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On the Banach algebra A(r) for smooth sets r C ]Rn 

by 

Yngve Danar 

0. The main part of this investic;ation is dcvoted to the problem 

of estimating lleitf!IA(r) , as 

f € A(r) is real-valued. A(r) 

t ➔ oo, Here n t € JR , r c JR , and 

is the quotient Banach algebra 

all functions, vanishing on r • We shall discuss only very regular 

situations. r is thus in genel'al a well-behaved compact subsct of 

a smooth manifold in n n 
TI , an interval on IB , a curve in JR , a 

surface in m3 etc., and f bas high differentiabili ty properties. 

In order not to complic&te the discussion and obscu'!"e the principal 

ideas, we shall be very generous with· our regularity assumptions. 

Thus 1•;e assur.e that all m2nif olds and f\mctions f in vol ved are 

infinitely differenti~ble. It can howevcr be shown that each parti

cular result holds as well, if we only require differentiability up 

to a certain order. The principal abject of our work is to show that 

very simple, straightfon-;ard and seemingly rough methods give very 

precise estimates. In the concluding section we show how our results 

can be used to determine, for the sets r considered, all those hcmo-

n oo morphisms of A(JR ) into A(r) , which are given by C mappings 

of r n into JR • 

The paper is of a preliminary character, and presents the actual 

state of the continued work in a direction initiated by f5]. 
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1. Let r be a compact interval,of IR and let 
(X) 

f e C (r) be real-

valued. The following theorem is well known, even under much weaker 

differentiabili ty assumptions on f : 

Theorem 1.1. If f is non-linear, there are positive constants c1 

~ c2 such that 

( 1.2) C t 1/2 < Il itfll < C t 1/2 
1 - e A(r) - 2 ' 

> lleitfll = l for t _ 1 • For f linear, for every t € IR. 

The inequality to the left in (1.2) is due to Leibenzon [9], 

while the right hand inequality is an easy corollary of the inequa

lity of Carlson [1]. We shall give a proof of Theorem 1,1, not the 

shortest one, but a proof which can serve as a model for the deduc

tion of estimates in more general situations. 

Proof of Theorcm 1.1. The only non-trivial partis the proof of (1.2) 

for non-linear f • Let us start with the inequality to the right. 

Instead of applying Carlson's inequality, we base the proof on three 

elementary ob~ervations. 

Firstly,we observe that a partitioning of the unit in A(r) 

shows that it suffices to prove that there exists a constant C such 

that 

(1.3) 

for every subinterval -1/2 rt c r of length t • 

Secondly, the norm of a function in any algebra A(E), E C JR.n, 

does not change after multiplying the function with a constant of 

norm 1 or with a bounded continuous character on JR.n (restricted 

to E) • Hence, wi th x
0 

denot:!.rg an end point of r t and x standing 

as symbol for the variable, we obtain 

it(f(x)-f(x )-(x-x )f' (x )) 
= lie o o o IIA(rt) = 

2 it(x-x) gt x (x-x) 
0 1 O 0 

= lie IIA(r ) ' 
t 
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oo r -1/2] where gt x E C ( LO,t ) , and where 
, 0 

gt x and all its deriva
, 0 

tives have bounds that are uniform in t and X • 
0 

Thirdly, the norm of a function h in any Banach algebra A(E) , 

E C JRn, is not affected by affine bijections of lin and correspond

-1/2 ing mappings of E and h • Thus, putting x = x + ut , with u 
0 

But the right hand member is the norm of a function on [o, 1], bounded 

uniformly in x
0 

and t , for t ~ 1 , as well as all its derivatives. 

Hence (1.3) is proved. 

To prove the left inequality of (1.2) we observe that the 

assumed non-linearity of f implies the existence of a subinterval 

r' Cr of positive length where f" does not vftnish. Let 'if! E 2)(11.), 

with Supp (7/J) cr' and 

-itf 
7/J e , defined as 0 

) 7/J dx = 1 • We consider- the fu..>1ction 
]R 

outside r , as an element in the Banach 

r,-' 00 
space IM (IR) = :f L (JR) of pseudomeasures on JR. It follows fran 

the definition of the norm in A(r) that 

( 1 .4) 1 _ , itf(x) -itf(x) .,, ( )dx Il itfll 1·1 itf,,,11 
- ) e e 'I' x ~ e A (r) e 'Y IM (JR). 

Thus the 
r _, 

left inequality of ( 1 .2) follows with c
1 

= C , if 

(1.5) Il -itf,,,11 < Ct-1/2 
e 't' FM(JR) - , 

t ~ 1 , for some C • ( 1 ,5) can be deduced from the lemma of van der 

Corput [2]. We shall, however, apply a more general lemrna, Lemma 1.6 

below, which is needed in later discussions. It is well knmm that 

lemmas of this general type exist. Th:l.s particular formulation is due 

to J.-E. BJërk (personal communication). We omit the proof of the 

lemma, since it is fairly close to van der Corput's proof. 

Lemma 1 .6. Let [a,b) be a canpact interval on IB , and 7/J E V(]a,b [), 

k € cP( [a,b]) with 
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if x E [a,b] , ~ c
1 

and c2 are constants and p a positive 

integer. Then there exists a constant C not depending on k , such 

that 

11 eisk(x) 'lfl(x)dx 1 < C s -1/p, 

a 
for every s > 0 • 

In order to prove (1.5) we first observe that its left member 

is, by definition, the 00 
L norm of the function with values 

~ e -itf(x)-iux '1/J(x)dx, u € JR, 

r" 
with the Fourier transform defined properly. Taking s = t+ lu!, 
we can apply Lemma 1 .6 with [a,b] = r", p = 2, and 

t ) u k(x) = - - f(x - - x, s s 
X € f', 

Cl == Min ~ ( 1 ( 1 - 1 r 1 ) f' ( x) + r j + ( 1 - 1 r 1 ) 1 f" (X) 1 ) , 
a_sx~, - 1,Sr,S1 

c2 = 1 + sup ( 1 f' (x) 1 + 1 f"(x) 1) • 
XEf' 

Frorn this we obtain (1.5). 

2. Now we assume that r 2 
:i.s a curve in JR , representable as the 

graph of a real-valued function g E c00 
( [a,b]) , where -oo< a < b < 

< co. As always we have f € c00 (r), and f is real-valued. 

Theorem 2.1. Let r have non-vanishing curvature. If f is not the 

restriction of a linear function on JR2 , there exist positive 

constants c
1 

and c
2 

such that 

1/3 itf 1/3 
(2.2) c1t ~lie IIA(r)~c 2t , 

f2!: t > 1 • If f is the restriction of a linear function, then 

Il itf e IIA(r) = 1 , for every t € JR. 

Proof of Theorem 2.1. The only non-trivial partis the proof of (2.2). 

A detailed proof of the right hand inequality has been given in [5], 

and we shall here give only a brief outline. The proof uses the same 
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technique as the corresponding proof in Section 1. This time we 

observe that it suffices to obtain a unifonn bound for 

where r t is the graph of g , restricted to a subinterval It C 

C [a,b] of length t- i/ 3 • Denoting by x
0 

an endpoint of ·rt, 

we can now use the assumption g" 10 and the presence of a two

parameter family of bounded characters to obtain 

it(x-x )3gt (x-x.) 
itf O ,x 0 

lie IIA (r ) ~ lie 0 

t 

where gt x has the differentiability and boundedness properties 
, 0 / 

specified in Section 1. The transformation x = x + ut-
1 3 proves 

0 

the Ut~iform boundedncss of (2.3). 

To prove the left inequality, we first observe that there is a1 

subinterval [a' ,b'] C [a,b], of positive length, where the function 

h = f o g satisfies the co~dition 

(2.4) 
1 h" ,, 1 

1 
g I t O 

h"' g'" 1 • 

For otherwise the condition g" t O implies that h" and g" are 

1inearly dep~ndent, i.e. 

h ( x) = Ax + Bg ( x) + C , x € [a, b] , 

for some constants A, B and C • But this means that f is the 

restriction to r of the linear function 

(x,y) -+ Ax + By + C , (x,y) € lR2 • 

Choosing [a' ,b' J as above we can now continue as in Section 1. 

Let ?/J E ZJ(JR) with Supp (?/J) C [a' ,b' J and with ~ . 7/J (x)dx = 1 • 
lR 

µ is the Borel measure on r for which the projection on the 

x-axis is the Lebesgue measure mul tiplied wi th 7/J •. We consider µ 

2 as a pseudomeasure on m and obtain 
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J. itf(g(x)) -itf(g(x)),,,( )dx: { itf -itf 
1=)e e 't'x =)e e dµ~ 

a r 

Thus it suffices to show that 

(2,5) 

t :? 1 , for some constant C • But the left member is the supremi.nn 

of the absolute value of 

b' i 0 -itf(x,y)-iux-ivydµ(x,y) =} 0 -ith(x)-iux-ivg(x)~(x)dx, 

r a' 

as ( u, v) E IB 
2

• Taking s = t + 1 u 1 + 1 v 1, and obsorving the relation 

(2.4), we can apply Lemma 1.6 with p = 3 and 

t U V 
k(x) == - - h(x) - - x - - g(x) , s s s 

and this gives (2,5). 

Remark. Theorem 2. 1 has analogues for curves in JR n, n > 3 , now with 

t-l/ 3 replAced by t - l/ (n + 1). As for the right hand ineq 1mlity we 

refer to [5]. The inequality to the left can be dis~ussed as in the 

proof of Theorem 2.2, usir.8 L~mma 1.6. 

3. In this and the next section we are concerned with cases when 

the dimension of r is two or higher. In order to avoiè. compli.cations 

at the boundary of r we prefer to change our setup in the following 

way. 

Let n be a c00 manifold in JR n and f a real-valued func

tion in c00 (n) .• We say that a positive function M on [1,00[ is 

a majorant if, for every compact K C n , there is a constar.t C > O 

such that 

(3. 1) 

t > 1. A positive function m on [1,00[ is a minorant if there 

exists a canpact K C n and a constant C > 0 such that 
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itf 
lie IIA(K) ~ C m(t)' 

r 
t > 1 • 

In this section we assume that n 1s an open non-empty subset 

of ]R 
2 , and denote by k the maximal rank in n of the Hessian 

( 
fxx fxy \ 

f . f i 
yx yy / 

Then the following theorern holds. 

Theorem 3 .3. The function t ➔ tk/ 2 , t > 1 ,. is both majorant and 

minorant. 

Proof of Theorern 3,3, We first prove that the function is a majorant. 

In the case when k = 0, all second order derivatives of f vanish, 

and thus f is linear on every cornponent of n. It is obvious that 

the theorern holds in this case. In the discussion of the case when 

k = 2 , it suffices to consider the case when K is a square con

tained in n • We can then argue exactly c.s in the proof of Theorem 

1.1. By a partitiontng of the unit it follows that it suffices to 

show that 

Il itf,, e 'A(Kt) 
is uniformly bounded for the family of squares contained in K, with 

sides parallell to the sides of K, and with side length t- 1/ 2 , 

t > 1. The proof of this is quite parallell to the corresponding 

-
part of the proof of Theorem 1.1, and is omitted here. 

1/2 The proof that M(t) = t , t ~ 1 , is a majorant when k = 1 

is similar, but is more complicated. It suffices to show that every 

given point P = (x ,y)€ n has a compact neighborhood K such 
0 0 

that (3. 1) holds for some C • 

We shall use a result of Hartman and Nirenberg [6] (Theorern A), 

which states that the surface z = r(x,y) in m.3 is locally deve-

lopable at P when k = 1, in the following sense: There exists an 

€ > 0 and a continuous real function h on [-E, e:] such that the 
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line seg)1Jents 

L ={x -s sin h(s)+v cos h(s), y +s cos h(s)+v sin h(s))lv E [-E,E]), 
S O 0 

s e [-e:,e:], are disjoint and have a compact neighborhood K of P as 

their union, and are such that the tangent plane of the surface is 

common for all (x,y, f(x,y)) with (x,y) on the srune seg)1Jent L . 
s 

The property that the seg)llents L are disjoint implies evidently 
s 

that h is Lipschitz continuous. This implies that if E is chosen 

small enough, we have for every 

K = \J · L 
t,so ls-s l<t-1/2 s 

o-

is contained iï.1 the rectangle 

s € [-e:,e:] 
0 

and t? 1 , that 

Rt ={(x -s sin h(s )+v cos h(s ),y
0

+scosh(s )+v sin h(s )j ,s O O O O 0 
0 

11 s - s O I s 2t -
1 
/ 

2 
' 1 V I s 2 € J ' 

whereas 

V / L 
ls-s l>5t- 1 2 8 

o-

is disjoint from the rectangle 

St s = 2Rt - (x ~ s sin h(s ) , y + s cos h(s ) ) • 
1 O ,s O O O O O O 0 . 

Now there exists a constant c
0 

such that we can find, for every 

choice of t > 1 and s E [-e:,e:], a funf'tion cp E A(JR
2

), with 
0 

cp(x,y) = 1 on Rt,s , cp(x,y) = r:: outside st,s , and llcpllA(lR2) ~ 
0 0 

< C • These functions can be used for a partitioning of the unit, 
- 0 

and this shows that 

Il itfll < C t-1/2 
e A(K) - ' t ~ 1 , 

for some C , follows if we can find a constant C 
1 

such that 

l\eitfllA(K ) ~ lleitfllA(R ) .5 c, , 
t,s t,s 

0 0 

(3.4) 

for t > 1 , s e [-E, E]. 
- 0 

Using the properties of the tangent plane of z = f(x,y), we 

obta.in for (x,y) E Rt , ,s 
0 
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d(x,y) = f(x,y) - f(x - s sin h(s ) , y + s cos h(s ) ) -
0 0 0 0 0 0 

- (x-x +s sinh(s ))f'(x -s sinh(s ), y +s cosh(s )) -
0 0 0 X O O O O O 0 

- (y-y -s cos h(s ))f'(x -s sin h{s ), y +s sin h(s )) = 
0 0 0 y O O O O O 0 

. 2 
= ((x-x )sinh(s )-(y-y )cosh(s

0
)+s) gt (x-x +s sin h(s ), 

0 0 0 cf ,s O O 0 
0 

y - y + s cos h ( s ) ) , 
0 0 0 

where gt - is bounded uniformly in t and s as well as all-its ,s 0 
0 

partial derivatives. Hence by the affine transformation 

t = ((x-x )sin h(s) - (y-y )cos h(s) + s )t 1/ 2 
0 0 0 

1l = {x - x )cos h(s) + (y - y )sin h(s) , 
0 0 

we obtain as in the earlier sections 

it 2
h (E t- 1/

2 ,·11} 
itf itd 1\ t,so Il lie l!A (R ) = lie IIA (R ) = e A ( S) , 

t,s t,s 
0 0 

where S = [-2,2J X ~?e:,2c:J, and where h is u.•liformly bounded in t,s 
0 

t and s as well as all its partial derivatives. Henoe (3.4) holds. 
0 

k/2 In the proof of our·claim that t ➔ t , t:;: 1, is a minorant, 

it suffices to èonsider the case when k = 1 or 2 • We first observe 

that there is a non-empty open subset n
1 

of n where the maximal 

rank of the Hessian is attained at every point. We form a function 

1{I € ~ (JR
2

) with support contained in n
1 

and satisfying 

-itf 
1/J e 

Hfdxdy=1. 
JR2 

i .d d d JR2 . h. t 'd s cons1 ere as a pseu aneasure on , van1s ing ou si e 

0. Arguing as in Section 1 we find that (3.2) holds with K = supp(t), 

m(t) = tk/ 2, if for some C 

(3.5) lit e -itfll < C t-k/2 , 
fM (JR 2) -

for t > 1 • But on Supp (t) , the minimal rank of f is k, and 

hence (3.5) follows from the following lemma, easily deducible from 

the results in Littman [10] (et. [11) and [4] p. 25). 
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Lemma 3,6. ~ K be a compact subset of an open set U C lRn. 

'If! € 0 (K) , and h E c00 
(U) • For some ô > 0 we œ.ssume at every 

that 
point of U ~east k eigenvalues of the Hessian of 'If! ~ 

absolute value > ô. Then there exists a constant C such that, if 

-ith 
te is defined as O outside K, 

117/Je-ithll < C t-k/2 •. 
PM(lRn) 

The constant C depends on K, U, ~, k, ô, and of the bounds of the 

partial derivatives of h of all orders. 

Remark. Theorem 3,) has ext0nsion possibilities to the case when n 

is an open non-empty subset of ]Rn and k is the maximal rank of 

the Hessian of the real-valued function f € c00 (n). By the same 

arguments as 1n the later part of the proof of Theorem 3.3, we find 

from Lemma 3 .6 that t ➔ tk/ 2 , t ~ 1, is a minorant. The function 

is also a majorant 1n all cases when the first part of the proof can 

be copied, i.e. if we have a local representation corresponding to 

the local developability, now by a k-parameter family of (n - k)

dimensional affine manifolds. 

4. In this section we study the case when n 00 is a C surface 

1n m3 , of non-vanishing Gaussian curvature. We rextrict ourselves 

to the situation when n is the graph of a real-valued function g, 

defined and infinitely differentiable on sane open subset U of JR
2 • 

Then the Hessian of g does not vanish. f is a real-valued c00 

function on n . We can thus think of f as a c00 
function on U • 

For every (x,y) € U and À e ]R, J\(x,y) denotes the rank of the 

Hessian of the function f - >.. g on U , and 

( 4. 1) k = Max 
(x,y)EU 

Min RÀ (x,y) • 
À, EJR 

Since the Hessian of g has rank 2 , the subset of U where the 

maximum in (4.1) is attained is an open set U. It is easy to see 
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that k < 1 if n has positive Gaussian curvature. k = 2 for 

instance if U = m2
, g(x,y) = x2 

- y2
, f(x,y) = xy • 

Theorem 4.2. In the sense precised in Section 3 t -+ t k/ 2 , t ~ 1 , 

is bath majorant and minorant, if k = 0 

t ~ 1, is a majorant and t ➔ t 1/
2

, t ~ 1 

or 2. If k= r, t-+t 5/ 6, 

is a minorant,and there 

are examples when the first function is a minorant and other examples 

when the second function is a majorant. 

Proof of Theorem 4 .2. Let us first consider the case when k = 0 • 

Then there exists a function X on U such that 

r fxx = Àgxx 

1 r = Àg 

l 
xy xy 

f = Xg 
yy yy 

for every (x,y) U. Since the Hessian of 
00 

g he.s rank 2 , À. € C (U) • 

Taking the partial derivatives, we obtain 
r 

1 Xygxx = "-xgxy 

} Xygxy = Àxgyy 
\. 

and since the system has non-vanishing determinant, we find that À 

1s constant on every component of U • Hence 

f(x,y) = Àg(x,y) + Ax + By + C, 

on every component, for properly chosen constants A, B and C, 

which shows that f is, on every component, restriction of a linear 

function on m 3 • It follows fran this that the function with constant 

value 1 is a majorant, and i t is trivially a minorant. 

We continue wi th the cases k = 1, 2 • Let C be a compact subset 

of U, and K the corresponding compact subset of n • We have 

where in the left hand member f is considered as fl.ù~ction on K C m3 , 

and in the right hand member f is considered as function on CC m2 • 
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This is seen by choosing extrapolations of f to the left, which only 

depend on (x,y). Hence it ,follows from Theorem 3.3 that t ➔ t is 

always a majorant. Furthermore, choosing U = JR
2 , f(x,y) = x2 

, 

2 2 g(x,y) = x + y , we have a case when k :;:: 1 , and since the maximal 

rank of f is 1 , it follows as above from Theorem 3.3 that t ➔ t 1/
2 

is a majorant. 

As for the majorant properties claimed in the theorem, it only 

remains to prove that t ➔ t 5/ 6 , t > 1 , is a majorant when k = 1 • 

It suffices to show that 

(4 .4) t -5/6 Il 1tfll 
e A(S) , t > 1 , 

is bounded for every fixed square S CU with sides parallel to the 

coordinate axis. Here the norm in (4.4) is interpreted in the same 

sense as the right hand member of ( 4 • .3) • By a parti tioning of the unit 

we find that it suffices -t-,o show the existence of a constant C such 

that 

(4.5) Il itfll < c t1/6 
e A(S ) - ' 

t,x ,Y 
0 0 

for every square St CS with center x ,y , with side length 
,xo,Yo o o 

-1/3 t , and with sides parallt:l to the coordinate axis. At every 

there exists a À. such that the Hessian of f - À. g has 
0 0 

rank < 1 • By the assumptions O? g , the values of À. are uniformly 
0 

bounded in S • Thus, for every (x
0

,y 
0

) we have a representation 

f(x,y) - À. g(x,y) = A + Bx + Cy + D(E(x - x ) + F(y- y ))
2 + 

0 0 0 

+ Gt y (x - x , y- y ) , (x,y) E St , ,x J O O , ,x ,y 
0 0 0 0 

where A, B, C, D, E, F are uniformly bounded, and where G 
t,x ,Y 

0 0 

has uniformly bounded partial derivatives of all orders, and where 

as (s,Tj) ➔ 0 , uniformly. Thus, by the saine arguments as in the earlier 

proofs, 
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where S is the square with corners ( i: 1/2, ± 1/2) • By the sub
o 

multiplicativity of the norrn in A(S), 
0 

Il 
1tr

11 
< Il 1t 

113n(Es+Fri>211 • 
e A ( St ) - e A ( S ) ,x ,y 0 

û O / / itG (t-1 3e t-1 3fl) t X y ,,, · 'I 

• lie ' 0
' 

0 IIA ( s ) • 
0 

The first factor is 1/6 :S C t , for some constant C • This is seen from 

Theorem 3.3, or from Theorem 1.1, or by a direct estimate. The function 

in the exponent of the second factor i.s uniformly bounded and so are 

all its partial derivatives, hence the second factor is bounded. Thus 

(4,5) is proved, and we have shown that t ➔ t5/6 is a majorant, if 

The discussion of ths minorant properties can be performed as 

the corresponding parts of the proofs of Theorems 2.1 and. 3.3. We fix. 

'I/J e 2'>(nl) with 

) 1/J (x,y)dxdy = 1 , 
JR2 

and Supp ('I/J) included in the set U (the open set where k is 
0 

attained). µ is the measure on n for which the projection into 

the xy-plane is the Lebesgue measure mul tiplied by 'I/J • Arguing as 

before we find that it suffices to show that 

(4.6) 

t ~ 1 , for some constant C • But the left hand member is the supremum 

of the absolute value of 

) 0 -itf(x,y)-iux-ivy-iwg(x,y) 'ifl(x,y)dxdy, 

]R2 
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as (u,v,w) € m3 . The rank of the Hessian of the exponent is > k 

on U , and the rank of the Hessian of g is 2 • Using Lemma 3 .6 
0 

one sees directly that (4,6) holds. 

Now it only remains to give an example when 5/6 
k = 1 , and t ➔ t , 

2 2 3 2 3 t ~ 1 , is a minorant. We take U = JR , f(x,y) = x + x - y + y , 

2 2 g(x,y) = x +y. It suffices to prove that 

t-5/611 itrll 
e A (K) ' t > 1 , 

has a positive lower bound, if S is the closed square with corn€rs 

(± 1 , ± 1 ) , and 

K = ((x,y), g(x,y)) l(x,y) ES}. 

2 
By the usual arguments it suffices to show that for some 3/ E .2,(JR ) 

supported by S and with 

) 3/ (x,y)dxdy = 1 , 

JR2 

~ ~ 0 -itf(x,y)-iux-ivy-iwg(x,y) 1Jt(x,y)dxdyj :SC t-5/6, 

]R2 

for sorne C, when (u,v,w) E m3, t ~ 1 • We choose 1Jt(x,y) of the 

form cp(x) çp(y) , where co E Z-(JR) , and find that we have to prove 

that the product of 

·t( 2 3) . . 2 
A(t,u,w) = J) e-1 x +x -1ux.-1wx ~(x)dxJ 

and 
]R 

. itr 2 3) . . 2 
B(t,v,w) = J) e- ,-y +y -ivy-iwy ~(y)dyj 

]R 

is < C t- 5/ 6 • By Lermna 1.6 there exists a constant C such that 
0 

( ) -1/3 A t,u,w < C t , 
- 0 

-1/3 B(t,v,w) < C t • 
- 0 

By the same lemma, we have, for some constant c
1 

-1/2 A(t,u,w) :S c
1 
t , if tw ~ O, 

and 

-1/2 B(t,v,w) :S c
1 
t , if tw :S O, 

and hence 
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-5/6 A(t,u,w) ,B(t,v,w) < c c
1
t 

- 0 

is proved. This concludes the proof of Theorem 4,2. 

5, Here we collect scme miner observations, which may illuminate 

the earlier theorems. 

A. Let r be the graph of the function g , defined by 

g(x) f 
-(x-1)-1 

e 1 X> 1 

= \ 0 J -1 <X,< 1 

l (x+ 1 )- 1 
e , x<1. 

If x is considered as parameter on r, and f on r is defined by 

f 
,.,-(x-1)-1 

2~ , X > 1 

f(x) = \ 0 , -1 < X < 1 

l (x+1)-1 
e , x<l, 

then f is locally at each point of r the restriction of a linear 

function on JR
2 • Hence there exists a constant C such that 

(5.1) 

although 2 f i tself is not the restl'•iction of a linear function on ]R. • 

B. 2 
We shall now gi ve a set r C ]R. and a function f on r such 

that (5.1) holds while f is net even locally a restriction of a 

2 linear function on IR • 

Let r = G U H , where 

G:;:: ((x,y)jlxl ,S 1, y= g(x)), 

where g is real, g E C00 ([-1,1}), g(O);:; o, g' positive, g"(o) t O, 

and where 

Let 

H = ((x,O) 1 lxl ,S 1}. 

( ix 
f(x,y) = ) e ' 

L, ' 

(x,y) E G 

(x,y) E H • 

Then there is no neighborhood of (0,0) where f is the restriction 

of a linear function. But it is easy to prove that 

lle1tfllA(r) ,S 3 for every t E JR • 
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C. Let us now change the setup of example B so that H instead is 

defined by 

H = ((x,y)I lxl :5 1, y= h(x)), 

where h is real, h € c00 
( [-1, 1)), h(O) = h' (0) == 0 1 h"(O) t O. Then 

we have instead 

(5.2) 

as t ➔ oo • 

We shall show this by an indirect proof. If the nonns in A(r) 

itf 00 
of e are bounded, as t ➔ co, we can find a sequence (tv)l , 

CO ityf / 2 
tending to infinity, and extensions (gv)

1 
of e to JR such 

tbat (gv)~
0 

converges weakly * in B(JR2), where B(JR.
2

) is con

sidered as the dual of the Banach space X of Fourier transforms 

of functions in C (JR 2 ). We denote the limit function by F • 
0 . 

Let '1/; E 2(JR) have support in the set where g" /: O, and let 

µ be the measure on G for which the projection on the x-ax.is has 

density function 7/1. Then, by Lemma 1 .6, µ E X, for its Fourier-

.. 
Stieltjes transform µ is given by 

Thus 

µ(t,u) = ~ e-itx-iug(x) 'l{I (x)dx, t E JR • 

m 

0 = lim µ(t ,0) = lim(gv,µ)=(F,µ)= ( F(x, g(x))'l{l(x)dx. 
v ➔oo v v ➔oo J ·m 

Varying 7/1, we find that F vanishes in a neighborhocd of (0,0) 

on G • By a similar argument we find that F takes the value 1 

on H in a neighborhood of (O,O). The continuity of F gives 

a contradiction. 

6. Let r c JRn be canpact, and let ex be a c00 function fran r 

to IB.m. We are interested in the problem to determine. those f'unctions 

o: which givc a hancmorphism of A (JRm) into A (r) in the sense that 

g e A(lRm} implies that go a€ A(f). Let (a
1

, a.
2

, ••• , exm) be 

the representation of ex by its realvalued components. Thén the 

following theorem holds. 
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Theorem 6.1. ex gives a homomorphism of A(JRm) onto A(f) if and 

only if 

(6.2) t € JR, 

1s bounded as t ➔ oo , for every i :::: · 1 , 2 ," , •• , m • 

Proof of Theorem 6.1. If a gives a homomorphism, the closed graph 

theorem shows that 

llg O o:IIA(r) :S cllgll ffi , 
A(JR ) 

for scme constant C • Choosing g such that 

x € r, where x
1 

is the 1-th coordinate of x, we find that (6.2) 

is bounded. Conversely, if (6,2) is bounded for every i, llg o o:IIA(r) 

is uniformly bounded for all g which are bounded continuous charac

ters on JRm , and it follows from this directly that a gives a 

homomorphism. 

Theorem 6.1 shows that, with arbitrary m , and with r chosen 

as in Theorem 1.1 or 2.1, or as in Example C of Section 5, then only 

linear functions a give homomorphisms. The sarr,e holds if r 1s a 

compact subset of the manifold n of Theorem 3.3 or 4.2, but now 

assumed that a can be extended to a c00 function on n • On the 

other hand, in Example A of SP-ction 5, all locally linear functions 

a give hcmcmorphisms, and in Example B of the same section, a need 

not even be locally linear. 

Results can be obtained, in a similar way, concerning homomor

phisms of spaces A (JRm) into A(r) • Here q > 0, and A {:mm) 
q q 

is the Banach space of Fourier transforms of functions g E ]Rm 

with norm 

~ (1+ IYl)qlg(y)!dy. 

JRm 

By duality we con also find results on the Fourier coefficients of 

o:*(v) , whcre v is a pseudo-measure in the dual of A(r) , and a* 

is the adjoint of e. hcrnomorphism A (JRm) ➔ A(r) , given by a. It 
q 
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should be observed that the dual of A(f) coincides with the space 

of pseudo-measures supported by r , if r is of spectral synthesis. 

This is the case for instance if r is given as in Theorem 2.1 

(cf. [3] and [4]). 

We conclude by some remarks and state a few open problems. 

§ l. Precise estimates for 
"tf lle1 llA(r), when r is an interval and 

f has weak differentiability properties, have been given by Leblanc 

[7], [8). 

§ 2. Although it is not known whether curves in 
n 

JR , n ~ 3 , are of 

spectral synthesis, we can also in this case obtain precise infonna

tion on the Fourier coefficients of the map of pseudo-measures 

supported by such a curve. This follows from the fact that our esti-

mates of the norm in A(r) hold as well for the norm in A(JR )/I (r) , 
0 

if r is a smooth curve and I (r) the closure of the ideal of funco 

tions vanishing in a neighborhood of r ([5], p. 188). 

§ 3. It would be of intarest to detennine the differentiability condi

tions needed to have the conclusion of Lemma 3.6. The extensions of 

Theorem 3;3 to higher dimensions deserves to be explored. At present 

it is not known whether the theorem holds without change for higher 

·dimensions. 

1/2 5/6 . 
§ 4. In Theorem 4.2, the gap between t and t is not yet 

explored. Nor is the possibility of high-dimensional generalisations. 

§ 5. In Example C, the exact rate of growth of (5.2) is not known. 

It bas connections with the following problem: For positive weight 

functions w on lR 2 such that w (x) ;; 1 + lx l l/ 2 , x € m2, we 

have in the class of measurable functions g with g/w E L1 a natu

ral way of defining its Fourier transforrn g to vanish (or take a 

· constant value) along a givcn curve with positive curvature (simply 

by applying smooth mensures on the curve, and observing that their 
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transforms are o(lxl-1/ 2 )). Then the problem is to decide for which 

... 
w the class contains an element g with g taking the value O 

on G and 1 on H , if G and H in the example have (0,9) as 

only common point. 
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