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ASYMPTOTIC ANALYSIS OF VARIATIONAL PROBLEMS

; WITH CONSTRAINTS OF OBSTACLE TYPE

HEDY ATTOUCH, COLETTE PICARD

The purpose of this work is to give a complete presentation with
some improvements and new developpements of a recent paper of E. De
Giorgi [14] : r-limit of obstacles.

Chapter I - Approximation of convex lower semi-continuous functionals.

1. Yosida approximation

2. Statement of the theorem : approximation of a convex,
1sc, functional by an increasing sequence of polyedral
functionals

3. The dual statement ; a Galerkin procedure for convex lsc
functional

Chapter IT Integral representation of unilateral constraints.

Chapter III

r-1imit of obstaclies. The quadratic case.

Chapter 1V r-Timit of obstacles. The non quadratic case.

Explicit formula for periodical obstacles.

Chapter V r-1imit of bilateral constraints.

Problems with holes.



é {NTRODUCTIONui

The origin of this paper is the following problem :
et us consider a variational inequality, with a constraint of obstacle~-
type, the obstacle depending on a parameter n < IN ; for example

(1) Min {J |ou|? dx - J fu dx} .
n urg, Q Y/

ueHg(Q)

When g,, converges to some function g , what can we say about the
solutions u(gn) of the corresponding problems (In) ?
The answer depends obviously on the topology for which the convergence

of the sequence (gn) holds.

ne N

On a very simple example, one can see that even if the (gn)
are regular obstacles and the constraint u %9, is taken almost
everywhere one will need tools of potential theory, more precisely of
capacity theory in order to interpret the limit problem (I).

neN

Take in one discussion the following 9, 3 clearly 9, —> 0 almost

everywhere but the 1imit problem B is

1
(I)  Min {J Du|? dx - f fu}
u(%)al g L fgn
1 |
ueHO(Q) \
Q= ]0,1[‘- 0 r { . iA?
1/2-1/n 1/2 1/2+1/n

i.e. the 1imit constraint is not taken in the sense almost everywhere,
and one has to use the continuous representant of u (more gerenally

the quasi-continuous representants of u) in order to interpret the limit
problem.

Concerning the determination of the Timit problem, we can distinguish
two types of results : "stability" and "non stability" results.



A. In the first type of results 9,, converges to g 1in a strong
enough topology in order the 1limit problem to be

(1) Min J »|Du|2 dx - J fu}
uzg Y Q

1
ueHO(Q)

i.e. u(gn) —~ u(g) ; that's what we call a stability result.

Concerning this problem one can find an abundant litterature [1],
8], [9], [3] . In [3], using recent results of potential theory,
the authors proved the equivalence :

when 9,> 9 are quasi-continuous

Vet u(g,) — u(q)

@ 2 2, 2
g, — 9 in L7(C) i.e. J C (|gn-g|>t) dt® — 0.
0 oo
(A11 the notions of capacity are relative, in the situation described,
to the capacity defired from the norm .| 1 .
H_ ()
)
A useful critera which assures the convergence of 9 to g in L2(C)

is the following (cf.[20] , [3]) :
‘ 2
. , . L4
(gn —~ g 1in w—w1 p(Q) with p>2) = (gn ——l—lrg) .

B. The second type of results concern the situations where there is
no stability in the sense of A, but for which there exist a limit
problem. In [8] , Carbone and Colombini studied in detail the following
situation.

In two dimensions



1
Q =’JO,1[_X':|O,1[ . olojo oo |o
Tet 9, = 1 on the balls centered ojlolojojo o
in each small squares, and of radius 010100100
2 . olololo]ojo
& - ™" and g, = 0 elsewhere olojlolofo]o
ololojojolo
R e
0 1/n 1

In [8] , they proved (cf. also Murat and Cioranescu [11])

Min {J |Duj? - j fu dx} —> Min {J Du? dx +27 J[(u;u‘jz.dx
uxg, 9 Q f

uzo
- u dx
Q

i.e., in the limit problem, we find an extra-term which we can interpret
as a penalty-term, with finite values, relatively to the constraint wu3l

C. A natural problem is to understand the .full significance of this
phenomena, and to interpret in a unified way the parts A and B :
this may be summurized in the following way :

" What g the closure in variational sense of the constraints of obstacle
type " :

In [14] , De Giorgi gives a first and sharp answer to this problem in jts

full generality for a quadratic energy functional

(%) Min. {J Dul? - J fu dx) —> Min {J IDu|2dx + J 50x50(x) ) du(x)
uzg, ‘9 Q ueHl(Q) Q Q
0

1
u H ()
0 - JQ fu dx + v(Q)}

. -1 o~ . R
where u,v are positive Radon measure, ue= H =~ , U 1is a quasi-
continuous representant of u , Jj 1is convex, 1sc, decreasing with
respect to u .



That's the most general form of the limit problem when starting with
problem (In) ; one would mention that there is no assumption of
convergence on the 9, » and that this result has to be interpreted
in such a general setting as compactness result (i.e. 1 (nk)ke:m
such that (%) holds for this subsequence).

In this article, we give a complete presentation of this result ;
the basic idea of the proof is the same as in De Giorgi's proof and
the technics are relevant of I'-convergence theory. We improve the
De Giorgi's results in the following directions :

Introducing new tools in the approximation theory in convex
analysis we clarify and simplify the part of functional analysis in
the proof and allow the attack, by the same method, of many other
problems in variational inequalities.

We extend (but, up to now, not in such a general context) the
results to the case where the energy functional is not quadratic (for
example, J DulP dx) .

Q .

In the case where the coefficients of the energy functional are
rapidly osci]]ating'(for example IQZ aij(é) %%;'%;T, dx) combining the
preceeding technics with tools of compactness by co%pensation (cf.
[191) we can describe the 1imit problem.

The general theorems of the I'-convergence theory being, by nature,
compactness results, we show how to use these results in order to compute
precisely the limit problem.

Finally, we prove that the bilateral constraints problems and
particularly problems with equality on "holes" can be deduced very simply
from the preceeding unilateral results.



I.1

CH.I ~ APPROXIMATION OF CONVEX LOWER SEMI-CONTINUOUS FUNCTIONALS

Let V be a general real Banach space, H.HV the norm in V ;
let us denote by V' its dual and <.,.>(VI V) the pairing between
V and V'

The duality map H : V — V' is defined by :

(1.1) Hv) = 1< v/ Iflye = vl and <fov - V% .

V',Y)

From the Hahn-Banach theorem, for every ve V , H(v) 1is non void.
Moreover, H = a(%-ﬂ.nz) , the subdifferential of the functional
v o— %”Vﬂs .

Let F:V —- ]-o,+0] a proper functional (i.e. # +=) ;
for any A>0 , we define FX its Yosida approximation :

(1.2) ) = Inf 4R (2) + 2 lv-z%2
. i)

Let us examine the properties of Fk in such a general context.

(1.3) Lemna

Let V a general real Banach space and F : V —s |-=,+0| a proper,

lower semi-continuous functional on V satisfying :

JB»0s.6. Foev Flv) +OL”7)“2+B>,O; then,

a) yve v, F}\(U) T F(v) as X decreases to zero.

b) F s 0, %zgz)E: V. |Fx(u)—FA(v)l < %—C(ﬂulLHle.Hu—v{{.
where C(llul[,]lv][) =<, !Iul[ +c, IIV]I + C c, €R"

, with Cyr Cyr Cy

3
Proof :

e 1 2 .
a) By definition, V2 V. Fx(v):s F(z) + ?X»ﬂv-Z” ; taking z = v




[.2

we get F (v) < F(v) , and (1.3)bis sup F,(v) < F(v) .
A 250 A

By definition of the inf, for every X>0 there exists z, = V  such
that

2

(1.4) Fy (V) < F(2,) + 95 V=2, [° < Fy (v) + 2 .

Since F(z) + aﬂzﬂz +8 >0, (1.4) 1mp11és
Hzx—vﬁ2 < 2 [Sup Fx(v)+x+2a”zx-vﬂz+2uuv”2+s]
A

If sup FA(V) < + o, this implies :
A>0

s-V

(1.5) zy, —> v as A — 0.

From (1.4) F(z,) < Sxp Fo(v) + 2 ;5 making X - 0, from the
strong Tower semi continuity of F , and (1.5), it follows

(1.6) F(v) s sup Fy(v) .
A>0

From (1.3)bis and (1.6) F(v) = sup FA(V) .
A>0

If igg FA(V) = + o, from (1.3)bis F(v) = + « and there is still
equality.
In any case Fk(v) Y F(v) as A+ 0.

b) Let z,& v, z, € D(F) i.e. F(zo) <+ 3 Jet u,veV
_ T 0y . s
Fx(v) = 225 {F(z) + ?X’”V z|"} 5 given g >0, ¢ —0
for every k& IN , there exist z & V  such that :
(1.7) Fo(v) < F(z) + ! l|v-2 HZ < F(v) + g, < F(z,) + 1 v-z nz + e
’ PR k iy k= " k> "%’ " 2x 0 k*
By the same argument as in part a), we get :

Hv-zkH2 < ZX[F(ZO)+ek+aszn2+B] + ﬂv-zoﬁz
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‘ and this implies that

(1.8) llz, | < C(Jvl) independently of X (for X.ez]O,AO[ » A <)

and ke N, with C(I[v][) = ¢} lIvll +cj (], cp € R)
By definition of F,(u)
Fo(u) < F(z) + oylu-z, I°
< F(z)+ oz By + Allu-z )2 Iv-z, B3
so from (1.7)
Fu) = Fy(v) < g + 35 Qu-z IP=lv-z, 1)
by definition of H
-2 > glu-z 1 + Hlu-z)v-u sy s
0
Fo(u) = Fy(v) € g + 5 IH(u-2) ]l Iv-u )
< g +-% lu-z, . Jv-ull 5 from (1.8)

< g + 3 [lulsedvd]gv-u] .

Making k — +o ,¢ K 0 and echanging v and u , we finally get

IFy(w)-Fy(V) | <5 > c(ull,fvly.dv-ul
wnere c(lfull 21 vI) = ¢, ull + ¢, IVl + oy
(1.9) Lemma : Let V a general Banach space, and,

F, G:V — ]-ug+«ﬂ two convex lower semi—-continuous

proper functionals satisfying :




1.4

() Gs F

(12) 1 (gi)v,'c.ﬂv a dense subset of V such that :

V 2« m, G,(g;) » Fylg;) then, F =G .

Proof of Lemma 1.9 :

prove

From (i), F> G ; let us¥'the converse inequality :

From (1) ¥ ie N, 6(g;)> Fylg;)

From the lemma (1.3)b and the density of the sequence (gi)iez N
in V it follows :

(1.10) V ve V, Gl(v)> Fl(v) .

From (i) G,< Fy so, finally, Gy =Fy .

Now we remark that for any functional G

(6,0% = (67 3 1-15% = 6% w2 (15"

So the equality G1 F1 implies that
6%+ 2(1.05% = P+ 20105 e

(1.11) F*¥ = 6% and FX¥* = g™ ; since F and G have been assumed
convex, t.s.c., F = e , G = 6**  and finally

(1.12) Remark

(a) The conclusion of the Lemma 1.9 still holds if, instead of
taking in (ii) the Yosida index equal to one, we take it equal to some
Ao ° 0.

(b) If F and G are only assumed lower semi-continuous, the
conclusion of (1.9) is still valid under the assumptions :
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(1) GsF

(11)pis 3(9;); =y @ dense subset of V , ] (AJ.)J. N
a sequence }j ¥y 0 such that
V (i.)e N x W, 6,15 > Fy (9;)

Now, we can-state the main result of this chapter :

(1.13) Definition

Let V a reflexive Banach space with a strictly conyvex norm, and
F:V —>» J-o.40] a convex. lower semi-continuous proper function.

Let V250 . ¥ veV, F(v)=Inf {F(2) + 3 Iv-z[?}, this minimum
’ zeV

is achieved at a unique point that we shall denote J;(v) :
F 1 F. 2
(1.14) \21 A0, \f veV, FA(V) = F(ka) + ?’X"V'J vii®,

From the classical theorem of additivity of the subdifferentials,
JF(v) satisfies the extremality relation :

A

1.15 sF(fv) + L Hfv-v)y s 0 e
A A A

(1.15)bis + Hv-3fv) < oF (b

(1.16) Theorem

Let V a reflexive. separable Banach space and

F:V —> |-w,4+0]| g compex, lower semi—contimuous proper functional.

Let (9;); o

we define :

a_ dense, denumbrable subset of V : f_Qr ay e W

(1.17)  wu,= J5(g,) and

o, [ 7 _ _ -
(1.18) Viem, fvem, F'(v)=Flu,)+<dlg u),v w2y, v)
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Then, F = sup F* ; comsequently, defining
TV

F = sup 7 s (Fr)r

I<igr

18 an increasing sequence O
emw B g seq of

polyedrcl, convex, continuous functionals converging to F .

Proof of Theorem 1.16 :

. F F
From (1.15)bis  H(g;-u;) = H(gi'Jl(gi)) G;BF(Jl(gi)) = oF(us) 3
so, by definition of &F :

Fvev . F(v) » F(ui) + <H(gi—ui),v-ui> = F1(v) H

' and, (1.19) F > sup Fl o= sup F' .

ielN relN

so VieN. F>F
Now Tet us prove that :
(1.20) C(F(ey) = Fyly) 5

. P 1 2
Min {F'(2) + 5= [9.-z|}
zeV 7 1952l

—
g
e
Nt
p—
—_—
€
-
~—
"

by definition,

Mi\r; {<H(g;-us)z-up + %X lz-g, RE Flug) -
e

It

This minimum is achieved at a point z; such that :

H(gi”ui) =‘H(91"Zi) .

Since H 1is strictly monotone, Z; = Uj and,

(Fi)l(gi) = %7 \Iui-g,-!l2 + F(uy) = Fy(g;) i.e. (1.20).

(1.21)  So, (sup F9),(g;) > (F1) () = Fy(gy) -
: J

From (1.19) and (1.21) sup o< F and

L Vien, (5w ), (99 > (F)ylsy)

N
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so, from the Lemma (1.9) it follows :

F=supFJ = Tim 4 F"
jelN r++ e

(1.22)  Remarks
Let us discuss the signification of the Theorme (1.16).

a) We know that every conyex lower semi-continuous functional is
equal to a supremum of continuous affine functionals :

(1.23) F=F¥* 5 ¥vaeV  F(v) =sup {<v.F>,y yiy - F(F)} .
feV' (V>v*)

The Theorem (1.16) tells us that if the space V is reflexive and

separable any convex, l.s.c., proper functional F 1is equal to the

supremum of a denumbrable family of such affine functionals (Fi)iez.m

Moreover, we can take for the (F1) affine functionals, whose graph

ie N
is a supporting hyperplane to the graph of F .

The Theorem tells us how to construct such (Fi)iem

Take (gi)iehl any denumbrable dense subset of V , and AO >0 .

F | i 1
Let u, = Jxo(gi) and F'(v) = F(u;) + X;<H(<_;1.-u1.),v-u1.> X

We remark that H(gi'ui) e:BF(ui) j.e. F' s a supporting hyperplane :
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We emphazize on the fact that one has to construct these supporting
hyperplanes in a precise way, through the resolution of auxiliary
variational problems involving F :

The simpler argument which would consist taking any dense family
(fi)i = N in V' and writing (1.23)

Vvev. F(v) = sup {<v,fi> - F*(fi)} is not correct,

since two convex lower semi-continuous functionals may be equal on a
dense subset of V and be different ; for example, take

Vet¥e) . F(v) = vl . O(F) = Hi(g)
H(9)
6(v) = IVl ;> D(6) = Ho(9)
THC(9) °
then G=F+ T » G=F on Hé(Q) which is dense
{ue:Hl/ulBQ =0

in L2 but G # F!

b) The interest of such approximation result is that we have succeded
writing any convex,l.s.c., proper functional as an increasing limit of a

sequence of convex, continuous, polyedral functionals (i.e. regular

functionals with a very simple geometry ; by polyedral, we mean a supremum
of a finite number of affine functionals).

Moreover, we know to construct in a precise way these polyedral
approximations. We shall see in the next chapter how to use this tool
in order to obtain a representation theorem for a class of functionals.

Let us examine the geometric interpretation of the Theorem 1.16 when F
is equal to the indicator function of a closed, convex, non void set K
in V.

(1.24)  Proposition

Let K a closed convex non void subset of a reflexive Banach space V .
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be a dense denumbrable subset of V ; then K = n ‘Ki

Let (g.).
g’b 1elV

- €V

where K. 1s the half-space containing X :

K. = hev/ <H(g7:—progK gi), vprod, g.> < 0}

Proof of Proposition 1.24 : | /

From the Theorem 1.16, taking <\\f—¢/ ;/i; .
F=1IK{O on K a - pmﬁK%

5 (95)
+o elsewhere 173N
dense subset of V , (>\J.)J.€]N a
sequence, 1 y 0 , we have :

1
% va V, F(v) = sup F,.(v) = sup {F(u,.) + +=<H(g.-u..:),v-u..>}
i, W i,jeNx N 0 A TR
where wu.. = JF (g9.) i.e. u minimizes : F(z) + 1 ”z—g.uz that
i3 = O ey - Zxg 19l

is to say ujj = Projy g; 3 since F(uij) = 0 we obtain

Vvev, F(v) = sup {%—-<H(gi-prongi), v-proj,g.>}
i,jelNX ]N j
M (v) =F(v) =sup T, (v) =T~, (V) i.e. K=Y K
: ieN & 0K g
where K. = veVv/ <H(gi-nrongi), V-proj,g.> < 0}

(1.25) Remarks

a) The Proposition (1.24) tells us that in a reflexive separable
Banach space, given a closed, convex, non void set K , one can find a
dense denumbrable subset of K (in its boundary) such that K 1is equal
to the intersection of supporting hyperplanes to K at these points.

Moreover, one can take such points (u_i)1.€__]N in the following way :

take (gi)ie:N a dense subset of V , us = prongi and for a normal
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vector of the supoorting hyperplane at u; H(gi-ui) .

b) One can consider the Theorem (1.16) as a corollary of the
Proposition (1.24) ; applying the Proposition (1.24) in V x R and to
the closed convex set equal to the epigraph of F , one can refind (1.16).

Finally, let us look to the dual fromulation of the Theorem (1.16)."

(1.26) Proposition

Let V a reflexive, separable Banach space .

Let F :V —> J-+o] a convex, lowver semi-continuous, proper

functional and (g 7:)7; a dense subset of V.

e N

We define for any re N , Ei‘ = Conv Lu,b = J?(gi) / 1gigr] and

F on E
7 - é r

+0o  elsewhere.

Then, the sequenoé (7" )r is a decreasing sequence and F is equal

e N —

to the lower semi-continuous regularization of Inf F. In other words,
rell

FP converges to F 1in Mosco sense.

Proof of Proposition 1.26 :

Clearly, the sequence F" decreases to the functional G equal to

F on U E:
reN T
G =

i

4o elsewhere .

So, (I—‘r)m__:N converges in Mosco sense to the lower semi-continuous
regularization of G (cf. Mosco [22]), sc (G) .

Let us prove that sc(G) = F :

Clearly, for every ra N, F < F* so, Fg¢Inf F =6 and since F

reN
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is 1.s.c. , F <sc(G) .

-

Let us assume a moment that we can prove the following property :

S—=V.
e v and

(1.27) YveDd(F), Jv,e E_ such that v,
| F(v) = Tim F(Vr) .
>t

From (1.27), it will follow that

VveVv, F(v) slim sup F(v.) » 1im inf G(v,) (since G =F on UE
> sc(G)(v) (by definition of sc(G)) .

Let us prove (1.27) ; let us assume first that v < D(3F) ; then
Jf<=dF(v) and v+ sF(v)>f+v ie. v= Ji(v+f) (we assume for

simplicity that V 1is a Hilbert space which is identified with its dual :
t
H=1Id") .

From the density of the sequence (91) in V , we can find a

ie N

sequence (h )

Pre N hrez_{gl,...,gr} such that h, —s v+ f .

>0
From the continuity of Jq
Ji h.=v, —> Ji(v+f) =v and v, belongs to E.
-0 .
Moreover, from Lemma (1.3) Fl(hr) —— Fl(v+f) 3 since from 1.14

-0
Fy(hy) = F(afh) + 2 h - ofh fP
Fr(vaf) = FIT ) + 5 1 (vef) - aF (e
and [lh_ - Jghrﬂ2 — [ (v+f) - J'i_(v+f)ﬂ2 it follows that
FITh) w FOIT(V) = F(v) de. F(v) > F(v) .

So, (1.27) is proved when ve& D(5F) .
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Now we use that if v =D(F) , there exists a sequence vk<;.D(8F)
such that v, — v and o(v ) — o(v) :

take for example a sequence (Ak)k =N ° xk - 0 and

F s-V

Vk=\JAkV mv;

one can verify that

F

Now, we can conclude by a classical diagonalisation argument :

VoFV)Y o sF(v))
| e

{v,F(v)}
From [ 1] Temma 1 > there exists a sequence r - k(r) such that

(Ve(ryF OV ry)) mr (VF(YV))

_.r . s-V
and we take V. = Vk(r)é; Er PV o Vo F(vr) — F(v) .

(1.28) Remark

Let us explain why the Proposition (1.26) is a dual formulation of
the Theorem (1.16) ; by the same way we shall get an other proof of the
Proposition (1.26).

(1.29) F=Timf F" = F* = sclim | (F)¥*] .

Let us compute (Fr)* » that is to say the conjugate functional of a
polyedral functional :

V f e V* ,(Fr)*(f) = sup {<f’v> - Sup {F(u_i) + <3F(U.),V-Ui>}}
veV Leigr ’
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= JF - -
where ug = Jl(gi)’ BF(Ui) = H(gi Ui) .
Since F(ui) + F*(aF(ui)) = <u1’3F(u1)>(V,V') we get

(1.30) ¥ f= V5, Yre N, (F)R(F) = sup inf {<F-aF(u;)avs + FX(OF(u))}
veV lgigr

Let us prove that
(1.31) D((F")*) = Tonv {oF(uy) / i=1,...,r} ;

clearly Vie {1,...,r} , from (1.30) (F)*(eF(u;)) < FX(aF(u;)) 5

3

since (Fr)* >F" , it follows that :

(1.32) Vie_{l,...,r}, (F‘”)*(aF(ui)) = FX(oF(u3)) 3
since \Fr*' is convex its domain is convex and
(1.31)bis D(F'*) > Tonv [8F(uy) / d=1su.usr)

let us prove the opposite inclusion : let fsi Conv {BF(ui) [ is...sr} s
from the Hahn-Banach theorem there exists voe:V such that :

<f,v > > Sup <3F(u.),v. >
° 7 1gigr oo

So inf {<f—3F(ui),v> > 0 , which implies that
Igigr '

sup “inf {<f—BF(u_i),V> + F*(BF(U_l))} = 4+ o
veV Igigr
and from (1.30) this means that (Fr)*(f) = + o3 so (1.31) is proved.

Since the complete description of (Fr)* on its domain is rather

complicate, we define the functional G' :

] FX(f) if fe Conv {oF(u;) / lgicr)
(1.33) G (f) = b

+o elsewhere
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then, .
(1.34) F* e < (FN*.
The first inequality is clear from (1.33) ; the second one follows from
D(e") = D((F)*) and &"(f) = F*(f) < (FYX(f) on D(6") .
From (1.34) it follows that :
(1.35) F* = sc [lim | 6"] .
Now we remark that.
F P
(1.36) vy = 3j(g;) = oF(u;) = 9 ()

(in order to prove (1.36) one use the definition of Ji and the property
(oF) " = oF%) ; finally
*

] AR if feTonw (] (9p) / Leier)
(1.37) G (f) =

+o  elsewhere.

From (135) and (1.37) taking G = F* , we refind the conclusions of the
Proposition (1.26).

(1.38) Corollary : A Galerkin procedure for lower semi-continuous functionals.

Let V a separable reflexive Banach space, F :V —> |-o,+w] a

convex, lower semi-continuous, proper functional which is coercive.

a dense subset of V ; we define

et 9)iem

tfieIV, ui:Jl;(gi) and

Vremw, E, = Comw {Ji(gi) / 1gigr}

Then, for every fe V'
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Min {F(v) - <f,v>} ——= Min {F(v) - <f,v>} .
veEr >t el

Proof of Corollary (1.38)

It is a direct application of the Proposition (1.26) :
Flr=F + 1IE converge in Mosco sense to F .
r
Since F' 3 F and F is coercive it follows (cf. [22]) that
V'Fe:.V', Min {Fr(v)-<f,v>} —> Min {F(v)- <f,v>}
veV veV
(1.39) Remark :

We saw that, geometrically, the Theorem 1.16 corresponds to an
external approximation of a closed convex set ; its dual formu]ation
corresponds to an internal approximation :

F
7 u; = Jl(gi)

Let us illustrate the flexibility of the preceding approximation methods :
given K a closed, convex, non void set in a separablie, reflexive Banach
space, we shall denote :

Kh its external approximation : K = (ﬂ‘ Kh given by Proposition 1.24 .
helN

Kh its internal approximation : K = U Kh given by Proposition 1.26 .
helN

(1.40) Proposition

Let & :V — J—a5+aJ a convex, lower semi-continuous, proper
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functional.
a) Then, ¢ + MW Kh ’T o+ %3 therefore (o+1 Kh) converges
he1I

to ¢ + ﬂ]{ in Mosco sense and ©f ¢ <s coercive

fre v, Min {9(0)=<f,v>} s Min {9(0)-<f,05} .
rhe X
ver” ve

b) Let us assume moreover that ¢ is continuous at a point v, €K ;
then, (o+0

z ) s a decreasing sequence which converges in Mosco
hhel

sense to ¢+1 X3 therefore if ¢ 1is coercive

b/fe, V', Min {¢(U)—<f,’l)>} '—W Min <¢(U)—<f, '{)>} .
veKh vek

Proof of Proposition (1.40)

a) Clearly ¢ +1 h ’f‘ o+ 7 K 3 it follows by a classical argument
K

(cf. [ 7)) that (¢+0 h) converges to ¢ + T, in Mosco sense ;
K

heN

b) Let us prove that (¢+T K ) converges to ¢ + W, in
. hhe N :
Mosco sense :

Vv, 9N v, 1im inf (¢+0 Kh)(vh) > Vim inf ¢(v,) + 1im inf 10 Kh(vh)
> o(v) + T (v) .

Let us take voe.K such that ¢ is continuous at Vo 3 then

Vo€ Int D(¢) » D(¢) > B(vysp,) 3
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Let us take ve& D(¢) 11K and let us find a sequence (Vh)ruez N
such that :

il = 1 T
(o1 ) (V) im (¢t Kh)(vh)

let v, = tv+ (l—t)v0 ; then vte;.Int(D(¢)) and ¢ s continuous at

. t t
Vi 3 let (vh)h = @ sequence, Vv, GiKh such that

v; Ll 8 v (we remark that Vi € K, so v; exists!)
then (vt) —_—— (vt)
> OV h-+oo ¢ ’

On the other hand, by convexity of ¢

B(vy) <t o(v) + (1-t) ¢(v,) -
When t — 1, since ¢(v0) <+
li? sup ¢ (vt) < ¢(v) ;5 since Vi =TV by 1-semi-continuity of ¢

d(v) < li? inf ¢(vy) 5 50 o(vy) TZT’ o(v) ; we have the following

diagram :

(il BER (v ev,))
| e

(vsd(v)) .

By a classical diagonalisation argument, there exists a sequence (th)h =N
such that

th th th
(Vh ,¢(Vh )) "E:;;j>- (ved(v)) and v, € Kh .

So ¢+ 1 K —¢ + 1 K in Mosco sense.
h
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(1.41) Remark

a) The interest of the preceding Proposition is that, since one can
construct the approximating convex polyedral sets Kh or Kh , One can
directly apply this approximation procedure to the minimisation of any
convex (continuous at one point when working with Kh ) T.s.c. functional
on K.

b) One could also by the same technics approximate evolution problems
governed by subdifferentials of convex functionals.



(CH.II INTEGRAL REPRESENTATION OF UNILATERAL CONSTRAINTS
| ;

In this paragraph we shall denote
Cm the family of the open bounded subsets of @ .

Bn  the family of the bounded borelian subsets of @ .
= ylsp
vV = wo (Q) 1<p<too.

As we shall see in the next paragraph, any "variational limit" of
unilateral constraints has the following properties () .

Our purpose, in this paragraph, is to obtain an integral representation
theorem for the functionals of () :

(2.1) Definition
F={F:Vx B — RY satisfying (i), (i1), (ii1), (iv), (v)} :
(i) YveVv, B v F(v,B) 1is a positive, outer regular, Borel

measure.

(i1) Y u>ei,6%, vV +> F(v,w) 1is a convex, 1.s.c., proper functional
() on V.

(iii) Yoe @h, V v F(v,w) 1is decreasing.

(iv) V u,ve v, V(uezﬁm , u( => F(u,w) = F(v,w) .

w - Vw
\_(v) Y uvev, chef@h s Fuhv,) + F(uVv,w) < F(u,w) + F(v,n) .

Remarks

a) It is an open question to know if (V) 1is a consequence of



(i)...(iv).
Clearly, (v) is not independent of (i)...(iv) : it will follow from the
representation theorem that, if Fe 3% then, in (v) the equality holds!

b) From the outer regularity of F(v,.) , it follows easily that
the properties (iii) and (v) are valid for any B e:fbn .

In order to state the representation theorem we shall need the following
notions of potential theory (cf. [2] for example, for more details).

(2.2) Definitions

For any ve V = wg’P(g) , we shall denote by V the class (for the
equality quasi-everywhere) of its quasi-continuous representatives.
(The notions of capacity are associated with the capacity defined from
the norm of V). |

The positive cone of V', (W'l’pl)+, is called the cone of positive,
finite energy measures ; the elements of (V')+can be identified with

positive Radon measures and if, 0 = (V')+ > U being_the associated
Radon measure

Yvev, W Ve yy T J'\‘/’(x) du(x) d.e. V <o LYdy) .

Q continuously

(2.3) Theorem

Let Fe ; then F can be represented as an integral functional :

(2.3)bis FoeV, foe &, ., Flo,w) = J Flz,0(2)) dulz) + viw)
. ]

where : a/ v and Vv are two positive Radon measures and U s a

finite energy measure.

~—> ]-w, 4] <8 Borel measurable with respect -

b/ f: Q, xR,
to =« , convex, l.s.c., decreasing with respect to t .

Moreover, we can take V(B) = F(uO, B) with U e V , such that :

FBe B, s Flu,B) < +  and = DB, J flxz,t) dulz) + W(B) » 0 .
B

The relation (2.3)bis can be extended to V x R(F) where R(F) 1is a rich



family of borelian sets (cf. Definition 2.4).
In order to prove the Theorem (2.3) we shall use two types of tools :

a) the approximation result of €h.I which is relevant of the convex
analysis.

b) The measure theory.

In some arguments, as we shall see, these two types of tools will be
intimately combined ; let us define now the notion of measure theory we
shall use :

(2.4) Definitions

a) A subset D of iﬁn is dense in iﬁh if .
a0 p —_ [o] - — [s] —_ o
YA,Be:an such that A<B , D&y such that AcD<D B .
b) A subset R of B s rich in i% if :

For every family (Bt)t e:[O,l] of elements of an such that :

Ys<t , B =B, , the set {te 0,11 / Btgéli} is denumbrable.

t

(2.5) Proposition

a) There exists a denumbrable dense subset of Sfﬁn H

b) A denumbrable _intersection of rich subsets of Bn s still rich ;

c) Any rich subset is dense ;

d) If R 1is rich, R()ﬁn is dense.

The following property justifies the introduction of the notion of rich
subset of LB; : ’

(2.€) Proposition

Let o : ?’n —~ R an increasing function ; then, the subset of

”/3” formed by the sets B satisfying




sup a(d) = a(B) = ini al4)
—_— O -
AcB Bc4A

is rich in an

Proof of Theorem (2.3)

let Fed

Step_1 : Let (f, ie [N be @ dense denumbrable subset of V.

Let (wk)kez.N be a dense denumbrable family of
open sets in -
For every ke N , we define the functional

(2.13) FE (V) = F(van) -
Since 0y is open, bounded, the functional Fk :V — RT s convex,

Tower semi-continuous proper ; we can apply the approximation theorem
(1.16) of Ch. I :

denoting Ak = aFk , we define
. | Ak
(2.14) VY(EkyeN x N, u, =37 (f)
. k
(2.15) Y (i,k)e N x N, Uiy = Hlug=fi) €= oF (uy))

(H 1is the duality mapping from V onto V*).
and by Theorem (1.16)

(2.16) Yke N, Yvev, Flv.) = sup  {F(Uyyea0p) + <wipotly Vo yy -
Let us Took in detail to Wik in a general way, if upe - 3F(u,w) , by
definition of 3F(.,w) :

Yvev, Flutv,w) > F(u,n) - <p,v> .

If ve V+, since. z - F(z,w) ic decreasing { P, it follows that :

111)



Flu,w) »F(utv,w) 3 F(u,w) - <uv> , i.e.

i . ‘s +
VVG‘.V+ , <v> >0 ; so u 1is a positive energy measure of V' 3

Moreover, if Vi = 0, from (fF}V) it follows that :
W
Flutv,w) = F(usw) 3 F(u,w) - <uv>

and p 1is supported by T

denoting for any ve V , by vV oits quasi-continuous representa tive, we
can write (2.16) in the following way :

(2.17) VkeIN R yvev , F(Vzmk) = jg?\‘ {F(uik,mk) + L_(U;.k-V)duik}
k

Step 2 : Let us define

2.18) Y e=n xnN LHvev, Ysed .
Lad ~,
Fip(VsB) = F(u B nay) + JB(uik-v) disy
and study the properties of the functionals Fik :

(2.19) Proposition

Varwen , fus b, Foer, Fow ¢ Fow

Proof of Proposition (2.19)

We have to prove that
(2.20) Ve N, Yve v, Fve) > Fluaone) + [w(‘uvikmd”ik
In order to prove (2.20), let us prove first :

(2.21) \1¢>o R F(uik+cb,wnwk) > F(u_ik,w nwk) - de)wduik
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(2.22) Vcb;O. R F(uik-cb,wn wk) > F(uik,wn wk) + L)qb d“ik .

Let us assume (2.21) and (2.22) proved and, ook how (2.20)follows :

In (2.21) we take ¢ = (v-u
(2.21) and (2.22) :

. +
1.k)+ » in (2f22) ¢ = (uikfv) and add
F(uikv V,w nwk) + F(U_ik,\ Va(ﬁn-ﬁ)k) > ZF(U.ik,wﬂ U)k) + 4{ (a;-k'V) du_ik

w
. + +
(since (uik-v) - (V-uik) = uik-v) ;

then, applying (EFV) s
Fluggoon vy) + F(vmn ) > ZF(ugomn ) + | (@9 dugy

and (2.20) follows.
Let us prove (2.21) and (2.22) :

(2.23) Lemma
;/i,ke:JN S ﬁ“weﬁ;l,%beV, >0

(2.21) F(uik+¢’w n_wk) > F(uik,w nwk) - L)/CF d“ik .

(2.22) F(“ik-q”w nwk) > F(uik’w nwk) + waﬁ' d“ik .

Proof of Lemma (2.23)

Let (Bh)nes N @n increasing sequence of open sets in w such that
&, 0,C Un+1C ...C w and Lnj 0, =uw.

From the Urysohn Temma, there exist O, < D() satisfying :

Let ¢, = $.6, 3 o satisfies :



4= ¢ on & .6 =0 on (w , 0<4<h .
By definition of Mop
(2.24) Fustdse ) > Fug o) - Jd?n iy
(2.25) F(us=0nsa) > F(Usy o) + J@;] dusy -
Let us look first to (2.24) :
Flujtonsw) = F(uy v 0, n @) + Flus +0, .0 N g) .

From (5611i and (gjiv s

(2.26) , F(u1k+¢n’wk) < F(uik+¢,wk(1 Ch) + F(uik,wk\\ﬁh) .
Moreover
(2.27) F(uik’wk\‘oh) < F(uik’wk) < 4o (since Vv - F(v,wk) is proper,

and from the definition of uik) . Combining (2.24), (2.26) we get
(2.28)  F(u;+0»un0)) + F(u; o0\ €)
> Flujpouen €) + FlUgom0 Gy - J&’\r; Guiy >
and using (2.27), we can substract F(uik’wk\‘eh) to this inéqua]ity :
Flugrbann 0y) > Flugon 0 0,) = [ dugy
> Flujomn @) - (fduik
i

When n —» 4o , since .

(wenT.) = wen (n0)) = wnw
ok

£ A )
Flugtomenu) > Flugomnu) = | & dugy e (2.21) .
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. Let us Took now to (2.25) :
Fustpom) = Flugmdpswen) + FlUg=dpam0 @) -

From ({?)iiiand (%1) since -¢, > -¢ and ¢ = 0 on C B s

iv
(2.29) F(u'ik—q)n s‘ﬂk) RS F(“ik'¢’wk nw) + F(uik’wk\a) .
Combining (2.25) and (2.29)

(2-30)  F(us =950, 08) 5 F(Usaw n@) + Jq?;] dys

> FUjpou nu) + J6$d”ik

n
Since lvjﬁh = © , mking n -— 4+« , we get

n
(2.31) F(uik-¢,wkr16) > F(uik,wkrﬁw) + Jw$ﬁduik .

Applying the Proposition (2.6), (2.5) to the increasing set function
W F(uik—¢,wkf1w) s
the family R of the open sets w satisfying

F(uik—¢, wkr1w) = gﬁf F(u%k—¢,mkr1A) is dense.

A>w

For such an w , F(uik-¢,wkrﬁﬁ) = F(uik-¢,wkr1w) 3

so (2.31) turns into

(2.32) Vw= R. Fus =¢sw 0 w) > Flug oo nw) + L’qi’ dusy
Let us remark that R depends on ¢ , but that's enough in order to
conclude since any open set is regular with respect to a borelian

measure and (2.32) can be extended to any we Gh .
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(2.33) Proposition

Vwc—:ﬁ;’q, yve"V,

F(v,w)

sup F. (v,w)
(i,k)e W xm K

su. {Flu,,,onuw,) +J (17, -D) du.. .} .
ORI L P s

Proof of Proposition (2.33)

From the Proposition (2.19), V(i,k)e:]N x N , vav s 'ngﬁ;]
F(Vs(.l)) />¢ F.ik(V,w) s

SO

F(v,0) > sup F_ik(v,w) .
(i,k)elN xNN
Let us prove the opposite inequality :

o

sup (P (U500 ) + f_ (W3v) digyd

Y keN . F(v.g)

ieN Wy
If BDOG, » = ?;pm {F(ujp 0 N B) + fB(G;k-'vV) d“ik}
= ?:;;])\l Fik(V’B) .
So VB:mTk F(v,wk)s 1,325& - Fij(v,B) H
therefore

sup F(v,wk) < sup Fi.(v,B) .
@cB i,jeNxN W

Taking Bete’n , since F(v,.) 1is a borelian measure, any open set is inner
reqgular and

Vwc»:@’n » F(v,w) < sup Fij(v’w) 3 S0, the equality holds.
i,jeN x N
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Step_3 : Using the Proposition (2.33) we are going to prove

the representation theorem.

(2.34) Definition

VreN , let us define FY,:fo&’)n — ﬁ+'

r r
YreN ,Yvev, F (v,B) = sup F..(vsB,, )/ ) B. < }
r i,E=1 ik ik ik=1 ik

i.e. B > Fr(v,B) is the smallest positive measure which is greater
than all the measures B +— Fik(V’B) s Lgikgr

(By ] we mean that the B, , are taken disjoint).

(2.35) Proposition
a) ffr'eﬂv » Frc—:'f]’“

b)) Fremw , F < F

r+1
e) Vvev, Fweo , Flo,p = lintF (0,0
(r4+e)
) Vuvel, JBeB, |F_(u,B)-F_(v,B)| < I lu=v] du
! n . r r B r
r
with W, = ; %:luik (ur‘ 18 a positive finite energy meqsure).

a) For every B E:iBn » the functional v —> Fr(v,B) » @S a supremum
of convex, lower semi-continuous functional is still convex Tower semi-
continuous ;
moreover

YreN, Voe O’n , Vvev, Fo(vow) < Flq(vew) € F(vsw) .

The last inequality follows from (2.33), and the definition of Fo :
From (2.33) JveVv, Houe 0, > F(v.w) > Fip(vow)

This inequality can be extended to {Bn since
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VBe 3 , F(v,B) = inf F(v,u)
n
wdB

and since B — Fik(V’B) is a borelian measure which is finite on any
compact subset of  , it is a regular measure and

v B & :‘} ) F.ik(VsB) = 1nf F-}k("’ w);
w>B

so the inequality
F(v,B) z.Fik(v,B)

holds for any (i.kle Nx N , veV, Be%n;

since B +—- F(v,B) 1is a positive borelian measure by definition of F
it follows

fren, Yvev, YBed , F(V.B) > F (v,B) .
So F(v,B) > sup Fr(v,B) H

reNN

on the other hand

Yike N, Viciker,  F(V,B) »F, (v.B) ;

: v ab
S0, sup F (V,B) > Fs (v,B) 5
: reN

since this is true for every (i,k)= N , sup Fr(v,B) > sup F, k(v,B)
r ik >t

and from (2.33)

sup F (v,B) » sup Fs (v,B) = F(v,B) if Be & .
r Lk

Finally, YveV, Yoel , F(v.w) =sup F (V.u) .
n reN '

This implies that every functional Fr(.,w) is proper since F(.,n) is
proper.

From Definition (2.34) one easily verify that properties (iii) and (iv)
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of F are satisfied.
The only property T which is not obvious to verify is the property (v) :

Take (Bik) and (Cik) two subdivisions of B ; then

I-= Z [F(“ik’Bik“‘”k) +j (G;k-u?\/v)duik]
i,k Bik
+ Z [F(uik,Ciknwk) +J (uik—u\/v)dpik}
i,k C1’k

izk [F(”ik’Bik”‘*’k) + F(_uik’ciknwk)J

b

+ 3 j (Us, -U)dy. +J (Us e <U)dys
i,k Bik(\{u<v} 1k, 1k Cikn{u;v} ik ik

+ ¥ (UL dy, +J (05, -V)dus, -
i3k JB,, N {usv} ik Tk C;p Nvou) ik Tk

Taking D, = [Bikﬂ {fuev)] U [Cik(\{uav}-] ) D; < B
Esp = [Bik(\\. ',:u{v:"] U [Cik(\ veull s ) Eip ©B
and remarking that these sets are two by two disjoint, we can write

I = [.ZkF(uik’Dik”‘”k) * JD (uik'u)d“ikJ
T.K- .

ik
* [-X FluiBip o) *[ (a;k'v)d“ik]
19k E. -
ik
r
SO, ; gzl Fik(UAV’B‘ik) + 2 Fik(UVV9C1k) < }: F_ik(u,D.ik) + z F'ik(v’E'ik)

< Fr(u,B) + Fr(v,B) .

Since this is true for any (Bik) and (Cik) » it follows

Fr(u/»\v,B) + Fr(u vv,B) < Fr(u,B) + Fr(v,B) .
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Finally, starting from F< %% , we have been able to write F as
F=T1im ? Fr

with Fr belonging still to iﬁ_; the interest of this approximation is
that the Fr enjoy strong continuity properties (d) :

r
Let u,veV and Be ﬁ% ; for every (Bik)igi,ksr with i z=1 B, B
Fa(VoBiy) = Fap(UsByy) = JB @y < [ 1570,
ik ik
r
with = E s
r i,k=1 ik

(One may take more precisely By = SUp(“ik / ik =1,...,1) 3

after sommation,

T FidoBid < 3 Fyuby) + J |GV dy,

i, 1, Bik
< iik Fik(u’Bik)b+ JBIU—VIQUr
N N
< Fr(u,B) + IB]u-vldur 3
since this is true for every (Bik)§ k=1 it follows :
Fo(vsB) < F.(u,B) + JBlu-v]dur
and
IFr(v,B) - Fr(u,B)[.s [B{u—v{dur .

The integral representation of Fr and hence of F will follow from the
following proposition :
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(2.3€) Proposition

Let Fe¥ and satisfying : F : V x"zi — R and Ju »

a positive Radon measure of finite energy, such that :

Fuvev, leCf/}n s |F(u,B)-F(v,B) | < f |u=v|dy .
Ay

Then, taking u < V , let us denote

v(B) = F(uo, B)

8(B) = . 1im Ti—rzr(uoﬂs,a) i

t>—c0

Then, v and © are two positive Radon measures and 6su (iZ.e. 6 s

of finite energy) ; for every te& IR the measure

B += F(u +t,B) - F(u ,B) is absolutely continuous with respect to 6 .

By the Radon-Nikodym theorem, there exists a function f : Q x R —> R

satisfying :

@) Vte R % x —= flx,t) 1is a borelian function and

F(u +t,B) - F(u ,B) = J Flx,t) do(e) , /BB .
[0 o] Jg n

b) For 0 a.e. x&Q, t vr> flx,t) is convex, decreasing

e) Vezeq, f(x,uo(x)) 20 s

Moreover,

.ﬁ we ¥, ﬁBé:f{;’n s Flu,B) = J flx,u{x) dO(x) + V(B) .
B

Proof of Proposition (2.36)

Let us first remark that there is no ambiguity in the notion
F(uo+t,B) since the value of 'F(v,B) does depend only of the value of
v oon B (utte V) .
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Then, we remark that the function t - F(uo+t,B) is convex, decreasing,

o)
F(u0+t,B - F(uo)
t<0. ' is increasing and positive.
It
F(u +t,B) - F(u.) F(u +t,B)
We denote by 0(B) = lim f —° °0 - timl 22—
tomoo t] (ts-w) |t

B + 0(B) as an increasing limit of positive Radon measure is still

a positive Radon measure and from

F(u0+t,B) - F(u

o) .
< J dy;, it follows
|t] B

0<0(B) < u(B) i.e. 0 1is a positive, finite energy

measure (since p 1is positive, finite energy measure!).

A posteriori, from the final formula (2.32) it will appear that ¢

is the smallest positive measure yu such that
Vuwvev., ¥eed . [F(u.B)-F(v.B)] < J V.
B

From 0 < F(u +t,B) - F(u,) < |t] o(B) , it follows that the measure

B +r— F(uo+t,B) - F(uo), is absolutely continuous with respect to y
and by R.N. theorem there exits a function ft(x) borelian-measurable,
integrable relatively to 0 such that :

¥ B(?;ﬁh . F(u0+t,B) - F(uO,B) = JBft(x) do(x) s

denoting f(x,t) = ft(x) we have

i Be B, F(u+t,B) - F(u,B) =

o

|
—
lov)
—
—
x
-
+
~
a
-~
=
~—

. From F(uo+s,B) - F(uO,B) =

I
——
loe]
—h
—
>
-
[%2]
—
e
—~
x
~—~—

we get, taking the difference
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{ [F(xst)-f(x,5)]d8(x) < [F(u *t,B)-F(u +s,E)| < [t-s] { du(x)
/B 1B

Since 6gu ,0 1is absolutely continuous with respect to p and there
exists h a borelian functional, 0<h<l , such that : & = hu.

From,
1K%7~J;[?(x,t)~f(x,sj h(x) du(x) < [t=s | -
Taking for B a decreasing sequence of neighbourhood of X, s We get :
Y s,te<R x R , h(x) [f(x,t)-f(x,s) ] ¢ |t-s]  wppx .
Since t F(uo+t,B) - F(uo) is convex, decreasing it follows easily

that t +— f(t,x) is convex, decreasing : for example,
let t>s ; then

VeeSD . Jﬂxﬁ)%u)sfoﬁ)dmﬂ
B B

it follows that f(x,t) €« f(x,s) 6-a.e. x.

Let us prove, to end the proof of the Proposition (2.36), the integral
representation :

From IF(ugtu,B)-F(u_,B) | < fB|ﬁ(x){ du(x)
it follows that the measure B 1— F(uo+u,B) - F(uO,B) is absolutely
continuous with respect to the measure |u[ dp and by the Radon-Nikodym

theorem, for every ue V there exists a function 9y & Ll(IU]du) such
that

YBe D, FlugpuB) - Flu,,B) = JBgu(x) 9(x) | dp(x) -

Taking u=1t,

i}

F(uy+t,B) Fu,,B) = IBgt(x) [t]du(x) = JBf(x,t)de(x) = JBf(x,t) h(x)du(x) .
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Since this is true for every Bz;ﬁﬂn ,YteR , gt(x)¥t! = f(x,t) hx) p_aew

Let us now explicit 9, take Xy€ Q2 and B a neighbourood of x, .

IF(u+u,B)~F (u +3(x,)B) | < [B G0x)-i(x,) | du(x)

N - [~ ~s
OOTE0) T w0 < | Ti00-ixg) | du(x)

J| 3,00 1600 s,
Dividing by u(B) and making B Hx > we get :

wepx,  g,(x,) lulx) = g5,

)(XO) ]Uw(xo) |

(o}

and since gﬁ(x)(x) [U(x) | = f(x,u(x)) h(x)
FlaghisB) = F(ug:8) = [ ,(018001au0x) = [ F0xli0) n0x) dut)
and, by definition of h , 6 = hdp

Flug+u,B) - F(u,,B) = [E f(x,0(x)) do(x).
S0, Flug+u,B) ~ F(uy,B) = JBf(x,ﬁYx)) d8(x)

and F(u,B) = JBf(x,ﬁYx)~G;(x)) do(x) + F(uO,B)°

End of the proof of Theorem 2.3

For Proposition (2.33) ., F = sup Fr ; more precisely

Yoet o Yvav, Fvw) =Tin 1 F (v.e) .
Y->+oo

Since for every re N , Fr satisfies the hypothesis of the Proposition
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(2.36), (2.35(d)), it can be represented as an integral functional :

fvev, ¥B etfbn ,» F.(v.B) = JBfr(x,Qkx))der(x) + v.(B)

with 6. @ positive measure of finite energy and vr(B) = Fr(uo’B) .

Let us choose Ug & V such that :

B +— F(uO,B) is a positive Radon measure (i.e. 7 K compact,
K<, F(ugsK) < +o) and denote (B) = F(uo,B) .

WERY and v is a Radon measure, by the Radon-Nikodym theorem,

we can write v

Since v

. = kr dv 3 so

F(v.B) = JBfr(x,vxx)) do,.(x) + IBkr(x) du(x) -

Let us now consider the other term of Fr(v,B) and Tet us rewrite it
also as an integral functional with respect to a fixed measure (independent
of r&N) :

[ #0700 a6, 00 = [ 2o,y £00T00) .
riy?
r dek +o0 dek
Let us define dp_ = and dp = lim dp_ = —_
" Flaoly, e 7 B

By construction, dp 1is a positive Radon measure of finite energy and

- de
Yre N, — T <d

r N
2'||de [l

Since dp 1is a positive Radon measure, it follows by application
of the Radon-Nikedym theorem that

dGr

1 ' -h d
2'de, | "

Yre—IN R E]hre?L(dp) s.t 5 SO
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F(vsB) = fBzr,Hderﬂ.fr(x,VKx)) hr(x) dp + JBkr(x) dv

Taking X = p+v , since X 1is a positive Radon measure and pg<X , vgX
applying once more the R.N. theorem

p=hX, v=kX and finally
F.(v,B) = fB[?erer”.fr(x,VKx)) h.(x) h(x) + k.(x) k(x)] dX(x) .

Denoting g .(x,t) = 2“udern.fr(x,t) h(x) h(x) + k.(x) k(x) .

We have that for X-almost every x , (gr(x,VKx))rér N is an increasing
sequence (This follows from the growth of the sequence (Fr)re; N ) .

By the Beppo-Levy theorem denoting

g(x,t) = 1im 4 g (x,t), we obtain for every U)e;e%
r

F(V,w) J g(x,v(x)) dX(x) 3

more precisely, since v =k, dv Fdy, k, 41, and,
2o | F(xst) b h —  g(x,t) - k(x) = f(x,t) h(x) 3
r->+oo
finally (with the convention f(x,t) =0 1if h(x) =0)

£(x,¥(x)) h(x) dX(x) + [ K(x) dX(x) ,
w

F(v,w) = J

w

F(v,w) = J f(x,V(x)) dp(x) + J v(x) = f f(x,v(x)) dp(x) + F(uo,w)
w ) w

which is the conclusion of Theorem 2.3.

(2.37) Corollary

Let Y be a function from Q into R and let us assume that

(Z) ‘Eluoc: V s.t uo(:)c) > W(x) , V-quasi everywhere.
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Let us define :

R 0 if v(x) > ylx) q.e. on B
(v,B) Vﬁ:ffh s F(v,B) = ;

_ to elsewhere.

Then F\V;_G belongs to Ty consequently, there exists Boa
N .

positive measure which does not charge the polar sets, and an integrand f
borelian with respect to x , convex decreasing with respect to t , such
that :

Yve v, fuct o ¥(x) >u(x) g.e. on o e Jf(x,V’(x)) du(x) = 0 .

This last equality turns into f(x,V(x)) =0 , yua.e. X

(Let us remark that in the integral representation v(w) = F(uo,w) 0) .

Since t > f(x,t) is convex, decreasing, and positive

f(x,t) =0 &= t 3 X(x) .

o]

Finally, there exists
t-f(x,t) function x — X(x)
borelian such that

- |
XX >t

(L%)VVQV,Vwéq%,VM)awﬂqﬁ.Mw¢$VU)>Mﬂua£.Mw.

Let us remark that 'Cix) > P(x) g.e. on :;>'V(x) > P(X) u a.e. on w

(since p does not charge sets of zero capacity); consequently
V va Vo, VU)éiOh R 'V(x) > X(x) ya.e. on 0w = ka) > ¥(x) p.a.e. on w,
and 'X(x) > P(x) pa.e. on w,

where X (resp. §) is the quasi-s.c.s. regularization of X (resp. ) . So
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~

(2.39) Xs>Puae. on w.

On the other hand, there exists a sequence v < V' n‘éL(Q) such that
v (x) ¥ V(x) quasi everywhere.

Since Vh » ¥ q.e. —> V; » X(x) wa.e. on w, going to the Timit

as n — 4« , we obtain
(2.40) T>X pae.on w.
This implies that ﬁf;>3( ¥ .a.e. on w and finally

~r N
=X ua.e. on w.

~ s

Since V'3 X pa.e.on we VX ua.e.on u we finally get

S

(2.41) fve v, ¥ me@;] . V(x) > ¥(x) g.e. on w@"\}/(x) >P(x) ¢ a.e. on w.
If we start with ¢ which is quasi s.c.s. the formulation is simpler :
(2.42) ¥v eV, VU)e.ﬁh, Vﬁx) > P(X) g.e. on wee Vix) > ¥(X) u a.e. on w.

So for any obstacle ¢ there exists a measure Hy (which depends on y!)
such that, UW is a positive Radon measure of finite energy and, it is
equivalent to take the constraint ﬁ/z,w in capacity sense or p-measure
sense.

If Y is regular, i.e. Y&V we refind a classical result of potential

theory ; taking u = dx the Lebesgue measure and w an open
set

~r
\'

NS
>0 ge.on w & vx0 pa.e.on w.

Let us observe finally that (2.42) can be extended to V x R(F) where
R(F) 1is a rich family of borelian subsets of Q .
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CH.ITI  r-LIMITS OF OBSTACLES -

In this paragraph, we still denote
_ ylsh
V = wo (Q) » l<pctw ,

and introduce two classes of functionals : the énergy functionals E?

and the constraint functionals 5%,

p

+

(3.1) ép is the family of functionals ¢ : V- RT of the following
type : o(v) = J f(x,Dv(x))dx with
Q

A zIP < f(x.z) < M(1+] 2l Py
(3.2) " x > f(x,z) is borelian measurable.

z —> f(x,z) 1is convex continuous.

For any w e @

n and veV we denote ¢(v,w) = {

f(x,Dv(x))dx .
W .

We recall the following compactness result concerning the family é?p :

(3.3) Given a sequence (dah)h en Of functionals of Ep s
one can extract a subsequence (¢h ) such that :
' k ke N

Fvev,Voee , r(s-LP() tim ¢, (v.0) = ¢(v,w) exist,
' k4o k

and ¢ still belongs to %?p .
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(3.4) fﬁ; is the family of the functionals of satisfying :

-, Inf TF(v, P <
foeB _vgv[(v w)HVI] < v(w) < 4+

Now we can give the statement of the main result of this chapter :

(3.5) Theorem ()
Let (q;h)h o & sequence of functionals of the class Ep .
Let (F,), = & sequence of functionals of the class ‘}}'fT

Then, there exists a subsequence ( hk)k ey * 2 rich family R of borelian
subsets of Q , and two functionals ¢ and F belonging respectively to
Ep and Q:’; such that

i) Yvev, d(v) = I (s=1P(Q)) Lim ¢, (v)
X
(iz) Y vev, fueoNr,

¢(v) + Flv,w) = T (s=1F(Q)) lim [b, (v)+F, (v,0)]
K->too k k

The functional F can be represented :

Flo,w) = [ h(z, 50 dulz) + viw)
W

where u and VvV are two positive Radon measures, u of finite energy ;

h(x,t) is borelian with respect to x , comvex decreasing and lower

semi-continuous with respect to t .

(3.5)bis Corollary

Let (q;h) a sequence of functions Py ¢ Q —> R such that :

hemW

-::'l ) "‘; l W‘Z-’p > d
e A S A PP

(pe ]1,[) .

(¥) In this paragraph we shall prove the Theorem (3.5) only in the case
of quadratic energy functionals.
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Then, there exists a subsequence ( hk)k ey * & rich family # of
borelian subsets of £, such that :

Jre wleP )  fue R

Min { J [Dv Petgp- <f,v>\ —_—
(UGWJ p(Q) g oo
{ Min {f !Dv[pdx + fh(x V(x))dux) - {£, v}}
'\v?whk on w v € W Py

where U 18 a positive finite energy measure, h is borelian with respect

to x , convex, l.s.c., decreasing with respect to t .

Proof of Theorem (3.5)

Step_1 : From (3.3) we can extract a subsequence (¢h )

such that k k=N
Yvev.Vwed . ri(s-LP@)1in o, (Vo) = 6(v0) with g <&,

From now on, we shall work on this subsequénce and therefore may assume
that the T 1im of the sequence (Op)h ey exists.

Let D be a dense denumbrable family of open sets ; from the classical

compactness theorem ( cf. [15]), and a diagonalisation argument, we can

extract a subsequence (that we still denote hk) such that :

(3.6) Yve V.Yoed, 1 (s-LP(2) Tim o, (V)+F, (viw)] exists .
K-++oo k k

Let us define two functionals Ft and F V ve Vv, V U)Gie%

o(v) + F+(v,w)

“(s-LP()) 14 Fro (Vs
. r (s (9))k+12 sup[¢hk(V)+ hi(Vo0)]

o(v) + F (Vo) = T (s-LP(2)) Tim 1nf[¢h (V)+F, (V,w)J .

K->+oo

By definition of the I' 1im , and from (3.6), (3.7), we have :
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3.8) Yvev, Ywed, F(v.o)=F(v.w) .

From the classical properties of the I' 1imit and the properties of the
functionals (Fh)he:N and (d)h)hc—:l\l it follows easily that the

. + - . . .
functionals F and .F are lower semi continuous with respect to v and

positive increasing with respect to w .

Let us now show how these regularity properties are enough, in order
to extend the equality (3.8) to V x R(F) , where R(F) is a rich
family of borelian sets :

(3.9) Definition
Let {7 the class of the functionals G : V x%n —~ RY satisfying :

(i) VveV » B > G(v,B) is positive increasing

(ii) Y e D‘n ,» vV +—» G(v,0) is lower semi-continuous on V .

We shall denote Be(G) the class of all borelian sets B satisfying

Yvev, VYo, G, (v,B) = inf G, (v,A)
A e e
B>A

and by B1.(G) the class of all borelian sets B satisfying :

Vve—:V R ¥ 250 R GA(V,B) = sup Gk(v,A)
BoA
and B(G) = Be(G) N B;(G) .

(8.10) Proposition
For any functional G of g, the sets Be(G) 5 Bi(G) ‘and B(G)

are rich in .“Bn
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Proof of Proposition (3.10)

Let us take a sequence (Ai)i e N 2 A500 s A ::::5 0 and,
since V 1is separable a sequence (Vj)j e N dense in V .

For each (i,j)& N x N , the set Ri i of all borelian sets B

satisfying

(3.11) sup Gxi(vj,A) GA1<VJ »,B) ='1n§ GAi(Vj’A)
AcB B<A

is rich in 3% » by Proposition (2.6).

Let us take R = (A\ R. . 3 by Proposition (2.5) R is still
(i,j)eNx N '2J

rich in $n and (3.11) is satisfied for any BeR and any (i,j)e N x N ;

using the 1ipschitz continuity properties of Gh(v,B) with respect to v

and A , we can go to the limit on (3.11) and obtain

Yvev,Ya>0,YBer, sup G,(V,R) = G\(V,B) = inf G,(V.A) ;
ACB ASB

so, B(G)> R and B(G) 1is rich.

In the following propositfon, we shall see that the sets B(G) enjoy
some continuity prolongation properties relatively to the functional G :

(3.12) Proposition

Let GZ and G2 two functionals of the class g and let us suppose
that :
y veV, ] D) a dense subset of ﬂn (which may depend on v) such that :

Y pepw) , ¢'w,0) =c w0 .

Then, B(6') = B(6°), and FBeB(c), 1200, fvev, ¢.(v,8) = & (5,8)
consequent}z
Foev, Foeswne, , &8 =00 .
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Proof of Proposition (3.12)

Let us prove that Y0 ,fve Vv, Y Bei?;\n

(3.13) inf Gi(v,A) > inf Gi(v,A) > sup Gi(v,A) > sup G;(V,A) .
e _. o _ o — o —
A>B AJB B>A BoA

If BeB (Gl) then (3.13) implies clearly that B €B(G2

B(Gl)<: B(Gz) ; by symmetry, we can prove that B(Gz)c: B(Gl), and the

) i.e.

equality B(Gl) = B(Gz) will follow. Moreover, we shall get

(3.14) V20, ¥BeB(B) , YveV, G/(v.B) = G:(v.B) .
Going to the 1imit on (3.14) when X goes to zero, we obtain :
(3.15) YBeB(@ENO ,fvev, 6l(v.B) = G2(v,B) .
So, let us prove (3.13) and let us begin by proving the Teft inequality :

(3.16) inf Gy(v,A) > inf Gi(v,A) .
o [~ I
ADB ADB

By definition of the infimum, given €. >0 , e. — 0, for every ie N

i i
o PR
we can find Aie:fgn ) Ai_D B such that

o1 1 .
lnf Gx(v,A) > GA(V’Ai) - €5
A>B

by definition of Gl\(v,Ai)

1(V.i ’A'i) + %_X ”V"V_i“\zl - €_i .

. . ) 1
Yie N . ] v,eV s.t.o: G (vsA;) > 6
Combining the two last inequalities we get

. 1 1 1 2
1nf,GA(V’A) > G7(vi.AL) + ?X'”V'Viﬂv - 2 .
AoB
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By assumption, there exists a dense subset of 3% ,D(vi) such that

1 2

foen(v.), 67(v;,D) = G°(v,,D) .

-] —
Since A, OB and D(vi) is dense :

. — o -]
YieN, 30,eD(v;) s.t.: BcD, <D, CA <A, .
Since Gl(vi,.) is increasing and Ai'> Di

. 1
1nf GA(V,A) > 61 (v45Ds) ?— Ilv-v. ”V 2e4
A>B
2 1 2
> G (vy,Ds) + ?X'”V'Viuv - 2
2 1 2 2
> Inf {G (Z,Di) + ?XMV-Vi"V} = 261 = GA(V’Di) - 2€1
zeV
> Inf 65(v,A) - 2, and since this is true fie N ,
AoB
Inf G (v A) > Inf 62 (v A) (and by symmetry there is equality!).
ADB ADB

Let us now prove the right inequality of (3.13)
2 1
(3.17) sup GX(V,A) > sup GA(V,A).

BoA BoA
. —_ 0
Let A be fixed, A< B and let us prove that

(3.18) 61(v5A) < sup G2(v,C) .
— o0
CcB
-— o o— [ — [
Since Ac B there exist Ce$n such that Ac C<C cB 3
1

By definition of Gx(v,A) s

Vzev , &( A) < Gl(z,A) TJHzJ

For every ze V , there exists by definition a dense subset D(z) of :Bn
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such that YBe D(z) ,  6'(z.B) = G2(z,B) .

— [+]
Since D(z)is dense and A < C, there exist DzeD(z) such that

- °

< C < B , therefore

oo

KC D'Z C'BZ c

1

Yze v, Gi(v,A) < G7(z,D,) + %—X ”y—z”Z

2 1 2
< 67(z,D,) + Vi |v-z|

G (z,C) + 5+ )|v zf|

Since this is true for every z &V

61(v,h) < Inf {6%(z,0) ﬁ lv-2(12} Gi(v,C)

zeV

— o]
Since C< B , we finally get

Gi(v,A) < sup-Gi(v,C) i.e. (3.18).
CcB

End_of Step_1 : We first remark that, by assumption, since the

functionals Fp belong to oy Fh(v,w) is Tower semi-continuous
for any weﬁ/n!

From (3.8) and (3.12) it follows that
(3.19) B(F") =B(F) and Fvev,Voec HFHNE =FFH)NE
Fr(vaw) = F(v,w) ,

so the I-limit exists for any veV and we$(F) 0 O with B(F) a
rich family.

In order to obtain a precise representation of the I'-limit we need more
information about the dependance of F* and F~ with respect to Be:(Bn
and ve V .
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(3.24) Lemma

foev, ¥a,8e8, , F(v,AUB) < F (v,4) + F (v,8) .

Proof of Lemma (3.24)

By definition of r_(s-Lp(Q)) 1im sup , there exist two sequences

A B
Mihen * Vph en

1P
o(v) + F+(v,A) 1im sup f¢h(va)+Fh(vﬁ,A)],vﬁ E_E_iﬁl, "
horto h->+oo

(3.25)

. b
¢(V) + F+(v,B) Tim sup [d)h(vE)'-*'Fh(VE’B)] ’VE §__L__L§_2)> vV .
h-rt+eo h+co

1P
Since vﬁ 1% vﬁ EH%$§91> v , it follows from the definition of the

I es-LP(Q)) 1im sup :

(3.26) &(v) + FY(v,AUB) < Tim sup ["(v} vvE)+F (v} v vB AU )]
.h*m

From the additivity of A > F'(v,A)

A A B
(3.27) FP(vp VvE,AUB) < F(vi vivB,a) + FN(vRvvE By

From the decreasing property of v +—> Fh(v,A)

F (v VvEoA) < Fh (VLA
(3.28)
FMvByvd,B) « FvPB)
From
(3.29)  ¢"(VAVVE) + " (AAVE) = o0y + oMB)

it follows combining (3.26), (3.27), (3.28), (3.29) :
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(3.30) o(v) + FF(v,AUB) < tin sup 6" (v +6" (vB) - (v VB )+ (v A+ (vE ,B))
—>+tco
< Tim sup [¢h(vA) h VA A)]+11m sup[¢ vh,B)'|

h+o

+ 19m sup [-¢h(v,ﬁ/\vE}] .
hort
P -
Since, VA A vB ML v and ¢ =T (s-LP(Q)) Tim ¢h
h h

¢(v) < lim inf ¢h(vﬁ/\ VE ) 3 so
(3.31) 1im sup [—<bh(vﬁ/\ VE)I < -o(v) .
Finally combining (3.25), (3.30) and (3.31)
o(v) + FT(V,AUB) < ¢(v) + FT(V,A) + 6(v) + F (v,B) - ¢(v) i.e.

FY(v,AUB) < FY(v,A) + F¥(v,B) .

(3.32) Lemma

fve—: v, fA,B open sets satisfying : Al B=¢ and AUB =B(F )
(which is_the rich family of regular borelian sets with respect to F)

F (v,AUB) > F (v,A) + F (v,B) .

Proof of Lemma (3.32)

o

let A vA,B 4B as 40 suchthat A >A,B >B,A (VB =0
€ € € [ £ [
and

(3.32)bis F(vViAUB) =1im ¥ F (v, A_ UB) ;
(ev0) & €

Let us fix >0 ; by definition of F_(v,A8 UB) :
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(3.33) 7 vﬁ —— v in s-LP(Q) such that
hostoo

6(v) + F7(vsA_UB_) = Tim inf [s"(VE)+F, (VE,A_UB )]

>+too

From the additivity of Fh(vﬁ,.) ,

(3.38) ¢(v) + F_(v,AéJBe) = 1iﬂ+igf[§ h(vﬁ)+F“(vﬁ,A€)+Fh(vﬁ,sg)]
€

: €
1 on A, XA 0 on Q\AE, ngAgl

Let XE e;wl’“(n) such that XE

XE «w*®(a) such that Xt

€ €
B B 1 on B, X 0 on Q\BE, OsXle .

B

On the other hand, let

N
> W >

— v in sLP() with o"(z),0\E) — o(v.aN) .
(3.35)

= v in s-LP) with o"(2D,2\B) — ¢(v.2B) .

Let us define

- A _ e € _yEy A
vyt = XA v + (1 XA)zh
(3.36)
B,e _ y& . € _yEy.B
iy - Xg v t (1 XB)zh
and compute ¢h(vﬁ’€) and ¢h(vE’€) :
A, A A
Dvp*® = Xp.Dvp + (1-Xz)Dzp + (vi-2p)DXy
For any te [0,1]
Ae _ LyE 1 E _yEypuA _ t e __A\nyE
t Dvh = tXA.Dvh + t(1 XA)Dzh+ (1-t) T:f'(vh zh)DXA

From the continuity of fh and the majoration fh(x,z) s'M(1+lzlp) s

A,e

fh(x,tDvh

A h

A Ap
) < tX§ f (x,Dvﬁ) + t(l—X;) f(xsDz) + (1-t) M[J91+|vﬁ-zh|-|DX§‘PJ
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So
¢h(tvﬁ’€) < J f (x,Dvp)dx + J fp (% Dzh)dx
A8 NA
+ (1-t)M J [1+]vg- h| X3 |P] dx
(3.37)
h,, B,e € , B
¢ (tv.>7) < J f, (x,Dv;)dx + J _f,_(x,Dz,)dx
h S fg T op

€
+ (1-t)M [ [1+|vh—zh|p DXB]p] dx .

From (3.34) ,
(3.38) o(v) + F-(v,AEL)Be)

> lim inf[JA fh(x,Dvﬁ)dx + J fh(x,Dvﬁ)dx + Fh(vﬁ,Ae)

B
€ €

+ Fp(vpsB_)]

fh(x,Dvﬁ)dx] ;

+ Tim inf[J .
ON(A_UB )
SR>

moreover

(3.39) T1im inf

J fh(x,Dv;)dx > I f(x,Dv)dx .
h-too Q\(AgLJBe)

\(A_UB_)

Combining (3.37), (3.38),
.40 F (v,AUB ) 3 lim inf F (vE,A
(3:40)  o(v) + F7(v.AVB,) > Mim in (" (tv €14, (VELA,)]

+ 1im 1nf[¢ (tv )+F h’B )]
h-too

+ Tim inf[-(1-t)M {J 2+lvh-zh|prX€!p
h>400

+|vh-zhlp|DX IP}]

+ Tim inf[—J _fh(x,Dzﬁ)dx - f _fh(x,DzE)dx]»
h>+eo ONA Q\B
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+ Tim inf[

f, (x,Dv; )dx].
h-+eo JQ\(ASUBe) h ho™

From (3.33), (3.35), (3.39), (3.40) turns into

6(v) + F(v,A_UB ) > 1iﬁ*igf[¢h(tvﬁ,€)%Fh(vﬁ,Ag)]

. h,.B e. €
+ Tim info (tv; S )+F, (visB_)]
hoboo [ h h'"h>"e

£(x,Dv)dx - J £(x,Dv)dx + J £(x,Dv)dx .

JQ\A Q\B \(A_ U B,)

. . A
We now use the minorations : Fh(vﬁ,AE) > Fh(vE,A) = Fh(vﬁ »A)

. e _ ,E.A
since vh = vh on A

’B
Fh(vﬁ,as) > Fh(vﬁ,s) = Fh(vﬁ ,B) .

On the other hand, we use ¢h(tz) = |t|p ¢h(z)(*%nd get

- i s h A’ ’,A
O+ FOOALB) > 811 IO ) ()

B.,e

+ tP 1im inf[¢h(vh )+Fh(vﬁ’B,B)]

- j f(x,Dv)dx - I f(x,Dv)dx + J f(x,Dv)dx .
ONA Q\B Q\(AeL)Be)

- - , 1P
From the definition of F (v,A) and F (v,B) , since e sLT(@)

h
1P
and VE’E §—£—£§Q> v

d(v) + FT(v,AUB ) 3 tPLo(v)+F (v,A)] + tP[o(v)+F™(v,B)]

- J f(x,Dv)dx - J f(x,Dv)dx + J f(x,Dv)dx .
2\A O\B 2\(AY B,)

h

(*) When ¢  does not verify this condition, it is easy to adapt the prove since

¢h(vﬁ’€) - ¢h(tvﬁ’€) —>0 as t—»1 uniformly in h.
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Making t — 1 and ¢ — 0 , from (3.32)bis
o(v) + F (V,AUB) > 26(v) + F (v,A) + F (v,B)

-J f(x,Dv)dx - J f(x,Dv)dx + f f(x,Dv)dx
O\A O\B Q\(AUB)

i.e. F (v,AUB) > F (v,A) U F (v,B) .

(3.41) Lemma

}/5 < :Bn s ¥ > F+(vA,B) s decreasing.

Proof of Lemma (3.41)

Let Bef?in and vl, vze V with v1\< v2 3 by definition of

F(v1,B)

(3.42) o(vh) + FY(v,B) = Tim sup[o (v )+ (v].BY] L v
hoteo h->oo
(%

1P
Let us consider the sequence VP11 Y, vﬁ E—HQL— v1 Y v2 = v2 3 )

h+oo

(3.42)  ¢(v) + FF(vE.B) < Tim sup[e (vl wWA)FN(vE v v B))
h>to ~

From
(3.43) o (vpvvd) + o (vi AVE) = 6"(vp) + o"(vD) and

(3.44) Fh(vrll'\] vﬁ,B) < Fh(v%,B) , it follows :

¢(v2) + F+(v2',B) < Tim sup[¢h(vr1])+Fh(vP1],B):]+ Tim sup[q;h(vﬁ)]
+ Tim sup[-th(vrl]/\vﬁ)]

< o(vh) + o(v?) + FH(viB) - o(vh).

(%) The sequence (Vﬁ)he]\l is taken such that ¢h(v§) — ¢(v2) .
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We have use the inequality 1lim sup[}¢h(v%ﬁ\vﬁ)}.s -¢(v1) s Or,
equivalently, ¢(v1ks Tim inkah(v%ﬁ\vﬁ) 3 this Tast inequality follows
from : v%,ﬁvﬁ — le v2 ='v1 in s-Lp(Q) and ¢ = F-(s-Lp(Q))1inl¢h.

Finally,
F*(v2,B) < FF(viB) .

(3.45) Lemma
/"we%, v — F (0,0 is comvex  (p=2)

Proof of Lemma (3.45)

N
h h oV.. 3V
We assume that ¢ (v,w) = J a: (X)) === 5o— dx
N v av
$(vsw) = f a: (%) 2= ¥ dx
mi,§=1 1T 0%y 90X

with a?j - a?i , YheN, Vi.=l,....N; we denote

N

h 3 h v 3 v

Av = - o (Bhs o) 5 AV = =) o (B o)
i,§=1 ox; ‘i) axj 5% .

o"(v.2) = "(v) = (A"v,v) = 3, (vov)

d(v,) = ¢(v) = (Av,v) = a(v,v) .

*

For any v& V , let us define Vi by :
(3.46) AV e e V= (M) av = (v
Then,

0o-h! vX 2

(3.47) v} —2x v and Yiel,n jal B
(oo} ' J
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Let us prove that :

(3.48) fvev, Tuet,

Frivaw) = Min_ Tim sup [o"(z, )4F, (24, (v) )] «
s-L hoto ™
{z, =50}
By definition of F'(v,u) ,
o(v) + F+(v,w) = Min Tim sup [¢h(vh)+Fh(vh,w)] .
s—L2 h->40

{vh 2 -5 v}

Let v: defined by (3.47) and let us write Vi, = vﬁ +z, 03 then

. . h, * *
o(v) + F+(v,w = Min Tim sup |¢ (vo+z, )+F (vi+z, 0)]| .
(v) ) {Zh 03 h P [ (‘h h) h( h™ %h )]

Let us compute

¢h(vﬁ+zh) = ah(vﬁ+zh,vh+zh)

X % *
ah(vh,vh) + 2ah(vh,zh) + ah(zh,zh)

Bp(Vp) + op(2p) + 28 (Vihzp)

By (3.47), ¢h(v;3 —> ¢(v) 3 let us prove that

h<4oo
(3.49) a (Visz) —> 0:
h->+oo
*
v 9z
. % h h h
ay (v 2z )=J Y (Y ay: =) .« = dx .
h'"h>"h ai 3 iJ axj axi
9z 2
By assumption §§h' ClalN 0
.i
%
ov 2
. h h w-L v
By construction LAss m— ) AL e
5 1J 3Xj 3 iJ axj
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Moreover, rot»(——h) =0,

.1 = Av is compact in Hl

So we are in the situation where we can apply the theorem of compactness
by compensation of Murat-Tartar [19] and

*
ah(vh,zh) — 0.

htoo
] h avﬁ 9z, . .
([19] tells us that 7§ ( § 35 5 5}30 %y — 0 in D'(Q) ;

since it is bounded in LZ(Q) » 1t converges weakly to zero in LZ(Q) and

*
h 9Vh 2

Finally ¢(v) + F+(v,u» = Min 5 1im sup [¢(v)+¢h(zh)+Fh(v:+zh,w)]
h i

and

+ : .
Fr(v,w) = M;?LZ 11g»iip [¢h(zh)+Fh(zh+Lh(v),w)] .
{Zh = —s 0}

Now, we remark that v — Lh(v) is a Tinear operator ; the convexity of

F+(.,w) follows easily : let

?

+ . 1 1 1 s-L
F(vysw) = ]1ﬁ+iip {o,(z) + Fh[zh+Lh(v1),uﬂ} , 7, = 0

s—L2
F( 2 w) = Tim sup {¢ (22)+F [22+L (V,)sw]} 2 40

Vo = UP 1opL 2y 1 H T L2y Vo) , h
h~fco
1 2 s5-1°
So, Az, + (1->\)zh =—» 0 and
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+
F (Av1+(1-x)v2,w)

. 1 2 1 2
< hhm_:gp {¢h(>‘zh+(1'>‘)zh) + FhDzh+(1-A)zh+Lh(xv1+(1-A)v2),wj}

. 1 1 '
< A limsup {4, (z;) + F, [z,+L, (V1) 0]}
h h*“h h““*h " "h'"1

' : 2 2 |
+ (1-2) Tim sup {o.(z,)) + F [z, +L (v,),w]}
(1) 14 h(z) + Folzptt, (vp) 0]

< A F+(V,w) + (1->\)F+(v2,w) .

(3.50) Definition

For any ve V and weﬁ’n we define :

F*(v,w) = sup FT(v,B) = sup F(v,B) .
Becw Bew

The last equality results clearly from the equality of F+(v,.) and
F(v,.) on a dense subset of ‘an (cf. 3.19)).

(3.561) Proposition

F?t : Vx O;Z — f-" belongs to F .

Proof of Proposition (3.51)

a) By definition, ¢(v) + F+(v,w) = P'(s—Lp(Q)) Tim sup[¢h(v)+Fh(v,w)] H

it follows from the general properties of the ['-limit that

v o> ¢o(v) + F+(v,w) is lower semi-continuous for the topology

s-LP(2) (or equivalently, .w- wcl)’P(sz)).

Since v ++ ¢(v) is continuous for the strong topology of V = wg’p(Q)
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it follows that v > F+(v,w) is lower semi-continuous for the strong
topology of V . By Lemma (3.41) and (3.45) it is convex (p=2) and
decreasing.

Clearly F*(.,uo as a supremum of convex, 1.s.c., decreasing functional
is still convex, 1.s.c. and decreasing.

Let us now prove that F*(.,w) is proper :
By assumption, Inf 9y, (v )+F ( (vaw)] < y(w) <+ , s0 there exist
W .
Vp = VY in V such that ¢h(vh) + Fh(vh,m) sy(w) + 1.

Since Fh is positive and the % equicoercive, the v, are bounded

in V3
- v if he{h}
Tet Vh M ve taking 'v_h = é hk k’k e N , Vh w-V, v
k v otherwise
and

Fr(v?sw) + ¢(v®) < Tim inf (F (V,.0) + ¢, (V)

—+tco

K 340

< 1im sup {F (v, »w) + (v, )}
hk hk w ¢h hk
< ylw) +1.

SO, F (V@,w) < +o and Fx(vw,w) < F—(Vw,w) < too i.e. F*(-sw) is
proper.

b) Let us prove that F*(v,.) is a measure :

let w= wIUwZ with wl,wzeU and w; Nwp = @ ; then
(3.52) F(va0) € FR(Vawp) + FX (Vo)
(3.53) FRVa0) 7 FR(Vawg) + FR(Vaw,)

Let us prove first (3.52) : let Bc Wy L)w2 = w 3 then

B = (Bﬂwl) U(Bﬂwz) and B ”“’1‘:“’1 > B0 w,cw, 5 so from (3.24)
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FP(v.B) < FT(v,B0wy) + F (v,BNw,)
* %
< F (szl) + F (V,U)Z)
and F*(v,w) = sup F+(v,B) < F+(v,w1) + ,F+(v,w2) .

Bcw

Let us prove now (3.53) :

Let '—E'lc w; > and B, Sw, ; since Elu'-B_zc w; U w, » by definition '

of a rich family there exist I < ®(F) such that

E}Uf’zﬁzcﬂc—ﬁcwll)wz .

Since T = (I0w;) V) (TN w,) and (Hﬂwl) N (T 0. (bnz‘.) = @ from Lemma (3.32)

F (vsl) > F(vsllwg) + F (V,IRw,) .

Since TMOw) >B; and THw ,> B, and F (v,.) 1is increasing
F(v,I) » F_(vl,Bl) + F(vB,) 3

Since T wy Uy » Fr(VawyUwy) 2 F(v,B)) + F(V3B,) ;3

Since this inequality is true for any Eic: Wy and Ez‘””z s
F*(v,wlUwZ) > F*(v,wl) + F*(v,wz) .

Finally, Yuy, w,e & /o nw, =0,
F*(v,wll) “’2) = F*(v,wl) + F*(v,mz) .

The g~additivity will follow from the continuity property of F*(v,.) on

increasing sequences :



I11.21

(3.54) Yo +u, Yvev, Fv.e)+ Fv.e :

let "B—c; Umn = @ ; from the Borel-lLebesgue theorem, there exist n_eN
such that §cwn 3 SO

0
VBcow , FF(v.B) ¢ F*(v,wn ) < Tim 4 F¥(vay)
0 N->too
and F*(v,w) < lim 4 F*(V,wn)
N0
since Vn <N, F*(v,mn) < F*(v,w) the converse inequality is true

and (3.54) follows.

The extension of F*(v,.) to all the borelian sets as an outer
measure makes of F*(v,.) a borelian measure :

(3.55) fvev,iBeB . Fv.B) - 1n; FX(v,0) .
o2

c) Now let us prove that F*(.,m) is Tocal :
(3.56) Lemma
V&)—O’ Tuve v ( vy ) = (F*( )—F*( ))
C?’L’ U, v & 5 u]w— lw —-——> U/ = U .

Proof of Lemma (3.56)

Let A,Baﬁ’n , such that AcBC B cy ; by definition of F+(u,A) .

p
there exist Vi, %—%@ v such that

(3.58) o(v) + F¥(v,B) = Tim sup {o"(v,)+F, (v, ,B)} .
h-+eo
1.0 1 on A
Let us define X& W™* (Q) such that X = {0<Xs1
0 on QB

and
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(3.59) z, —-u in S-Lp(Q) such that ¢h(zh,9(ﬂ) — ¢(u,2\A) .

We define ﬁh = Xvp + (1-X)z, and remark that

— - P
u on w (since v=u on w), i.e. E;——L‘-JQ-)»u H

uh ho>+oo

h h++£>

3 { Xv + (1-X)u

u on Q\w .

By definition of F'(u,A)

w

o(u) + F+(u,A) < 1im sup {¢h<u Y+F, (T, LAY} .
h’ " h'"h
h—H—oo

Since ‘ﬁ% =V, on A and Ac 8

o(u) + F+(u,A)~< Tim sup {¢h(u Y+F, (v, ,B)} .
h’""h''h
hstoo

Now let us compute ¢h(ﬁa) : as in the proof of the Lemma (3.32) we get :

h

¢ () < foh(x,Dvh)dx + f i, (x,Dz, Jdx + (1-t)M JQ[1+\vh-zh|p|Dx|p]dx

O\A

So,

tP[o(u)+F* (u,A)] < Tim sup'[j fh(x,Dvh)dx+Fh(vh,B)]
- h-oo Q

+ 1im sup‘[J _fh(x,Dzh)dx] + 1im sup [-J f, (x,Dv, )dx]
h4eo 93Y: oo N\B

+112+iip [(1-t)M f9[1+|yh-zhlp|nx;P|dx]

Now, we remark that :

(3.60) Tim sup [—J fh(x,Dvh)dx].s -I f(x,Dv)dx , and
MB ) Q\B

(3.61) Jﬂlvh-zh|p|DX|pdx = levh—zh|p|DX|pdx Foz 0 since
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-LP 1P : .
Vi, §—L—a~ Vo, Zp Sl y and v=u on & 5 using (3.58), (3.59),

(3.60) and (3.61) :

f(x,Dy)dx + J f(x,Du)dx

p + ¥ i
tP To(u)+FF(u,A)] < o(v) + FH(v,B) [ .

O\B
+ (1-t)M de .
9/

Making t converging to one, we obtain

(3.62) FY(u,A) + J f(x,Du)dx < F'(v,B) + J £(x,Dy)dx
A B

and (3.62) is true for any A,B with AcBcBcw .

Since Bcw , (3.62) implies

F¥(u,A) + J f(x,Du)dx < FX(V,0) + ff(x,nv)dx :
A w

Taking the supremum with respect to A, Ac W:

F*(u,w) + Jf(X,Du)dx < F*(v,w) + I f(x,Dv)dx .

W W

Since u=y on w, F#(u,w) < F*(y,w) and intérverting the role of u
and v , we obtain

F*(u,w) = F*(y,w') =

'd) Let us end the proof of the Proposiztion (3.51) by proying the
following lemma :

(3.63) Lemma

V u,re ¥, 7w € 6;;, F‘*(u\/v,w) + FXupp,0) < 'F*(u,w} + -F*(fv,'w') .
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Proof of Lemma (3.63)

Let Be B;] and

F¥(u,B) = 1i M, )+F, (u,,B)]
o) + P = Tin s )R 01 Ly
Ft(v,B) = 14 Nv, )4F (v, ,B)] |
¢(v) + F'(v,B) im sup [¢ (v, )+Fp (v, sB)] Vi

-1P 1P
Since u, A vy, _M> uAv and uthh —S‘——L——-(Q-)yu\/v » by definition

of F ,
#(upv) + F (udv,B) < ]ir}r:_)i:f [q;h(uh/\ Vi) #F (U A V5B ]
d(uVv) + F (uyv,B) < Tim inf[¢h(uh\] vh)+Fh(uh\lvh',B)] .
By addition of these two last inequalities
o(uAv) + ¢(uVv) + F (uAv,B) + F~(uVv,B)
< 1iﬂ»igf[¢h(uhAvh)+¢h(uthh)+Fh(uhAvh,B)+Fh(uthh,B)]'
< Vim Anf [ (u, )+F, (u, ,B)+o" (v, )4F, (v, ,B)]
< lim sup [¢h(uh)+Fhv(uh,B)] + 1im sup [¢h(vh)+Fh(vh,B)].

o(u) + ¢(v) + FF(u,B) + F(v,B)

N

since, d(ulv) + o(uVvv) = ¢(u) + ¢(v) it follows that
(3.64) FT(uAv,B) + F (uyv,B) < F (u,B) + F'(v,B) .

Let us take now ae 0:] and A,Be O such that Acw ,Bcuw .

Let us take Ge O’n such that AUB< & <Bcw ; from (3.64)
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F(uAv,®) + F (u\v,0) < F+(u,ﬁ) + F+(v,63 < F*(u,w) + F*(v,w)
Since A< ® and B U
FT(uAV,A) + FT(uVv,B) < F¥(usw) + F¥(v,0) .
Taking the supremum with respect to A and B ,
F*(u Av,w) + F*(u\/v,w)-s F*(u,w) + F*(v,w) .

End of the proof of Theorem (3.5)
From (3.19) JoueB(FINEG, = BF)ND, , F(viw) = F(v,0) .

n

By definition
F¥(v,w) =_sup F (v,B) .
Bew
Bcﬁ'n
For v fixed, by Proposition (2.6) the set of Aeaan such that
F (v,A) = sup F (v,B) is rich in B s
BcA

so for any ve.V there exists a dense subset of open sets such that
F¥(vs0) = F (Vow) -
By Proposition (3.12) it follows that

f}S(F*) = B(F) and va—:V , Mo E@(F*)ﬂ Oy - F*(v,w) =F (v,0) .
We can do the same deduction with F+ and

¢ X £ - ! e -
HE) =B(F7) = HF) and Yve v fu e B N0, F(vao) = Fr(vo0) = FA(va0) .
Since F*e 5 we can apply the conclusion of Ch.II and

fve v, Vwe:q‘, F*(v,w) =Jlﬂxﬁﬂxn du(x) + v(w) .
' w

Finally, we have construct a subsequence (hk)ke; N and_a 1jmit
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functional F still belonging to L}’Y such that

fvev,Vue 6 N B,

Fr(vow) = FT(v,o0) = F(v,0) = J h(x,V(x)) du(x) +v(w) .
w

The conclusion of the Theorem (3.5) follows immediately.

Let us now examine in detail the properties of the limit functional
when the (Fh)h = N are pure obstacles :

(3.€5) Proposition

Let F(v) + ||| =T (s-IP()) Lim {7, (v) + l|v[|p
- h«-)+oo

}
sD sP
wi () wi (o)

where the (Fh)h e Gre pure obstacle functionals :

0 if vy, on Q
Fh(v): {

+o  otherwise.

The two following statements are equivalent :

(<) F  1is a pure obstacle functional

¢

(1) (Fh)h =

 converges in Mosco sense in wlsP .

converges in Mosco sense to F .

Then (Fh)h -

Proof of Proposition (3.65)
(i) = (i) :
Let us assume that F 1is a pure obstacle functional, F =1 K 3

then, for every ve& KlP » there exists V€ Kll) such that :
h

F
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p .
”Vh“Wé’p(ﬂ) ot ”V”Wé’p(ﬂ)

Vi T VY in s—Lp(Q) .

1

.P@) .

Therefore v, — v in s-W

_wlsP
W -y P(9)

—— v N

On the other hand if vhe Kwh s vh

F(v) + [V]§ < Zim v flf < +=

and F(v) <+» i.e. ve K, ;5 s0 K —> K in Mosco sense ;
1 U 1
(i1) =(i) :

) ) 1, . .
If (Fh)h e converges in Mosco sense in WP , its 1imit

functional F takes only the values zero or +« ; therefore F 1is the
indicator functional of a closed convex non void set K : F = 1K 5
moreover K clearly will be unilateral i.e.,

{K stable for the inf-operation

K+ vie K
So, K= Kw = {veV/V(x) >¥x) g.e.} (cf. [2] ), and,
Kwh — Kw in Mosco sense.

It follows from [1] that

(”'”5 + Iy ) converges to (“.“p + T, ) in Mosco sense
Y heN ¥

KW ’

Moreover, Fh o F 1in Mosco sense in that case.

and ||.4P + 1 K = NP + F d.e. F=1
v

Let us examine now how F depends on the energy functional :
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(3.66) Example -
h 0 if vy, 4.e.0n w
For simplicity, let us take F (v,w) = {
4+ glsewhere
0 on Qh
where ‘wh = é
. -~ elsewhere,

and let us denote :

]

- . h
nvnﬁé’p(m + F(vow) = T (s-LP(@)) Tim {| v“z};p(m + F'(v,0)}

Then, Y350

il

- . h
A"v]l‘zg,p(Q + AF(vow) = T (s-LP(Q)) Tim {AHVMS;’p(Q) + F(v,w)}

Proof of (3.66)

We remark that with the choice we made of vy, »

it

1P + FOwae) = AP P + F'(vaw))

i.e. (;[.np+Fh(.,w))(xv) AP {l|.1|p+Fh(.,w)}(V) .

This property of homogeneity is clearly preserved by r-limit process so
[P + FOws) = WvfP + APF(va) e
FOWsw) = AP F(v,0)

and if F ds not a pure obstacle, i.e. if we are not in the situation
where (Fh)h = | [-converges to F , then the limit functjona] F depends
on the energy functionai!

Let us take p=2 ; then, from the Theorem 3.5

Yvev, \?wecrn . F(vyw) = J h(x,v(x)) du(x) .
(i3]
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Since  F(\v,w) = AZ F(v,w) it follows that

Vete R, Va0,  hixat) = 22 h(x.t) .

Clearly, in the situation studied in (3.66) h(x,t) =0 if ts0 ;
SO
- _ A2 _ ~=2
F(v,w) = { h(x,v (x)) du(x) = j Vo(x) h(x,-1) du(x) = J v “(x) du(x) .
W w o
(3.67) Remark

h

Suppose that the F~ are obstacle functionals and p=2 :

2(2)) Tim (v P (v o))
h->too

l|v|;2 + F(v,w) = T (s-L
From the equality

IZ + Fvw) = [V (v ,0))? since F

I
P
—é— o

it follows that

1/2

r(s-L2(0) [+ (v 0)]

) Tim (o (s-L2(@)) tim [ (v, ]
hteo h-4eo

1/2
[Vl 2+F (vo0)]
”V “ + G(v,w)

1

with G2(v.w) + 2|vl[G(v.w) - F(v.w) = 0 i.e.

6(v,0) = \IMIZF(v,0) - vl = [[Q!Dv!zdx+jwh<x,v<x)du(x)l” 2 -<JQ|Dv12dx)1/ 2

i.e. G does not enjoy special properties and it is not easy to give
directly a description of G . It is only for particular energy functionals
that it will be possible to give a simple description of the 1imit term F!

(3.68) Corollary of theorem 3.5.

The same statement of theorem 3.5 is still true when the hypothesis (iii)
of the definition of ?F; is replaced by the hypothesis:
Vo e Cn], vi—> F(v,w) 1is increasing .
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CH.IV  STUDY OF THE NON QUADRATIC CASE

t
i
|

(Variational problems associated with a non quadratic energy functional
and highly oscillating potentials).

Let us consider the situation described by Carbone and Colombini
in [8] .
Let L= LP (Iin) be a sequence of p-locally integrable functions

loc
on R" such that :

(1) 3¢ regular s.t. vy —> ¥ in LF{OC(R”)

(i1) 3In_ > v -v such that n. —> 0 in L§ (R") and

(36)
Tim sup J !Dn€|p dx € v(w) ,  (l<p<i)
0  Jw

holds with v a positive Radon measure and for any open
bounded set w« such that v(3%w) = O.

A typical situation corresponding to (#) dis the following :
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O (0O |O |0 (0 O
o |0 jOo |O |0 (O
o |0 |JO [0 |0 O
o |0 |0 (O |0 (o
o jo (o |JOo |o |jo
o |0 jO (O (0 |O
o |0 O (O O O

<—-7
2a

Let b, = 1 on U S!  where S; is the open ball of radius a_

ieN € €
centered at x; in the square P; and wg = 0 elsewhere.
an P
Let us compute f (z [§§§|2)2 dx , where
Pi i
8 .
3
1 on Sa
€
n. = An. =0 on S'\S]
€ p'e e Ta

I
i i
0 on Pg\S€

vs; is the open ball of center x; and radius € ; . is radial, so

.o, P dn_p . _
J gt | il e e e
1

1
Pe PE

P
pn 1 do

"
nN)
=
S
Q]
Q.
=3
m

5

We take N, minimizing this integral with the boundary conditions

ne(ae) =1, ng(e) = 0 ; the Euler equation is
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-2
d n-1 ,dn,P7° d
@ (o IH%* ag) =0 i.e
n-l !gﬂ4p-2 dn _ ¢ so 90 pas a constant sign and dn _ g
© do!  dp " 1 dp e Er
_1 C{
_dn N
%) e Of
1
d 015:I Cy
n_ _
o+t TheT = n(p) =+ T
P T T
Co
and v 03 =1
p-1
a /o1 1 _
c, i = ' n:%\'l
. - p- p_
+ n-p + C3 =0 € a€
Sb—-T
-1
Since 9% = -( %}T ) Cpp =i
n-1
dnp n-1 pon-pP [ )
l b] d C2 (p- ) Ia ——zﬁ:js' dp
€ e bl
Hence,
p-nqe - n-p -n
oan_ » P p p-
€12 _ P (n-py 1 p-I{  _ p (n-p p-T _ p-J
J;i( g |V ax = G (5o7) EED [9 } =0 (57 tae €
e p-T e
("'P)P
(a_¢) P p-n  p-n
= €. E:T - _p-:-l- 2 n-p p-l
/,ﬂ;% n-P\p (@ e 7)o (5:T)
fep- - aB:T/
N g
" (="
an-p.g P'l gn‘Pa p—‘l—
_ £ £ n-p p_l
= 2 (2D
np  n-p p P



Let P« f} then

g 2

We are in the conf

Iv.4

|
itions of () if k(n-p) 3 n i.e. k3 |

on p
If k= gPan Ip dx g C(n,p) J;(ley?lz)? dx
1

Remark

If p>n , and

. p—
—s2m m(P) (3£ ) C(n.p) = v(P) .
>0 p-

if we ask the (ne) to be bounded in w]oc(R ) R
£>0

by Sobolev inclusions, they will converge uniformly to zero and the

conclusion follows :

the 1imit problem is associated with the obstacle zero.
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Now let us return to the general situation exposed at the beginning
of the chapter (assumptions J ) ; from Carbone and Colombini [8] >
Theorem 1 and Theorem 2 :

Let AX be the family of open bounded subsets of R'  such that
m(a0) + v(3Q) =0 .
Then, there exists a subsquence €k such that denoting

0 if u(x) >v (x) a.e.on Q
FE(U,Q) = {

+ elsewhere

we get VSZe:Az > VllE:W%S:(Rn) such that wu(x) > y(x) a.e. on @

(4.1) 1 (s-LP(9)) 1im {J DulPdx + F_ (u,0)} = f F0u(x),Du(x)) du(x)
ko 7 Q) k 0

with;u = v + dx
2

n o —t . .
R, x R X RBU —> R” is a convex normal integrand.

Moreover,

(4.2) fﬂj(x,u(x),nu(x)) du(x) < C[JQ(1+{Du|p)dx + fﬂva.

We shall prove in this chapter that j splits :

(4.3) 3(su(x)50u(x)) = [ou]? + 3y (x.u(x))

(4.3) Theorem

Under the hypotheses (AH6) of Carbone and Colombini, there exists
a subsequence (g,)

ke W such that :

?Qéj_/l;j, t”/‘uc:-* WZ’OO(JRn) satisfying ul(x) > Y(x) a.e. on Q

If u(x) < y(x) for some x < Q , then these quantities are equal to +es.



IV.6

T (s-IF(Q)) im {f | Du|Pdec + F_ (u,Q)} = { |Du|Pdx + f Jlx,ulx)) dulz)
k>t IQ) k Q Q

-—

with u=v+de ‘
{ g " x R —3 R is a convex, normal, decreasing

(with u), integrand.

If ulz) < Ylx) for some x e Q , then these quantities are equal to +° .

Proof of Theorem (4.3)

From (4.1)
(4.4) F'(s-Lp(Q)) Tim {J |Du}pdx+F8 (u,Q)1} = J J(x,su(x),Du(x) du(x)
ko /Q k Q

= J |Du|Pdx + F(u,2) .
Q .

So F(u,2) = J J{xsu(x),Du(x)) du(x) - J |Dulp dx ;3 from the Radon-Nikodym
Q Q

theorem dx = h(x) du , so,

F(u,) = Jﬂ{j(x, u,Du)-h(x)|Du|P} dy = Jﬂk(x,u(x),Du(x)) du(x) .

Moreover, from (4.2) , V u«e:W%éé?l?n) such that wu(x) » ¢¥(x) a.e.

0 < f J(x5u(x),Du(x)) du(x) < Cl[J (1+[Du[P) dx + I dv] .
£ 2 Q2

Let x,& @ a Lebesgue point of Jj such that u(xo) > w(xo) .

w, sufficiently small

Taking w, an open neighbourhood of Xy s W
VXEwO, UW)>WU)+€O, 880.
1,2, 5N il w
If ve W (R") and v u”L () < €, then
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Yx = v(x) > p(x) .

Let w Cuy for any k =R* » let us define

1 1
l”v—ul”k,u)= ;zﬂv-uﬂf,(u» + EﬂDv-DuHLp(w)
If [Hv—u]”k <1, then |v-ul] = < €y » SO v(x) s y(x) on w
¢ L (w)
1.
and HDV”Lp(w) < UDu”Lp(w) t g s SO

0« J J(x,v{x),Dv(x)) du(x) = G({v,w) < C[J (1+]Dv|p)dx'+ J d\ﬂ < C1
w w w

and v - G(v,w) is a convex, positive functional which is bounded

on the ball [|[v-ulf], o €13 s0, it is Tipschitz on any ball of radius

strictly less than 1 and it follows that :

1,00 n- ,
Vvl,vze w]oc(R ) such that |]v1-uan(w) <ey s levllle(w)_‘s k
Ivprull <8+ I0V2lp <k

there exists a constant Ck such that :

(3:5) 1] B0 (0,01 (0) = 306vp(6) D)} du(x) |

< G Hlvl'vgnik

H]

1 1
< Ck[‘go' ”"1"’2“Loo(w) 3 "DV1'D»"2”Lp(w)]

The same argument as for Lemma 3.41 tells us that :
(4.6) nge;ﬁ% s V k> F(v,Q) 1is a decreasing functional.

Let us prove in a first step that (4.4), (4.5), (4.6) 1imply that the
integrand k 1is an affine function of Du :
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Let us take u(x) = g + <x,

v . v
Let u <« U, < ute , with Du€

N

oscillating between Zq and zZ, -

u-e .

Similarly, we define @
N €

Since F(.,Q) 1is decreasing

(4.7)  Ves0, F(U_»0) < F(u,9) < F(G;,Q) )

Taking @ sufficiently small, Q DX, 5 We shall get

500 > G0 »ux) , Vxea.

From the definition of F , (4.7) can be written

(4.8) ¥ e>0 , f K(xsU_(x),00_(x)) du(x) < F(u,0) < f k(x,0_(x),DU_(x)) du(x) .
0 € € 0 € €
o . Z.+Z
. . A . A L%k 7172
From (4.5), remarking that IDUC}Lp(Q)~$ k (since Dus = )

1

(4:9) 1| 6008, (.08 (0)kx00 (0 08 (0 ] < Gy Tl o T g ©

From (4.8) ana (4.9) ,

Tim j k@aU(X%Dde(X) du(x) € F(u,R) < Tim J k(x,u(x),DG;(x)) du(x) .
€0 ‘0 e20 ‘{2

A :
Since Du€ and DJ; oscillate between 2] and z, it follows that

Z.+2 k(x,u(x),21)+k(x,U(X),22)-

) = | koou00 ) aueo = | - an(x)

i.e. \]‘Q DX, 5 & sufficiently small, & > w(xo) s
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- 2.+2 Z.+2 Z,%+Z ' Z.+Z
(k(x,g+<x, 12 2>, 12 2) du(x) = %—J K{X,E+<X, 12 2>’Zl) + k(x,£+<x,—l733,z )
! N 2
2 du(x).

Dividing by |u(Q)| , and making Q 4 {x,} » we get :

=

Z.+Z, Z,+Z Z.+2 2.+2
1 °2_. 7172 1r 172 172 -
K(X,E+<x,—5—>, 5 ) =-?Lk(x,g+<x, 5 >’Zl) + k(X,E+<X, 5 >3 25) 1.

Z.+2
Since this is true for any & such that & +-<x0, 12 2) > w(xo) we get :

v . 21+ZZ 1
(4.10) 1 pp x5 VEsp(x)s K(x:Es —52) = 5[k(x,E,2¢)+k(%:E,2,)] and

z i— k(x,&,z) is affine.

Step_two : Let us prove that k is independent of =z .

From (4.10), Yae A

n
usp ,  F(usg) = jg[izlgi(x,u(x)) B+ about)] i) -

Llet £ > w(xo) and z= R " ; taking @ DXy 5 0 sufficiently small

the function u(x) =¢ + <X=X 52> will satisfy

g+p(x,)
V Xe Q » u(x) > n s p(x) with n = ———?—9— .

Since v r— F(v,Q) 1is decreasing

F(U,Q) \< F(n,ﬂ) -i.e-

n
(4.11) jg[,il 9. (x:u(x))2:+q(x,u(x))] du(x) < JQQ(Xsn) du(x) -
]:

< G w(Q) (from 4.2) .

Dividing (4.11) by wu(2) and making u(Q) go to zero :
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n .
(4.12) u - pp x, 2 X5€)Z; + 3(x,E) < q(x.m) < Cp .

n
Since this is true for any ze& R , (4.12) implies that
¥eswx) , g;(x;8) =0 (Ti=l,....n) .
n .
So F(u,Q) = J q(x,u(x)) du(x Y u e-w]OC(R ) with usy .
Q2

From the definition of the integrand j (cf. [8] ) , it follows that

F(u,) = ng(x,u(x)) du(x) , Vljezw%éz(RIH with uxy .

Let us come back to the situation described at the beginning of
this paragraph :
we are going to compute the limit functional by a compactness argument :
we assume that the obstacle is periodic ; in each all w& is given by :

_ i
1 b =1 on kg D_
P e e 0 K
= £ N
o ¥ L>
<;2§> iz € Y =0 on U p'\D
s €
Let

r (s-LP()) Tim {J |Du|pdx+F€(u,w)} = j |Du|Pdx + J J(x,U(x)) du(x)
Q Q

I
ey

0 if u(x) Y _(x) on w
with F_(u,w) = é €

L oo elsewhere.

Clearly, Jj(x,t) =0 it t>1 ; by an homogeneity argument (the homogeneity
is preserved by I'-limit)

_-P
J(x,t) = a(x) [(t-1)7]
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So the 1imit term can be written I IDu P dx + J ]‘(u(x)--l)“]p a(x) du(x) .
2 w

The problem being clearly invariant by translation, the measure adnp

is the Haar measure on Rn , SO - C s.t. ady = C dx ; finaliy

I (s-LP(9)) Vim [JQ‘DU‘de+F€(an)] - j |Du Pdx + CJ {uix)-1] )F dx
] Y w

The constant C depends on the shaje and the size of the Dl and on

p and n
By definition of the T (s-LP) 1imit

4.13) Yu etWé’p(Q) , J (DulP dx + CJ [(u-1)77P dx
2

2
= Min Tim inf J ]Du€]p dx .

s-LP €20
{ u_ >——>u

u > on Q
8/w€

In fact (4.13) holds for a subsequence € - The convergence result
for the whole sequence will follow from the identification of C , i.e.
from the independence of C from the subsequence Ep - In order to
compute C it is sufficient to compute the right hand side for a
particular function and a particular domain.

Let us take u=0 and Q =D ; remarking that mes(D) =1

(4.14) C= Min lim inf f [Du_|P dx .
s-LP €0 D

We assume that C 1is finite i.e. :

R s-LP
(4.15) 1 vy W, v, —— 0 with vaﬂwl,p(D) <C.
0

That's the case in the situation described at the beginning of this

chapter when (V. =1 on U S; s we =0 elsewhere

= n £

n-p
s 1&P<n

o
<

a.
SRS
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From (4.14) clearly C = Min Tim inf I[Du |p dx : this follows
' § u€—>0 £-0 D €
u >0
1 Ul
Lu_=1on Up

from the fact that the troncature r —>r A1 operates on Ni’p(D) .

Let . be the function defined at the begining of this chapter.

P 2e
~ e .i
/ P:: D€
T i i <l
//n*:\ S ne e N Se

i g
0 on S.\Dl

such that n_ —3> 0 in s - LP(o) .

(4.15)  Then C.< Tlim inf f |on [P dx .
€0 D

In [11], when p=2 and when the DE are spheres, Murat and Cioranescu
proved that the converse inequality is true

(4.16) C = Tim [ IDn_|% dx .
ev0 /D €

It seems reasonable to conjecture, for any p and any D; , that C
is given by :

C = lim J |Dn_|P dx
e»0 1D €
= Tim 1 Cgp DT
>0 (2¢) €
. P . p
with Cap D_ =  Min [IDu| dx
g u=1 on D'
_ €5
{ u=0 on 3P
€

In the situation described at the beginning of the chapter :
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C = 22_1 (DE%Jp-l for Dl of radius a_ = ek k- n?p , lepen .

o

Let us interpret very simply this constant :

by a change of scale, when DZ is the homotetic of coefficient a. of

D c:R'], we get :

C = lim —~  Min J Ibu|P dx .
e~>0 (2¢) §'u=1 on D S
€ €
1,
LueugP(s,)
. X
Taking u(x) = v(g—) s
€
. . 1 X n
C = lim Min f |Dv(X-)|P dX) x a
€0 (28)n v=1on D S a¢ ( F)p 3 €

o [%e_
a
€-
&
a™pP
C = lim lﬁ gn Min f [Dv(x) |P dx
e*0 2 € ‘v=1lonD /S

We refind that C = 0 if a€<< g"P

n
C =+ if a€ >€n_p

and when a€

n
™
~
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Clearly K, = ?v<: wl’p(R n) /v=1 on D,v=0 outside of S

£ 1
ag -

converge in Mosco sense to
K=tve WCP(R") /v=1 on D}

we remark that & —>+o when ¢ — 0 3 S0
a_ ,

C=i  Min J jov]P dx =1 cBp p.
2 §v=1 on D RrR" 2 R

JvewtsP(r ")

So C _can be interpreted as the capacity in R n of the set D .

‘
1
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CH.V  BILATERAL CONSTRAINTS

Theorem 1

s . 1
Let V = Wi Pray > Y&V and two sequences of functionals ,(Fh)hejv

and (Fi)hGEJV satisfying (1), (ii), (iv), (v), Fi decreasing, Fi
inereasing, Fi(w,w) = Fi(w,w) =0 for every w<5.02 .
Then there exist F' and F° satisfying (1), (ii), (iv), (v),

7 decreasing, 7 inereasing and there exists a subsequence (hk) such

that :

fﬂte;tf, Ve 6; ,

“uﬂp + FlﬁiAULw) + F204V¢5w) = T (s-IF 1im [Hv”p+Fi (v,w)+Fi (v,w) ]
k k

VU
In fact
P + Fltuw) = T (s-IP) Lim [ﬂvﬂp+Fi (v,w)]
VU k
4P + FP(uyw) = T~ o=IF) Lim [|olP+E2 (v,0)]
U Y "
Proof
By Theorem 3.5 and corollary 3.68 , there exist F1 s F2 and h

k
(denoted by h for simplicity) such that

”.”p + Fl(.,w)

I (s-LP) Tim [ IP+FL(.,0)]

1P + F2(. )

n

I(s-LP) Tim [].1P+F2( . 0)]
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We shall use the following very simple Temma :

Lemma

Let y&V and F: V —> R” such that F(yp) = 0 and
Vuve vV, FluVv) + Fuhv) < F(u) + F(v) .

Then if F <s devreasing (resp. increasing) for every ue V

F(u) = F(uhAy) (resp. F(u) = Fluly)) .

Proof of the Lemma

We have F(uAy) + F(uvy) < F(u) .
If F 1is decreasing F(u) < F(uAy) and if F 1is increasing
F(u) < F(u ¥ ¢) . The result follows.

Let us pkove now the Theorem. Let ue&e V ; There exist u, —> u

in Lp such that

r"(s-LP) Tim [[v® + Fp(va0) + Fp(va0)]
V>U

= 1im [JuglP + Fp(up.0) + Fp(up.0)]

= Tim [Ju, AvlP + Ju VolP - JlulP + Fh(uh’\ Vi) + Fp oty v 0sw)]

WV

Yim [y 1 + FCu, )]+ Tin [ug v olP + Fa(u v v - ol

\'

lutwlP + Fleu v, + JuvelP + FPuyow) - P

‘;Iul‘p + Fl(uﬂ Uow) + FZ(u\,f'w,w) .

A\

Conversely, let u« V . There exist u% — ut¥ in LP and

uﬁ — u Vy in LP such that
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(P + Fhuhp,m) + F2(uVp.w)

SlP o udwlP o+ uvelP + Frugvsw) + FE(u Vo)

-l + vim [P+ Fr(upae) + (Ul P+ Foul,0)]

- elP + Tim [luhl + Fh(uh/\w,w) + Huhl + F pr,w)]

%

S JolP o+ T [P+ ROl ) v ) + ud)P

+ FE(UEV ) A (u v 0)w)]

- vlP + Tim [”vl]}p + F%(v‘;‘,w) + }[\)ﬁ]ip + Fﬁ(vﬁ,w)]

A\

¢ dim [JulP - IVEIPY + Tim [u2PP - IV2IP]
where v% = (uﬁ/\d)) Yy (uAy) and V,,Z] = (Uﬁ‘/d)) A (uyvy) .
But Tim [Jus P - [vi[P]

= Tim [Jut AwlP + fupVel® - olP - i)

Tim [Yup Av) A AP+ v lP - lu ol + g V) 4 (i) P
ST 1 AP -yl = 1olP - 1)

Tim H!(u ) A (AP - lilw\wllpJ +2im [ful V) & wiw)l® - utul™

A\

+ 1im [J(up Vo) ¥ (wAaP - olP]

WV
o
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With a similar decomposition we obtain
Yim [ - P10 -
Hence we have |
lulP + FHU 2 psw) + FEQU Pgoe)
qwqp + Tim [[v qp + F1 %,w) + Hvﬁgp + Fﬁ(vﬁ, w)]

Let us define Vi by

1 2
Vp WSV Tt vty
Since vh w = - (uh w) A (u-y)” ¢ O
A (et S (TR A
2\t +
and  inf ( (uh $) A (u=p) ()T A (ump)T) =
we have  (v.-y)” = - (vi- ) and (vp-p)t = V2 -
that is v1 =y = (v,-y) =v A and vZ =y + (v - )+ = v, ¥
h-V KV hhv h »w n¥ htv-
In addition vV, > u in LP .
It follows
Jul? + FHu hpaw) + Fo(u Y pw)
> = ol + Tim [lv, AulP + Fﬁ(vn.’\ ) + Jv VulP + Fﬁ(vnw,w)_]
[th[ vh,w) + F (vpsw)]

s ) T (P ) v
v--U
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In conclusion
JufP + Fluhy,w) + FouV ) = T{s-LP) Tim [ )P + Fh(vew) + Fo(V,0) T
vou

Example - Problem with holes

Let S; be a hole as in paragraph IV and y e:Hg(g» .
€
2

Let F} and FZ be defined by (€= 1)

0 if u sy on ua(\(\)sj )

F;(u,w) = _ 7 3
+x elsewhere

"0 if u<y on w N (UST)

Fﬁ(U,w) = { ag
+ elsewhere.

By Theorem V.1 and result of IV, we obtain
2 -2 2

J ouf? + ¢ J (u-p) )2 + C, [ ((u=)")

Q w w

2

et i o+ e v
VU

and in particular

Min {J |Du|2 ; u€H(1)(Q) . u=y on o0 (Usl)
Q 3

—> win ([ ouff ey [ (e [ (wnh s ue e -
w w

If =0 we obtain, since C1 = C2 =C,

Min {J [Du]2 s ue Hé(Q) , u=0 on ()(()S; )
0 €

— Min {J Iou)? + ¢ J ul® 5 ue K@) .
Q w
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