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On the Banach algebra A(I') for smooth sets T CR

by

Yngve Domar

0. The main part of this investigation is devoted to the problem

)

of estimating as t —oo, Here te¢ R, TC R , and

A(T)’
f ¢ A(T) 1is real-valued. A(I') is the quotient Banach algebra
A(RY)/I(r) , where I(I') is the ideal in A(R™) = FL'(B®) of
all functions, vanishing on I'. We shall discuss only very regular
situations. I' 1s thus in general a well-behaved compact subset of
a smooth manifold in If’, an interval on IR, a curve in ]Rn, a

surface in IR3

etc., and f has high differentiabllity properties.
In order not to complicate the discussion and obscure the principal
ideas,; we shall be very generous with  our regularity assumptions.
Thus we assume that all manifolds and functions f involved are
infinitely differenticble. It can however be shown that each parti-
cular result holds as well, if we only require differentiability up
to a certain order. The principal object of our work is to show that
very simple, straightforward and seemingly rough methods give very
precise estimates. In the concluding section we show how our resultis
can be used to determine, for the sets I' considered, all those homo-
morphisms of A(Ban) into A(l') , which are given by c® mappings
of I into W' .

The paper 1s of a preliminary character, and presents. the actual

state of the continued work in a direction initiated by I5].



1. Let I' be a compact interval.of IR and let f € Ca)(F) be real-
valued. The following theorem is well known, even under much weaker

differentiability assumptions on f:

Theorem 1.1, If f 1is non-linear, there are positive constants C

1
and 02 such that

1/2 itf 1/2
(1.2) C,t <le ”A(r)fczt s

™1l =

for t 21, For f 1linear, 1 for every t € IR.

The inequality to the left in (1.2) is due to Leibenzon [9],
while the right hand inequality is an easy corollary of the inequa~
lity of Carlson [?]. We shall give a proof of Thecrem 1.1, not the
shortest one, but a proof which can serve as a model for the deduc-

tion of estimates in more general situations.

Proof of Theorem 1.1, The only non-trivial part is the proof of (1.2)

for non-linear f . Let us start with the inequality to the right.
Instead of applying Carlson’s inequality, we base the proof on three
- elementary observations.
Firstly, we observe that a partitioningﬂof the unit in A(I)
shows that it suffices to prove that there exists a constant € such

that

(1.3) e}t

<C,
A(Pt)

for every subinterval I, CT of length t-1/2 .

Secondly, the norm of a function in any algebra A(E), E CZIRn,
does not change after multiplying the function with a constant of

norm 1 or with a bounded continuous character on IRn (restricted

to E) . Hence, with .ﬁ)dendmngzulendpoint of I, and x standing

as symbol for the variable, we obtain

it(f(x)~f(xo)—(x-xo)f'(xo))

it
le**| = [le

A(ry) "A(Pt) =
it(x-xo)Qgt’x (x-x)

lle °

#

“A(Ft) ’
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where g € Coo( [O,t"]/e]) y and where g and all its deriva-
t,xo t,xo
tives have bounds that are uniform in t and X
Thirdly, the norm of a function h in any Banach algebra A(E) ,
EC IRn, is not affected by affine bijections of IRn and correspond-
1/2

ing mappings of E and h. Thus, putting x =x_+ ut” %, with u

as new variable, we obtain

2 -1/2
iu 8 x (ut )

H

1tf
e |

a(r,) ~ e “A([0:1]) :

But the right hand member is the norm of a function on [0,1], bounded
wniformly in X, and t, for t 2 1, as well as all its derivatives.
Hence (1.3) is proved.

To prove the left inequality of (1.2) we observe that the
assumed non-~linearity of f implies the existence of a subinterval
I CTI of positive length where f” does not venish. Let ¥ ¢ Z(R),
with Supp () CI'” and S ¥ dx = 1. We consider the function
'} e-itf , defined as O ou?side I'; as an element in the Banach

space MM (IR) = «73;,00(1&) of pseudomeasures on R . It follows from

the definition of the norm in A(I') that

(1.4) . 5 LIEF(x) e-itf(x) ¥ (x)ax < ”eitfHA(r)Heitfzpum(m).
r
Thus the left inequality of (1.2) follows with C, = 0-1 , if
~itf -1/2
(1:5) o™ T llgy gy s,

t>1, for some C. (1.5) can be deduced from the lemma of van der
Corput [2] . We shall, however, apply a more general lemma, Lemma 1.6
below, which is needed in later discussions. It is well known that
lemmas of this general type exist. This particular formulation is due
to J.~E. Bjork (personal communication). We omit the proof of the

lemma, since it is fairly close to van der Corput’s proof.

Lemma 1.6. Let [a,b] be a compact interval on IR, and Y € Z)(]a,b[),

k ¢ ¢P([a,b]) with
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o<c, <l + Ik @+ .+ kPl <c,,

if x e [é,b] ; where C and 02 are constants and p a positive

1
integer. Then there exists a constant C not depending on k, such

that

for every

In order to prove (1.5) we first observe that its left member

is, by definition, the L = norm of the function with values
-itf(x)~-iux
se w(X)d.X) u€m’

FI
with the Fourier transform defined properly. Taking s = t4-|u!,

we can apply Lemma 1.6 with [a,b] =, p=2, and

k(x) = - g f(x) - 2 X xelI,
C,=  min — (la-lehe@+ri+ (- Il2hlex)D) s
a<x<b, - i<r<]

C.=1+sup (£ &)+ e7(x)]) .

2 xel”’
From this we obtain (1.5).

2. Now we assume that I' is a curve in BRz, representable as the
graph of a real-valued function g € COO([a,b]) s where -o0<a <b <

< oo ., As always we have f e COO(F), and f 1is real-valued.

Theorem 2.1. Let I' have non-vanishing curvature, If f 1is not the

restriction of a linear function on IRa, there exist positive

constants C] and 02 such that

1tf /3
"A(I‘) < C2’C )

(2.2) c.s1/3

27 s e

for © >1. If £ is the restriction of a linear function, then

“eltfHA(r) =1, for every t e R.

Proof of Theorem 2.1. The only non-trivial part is the proof of (2.2).

A detailed proof of the right hand inequality has been given in [5],

and we shall here give only a brief outline. The proof uses the same
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technique as the corresponding proof in Section 1. This time we
observe that it suffices to obtain a uniform bound for

itf
‘2-3) "e “A(Ft) ’

where Ft is the graph of g, restricted to a subinterval I, Z C
C [a,b] of length t 2. Denoting by x_ an endpoint of T

We can now use the assumption g” £ O and the presence of a two-

parameter family of bounded characters to obtain

3
. it(x-x X=X,
o] o e B
e < lie 3
A(Ty) A(T)
where - has the differentiability and boundedness properties
H
0
specified in Section 1. The transformation x = x0+ut"1/3 proves

the uniform boundedness of (2.3).
To prove the left inequality, we first observe that there is a'
subinterval [a',b'} Cilédb], of positive length, where the function

h=1f o0og satisfies the condition
‘ h'l g/’ l

l,éo.

(2.4) v o |
h™ g

For otherwise the condition g” £ O implies that h” and g~ are

linearly dependent, i.e.
h(x) = Ax + Bg(x) + C, x ¢ [a,b],
for some constants A, B and C . But this means that {f 1is the
restriction to I' of the linear function
2
(x,y) »Ax + By + C, (x,¥) € R .

Choosing [?{,b’] as above we can now continue as in Seétion 1.
Let ¥ e (W) with Supp (%) C [2,b"] and with (¥ (x)ax=1.
it 1is the Borel measure on ' for which the projectig; on the
x-axis is the Lebesgue measure multiplied with .'We consider u

as a pseudomeasure on IR2 and obtain
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¢ LtE(s(x) -itf(g(x))

1= $ eitf e-itf
a

Y(x)ax = ( au <

r

itf” "e-itf

< ”e d“" o

A(D) (R )

Thus it suffices to show that

(2.5) lle ™ au| <cC /3
M(R7)

t > 1, for some constant C . But the left member is the supremum

s

2

of the absolute value of
bl
-itf(x -iux-iv -ith(x)-iux-ivg(x
5 e ( »Y) Yd“(x,y) - S e ( ) g( )?//(X)dx,
r a’
as (u,v) € ]Re. Taking s = t+ lul + Iv], and obscrving the relation

(2.4), we can apply Lemma 1.6 with p = 3 - and
(x) = - < h(x) - 2 x - L g(x)
s s s ’
and this gives (2.5).

: n
Remark. Theorem 2.1 has analogues for curves in IR , n > 3%, now with

t-1/3 replaced by t-]/(n+ 1

. As for the right hand ineguality we
refer to [5] . The inequality to the left can be discussed as in the '

proof of Theorem 2.2, using Lemma 1.6.

3., In this and the next section we are concerned with cases when
the dimension of T' 1s two or higher. In order to avoid complications
at the boundary of I we prefer to change our setup in the following
way.

Let 0 be a C® manifold in Iin and f a real-valued‘func—
tion in COO(Q).. We say that a positive function M on [l,oo[ is
a majorant if, for every compact K CQ, there ig a constant C > 0
such that

lle* T

{(3.1) <CM(t),

A(K)
t > 1. A positive function m on [],oo[ is a minorant if there

exlists a compact KCQ and a constant ¢ >0 such that



.

G2) el 2o m)

r
t>1.

In this section we assume that § 1s .an open non-empty subset

of 3%2, and denote by Xk the maximal rank in Q of the Hessian

ﬁxx fxy\x
£ £ )
vx yy/

Then the following theorem holds.

Theorem 3.3. The function + 42, £ > 1, is both majorant and

minorant.

Proof of Theorem 3.3. We first prove that the function is a majorant.

In the case when k = 0, all second order derivatives of f vanish,
and thus f is linear on every component of (. It is obvious that
the theorem holds in this case. In the discussion of the case when

k = 2, it suffices to consider the case when K 1is a square con-
tained in Q . We can then argue exactly &s in the proof of Theorem
1.1. By a partitioning of the unit it follows that it suffices to

show that
"A(K,)
is uniformly bounded for the family of squares contained in K, with

sides parallell to the sides of K, and with side length t-1/2,
t.f 1 . The proof of this is quite parallell to the corresponding
part—of the prodf of Theorem 1.1, and is omitted here.

The proof that M(t) = t]/e » t>1, is a majorant when k = 1
is similér, but is more complicated. It suffices to show that every
given point P = (xo,yo) € § has a compact neighborhood K such
that (3.1) holds for some C .

We shall use a result of Hartman and Nirenberg [6} (Theorem A),
which states that the surface =z = f(x,y) in 313 is loeally deve-

lopable at P when k = 1, in the following sense: There exists an

€ >0 and a continuous real function h on [—8,8] such that the



line segments

Ls-'- (xo-s sin h(s)+v cos h(s), ¥ + s cos h(s)+v sin h(s))|v € [-e,e]],

s € | [-8,8], are disjoint and have a compact neighborhood K of P as
their union, and are such that the tangent plane of the surface is
common for all (x,y, f(x,y)) with (x,y) on the same segment Ls .
The property that the segments LS are disjoint implies evidently
that h is Lipschitz continucus. This implies that if & 1is chosen

small enough, we have for every so € [—-e,e] and t > 1, that

Kt,S

Y -1/2 Lg

o) ]s-so fst

is contained in the rectangle
Rt,s ={(xo— s sin h(so) +v co8 h(so), Yo+ 8 cosh(so)+v sin h(so)l
- -1/2
ls-s t <2t™2, o] <€,

whereas
L L
Is-so|35t.1/2 s

is disjoint from the rectangle

S = - - i
tys, 2Rt,so (xo' Spsin ?(So)’ Vot 8,008 h(so)) ‘

Now there exists a constant Co such that we can find, for every
- 2
choice of t>1 and s_e [-e,e], a function ¢ ¢ A(R"), with

p{x,y) =1 on Rt,so’ o(x,¥) = C outside St,so’ and ”‘P“A(me) <

< Co « These functions can be used for a partitioning of the unit,

and this shows that

itf -1/2
lle HA(K)SCt V/ 3 t>1,

for sbme C, follows if we can find a coristant C,‘ such that

R S WP

t,s
')

<c

’
A(K A(Rt,s ) 1

o
for t>1, s, € [—E,E].

Using the properties of the tangent plane of 2z = f(x,y), we

obtain for (x,y) € R ’
t,so



d(x,y) =»f(x,y)-f(xo-sosin h(so), Y+ 8,c08 h(so))-
- (x-xo4-sosin h(so))f;(xo-75031n h(so), Y, +5,c08 h(so)) -
- (yQyo— 5,C0S h(so)‘)f;r(xo— s sin h(so), v, +s,sin h(so)) =
= ((x - xol)sin h(so)-(y - yo)cos h(so)+s()2gt’so(x- x,+s, sin h(so),
y-¥, +scos h(so)) ’
where gt’s— ,13 beounded unifeormly in t and s, as well as all . its
partial dergvatives. Hence by the affine transfdrmation

¢ 1/2

((x-xo)sin h(s) - (y-yo)cos h(s) + so)t

1 (x-xo)cos h(s) + (y-yo)sin h(s) ,.

we obtain as in the earlier sections

- y = "eiéduA(Rt’s ) = ”e “A(S)’
(o] o]

2 -1/2
16Pn, e V2)
“eitf ')

"where 8 = [..2,2] X [—28,28], and where ht S is uniformly bounded in
3
o]

t and s, as well as all its partial derivatives. Hence (3.4) holds.

k/2

In the proof of our claim that t =2t ", ¢ > 1, is a minorant,

it suffices to tonsider the case when k=1 or 2. We first observe

that there is a non-empty open subset 0., of  where the maximal

1
rank of the Hessian is attained at every point. We form a function

Ve 2’)(1R2) with support contained in . and satisfying

1

$$1//dxdy=1.

E@
~itf . 2 . . ,
Y e is considered as a pseudomeasure on IR , vanishing outside

0 . Arguing as in Section 1 we find that (3.2) holds with X = supp(¥),

k/2

m(t) = t'°, if for some C

e-itf" <c t-k/z ,

(R )

for t>1. But on Supp (¢), the minimal rank of f. is k, and

(3.5) (%

hence (3.5) follows from the following lemma, easily deducible from

the results in Littman [10] (ct. [11]) and [3] p. 25).
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Lemma 3.6, Let K be a compact subset of an open set U C Rr".

ve DK, and heCOO(U).-For‘ some ® > Q0 we mssume at every

: that
point of U fat least k eigenvalues of the Hessian of 9 have

absolute value > d . Then there exists a constant C such that, if
we—ith

is defined as 0 outside K,

-ith“ <c t-k/2 )
PM(IR )

The constant C depends on X, U, @, k, 8, and of the bounds of the

lye

n

partial derivatives of h of all >order's.

Remark. Theorem 3.5 has extension possibilities to the case when
4is an open non-empty subset of ]Rn and k 1is the maximal rank of
the Hessian of the real-valued function f ¢ c°(Q) . By the same
argunents as in the later part of the proof of Theorem 3.3, we find
from Lemma 3.6 that t — tk/2 ; t > 1, is a minorant. The function
is also a majorant in all cases when the first part of the proof can
be copied, i.e. if we have a local representation corresponding to
the local developability, now by a k-parameter family of (n-k)-

dimensiocnal affine manifolds.

4, In this section we study the case when  is a Coo surface

in ]R3 » of non-vanishing Gaussian curvature. We restrict ourselves
to the situation when Q 1s the graph of a real-valued function &)
defined and infiniteiy differentiable on some open subset U of IRE.

Then the Hessian of g does not vanish., f is a real-valued c° |
function on Q1 . We can thuévthink of f as a Coo function on U .
For every (x,y) e U and A € IR, R)V(x,y) denotes the rank of the

Hessian of the function f-Ag on U, and

(4.1) k = Max Min Rx(x,y) .
(x,¥)eU  reR

Since the Hesslan of g has rank 2, the subset of U where the

maximum in (4.1) is attained is an open set U . It is easy to see
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that k <1 1if Q has positive Gaussian curvature. k = 2 for
2 2 2
instance if U = R, g(x,¥y) = x -y, £(x,y) = xy.

Theorem 4.2, In the sense precised in Section 3 t -—>tk/2, t>1,

is both majorant and minorant, if k =0 or 2.1If k=1,1% —>t5/6,
/2

t > 1, is a majorant and t — 1 » > 1 1s a minorant,and there

are examples when the first function is a minorant and other examples

when the second function is a majorant.'

Proof of Theorem 4.2. Let us first consider the case when k = 0.

Then there exists a function A on U such that

[ A

fox =M
£ =2
Xy Exy .
T = A

[ vy = “Eyy

for every (x,y) U . Since the Hessian of g has rank 2, A € c® (u) .

Taking the partial derivatives, we obtain
. .
l )”ygxx = Xxgxy
Tre =
y8xy = "By

and since the system has non-vanishing determinant, we find that M

is constant on every component of U . Hence
f(x,y) = rg(x,¥y) + Ax + By + C,

on every c‘oxﬁponent s for properly chosen constants A, B and C,
which shows that f 1is, on every component, restriction of a linear
function on ]H3 . It follows from this that the function with constant
value 1 is a majorant, and it is trivially a minorant.

We continue with the cases k = 1,2 . Let C be a compact sﬁbset
of U, and K the corresponding compact subset of Q. We have

1tf 1tf
lle™" el

(%.3)

A(K)-S I A{c)’

3

where in the left hand member f 1is considered as function on K w7,

and In the right hand member f is considered as function on C C IR2 .
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This is seen by choosing extrapolations of f to the left, which only
depend on (x,y) . Hence it follows from Theorem 3.3 that t —t 1is
always<é majorant, Furthermore, choosing U = 312, fx,y) = x2,
g(x,y) = X24-y2 » wWe have a case when k = 1, and since the maximal
fank of £ dis 1, it follows as above from Theorem 3.3 that 1 —9t1/2
is a majorant. |

As for the majorant properties claimed in the theorem, it only

' 5/6

remains to prove that t —t » 2> 1, is amajorant when k =1,

It suffices to show that

@y 6 |t t>1,

A(S)’
is bounded for every fixed square S C U with sides parallel to the
coordinate axis. Here the norm in (4.4) is interpreted in the same
sense as the right hand member of (4.3). By a partitioning of the unit

we find that it suffices to show the existence of a constant C such

that
, itf 1/6
(4.5) lle™* <Ct /6,
A(St _ )
070
for every square 8 C S with center x ,y_, with side length
. )X ¥ 0" 0

o’’0
t 1/3 y and with sides parallel to the coordinate axis. At every

(xo,yo) there exists a xo such that the Hessian of f-xog has
rank < 1. By the assumptions o g, the values of Xo are uniformly

bounded in S . Thus, for every (xo,yo) we have a representation

£(x,y) - 2 8(x,y) = A + Bx + Cy + D(E(X-xo) + F(y- yo))2 +

+ Gy (x-xo, y-yo) » (%¥) € St’ ’

X Y

x
XY, oo

where A, B, Cy D, E, F are uniformly bounded, and where Gt %,y
’0’

. o
has wniformly bounded partial derivatives of all orders, and where

G (240232,

t:Xo)Yo =
as (&,n) 20, uniformly. Thus, by the same arguments as in the earlier

proofs,
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L (D(E(x=x 47 (5-y N4, o (xex yey,)

itf 3 O:YO .
X sy X,
°° ) itG (t-]/3§ t-1/5) o0
e ot oy
=1e € a(s,)’

where SO is the square with corners (%*1/2,+1/2). By the sub-

multiplicativity of the norm in A(So),

: 1/3 2
"eltf”A(s | < o1t " “D(EEFN) |
t’xo’yo

The first factor is <cC t]/é, for some constant C . This is seen from

a(s) )
: -1/3, .-1/3
e, o (877687 )
e o] (]

o

Theorem 3.3, or from Theorem 1.1, or by a direct estimate. The function
in the exponent of the second factor is uniformly bounded and so are
all its partial derivatives, hence the second factor is bounded. Thus
(4.5) is proved, and we have shown that t —>t5/6 is a majorant, if
k=1,

The discussion of the minorant properties can be performed as
the corresponding parts of the proofs of Theorems 2.1 and 3.3. We fix
/K3 z‘(m2) with

( ¥ (oy)axdy = 1,

®° |
and Supp (w) included in the set Uo (the open set where Xk is
attained). p 1is the measure on Q for which the projection into
the xy-plane is the Lebesgue measure multiplied by ¢ . Arguing as

before we find that it suffices to show that

6l Mal <o,
M(R7)

t > 1, for some constant C . But the left hand member is the supremum
of the absolute value of

S e—itf(x,y)-1ux~1vy—iwg(x,y) W (,y)dxdy

312
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as (u,v,w) € ]R5. The rank of the Hessian of the exponent is > k
on U, and the rank of the Hessian of g is 2. Using Lemma 3.6
one sees directly that (4.6) holds.

5/6

Now it only remains to give an example when k =1, and t =t y

§"Y2+Y3:

t >1, is a minorant. We take U = IRE, £(x,y) = x2 + X
8(x,¥y) = x2 + y2. It suffices to prove that

.t“5/6”eitf”A(K) , t>1,

has a positive lower bound, if S is the closed square with corners
(£1,%1), end

K= {(x5), S(XJY))I(X:Y) € S} .

s 2
By the usual arguments it suffices to show that for some Y € Z}QR )

supported by S and with

5 ¥ (x,y)dxdy = 1,
R2

4]$R,:

for some C, when {(u,v,w) € ]RB, t > 1. We choose P(x,y) of the

5/6

-ltf(XJY)'lux'ivy—lwg(x’Y) W(X:Y)dXdyi 5 C t ’

form o@(x) o{y), where o© € &Z(R), and find that we have to prove

that the product of

#l

- TP
A(t,u,w) l e 1t (x7+x7 )~ iux-iwx cp(x)dx'

je
and R

‘ 2 3 . . 2
B(t,v,w) H o~ it (- +y7)-ivy-iwy

]

o(y)dy|
R

is <¢C t-5/6. By Lemma 1.6 there exists a constant C, such that
At u,w) < cot“‘/3 , B(t,v,w) < Cot—1/5 .

By the same lemma, we have, for some constant C]

A(t,u,w) < CTt—l/e , if tw >0,

and

t-}/e

B(t,v,w) < C1 ’

if tw <0,

and hence



A(t,u,w) + B(t,v,w) < COC“C,“5/6

is proved. This concludes the prcof of Theorem 4.2.

5. Here we collect some minor observations, which may illuminate
the earlier theorems.

A. Let I’ be the graph of the funection g, defined by
-1
o~ (x=1)

g(x) = {0, -1 <x<1
{e(XH)—] s x<1.
If x is considered as parameter on I', and f on [' is defined by
[23-(}(—1)—1 , x> 1
f(x) =4 0, -1 <x <1
{e(XH)q 3 <1,
then f 1is locally at each point of I° the resiriction of a linear
function on ]R2 . Hence there exists a constant C such that
lle™ )

(5.1) a(r) SCr t21,

although f itself is not the restriction of a iinear function on ]R2 .
B, We shall now give a set I' C ]R2 and a function f on I' such
that (5.1) holds while f is not even locally a restriction of a

linear function on IRQ.

il

Let I'=G UH, where

G

1l

()| ixl <1, v = g®)),

where g is real, g € C°([-1,1]), g(0) = 0, g positive, g”(0) £ 0,
and where

H= {(X:O)“Xl < 1} .

:(elx » (x,y) e G

f(x,y) = l
1, (x,¥) € H.

Then there is no neighborhood of (0,0) where f is the restriction

of a linear function. But it is easy to prove that

“eitfHA(F) <3 forevery te R.
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C. Let us now change the setup of example B so that H instead is
defined by

H= {(X;Y)lel.f 1, ¥ = h(x)),
where h is real, h ¢ COO([-1,1]), n(o) = h" (0) = 0, h(0) £ 0. Then
we have instead

(5.2) [ >0,

A(r)
as t =200 .
We shall show this by an indirect proof. If the norms in A(T)
itf . 00
of e are bounded, as t =2 0, we can find a sequence (tv)1 ’

it f
" to ’IRg.such

tending to infinity, and extensions (gv)?o of e

that (Sv)?o converges weakly ¥ in B(IRQ), where B(ﬂie) is con=

sidered as the dual of the Banach spéce X of Fourier transforms

of functions in CO(IRQ). We denote the limit function by F. |
Let 9% ¢ 2(IR) have support in the set where g” £ 0, and let

gt be the measure on G for which the projection on the x-axis has

density function ¢ . Then, by Lemma 1.6, peX, for its Fourierf

Stieltjes transform ﬁ is given by

e-itx-iug(x)

ﬁ(t:u) = S
R

yx)d&x, teR.
Thus

0 = 1im p(t ,0) = Lim (g su> = (Fou) = { PG 8(x)) ¥ (x)ax .
vV =00 v 00 IR

Varying 1, we find that F vanishes in a neighborhocd of (0,0)
on G . By a similar argument we find that F takes the value 1
on H in a neighborhood of (0,0) . The continuity of F gives

a contradiction.

6. Let I CR" be compact, and let @ be a C® function from T
to ]%m. We are interested in the problem to determine: those functions
o which give a hanomorphism of A(B%m) into A(l') 1in the sense that

g € A(R™) implies that g ©a ¢ A() . Let (@ Oy vees ) be

2)
the representation of o by its realvalued components. Then the

following theorem holds.
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Theorem 6.1. « gives a homomorphism of A(]Rm) onto A(T') if and
only if
6.2) e 1

is bounded as t o0, for every 1 =1, 24 ...y m,

Proof of Theorem 6.1. If «a gives a homomorphism, the closed graph

theorem shows that

llg o all <cllel - ,
SR = A(]Rm) i’cxi

for some constant C . Choosing g such that g € A(}Bm), g(x) = e ;
x € ', where %, is the 1i-th coordinate of x, we find that (6.2)

1s bounded. Conversely, if (6,2) is bounded for every 1, Ilg o a”A(I‘)
is uniformly bounded for all ‘g which are bounded continuous charac-
ters on ]Rm , and it foliows from this directly that o gives a
homomorphism., |

Theorem 6.1 shows that, with arbitrary m, and with I' chosen
as in Theorem 1.1 or 2.1, or as in Example C of Section 5, thén only
linear functions o give homomorphisms,., The same holds if T is a
compact subset of the manifold @ of Theorem 3.3 or 4.2, but now
assumed that « can be extended to 2 C%° function on Q.+« On the
other hand, in Example A of Section 5, all locally lvinear functions
o give honcmorphisms, and in Example B of the same section, o need
not even be locaily linear,

Results caﬁ be obtained, in a similar way, concerning homomor-
phisms of spaces Aq()Rm) into A(L') . Here q >0, and Aq(]Rm)
is the Banach space of Fourier transforms of functions g € IRm

with norm

Qq
{ (+lyD e lay .
R™
By duality we can also find results on the Fourier odeff‘ioients of

o*(v) , where v is a pseudo-measure in the dual of A(I'), and o¥*

is the adjoint of a homomorphism A (JRm) = A(T) , given by a. It
q , ’
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should be observed that the dual of A(I') coincides with the space
of pseudo-measures supported by I', if ' is of spectral synthesis.
This 1s the case for Instance if T 1is given as in Theorem 2,1

(cf. [3] ana [4]).

We conclude by some remarks and state a few open problems,

when I' 1is an interval and

§ 1. Precise estimates for Heltfﬂ

A(D)’
f has weak differentiability properties, have been given by Leblanc

(71, [8].

§ 2. Although it is not known whether curves in H%n, n>3, are of
spectral synthesis, we can also in this case obtain precise informa-
tion on the Fourier coefficients of the map of pseudo-measures
supported by such a curve. This follows fram the fact that our esti-
mates of the norm in A(I) hold as well for the norm in A(Bl)/IO(P),
if I is a smooth curve and IO(P) the closure of the ideal of func~

tions vanishing in a neighborhood of I ([5], p. 188).

§ 3. It would be of intzrest to determine the differentiability condi-
tions needed to have the conclusion of Lemma 3.6. The exteﬁsions of
Theorem 3.3 to higher dimensions deserves to be explored. At present
1%t is not known whether the theorem holds without change for higher
‘dimensions.

1/2 5/6

§ 4, In Theorem 4.2, the gap between t and t is not yet

explored. Nor is the possibility of high-dimensional generalisations.

§ 5. In Example C, the exact rate of growth of (5.2) is not known.
It has connections with the following problem: For positive weight

lxp/e

functions w on IR2 such that w(x) < 1+ ; X € IRQ, we
have in the class of measurable functions g with g/w-e L] a natu-
ral way of defining its Fourier transform é to vanisﬁ (or take a

constant value) along a given curve with positive curvature (simply

by applying smooth measures on the curve, and observing that their
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transforms arc o(|x|‘1/2)). Then the problem is to decide for which
w the class contains an element g with é taking the value O
on G and 1 on H, if G and H in the example have (0,0) as

only common point.
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