

can be thought of as 

a sort of closure of A 
O 

with respect to A 
1 

, as the following lemma shows. 

LEMNIA 1. An element a of A
0 

+A1 is in A
0 
+oo.A1 if and only if there exists a 

sequence 

such a, --. 

(a ) · in 
n -

(an);,,=1 in A
0 

with sup lla
11

IIA < co and lim lla-a !IA = O. For each 
· n o n➔oo 11 1 

llallA +oo.A = inf{ sup llanl!A } where the infimum is taken over all sequences 
o 1 n o 

A for which lim !la-a IJA = O. o ---- n 
n➔oo 1 

Proof: We leave the details to the reader. 
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Proof: Fix a and t, and let b € A
0

+oo.A
1 

and c E: A
1
+oo.A

0 
be suchthat 

a= b + c and· 

llbl)A A + tllclJA A s K(t,a ; A +oo.A
1 

,A 1+oo.A ) + € 
o+oo. 1 1+00. o o o 

for some arbitrarily small positive number E. Let (bn);= 1 é:!nd (cn)~=1 be 

sequences which approximate b and c in A1 and A
0 

norms respectively such that 

sup llb IIA $ llbllA A + e: and sup lie l!A s llcllA A + e:. 
n n o o +co • 1 n n 1 1+00 

• o 

Then K(t,a ; A
0

,A 1) $ Ibn+ c - c)IA
0 
+ tllcn + b - bnllA

1 

$ llbl!A
0

+co.A
1 

+ tl!c!IA
1
+co.Ao + (1+t)E + O(n). 

It follows that K(t,a;A
0

,A
1

)::; K(t,a;A
0
+co.A

1
,A

1
+co.A

0
). The reverse inequality is an 

immediate consequence of the inequalities l la I IA 
O 

+co. A 
1 

$ ! la l lA 
O

, l la I IA
1 
+oo. A 

O 
s l la I IA 

1 
• 

LEMMA 3. 

Proof: Let a € A 
O 
+co. A 1 and let (an);= 1 be a bounded sequence in A 

O 
with 

lim lla-anllA = O. · For all positive t K(t,a) s JlallA . A , and also for any fixed n 
+oo • 1 n➔co 1 Û . 

K(t,a) s K(t,a-a ) + K(t,a ) n n 

s t lia-a !IA + K(t,a ). n 1 n 

So K(t,a) s K(t,a ) + min(tlla-a !!A , llallA A ). 
n n 1 o+co. 1 

K(t,a) is a positive non decreasing 

concave function and so for a sufficiently large positive number À , K(t,a)::; ÀK(t,a ). n 

But,by hypothesis, A as an interpolation space must be K-monotone and À a E: A . o n o 
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Thus aE:A and A = A +oo.A1. 
0 0 0 

REfvlARK. It can be seen that if A
0

-/= A
0

+oo.A
1 

then spaces other than the nend point" 

spaces A
0 

and A 1 may also fail to be K-monotone. 

EXAMPLES . Let the measure space be the real line R equipped with Lebesgue 

measure. Let C(R) be the space of continuo.us bounded functions on R with supremum 

norm, and let W 1, 1 be the Sobolev space of L 1 functions f whose first derivatives 

f 1 (in the distribution sense) are also in L 1 with llrll 1 1 = llïll 1 + llr1 Il 1. Then 
W , L L 

1 00 1 C(R) + oo.L = L and for example C(R) and C(R) n L are not K-monotone. 

(L 1 , W 1' 1) also fails to be a Calderon pair. In fact W 1' 1 
+oo. r} = BV nL 1, the space 

of functions in L 1 which coincide almost everywhere with functions of bounded variation. 

BV nL 1 can be normed by l]t!l8 vnL 1 = lit!] 1 + var(f). 
L 

The last example will show that Lemma 3 does not have a converse. Let T denote the 

circle group with Haar measure and - W l ,p(T) the Sobolev space of functions f in LP(T) 

whose (distributional) first derivatives f 1 are also in LP(T) .. As norm take 

llfll 1 P = l!tll p + l!r1 li p' For 1 ::;; p < oo we have an estimate of Peetre, 
W ' -L L 

K(t,f ; LP(T), V,J 11P(T)).,-...,'1{t,f) 

where t < 1 

= llfll p 
L 

for t?::: 1. 

See [10] , [11 l also [1] p. 258. Though these proofs are given for (LP(Rn), W 11 P(Rn)) 

rather than for spaces taken on the circle or n-torus, the result for T or• Tn can be 

readily deduced. (For example construct an operator 
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of f multiplied by a suitable C
00 

function of compact support, so that Sf 1 = f 
. Tn 

and llsfll ,V llfll , llsfll 
1 

~ lltl] 
1 

- and ,J{t,Sf)rv 'I{t,f).) 
LP(Rn) LP(Tn) W ,P(Rn) W ,P(Tn) 

Let Lp(T) be the space of tempered distributions f on T whose Fourier 
(X . 

" " 1 j 2 -cx/2 " coefficients f(n) aregivenby f(n)=(1+ n ) cp(n), where cp is a function in 

LP(T). Let lltll P = llcpll p· There are analogous definitions for LP on Tn and Rn. 
L L ex 

(X 

For our purposes it suffices to consider the parameter cx in the range ( 0, 1) and in this 

as was shown by Calderon. ( [2], · GJ ). However Lp is 
I.X 

not K-.-monotone, at least if 2 < p < oo and 1/p < ex< 1. This may be seen with the 

help of some special functions used by Taibleson [15] to show non-inclusions between L~ 

and certain generalised Lipschitz or Besov spaces (LP , W 1 'P) 
i.x, q 

The function. k = k 
1
;

2 
which has the Fourier series .C 2-na: n- 1/ 2 cos 2nx 

ex:, 1 .· 

does not belong to L~. ( [15] p. 473 paragraph (e)). Using the estimate on p. 472 of [15] 

we see that l!k(x+h)- k(x)II ~ M1 !h la:log- 1/ 2(1/ !h 1) for some constant M{· 
LP(T) 

However the function f = f 1; , 1; with Fourier series 
, a:+ p' p+E 

8 n-<X-l/p'1og- 1/p-En cos nx is in Lp for each E > O and furthermore 
2 (X 

llf(x+h)·- f(x)II > M
2 

lh l°J.og- 1/p-E(1/ lh 1) for some constant M2 ( [15] pp. 473;..474 
LP(T) 

paragraph (h)). We choose E = 1/2 - 1/p and clearly K(t,k) s K(t,)d} for all t and 

some constant · À • 

( It is easy to deduce that Lp(R0
) and LP(Tn) are also not K-monotone for the 

C( j a: 

above ranges of values of p and ex: using Lemmas 23, 24 and 25 of [15]. Incidentally, · 

by using interpolation methods with an operator of the form · S as above, one can give 

an immediate proof of Lemma 2 5). 



22 

Obvioûsly L P +oo . W 1 'P = iP, and from the weak compactness of the unit ball of L P 

for 1 < p $ co we may readily deduce that W 1 ,P +co. Lp = W 1 'P. Let us summarise the 

results of this section. 

THEOREM. Every Calderon pair (A
0

,A 1) has the 11mutual closure" property 

A = A +oo.A
1 

, A
1 

= A 1+co.A , but this property is nota sufficient condition for an 
0 0 . 0 

interpolation pair to be Calderon. 

IV. WEAK K-MONOTONICITY. 

Hav:i.ng observed that there are at least two different 11mechanisms" which may prevent 

an interpolation space from being K-monotone, we now turn to the study of a monotonicity 

property weaker than K-monotonicity which holds in all interpolation spaces. 

CO 

LEMMA l. Let w( t) be a positive measurable function such that J w( t )dt < co, 
. ' . 0 

and let (A
0

,A 1) bé an interpolation pair. Let f,g E: A
0

+A1 such that 

K(t,g) $ w(t) K(t,f) for all positive t. Then there exists an operator TE: .LÀ (A
0

) n 

;/:,À (A 
1

) such that Tf = g. À may be taken to be any number greater than 

min 
2a: J00 

w(t) dt/t. 
n>1 log a o 

Proof : Let r > 1 be such that min 2o/log a: = 2r /log r. Choose a ntimber E > O. 
<Pl 

For each n = 0, + 1 , +2 , ... , let g = a + b , where a E:A , bn Ê A 
1 

, and 
- - n n n o 

IJanl!A
0 

+ rnllb~l!A
1 

$ (1 + e:) K(rn,g). We shall need two estimates : 

n . 

(Jr n-l w(t) ctt/t) K(r
0 

,f) 
1-; 



n 

Il Il 2 -n+1 (jr ) 
(2) a-a_ 1 A :s;(1+e:) r n- 1 w(t)dt/t K(r,n,f). 

n n 1 log r r 

For (1), llan-an_ 1IIA :s; lla)IA + llan_1IIA :s; (1+e:)(K(rn,g)+K(rn- 1,g)) 
0 0 0 

:s; (1+e:)(1+r)K(rn-l ,g), since K(t,g)/t is non-increasing, 

rn J n- 1 K(t,g)dt/t 
< (1+e:)(1+r) r n , since K(t,g) is non-decreasing, 

. J:n-1 dt/t 

n 
2 -n+1 Jr 

::; (1+e:) r ( n- 1 w(!) dt/t) K(rP ,f). 
· log r r 
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For each n llh!I = K(rn ,h) is a norm on A
0 
+A1 and thus there exists a continuous 

linearfunctional tn on A
0
+A

1 
suchthat tn(f)=K(rn,f) and ltn(h)l:s;K(rn,h) 

for all h C A
0 
+A 

1 
• Thè operator T will be given by 

00 

Th=L 
n=-oo 

J, {h) 
n (a -a ) 

K(rn,f) n n-1 
for all 

If hE:A
0

, Th is given by an absolutely conyergent A
0

- valued series, since · 

I en(h) 1 lla -a Il 
~oo K(rn ,f) n n'"'." 1 Ao 

00 

< (1+E) (1+r) J00 

w(t) dt/t llhllA from (1). 
log r o o 

Similarly if hCA 
1 

00 lt (h)' 11 I! L n a -a 
n=-oo K(r,n ,f) n n- 1 A1 

::; (1+e:) l~; r J00 

w(t) dt/t by (2) and so Th C A 1, and 
0 
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2 100 greater than ( 1+E) _r_ w(t) dt/t. 
logr o 

Since f E: A +A
1

, 
. 0 

Tf =L(an - an_ 1) is.a series converging absolutely in A
0

+A1 
-oo 

norm. 

0 00 

Tf = I:;(an - an-1) + L(bn-1 - bn) 
- 00 1 

=a-lima 1 +b -lim b. o n- o n 
Il➔-oo n➔oo 

rn+1 
As in the proof of (1), K(rn,g)::; - 1-(j w{t) dt/t) K(rn+ 1,f). Thus as n ➔ -oo 

log r rn 

K(rn ,g) ➔ O and as n ➔+00 K(rn ,g)/rn ➔ 0. From !la llA + rPJ!b IIA ::; (1+E)K(rn ,g) 
n o n 1 

we have 

So Tf = a + b = g .. 
0 0 

THEOREM 1. Let w(t) be a positive measurable function such that for some positive 

numbêr . E, r min( 6' w(t) dt/t < 00. Let A be an interpolation space for. (Ao' A 1 ) . 

Thenif fE:A and g E: A +A
1 

such that K(t,g)::; w(t) K(t,f) for all t > O. it follows 
- 0 

that gE:A. 

Proof : We change to a notation in which A 
O 

and A 1 appear more symmetrically. 

x/2 X . X ... 
Let K*(x,a) = e- K(e ,a) and w*(x) = w(e ), so that K*(x,g) :s; w*(x)K*(x,f) 

00 

for all x E: (-00,00) and J_
00 

min(e,w*(x)) dx < oo. For any a E: A
0

+A1 and any real 

x and y we see that K*(x+y, a)::; e IY l/2 K*(x,a). Let H{x) = K*(x,g)/K*(x,f). 

We deduce immediately that H(x+y) ;=:: e- 1 Y IH(x) . for all real x and y. Further, since 

H(x)::::; w*(x), the set { x !H(x) > r, J must have finite Lebesgue measure for any 

positive rJ. It follows that j 1j·m H(x) = O, and that J00 

H(x) dx < oo, Let 
X ➔oo -oo 



w /t):;:: H(log t). 

conclude that g€A. 

dt. 
w 1(t) t < co and K(t,g) < w 1(t) K(t,f). 
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Using Lemma 1 we 

REMARKS. In some particular cases the condition K( t,g):::; w(t) K(t,f) for f€A 

forces g to be in a class much smaller than A. For example if f € (A ,A 1)0 0 . ,co 

g must be in (A
0

,A 1 )0 , 1, and if f€A
0 

or A1 then g must be zero. This seems 

to suggest tbat the above theoriem is riather crude and that, for example, it should be possible 

to weaken the conditions imposed on w( t) and still have g€A. Bearing in mind that for 

some interpolation pairs we only need w( t) to be bounded, we ask if it is possible to ·. 

00 

weaken the requirement J
0 

min(E, w(t)) dt/t < co to something corresponding to a slower 

convergence of w( t) to zero as t ➔ 0 and t ?I' oo, for example 

CO J
1 

min(e:, w(tf) dt/t < co for some p > 1. We shall construct an example which shows 

that such a sharpening of the theorem is in fact impossible. 

Let 
00 

{ Bn} be a sequence of Banach spaces. For 1 ~ p ~ oo define the space 
n:;::1 00 

fo consist of all vector valued sequences {a 1 
1 

satisfving a €B for, each nfn:;:: · "~ n n 

n, and The usual modification is made for 

p = 00, 

LEMMA 2. Let (Bn,Cn) n = 1, 2, . . . be a sequence of interpolation pairs. Then 

(.t 
1
{ Bn}, i, 

1 {en}) is an interpolation pair and 

(i) K(t, { an} ; t 
1 

{ Bn}, t 
1 
{en})=)~; K(t,an ; Bn,cn) 

{ii) 1
1
{{B0 ,C 0 )8 ,q}c(.e 1

{Bn}' i
1{cn})e,q for 0<0 < 1 and 1:::;q:::;00. 

The inclusion is an equality for q = 1. 

{iii) for O < 0 < 1. 
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Proof : It is easy to see that i, 
1 
{ Bn} and .R., 

1 
{ en} are each Banach spaces 

continuously embedded in t 1 
{ Bn +en}. The proofs of (i) and (ii) are left to the reader. 

For (iii) it is convenient to use a different construction for the complex inter1polation space 

defined in the strip O < Re z < 1 such that the lîmits on the boundary 

f(j + iy) = lim f(x + iy) exist in the sense of tempered A +A 
1 

- valued distributions on the 
. 0 x-.J 

line, a.nd satisfy J00 

llf(j+iy)!!A. dy < oo for. j = o, 1. Then [A
0

, A
1
] 0 consists 

-co J 

of all elements a E:. A
0 

+ A1 such that a = f(0) for1 some f(z) E:. ~
1
, ,(A

0
,A

1
) and 

may be normed by ]!ail (i\ A J = inf J00 

Il f(iy)IIA · + llf(1+iy)IIA . dy. Using ideas 
0' 1 e a::::f ( e ) -00 0 1 

implicit in section 9 .4 of GJ which are further explained in .[12] (Lemma 1. 1) it can be .. 

seen that this construction gives the same space to within equivalence of norm as that 

obtained from the original definition. 

Let { an} E:. 1, 
1 

{ [Bn,cn] 0 }. There exist analytic functions fn(z) E:. ~ 1, 1(Bn,Cn) 

such that fn(e) = an and lla)I [8 C J ~ (1-E)j
00 

Il fn(iy)ll8 + llfn(1+iy)llc dy. 
n' n e -co n n 

Let {f (z)} and {a } be truncated sequences, that is f (z) = f (z), n,m n,m n,m n 

a =a n,m n for n :5 m and f m(z) = o, a = 0 for n > m. n, n,m Noting that 

t 1{ BnJ + f, 1 { en} = P, 1 { Bn +en} has dual space P, oc { B~nc~J, we see that for each m, 

{ fn,m(z)} E:. a. 1, ,(.t 1 
{ Bn}, f, 

1 
{en}) and so { an,m} E: ~ 1 

{ Bn}, .t 
1
{ cnJ] e with · 

norm Il{ an,m}II [t 1 { 
80

},;, 1 { cJ 
8

,;; i; f
00

lltn(iy)ll
80 

+ l!t0 ( l+iy)llcn dy. By similar 

estima tes { a · } is a Cauchy sequence with respect to m in n,m G 1~nJ ,t 1{cn]e · 

Thus its limit { anJ in f, 
1 
{ BnJ + P, 

1 
{cnJ must also be in [t 1 

{ Bn}, .e1 
{ en] 0 . 

This shows that t 
1 {[sn,cn] 0 } c [t 1 

{ BnJ, .R.. 
1 
{ en] 

0 

• We leave the proof of the 
0 

reverse inclusion to the reader. 
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Let { r nJ ~= 1 be a sequence including all the rational numbers in ( 1 , oo). Let us 
r · r 

take B == L n(R ) and C = L 
00

(R ) for .n == 1, 2, ... and let A == J., 
1 {L n(R )j', 

n + n + o + 
·. r · r /(1-B) 

A1 :::i
1{L

00
(R)}· Then [A

0
,A)0 =t

1{[L n,L
00

] 8 }=t1{L n } (b], 13.5, 

13. 6). We next observe that 

(3) for an q > 1/(1-0 ). 

r 
The space (,e 

1 {L n}, t 1 
{ L 

00

} ) 8 , q includes sequences { an} such that an = 0 for 

r r ~-~ 
all n =f. m and a € (L m,L

00
) 0 = L(r /(1-0 ),q) </:. L m if m is such that m ,q m 

q>rm/(1-8). (See [1], p. 187 and [7] p. 255.) 

Now let us suppose that there exists a number p > 1 such that the conclusion of 

Theorem 1 holds when w(t) satisfies the weakened integrability condition 

00 J
0 

min(e,w(tf) dt/t < 00 • We shall see that tlùs contradicts (3). Let us choose · e suffi-

ciently small so that p > 1/(1-0 ). We also introduce a second positive number a: chosen 
to ensure that 

(4) (i) 

(ii) 

p > 1/(1-0 )(1-cx) > 1/(1-0) 

r = p(1-0 )(1-u:)/cx is a rational number greater than 1. 

Let g = { gnJ E: (A
0

,A 1 )0 ,p( 1-o:)' Then w(t) = (t-e K(t,g ; A
0

,A 1 ))
1

~<X satisfies 

J: w(t)P dt/!< 00 and K(t,g) = w(t) t8(1- 0\K(t,g))". 

0(1-cx) o: · r J Our next step will be to show that t (K(t,g)) ::; K(t,f) for some f € LA
0

,A 1 0 . 

On the assumption that the sharpened version of Theorem 1 is true, K(t,g):::::; w(t) K(t,f) then 

implies that g E: [\
0

,A 1] e. But g is an arbitrary element of (A
0

,A 1 )0 ,p( 1-cx) and 

so (3) will be contradicted .. 

As a non-decreasing concave function of t, .K(t,g) must be absolutely continüous on 

every compact subinterval of (O,oo). Thus it is differentiable almost everywhere and the 

derivative K1 (t,g) must coïncide almost everywher 1e with a non-increasing non-negative 
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function. We introduce the function h(t), 

From (4) and the fact that K(t,g)/t is non increasing we see that h(t) is a non,.. 

increasing function such that h(tf = lt Ee (1-cx) (K(t 1/r ,g))cxr J almost everywhere. 

But t8 ( 1-cx)(K(t l/r ,g})cxr is also absolutely continuous on every compact subinterval of 

( 0, oo) and tends to zero as t tends to zero. It follows that 

t ë(1-cx)(K(t1/r,g))cxr = J
0 

h(sf ds and so 

tr 
t8 (1-cx)(K(t,g))°'. = (j h(sf ds) 1/r:::; K(t,h ; Lr(R, ),L 00 (R )) 

0 T + 

(as in [s] p. 159). Since r is rational r = rm for some m and if f = {tn} is a 

sequence in A 
O 

+ A 1 which is zero for ail n /, m and has fm = h, then 

K(t,f; A
0

,A 1) = K(t,h; Lr,L
00

). It remains only to show that f E: [A
0

,A) 0 which 

r/(1-0) amounts to showing that h E: L . But 

h(tf ,s; H: h(sf ds = t8(l-cr)-1(K(t l/r,g))m', and so 

J: h(tf/(1-8) ds ,s; J: G-8 /r K(t 1/r ,g)] p( 1-cr) dt/t 
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