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ASYMPTOTIC ANALYSIS OF VARIATIONAL PROBLEMS . 

WITH CONSTRAINTS OF OBSTACLE TYPE 

HEDY ATTOUCH, COLETTE PICARD 

The purpose of this work is to give a complete presentation with 
some improvernents and new developpements of a recent paper of E. De 
Giorgi [l4J r-limit of obstacles. 

Chapter l - Approximation of convex lower semi-continuous functionals. 

1. Yosida approximation 
2. Statement of the theorem: approximation of a convex, 

lsc, functional by an increasing sequence of polyedral 
functionals 

3. The dual statement; a Galerkin procedure for convex lsc 
functional 

Chapter .!.!_ - Integral representation of unilateral constraints. 

Chapter l!l - r-limit of obstacles. The quadratic case. 

Chapter IV - r-limit of obstacles. The non quadratic case. 
-~ 

Explicit formula for periodical obstacles. 

Chapter y - r-limit of bilateral constraints. 
Problems with hales. 
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INTRODUCTION 

The origin of this paper is the following problem: 
Let us consider a variational inequality, with a constraint of obstacle­
type, the obstacle depending on a parameter n e-lN ; for example 

( I ) 
n 

Min 
u>,-gn 

ue:H~( D) 

When gn converges to some function g , what can we say about the 
solutions u(gn) of the corresponding problems (In) ? 
The answer depends obviously on the topology for which the convergence 

of the sequence ( gn) ne: rn ho l ds. 

On a very simple example, one can see that even if the (g) n n<Sl'J 
are regular obstacles and the constraint u ~gn is taken almost 
everywhere one will need tools of potential theory, more precisely of 
capacity theory in order to interpret the limit problem (I). 

Take in one discussion the following gn ; clearly gn -:i--- 0 almost 

everywhere but the limit problem Bis 

1 A- - -
1 

(I) Min {J 1Duj2 dx - f fu} 1 

· lg" 1 

u(})?;-1 D D 1 
1 

1 ; 
UE:H0 (D) 

1 \ 
\ 

l 

D=]O,l[. I 1 

0 1 
- 1/2-1/n 1/2 1/2+1/n 

i.e. the limit constraint is not taken in the sense almost everywhere, 
and one has to use the continuous representant of u (more gerenally 

i '>-

the quasi-continuous representants of u) in order to interpret the limit 
problem. 

Concerning the determination of the limit problem, we can distinguish 
two types of results : 11stabi 1 ity 11 and 11non stabi 1 ity" results. 
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A. In the first type of results gn converges to g in a strong 
enough topology in order the limit problem to be 

( I) Min 
u~g 

UEH~(~) 

i.e. u(gn) ~ u(g) ; that's what we call a stability result. 

Concerning this problem one can find an abundant litterature [1], 
1) ] , [ 9], [ 3 ] . In L3 1, usi ng recent results of potenti a 1 theory, 
the authors proved the equivalence: 

when gn, g are quasi-continuous 

V f e: H-1(~) u(gn) ->- u(g) 

t L2(C) 
f+oo dt 2 _:;..-g in i .e. c2(lg -g\>t) ~ 9n o n n-++oo 

(All the notions of capacity are relative, in the situation described, 
to the capaci ty defi ned from the norm Il . Il l ) . 

0 . 

Ho(~) 

A useful critera which assures the convergence of gn to g in L2(C) 
is the following (cf. [20] , [3]) : 

(gn ~ g in w-W1'P(~) with p>2) ~ (gn L
2

(C)> g) 

B. The second type of results concern the situations where there is 
no stability in the sense of A, but for which there exista limit 
problem. In [8] , Carbone and Colombini studied in detail the following 
situation. 

In two dimensions 
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St= ]O,l[_ X ]ü,1[, 
let gn = 1 on the balls centered 
in each small squares, and of radius 

2 -n an= e and gn = 0 elsewhere 

1 
0 

0 

1 
0 

1 0 

i 0 

1 0 

0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
! 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

~ 

1/n 1 

In [8] , they proved (cf. also Murat and Cioranescu [11}) 

-­n-++oo Mi n { L, i Du 1 2 dx + 2,r J [ ( u -1 )°'J 2 dx 
u;;,-o •• 

i.e., in the limit problem, we find an extra-term which we can interpret 
as a penalty-term, with finite values, relatively to the constraint u~l 

C. A natural problem is to understand the .full significance of this 
phenomena, and to interpret in a unified way the parts A and B: 
this may be summurized in the following way: 

"What is the closure in variational sense of the constraints of obstacle 

type Il : 

In [14] , De Giorgi gives a first and sharp answer to this problem in its 
full generality for a quadratic energy functional : 

Min. {J I Du 12 -
u~gn n 

u H~(s-2) - fn fu dx + v(D)} 

where µ,v are positive Radon measure, µ e:. H-l, û is a quasi­
continuous representant of u , j is convex, lsc, decreasing with 

respect to u . 
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That's the most general form of the limit problem when starting with 
problem (In) ; one would mention that there is no assumption of 
convergence on the gn , and that this result has to be interpreted 
in such a general setting as compactness result (i.e. 3 (nk)kiz IN 
such that (*) holds for this subsequence). 

In this article, we give a complete presentation of this result 
the basic idea of the proof is the same as in De Giorgi's proof and 
the technics are relevant of r-convergence theory. We improve the 
De Giorgi's results in the following directions : 

Introducing new tools in the approximation theory in convex 
analysis we clarify and simplify the part of functional analysis in 
the proof and allow the attack, by the same method, of many other 
problems in variational inequalities. 

We extend (but, up to now, not in such a general context) the 
results to the case where the energy functional is not quadratic (for 

example, Jrl DulP dx) . 

. In the case where the coefficients of the energy functional are 
rapidly oscillating (for example JI a

1
.J.(~) ~u ~u dx) combining the 

n E oX, oX. 
àG l J 

preceeding technics with tools of compactness by compensation (cf. 
1)91) we can describe the limit problem. 

The general theorems of the r-convergence theory being, by nature, 
compactness results, we show how to use these results in order to compute 
precisely the limit problem. 

Finally, we prove that the bilateral constraints problems and 
particularly problems with equality on 11holes 11 can be deduced very simply 
from the preceeding unilateral results. 
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CH.! APPROXIMATION OF CONVEX LOWER SEMI-CONTINUOUS FUNCTIONALS 1 

Let V be a genera l rea l Banach space, Il . fl V the norm in V ; 
let us denote by V' its dual and <.,.>(V' ,V) the pairing between 
V and V' . 

The dual i ty map H : V ~ VI i s defi ned by 

From the Hahn-Banach theorem, for every v €. V , H(v) is non void. 

Moreover, H = a(½ JI. If) , the subdifferential of the functional 

v ~ ½ /lv~~ . 

Let F : V ---+ ]- 00 ,+"':] a proper functiona 1 (i.e. i +00 ) 

for any À>Ü, we define FÀ its Yosida approximation 

( 1. 2) 

Let us examine the properties of FÀ in such a general context. 

( 1.3) Lerrona 

Let V ~ genera Z · Pœ.Z Banach space and F : V ~ l- 00 ., +001 ~ proper., 

Zower semi-continuous functional on V satisfying: 

J f3 9 0 s. t. /1 v e:. V F ( v} + Cl l!v 112 + (3 ~ 0 ; then., 

a} F À (v} t F(v} as À decreases to zero. 

b} 

where 

/.; ~ 
1 À )' 0_, i u., V E:. V,, 

c{!lull,llvll) =c 1 

IF À (u}-F /vJ 1 ~ f C( 11u 1~ llv IP. l!u-v Il . 
Il ull + c 2 Il vil + c 3 , with c 1, c 2 , c3 E IR.+ 

Proof 
a) By definition, V Z<= V, FÀ(v) ~- F(z) + -J.i lJv-zll2 ; taking z = v 
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we get FÀ(v)-< F(v) , and (l.3)bis sup FÀ(v) ~ F(v) . 
À>O 

By definition of the inf, for every À>Û there exists ZÀE: V such 
that 

(1.4) FÀ(v) ~ F(zÀ) + fJ: IJv-zÀf .~ FÀ(v) +À. 

Since F(z) + a~zl 2 + B ~ O, (1.4) implies 

If sup FÀ(v) < + 00 , this implies : 
À>O 

( 1. 5) s-V v as À ~ 0 • 

From (1.4) F(zÀ) ~ SjP FÀ(v) +À; making À ~ 0, from the 
strong lower semi continuity of F, and (1.5), it follows 

( 1. 6) F(v) ~ sup F\ (v) . 
À>O 

From (1.3)bis and (1.6) F(v) = sup FÀ(v) . 
À>O 

If X~g FÀ(v) = + 00 , from (l.3)bis F(v) = + 00 and there is still 
equality. 
In any case 

b) Let z0 e:. V, z0 E:. D(F) i.e. F(z0 ) < + 00 ; let u,ve:. V 

FÀ(v) = Inf {F(z) + -J-/lv-zJ)2}; given Ek :> 0, Ek ~ O 
ze.V 

for every ke:. 1N , there exist ZkE"-V such that : 

By the same argument as in part a), we get: 
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and this implies that 

(1.8) ilzkl:~ C(!lvl\) independently of À (for \e]0,1\[, J\0 <+00 ) 

and kE:.lN ,with.C(llvll) =c 1 llvll +c 2 (c 1, c2ER+) 

By definition of FÀ(u) 

FÀ (u) ~ F(zk) + hl/u-zk 1)2 

~ {F(zk)+ -Jxllv-zk 112} + -Jx{!lu-zkf-llv-zk 112} 

so from ( 1. 7) 

by definition of H 

so 

FÀ(u) - FÀ(v) ~ Et< +-j: llH(u-zk)ll-llv-ull 

~ ~ + 1 llu-zk li. \lv-u li ; from (1.8) 

Making k _,,._ +00 ,E k ~ 0 and echanqing v and u , we finally qet 

IFlu)-FÀ(v) 1 ~½ c(!lul!, 1lvll).\lv-ul! 
where C ( 11 u l 1 , 11 v Il ) = c1 11 u 11 + c2 11 v 11 + c3 .: 

(1.9) Lernma: Let V ~ general Banach space, and, 

F, G : V - ] - 00, +00 ] two convex lower semi-continuous 

proper functionals satisfying: 
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(i) G ~ F 

(ii) 3 (gi) i,:c.JN ~ dense subset !Zf V such that : 

V i 1.~ IN, G/gi) ;.,. F/gi) then., F = G . 

Proof of Lemma 1.9: 
prove 

From ( i) , F -2, G ; 1 et usfthe converse i nequa 1 i ty : 

From ( i i) V i ""~ lN, G1 ( 9;) >,, F 1 ( 9;) 
From the lemma (1.3)b and the density of the sequence (g;); E lN 

in V it follows 

From (i) G1~ F1 so, finally, G1 = F1 • 

Now we remark that for any functional G 

So the equality G1 = F1 implies that 

(1.11) 

G1 + 2 ( 11 .112) 1 = F1 + · 2 ( il .1/ 2) 1 i . e . 

F1 = G1 and F11 = G11 ; since F and G have been assumed 
convex, 1.s.c., F = F11 , G = G11 and finally 

F = G . 

( 1.12) Remark 

(a) The cane lus ion of the Lemma 1. 9 s ti 11 ho l ds if, i ns tead of 
taking in (ii) the Yosida index equal to one, we take it equal to some 

Ào :- 0 . 

(b) If F and G are only assumed lower semi-continuous, the 
conclusion of (1.9) is still valid under the assumptions : 
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(i) G~ F 

( i i) bi 
5 

3 ( 9;); e:. 1N a dense subset of V , J p,j) j e:. l'J 

a sequence À- t O such that 
J 

V (i,j)E:- IN X IN, G, ( g.) ;;;::. FÀ ( g.) . 
/\ . , . , 

J J 

Now, we can state the main result of thi s chapter : 

f 1. 13) Defi ni ti on 

Let V a reflexive Banach space with a strictly con~ex norm, and 

F: V ~ J- 00 .+oo] a con~ex. lower semi-continuous proper function. 

Let 't/ À>Ü. Vve V, FÀ(v) = Inf ff(z) + }x-llv-z!l 2}, this minimum 
Z€V F 

is achieved at a unique point that we shall denote JÀ (v) : 

( 1.14) V w F lj F2 y À>Ü , V v e: V, FÀ(v) = F(JÀv) + 2À jv-J vll . 

From the classical theorem of additivity of the subdifferentials, 

J~(v) satisfies the extremality relation 

( 1.15) 

(1.15)bis 

( 1.16) Theorem 

Let V a reflexive- !!!!J!._arable Banach space and 

F : V ~ }-oo., -f<lo] a crmvex., fower semi-continuous proper functional. 

Let (g
1
'.)ie. "IN ..E__ dense., denwnbrable subHet 9.f V: fE_r any i E:. 11v 

we def1:ne : 

(1.17) 

r1.1a; ViE:11v, f.ve:.m, 



I.6 

Then, F = sup F~; consequently, defining 
i<=.JN 

Y = sup Fi , (Y) r 
12 

JN is an increasing sequence q_f_ 
l~i.g, 

poZyedrr.Z, convex, continuous functionaZs converging to F. 

Proof of Theorem 1.16: 

From (1.15)bis H(gi-ui) = H(gi-Ji(gi)) ç:_ dF(Ji(gi)) = é)F{u;) ; 

so, by definition of 3F : 

V V€. V ., 

so V i E'- :N .. 

i F(v) ~ F(u
1
.) + <H(g.-u.),v-u.> = F (v) 

1 1 1 

F ~ Fi and, (1.19) F ~ sup Fi = sup Fr 
i E:]N rE"1N 

Now let us prove that 

by definition, (Fi ) 1 (9;) = Min {Fi (z) + t llgi-z 11
2

} 
ze..V 

= Min 
ZE-V 

1 2 {<H(g.-u.),z-u.> + -,,.-À llz-g.ll} + F(u.) 
1 1 1 CA 1 1 

This minimum is achieved at a point zi such that: 

H(g.-u.) = H(g.-z.) 
1 1 1 1 

S ince H is strictly monotone, z; = ui and, 

i 1 2 
(F ) 1(gi) = TI llu;-9;!1 + F(ui) = F1(gi) i.e. (1.20). 

( 1. 21) So, (s~p Fj) 1(gi) ~ (Fi) 1(gi) = F1(g;) 
J 

From (1.19) and (1.21) ~: sup Fj ~ F 
~ jeIN 

V i E'" 1N. 

and 

\. 
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so, from the Lemma (1.9) it follows : 

F = sup Fj = lim f Fr 
j,E:JN r..+c:o 

(1.22) Remarks 

Let us discuss the signification of the Theorme (1.16). 

a) ·we know that every convex lower semi-continuous functional is 
equal to a supremum of continuous affine functionals : 

( 1. 23) l 
F(v) = sup {<v,f>(V,V') - F (f)} . 

fü.V' 

The Theorem (1.16) tells us that if the space V is reflexive and 
separable any cono/ex, l.s.c., proper functional F is equal to the 
supremum of a denumbrable family of such affine functionals {F1) 1 <:=::lN • 

Moreover, we can take for the (F1)1 e: 1N affine functionals, whose graph 
is a supporting hyperplane to the graph of F . 
The Theorem tells us how to construct such (Fi) ielN 

Take (gi)iE~ any denumbrable dense subset of V , and Ào > 0. 
F i 1 Let LI; = JÀO(g;) and F (v) = F(u;) + ~ <H(g;-Ui),v-u;> . 

We remark that H(g1-u1) e: aF(u1) i.e. Fi is a supporting hyperplane 

IR 

V 

F 
u. = JÀ ( g,.) 

1 0 
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We emphazize on the fact that one has to construct these supporting 
hyperplanes in a precise way, through the resolution of auxiliàry 
variational problems involving F: 

The simpler argument which would consist taking any dense family 

(fi)i ~ 1N in V' and writing (1.23) 

VVE V. F(v) ~ = sup {<v,f;> - F (fi)} is not correct, 

since two con1vex lower semi-continuous functionals may be equal 
dense subset of V and be different for example, take 

V= L2(n) ' F(v) = llvll 1 D(F) = H1(n) 
H (n) 

G(v) = !!vil 1 , D(G) = H~(n) ; 
· H

0
(n) 

on a 

then G = F + 1I 
1 

G = F on H~(n) which is dense 

{u c: H /u l an = o 
in L2 but G ~ F! 

b) The interest of such approximation result is that we have succeded 
writing any convex,1.s.c., proper functional as an increasing limit of a 
sequence of convex, continuous, polyedral functionals (i.e. regular 
functionals with a very simple geometry ; by polyedral, we mean a supremum 
of a finite number of affine functionals). 

Moreover, we know to construct in a precise way these polyedral 
approximations. We shall see in the next chapter how to use this tool 
in order to obtain a representation theorem for a class of functionals. 

Let us examine the geometric interpretation of the Theorem 1.16 when F 
is equal to the indicator fonction of a closed, convex, non void set K 

in V . 

(1.24) Proposition 

Let K ~ closed convex non void subset of~ reflexive Banach space V. 
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Let (gi) ielN be ~ dense denumbrable subset of V; then K = n K. 

where Ki is the half-space containing K: 

Proof of Proposition 1.24: 

From the Theorem 1.16, taking 

F = 1I K J O on K , ( g. ) . 11, a 
l+oo elsewhere 1 ,eJ 1 

dense subset of V , (À)je:1N a 
sequence, Àj ~ 0 , we have : 

g. , 

ieJN 
1,, 

V v~ V, F(v) = sup 
i ,j 

F •. (v) = 
lJ 

1 sup {F(uij) + -r-<H(g . .,-u .. ),v-u. ->} 
i,je:JNx]N j 1 lJ· 1J 

where u .. 
1J 

; .e. u .. 
1J 

minimizes 1 2 
F(z) + V:: \lz-gillv that 

J 

is to say uij = projK gi since F(uij) = 0 we obtain 

F(v) = sup 
i ,j E: 1N ')( 1N 

{t. <H(gi-projKgi)' v-projKgi>} 
J 

1I K(v) = F(v) = ~up 1I K. (v) = ·n n K. (v) 
lEÎ'J l 1 

i.e. K = n K. 
i 1 

where K. = {VE:" V/ <H(g.-orojKg. ), v-projKg.> ~ 0} 
1 1 1 ' 1 

( 1. 25) Remarks 

a) The Proposition (1.24) tells us that in a reflexive separable 
Banach space, given a closed, convex, non void set K, one can find a 
dense denumbrable subset of K (in its boundary) such that K is equal 
to the intersection of supportinq hyperplanes to K at these points. 

Moreover, one can take such points (u.). 1N , 1 e::. in the following way: 

take ( 9;) i E: l'J a dense subset of V , u1 = proj Kgi and for a normal 
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vector of the supporting hyperplane at U; , H(q.-u.) . 
· 1 1 

b) One can consider the Theorem (1.16) as a corollary of the 
Proposition (1.24) ; applying the Proposition (1.24) in V x m and to 
the closed convex set equal to the epigraph of F, one can refind (1.16). 

Finally, let us look to the dual fromulation of the Theorem (1.16). 

(1.26) PI'oposition 

Let V 9:. reflexive, separable Banach space . 

Let F : V ~ ]-co, +ooJ 9:. convex, Lower semi-continuous, proper 

functionaZ and ( g .) . IN ~ dense subset of V • 
"'------ -- 1., 1.,€- -

{ 

F on E:,. r= 
+oo elsewhere. 

Then, the sequence (Y) IN is 9:. decreasing sequence and F is equaZ 
Y' E: 

to the Zower semi-continuous reguZarization of Inf Y. In other 1,,ords, 
re:N 

Y converges to F in Mosco sense. 

Proof of Proposition 1.26 

Clearly, the sequence Fr decreases to the functional G equal to 

G = 

\ F on l' 
i rE:l'l 

E r 

1
, +oo el sewhere 

So (Fr) converges in Mosco sense to the lower semi-continuous , rE-J\J 

regularization of, G (cf. Mosco [22)), sc (G) . 

Let us prove that sc(G) = F 

Clearly, for every rc:N, F .~ Fr so, F ~ Inf Fr= G and since F 
rcJ.l 
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is l .s.c. , F -~ sc(G) . 

Let us assume a moment that we can prove the following property 

( 1. 27) V v €. D(F), 3vre::. Er such that vr 

F(v) = lim F(v) . 
r~oo r 

From (1.27), it will follow that 

~ sc(G) (v) 

s-V 
--~ V r++oo and 

(by definition of sc(G)) . 

Let us prove (1.27) ; let us assume first that v e:. D(aF) ; then 
Jf E:. 8F(v) and v + aF(v) => f + v i.e. v = Ji (-v+f) (we assume for 

simplicity that V is a Hilbert space which is identified with its dual 
H = Id t) . 

From the density of the sequence (g) in V , we can find a i i e:., ]N 

sequence (hr)rs 1'-l , hrE:. {g1, ... ,gr} such that h --- v + f . 
r r-H-oo 

From the continuity of Ji 

F F J 1 hr = vr ~ J 1(v+f) = v and vr belongs to Er . 

Moreover, from Lemma (1.3) F1(hr) --'>- F1(v+f) ; since from 1.14 
}"++oo 

F1(v+f) = F(Ji(v+f)) + ½ H(v+f) - Ji(v+f)~ 2 

and /lhr - Jihr11
2 

.....,.,,... !l(v+f) - Ji(v+f)/1 2 it follows that 

F(Jihr) r-4,J>- F(Ji(v+f)) = F(v) i.e. F(vr) ~ F(v) . 

So, (1.27) is proved when V€:. D(8F) . 



I.12 

Now we use that if v .s D(F) , there exists a sequence vk ,s:. D(aF) 

such that vk ~ v and c/J(vk) _,,,... c/J(v) 

take for examp le a sequence ( \) k ç:;:. ]N , \ ->- 0 and 

one can verify that 

F { J ~ v) k +t~ F ( v ) . 
k 

Now, we can conclude by a classical diagonalisation argument 

r r 
{vk,F(vk)} ~ {vk,F(vk)} 

~. k+too 

{v,F(v)} 

From [ 1 J lemma 1 , there exists a sequence r ~ k(r) such that 

r r ) ) ) (vk(r)'F(vk{r) r+roo (v,F(v) 

and we take V ~ V F(v ) ~ F(v) . r r-++oo ' r 

( 1. 28) Rema rk 

Let us explain why the Proposition (1.26) is a dual formulation of 
the Theorem (1.16) ; by the same way we shall get an other proof of the 
Proposition (1.26). 

( 1. 29) 

Let us compute (Fr)*, that is to say the conjugate functional of a 
polyedral functional : 

V f ç, v* ,(Fr)*(f) = sup {<f,v> - sup {F(u.) + <êlF(ui),v-u;>}} 
VEV l~t~r 1 



where 

Since 

I.13 

we get 

(1.30) V f€. v\ Yre ~, (Frl(f) = sup inf {<f-3F(u 1),v> + F*(3F(ui))} . 
vE.V 1.~i~r 

Let us prove that 

( 1. 31) 

clearly Vi '==-ü, .. .,r} , from (1.30) (Fr)*(aF(ui)) ~ F*(3F(ui)) 

since (Fr)* ;:.. F* , it follows that : 

(1.32) Vie.n, .. .,r}, 

since Fr*· is convex its domain is convex and 

let us prove the opposite inclusion : let f <f Conv {aF(ui) / i, .. .,r} ; 

from the Hahn-Banach theorem there exists v
0

e:.V such that: 

<f,v > ~ Sup <3F(u.)-,v > . 
0 l . 1 0 ~1~r 

So inf {<f-aF(u.),v> > 0, which implies that 
1 . 1 
~1~r 

sup inf {<f-3F(u.),v> + F*(aF(u.))} = + 00 

V 1..- • 1 1 ve ~,~r 

and from (1.30) this means that (Fr)*(f) = + 00 ; so (1.31) is proved. 

Since the complete description of (Fr)* on its domain is rather 

complicate, we define the functional Gr: 

( 1.33) 
) ~:(f) if f e:: Conv {aF(u;) / 4krl 

l -rvv el sewhere 
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then, 

( 1. 34) * r r * F. ~ G ~ (F) • 

The first inequality is clear from (1.33) ; the second one follows from 

From (1.34) it follows that 

(1.35) 

Now we remark that 

( 1.36) 
F F* 

u . = J l ( g . ) -!>- aF ( u . ) = J l ( g · ) l l . , l l 

(in order to prove (1.36) one use the definition of Ji and the property 

(aF)-l = aF*) ; finally 

( 1.37) 

* J F*( f) if f <::. Conv {JÎ ( 9;) / l~i~r} 

( +00 el sewhere. 

:lit From (135) and (1.37) taking G = F , we refind the conclusions of the 

Proposition (1.26). 

(1.38) Corollary: ~ Galerkin procedure for lower semi-continuous functionals. 

Let V g_ separable · reflexive Banach space, F : V -> ]- 00, +oo] a 

convex, Zower semi-continuous, proper functional which is coercive. 

Let ( g .) . IN a dense subset oP V ; we de fine 
~~€ ------~ -----

u . = /.1 ( g .) and 
~ ~ -

E = Conv {/.1 (g .) / l~ù;r} . r . ~ 

Then, for every f E- V' 
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Min {F(v) - <f., v>} ~ Min {F(v) - <f, v>} • 
V<:E y>++<x, V-€V 

1' 

Proof of Corollary (1.38) 

It is a direct application of the Proposition (1.26) : 

r F = F + 1I E converge in Môsco sen se to F . 
r 

Since Fr ~ F and F is coercive it follows (cf. [22]) that 

Min {Fr(v)-<f,v>} ~ Min {F(v)- <f,v>} 
VEV V€V 

(1.39) Remark 

We saw that, geometrically, the Theorem 1.16 corresponds to an 
external approximation of a closed convex set; its dual formulation 
corresponds to an internal approximation: 

Let us illustrate the flexibility of the preceding approximation methods : 
given K a closed, convex, non void set in a separable, reflexive Banach 
space, we shall denote: 

rh its external approximation K = n Kh given by Proposition 1.24 
he:lN 

Kh its internal approximation K = U Kh given by Proposition 1.26 
helN 

(1.40) Pr>oposition 

Let ~ : V ~ ]-oo.; +oo 1 ~ convex, lowe:r> semi-continuous, p:r>ope:r> 
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a) Then, 

I.16 

cp + '11 Ji t cp + ·'1! K ; the'l'e f o'l'e ( cp+1l h) converges 
K - h ç;;;:. IN 

to cp + Il K in Mosco sense and if <P is coey,cive 

V f E V', Min {cp (v)-<f, v>} 
V€.0 

Min {cp(v)-<f, v>} • 
ocK 

b) Let us assume moy,eover that cp is continuous at ~ point v O e K ; 

then, ( </J+1/ K ) is ~ decreasing sequence which converges in Mosco 
h h elN 

sense to cf> +11 K ; therefoY'e if <p is coey,aive 

Min {cp(v)-<f, v>} 
VEKh 

Min <cp(v)-<f, v>} • 
VE.:K 

Proof of Proposition (1.40) 

a) Clearly cp + 1l h t cp + 1J K; it follows by a classical argument 
K 

(cf. [ J ) that («!'+11 h) converges to <f> + 11 K in Mosco sen se ; 
K h ~N 

b) Let us prove that (<1>+n K) converges to cp + 1l K in 
h h~l'l 

Mosco sense 

lim inf (<fi+1l K )(vh)? lim inf cp(vh) + lim inf 1J K (vh) 
h h 

~ cp(v) + 11 K(v) 

Let us take v O e::.. K such that <j) i s conti nuous at v O then 

v0 e Int D(cp) , D(cp):::, B(v0 ,p 0 ) ; 

- V 
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Let us take v <cc:-D ( </l) Il K and let us fi nd a sequence ( vh) h -= lN 

such that 

Let vt = tv + (1-t)v 0 ; then Vt E:.. Int(D(<j))) and </l is continuous at 

t t 
vt ; let (vh)h E:. ]N a sequence, vh E:. Kh such that 

t s-V t t 
vh - v (we remark that v te K , so vh exists ! ) 

On the other hand, by convexity of <j) 

When t --?- 1 , since <j)(V ) < + oo 
0 

lim sup </l (vt) ~ qi(v) ; since vt t➔r" v by 1-semi-continuity of <j) 
t➔l 

qi(v) ~ lim inf qi(vt) ; so (j){vt) ~ <j){v) ; we have the following 
t➔l 

diagram: 

( V~ , <j) ( V~ )) ( S - ~.L:: IR> ( V t , <j) ( V t ) ) 

t t-1 

(v,<j){v)) • 

By a classical diagonalisation argument, there exists a sequence (th)h s fi 

such that 

h++oo 

So <j) + Il K --ê- <j) + TI K in Mosco sen se. 
h 
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(1.41) Remark 

a) The interest of the preceding Proposition is that, since one can 
construct the approximating convex polyedral sets Kh or Kh , one can 
directly apply this approximation procedure to the minimisation of any 
convex (continuous atone point when working with Kh ) l.s.c. functional 
on K. 

b) One could also by the same technics approximate evolution problems 
governed by subdifferentials of convex functionals. 
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CH.II INTEGRAL REPRESENTATION OF UNILATERAL CONSTRAINTS 

In this paragraph we shall denote 

trn the family of the open bounded subsets of Q. 

~n the fami ly of the bounded bore li an subsets of Q • 

As we shall see in the next paragraph, any "variational limit" of 
unilateral constraints has the following properties (~) • 
Our purpose, in this paragraph, is to obtain an integral representation 
theorem for the functionals of (~) : 

(2.1) Definition 

::Y= {F: V x c&n -- R+ satisfying (i), (ii), (iii), (iv), (v)} : 

/ (i) V ve::.V, B ~ F(v,B) is a positive, outer regular, Borel 
measure. 

(ii) V w e:.. tt·, v ~ F(v,w) is a convex, l .s.c., proper functional 
n 

on V . 

(iii) V WE"" f)'n' V \--»- F(v ,w) is decreasing. 

( i v) V u,v E- V, V w Ê e-n ulw = vlw 
- ...... F { u ,w) = F ( v ,w) , -✓ 

\ 

~ V w ~-e-n F(uAv,W) + F(uVv,w) ~ F(u,w) + F(v,w) \ (v) u,ve:.V, , . 

Remarks 

a) It is an open question to know if (V) is a consequence of 
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(i) ... (iv). 

Clearly, (v) is not inde~ndent of (i) ... (iv): it will follow from the 
representation theorem that, if FEë::F then, in (v) the equality holds! 

b) From the outer règularity of F(v,.) , it follows easily that 
the properties (iii) and (v) are valid for any Be:'j)n. 

In order to state the representation theorem we shall need the following 
notions of potential theory (cf. [ 2] for example, for more details). 

(2.2) Definiti~ns 

For any v e:. V = W~'P(Q) , we shall denote by v the class (for the 
equality quasi-everywhere) of its quasi-continuous representatives. 
(The notions of capacity are associated with the capacity defined from 
the norm of V). 

The positive cane of V', (W-l,p')+, is called the cone of positive, 
finite energy measures ; the elements of (V')+can be identified with 
positive Radon measures and if, wµ e.: (V')+,µ being the associated 
Radon measure 

Vve:=.V, i.e. 

(2.3) Theorem 

V C .,,. 
continuously 

1 L ( dµ) • 

Let F e'?Jl ; then F can be represented as an integral functional : 

(2.3)bis fv€:::V, Ywe:~, F(v,w) = f f(x,v<x)) dµ(x) +v(w} 
w 

where: a/ µ and v are two positive Radon measures and µ is a 

finite energy measure. 

b/ f : ~x x IR t -?" ]- 00, +oo] is Borel measurable with respect 

to x , convex, l.s.c., decreasing with respect to t • 

Moreover, we can take v(B) = F(u , B) with 
----- 0 

u e:. V , such that : 
0 ----

f' BE.. !Bn , F(u0 ,B) < + oo and VB e:. f:Bn , JB f(x,t) dµ(x) + v(B) ~ 0. 

The relation (2.3)bis can be extended to V x R(F) where R(F) is a rich 
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family of borelian sets (cf. Definition 2.4). 

In order to prove the Theorem (2.3) we shall use two types of tools 

a) the approximation result of éh.I which is relevant of the convex 
analysis. 

b) The measure theory. 

In some arguments, as 
intimately combined 
sha 11 use : 

we shall see, these two types of tools will be 
let us define now the notion of measure theory we 

(2.4) Definitions 

a) A subset D of '.)jn is dense in 1\ if 

YA,B E: ~3n such that Ac 13 , ]DE:,V such that Ac D c D c 13 

b) A subset R of 5P is rich in -{Jn ~ if 

For every fami ly (Bt)t iS [O,lj of elements of ;lin such that : 

the set [te [ 0, l __ l / Bt </-R} i s denumbrab le. 

(2.5) Proposition 

a) There exists a denumbrabZe dense subset of ,:8 ; 
------------------ n 

b) ~ denumbrabZe intersection of rich subsets of .:(ln is stiU rich ; 

c) Any rich subset is dense; 

d) If R is rich., R (] (!
11 

is dense. 

The following property justifies the introduction of the notion of rich 
subset of ~$n. 

(2.6) Proposition 

Let a : '.~Bn _._... IR+ an increasing function ; then., the subset 9.f_ 

~8n formed 01... the sets B satisfying 
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sup a(A) = a(B) = inf a(A) 
- 0 - ô 

AcB BcA 

is rich in 

Proof of Theorem (2.3) 

Let F €gt 

Let 

Let 
open 

(f) be a dense denumbrable subset of V • i i Ë- 1'J 

(wk) k e: JIJ be a dense denumbrab le fami l y of 
sets in ~n . 

For every k e:. 1'J , we define the functional 

(2.13) 

k -+ Since wk is open, bounded, the functional F : V - lR is convex, 
lower semi-continuous proper; we can apply the approximation theorem 
(1.16) of Ch. I : 
denoting Ak = aFk , we define 

(2.14) 

(2.15) 

V (i ,k) E: :N X lN , 

V (i,k)el'J x l'J, 

(H is the duality mapping from V onto v*). 
and by Theorem (1.16) 

Let us look in detail to µik ; in a general way, if µ E:.. - aF(u,w) , by 
definition of ·aF(.,w) : 

F(u+v,w) ► F(u,w) - <µ,V>. 

+ If v <=: V , since z ~ F{z,w) is decreasing ( ~-.. } ,,, it follows that 
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F(u,w) :>,F(u+v,w) ~F(u,w) - <µ,v>, i.e. 

V v E v+ , <11,v > ~ O ; so µ is a positive energy measure of v•+ ; 

Moreover, if v lw = O , from (~iv) it follows that : 

F(u+v,w) = F(u,w) ~ F(u,w) - <µ,v> 

and µ i s supported by w ; 
denoting for any vE:. V , by v its quasi-continuous representa tive, we 

can write (2.16) in the following way: 

~t~Q-~ : Let us define 

and study the properties of the functionals Fik: 

(2.19) Proposition 

Proof__Qf Proposition (2.19) 

We have to prove that 

(2.20) V(i ,k) <== ~ , Y vs V , F(v,w) ~ F(uik'wnwk) + f (~k-v)dµik 
w 

In order to prove (2.20), let us prove first: 
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(2.22) 

Let us assume (2.21) and (2.22) proved and, look how (2.20)follows 

In (2.21) we take <P = (v-uikt, in (2.22) <P = (uik-v)+ and add 
(2.21) and (2.22) 

F(uik V v,w nwk) + F(uik/\ v,wn.wk) ~ 2F(uik'wn wk) + f}l½k-v) dµik 

(since (uik-v)+ - (v-uik)+ = uik-v) ; 

then, applying (g;'v) , 

F(uik'wn wk) + F(v,wn wk) ~ 2F(uik'wn wk) + J (ü;k-v) dµik 
w 

and (2.20) follows. 

Let us prove (2.21) and (2.22) 

(2.23) Lemma 

fi, k ~ 1N , f w ~ rJ;,_ , f (j) ~ V , (j)~O 

(2.21) 

(2. 22) 

Proof of Lemma (2.23) 

Let (G') an increasing sequence of open sets in w such that nne:-:N 

ô'n c: ern c 0-n+l c ••. c w and U crn = w • 
n 

From the Urysohn lemma, there exist en c D(~) satisfying 

on {'J' w , O~A ~l . en= 1 on ~n, ~n = 0 . "'11' 

Let <Pn = <P-8n ; <Pn satisfies : 
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By definition of µik : 

(2.24) 

(2.25) 

F ( u i k + cp n 'wk ) ? F ( u i k ' ~) - J ~ d ~ k 

F(uik-cpn,~) ~ F(uik'~) + J~,~ dµik . 

• Let us look first to (2.24) : 

From (~),.. . and (1). , 
.• 111 lV 

Moreover 

( 2. 27) 

and ftom the definition of LI;k) . Combining (2.24), (2.26) we get 

(2.28) F(uik+qi,wkn O"n) + F(uik'wk \ 6'n) 

? F(uik'wkn t\) + F(uik'wk \ On) - f ~~ dµik ' 

and using (2.27), we can substract F(uik'wk,e'n) to this inequality: 

F(u;k+cp,wkn O'n) ~ F(uik'wk n <in) - f ~ dµik 

~F(uik'wknô~)-f·~dµik. 
w 

When n _.,._ +00 , si nce ( ) ( wk n 0~) = wk n ( n <rn) = wk n w 
n . 
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. Let us look now to (2.25) : 

From ('J ) ... and cJZ'). si nce - cjln ~ - qi and <Pn = 0 on C w , 
111 1 V 

(2.29) 

Combining (2.25) and (2.29) 

(2.30) 

Since 

(2.31) 

~ F(uik'wk nw) + fe-,..(j}' dµik . 
n 

I,,) <r = w , making n --+- +oo , we get 
n 

n 

Applying the Proposition (2.6), (2.5) to the increasing set function 

the family R of the open sets w satisfying 

F(uik-cp, wknw) = !nf F(uik-cjJ'wknA) is dense. 
A-Jw 

so (2.31) turns into 

(2.32) 

Let us remark that R depends on cjJ , but that's enough in order to 

conclude since any open set is regular with respect to a borelian 

measure and (2.32) can be extended to any W€ On . 
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(2.33) Proposition 

V w~ff , il v € v_ ... n 

F(v,w) = sup Fik(v,w) 
( i, k) € IN X IN 

sup {F(uik' w n wkJ + f r;;;k -~ dµik} . 
(i,k) ç:: IN X IN w 

Proof_Q_f Proposition (2.33) 

From the Proposition ( 2 .19) , V ( i , k) E:- 1N x 1N , V v ~ V , V w G ~ 

so 

Let us prove the opposite inequality: 

So V B:::; wk 

therefore 

= sup 
i<S]N 

{F(uik ,wk) + f - (Û;k-v) d 1-h} 
wk 

{F(uik'wkn B) + JB(~k--v) dµik} 

F(v,wk) ~ sup F.J.(v,B) , 
i ,j E:]N X ]N l 

F .. (v,B) . 
lJ 

Taking BE: (r , since F(v,.) is a borelian measure, any open set is inner n 
regular and 

F .. ( v ,w) ; so, the equa 1 i ty ho 1 ds. 
lJ 
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~1~~-~: Using the Proposition (2.33) we are going to prove 
the representation theorem. 

(2.34) Definition 

Y r E.. :N , 1 et us defi ne Fr : V x ~ n ~ lR + : 

VrelN, 'Y. VE:-V, Fr(v,B) = sup ~ I F.k(v,B.k) / I B.k cB} 
lï,k=l l l i,k=l l 

i.e. B i--+ Fr(v,B) is the smallest positive measure which is greater 
than all the measures B ~ F;k(v,B) , ~; ,~r . 

(By 1 we mean that the B. k are taken disjoint). 
l , 

(2.35) 

a) 

b) 

c) 

d) 

Pr>op_osition 

VrE:-lN ., F <S- <Ji r 

V Y' E:. IN ., Fr~ Fr+l 

Vve.V., /f WE(f ., 
n 

if u., v eV ., p B G. ~ ~ n .. 
r 

F(v.,w) = Zim t F (v.,W) 
(rt+oo) r 

IF (u.,B)-F (v.,B) 1 ~ f lu-vl 
r r B 

dµ r 

with µ = l µ.k (µ is ~ positive finite energy measure). 
r . k-1 i, r 

1,., -

a) For every BE $n , the functional v ,~ F r{v,B) , as a supremum 
of convex, lower semi-continuous functional is still convex lower semi­
continuous ; 
moreover 

The last inequality follows from (2.33), and the definition of Fr: 

From (2.33) Y v ç;;_ V , V w e O"n , F(v ,w) 7 Fik(v ,w) 

This inequality can be extended to .:f>n since 
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F(v,B) = inf F(v,w) 
w)B 

and since B ----+ F;k(v,B) is a borelian measure which is finite on any 
compact subset of w, it is a regular measure and 

so the inequality 

ho 1 ds for any ( i , k) E: lN )<. lN , v e.. V , B e:. $n ; 
since B ....+ F(v,B) is a positive borelian measure by definition of Fr 
it follows 

So 

on the other hand 

so, 

F(v ,B) ?;- F r(v ,B) . 

F(v,B) ~ sup Fr(v,B) ; 
r<::lN 

sup Fr(v,B) ~ F;k(v,B) ; 
rEJ.l 

·,:d, 

since this is true for every (i,k) E: lN , sup Fr(v,B) ~ sup F. k(v,B) 
r i ,k 1

' 

and from (2.33) 

sup Fr(v,B) ~ ~up Fik(v,B) = F(v,B) if BE: ô'n 
r 1 ,k 

Finally, Y VGV, Vw<2~, F(v,w) = sup Fr(v,w) . 
rElN 

This implies thatevery functional Fr(.,w) is proper since F(.,w) is 
proper. 

From Definition (2.34) one easily verify that properties (iii) and (iv) 
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of :J/ are satisfied. 

The only property Ji which is not obvious to verify is the property (v) 

Take (B;k) and (Cik) two subdivisions of B ; then 

+ fs (Û;k-u/\v)dµik} 
ik 

+ .lk ~(uik'Cikrtwk) , , 

and remarking that these sets are two by two disjoint, we can write 

I = [i~k F(uik'Dik nwk) + J o;/~k-Ù)dµik] 

+ c~k F(uik'Eiknwk) + JEik(~k-V)dµik] 

So, 

~ Fr(u,B) + Fr(v,B) . 

Since this is true for any (Bik) and (Cik) , it follows 
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Finally, starting from Fr;; 3, we have been able to write F as 

F = 1 im t Fr 

with Fr belonging still to J ; the interest of this approximation is 
that the Fr enjoy strong continuity properties (d) : 

Let u, v e:: V and Be:: ::0 ; for every (B.k)~ . k r with 
n 1 .L~l, ~ 

r 
with µ = ~ µ.k . r . 

1 
, 

1 ' = 

(One may take more precisely µr = sup(µik / i ,k = 1, ... ,r) 

after sommation, 

l F.k(v,B.k) ~ l F.k(u,B.k) + l f 1u-v'ldµ 
"k 1 1 "k 1 1 "kB r 1

' 
1

' 
1

' ik 

~ l F.k(u,B.k) + J lù-v!dµ i,k , , B r 

since this is true for every (Bik)~,k=l it follows 

Fr(v,B) ~ F (u,B) + f lu-vldµ r 8 r 

and 

IF (v,B) - Fr(u,B)l ~ I lu-vldµ . r 8 r 

The integral representation of Fr and hence of F will follow from the 
following proposition : 
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(2.36) "Proposition 

Le t . F c 'jl . and satisfyinrj : F : V x ~ih - IR+ and 3 µ , 

~ positive Radon measure Çlf_ finite energy, such that: 

f u,v eV, IF(u,B)-F(v,B) 1 ~ f lû:..vjdµ 
B . 

Then, taking u E:. V ; let us denote 
0 -- ·---

v(B) = F(u ,B) 
0 

8(B) = . lim 
t-oo · 

Then, v and e are two positive Radon measures and ~~µ (i.e~ e is 

E.f fini te energy) ; for every t e IR the measure 

B ~ F(u +t,B) - F(u ,B) is absolutely continuous with respect to e. 
0 0 -

By the Radon-Nikodym theorem, there exists ~ function f : n >< IR -:::,, IR 

satis fying : 

a) if t € IR , x __:,,,.. f(x, t) is ~ borelian function and 

F(u +t,B) - F(u ,B) =·J f(x,t) de(x}, 
o o . B 

b) For e a.e. x ê- n , t ~ f(x, t) is convex, decreasing 

c) b' X e::. n , 
Moreover, 

f(x,u (x)) = 0 • 
0 

Proof_Qf Proposition (2.36) 

Let us first remark that there is no ambiguity in the notion 
F(u

0
+t,B) since the value of F(v,B) does depend only of the value of 

V on B ( uo +t f V! ) . 
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Then, we remark that the function t ~ F(u
0
+t,B) is convex, decreasing, 

so 

F(u
0
+t,B - F(u

0
) _ 

lS increasing and positive. 
Jt 1 

F(u +t,B) - F(u
0

) 

o(B) = lim t -- 0
-----We denote by t

F(u +t,B) 
l

. , 0 ,m ----
t->-m Jt J ( L--m) Jt J 

B 1-+ o(B) as an increasing limit of positive Radon measure is still 

a positive Radon measure and from 

F(u0+t,B) - F(u0 ) f 
-------~ dp, ·it follows 

Jtl B 

0 ~ o(B) -:::: p(B) i.e. o is a positive, fini te energy 

measure (since 11 is positive, finite energy measure!). 

A posteriori, from the final formula (2.32) it will appear that o 
is the smallest positive measure 11 such that 

From O ~ F(u
0
+t,B) - F(u

0
) ~ Jtl o(B) , it follows that the measure 

B 1-------+ F(u
0
+t,B) - F(u

0
) is absolutely continuous with respect to µ 

and by R.N. theorem there exits a function ft(x) borelian-measurable, 

integrable relatively to o such that: 

denoting f(x,t) = ft(x) we have 

V B F .' !> n , F ( u 
O 
+ t , B ) F ( u 

O 
, B ) = f 

8 
f ( x , t ) do ( x ) 

From F(u
0
+s,B) - F(u

0
,B) = f

8
f(x,s) do(x) 

we get, taking the difference 
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Since e~µ , e is absolutely continuous with respect to µ and there 

exists h a borelian functional, 0~h11 , such that: e = hµ. 

From, 

~ f [f ( X , t) -f ( X, S ~ h ( X) d µ( X) ~ 1 t-s 1 • 
l.l\ u' Js - -

Taking for B a decreasing sequence of neighbourhood of x
0 

, we get 

Vs,te=:.R xR, h(x) !f(x,t)-f(x,s) 1 ~ jt-s j µ-ppx . 

Since t ,--,,. F(u
0
+t,B) - F(u

0
) is convex, decreasing it follows easily 

that t 1-'>- f(t,x) is convex, decreasing : for example, 

let t>s ; then 

i t fo 11 ows that f(x,t) ~ f(x,s) e-a.e. x. 

Let us prove, to end the proof of the Proposition (2.36), the integral 

representation: 

it fo11ows that the measure B ,_,,_ F(u
0
+u,B) -· F(u

0
,B) is absolutely 

continuous with respect to the measure lù/ dp and by the Radon-Nikodym 

theorem, for every u r-. V there exists a fonction gu .:-.. L 1( !Ùjdµ) such 

that 

Taking u = t , 
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Since this is true for every Bs:3n, V te-:. lR , gt(x)lt\ = f(x,t) hx) µ_ae;.> 

Let us now explicit gu : take x
0

E: ~ and B a neighbourood of x0 . 

IF(uo+u,8)-"F(uo+u(xo),B) 1 ~ fB iu(x)_.Ù(xo) 1 d1.i(x) 

JB [gu(x) l~(x) l-gû(xo) (x) lu(xo) l] dµ(x) ~. fB IÜ(x)-Û,(xo) 1 dµ(x) . 

Di vi ding by µ( B) and maki ng .:.l) Hx
0

} , we get 

Fi na lly, we get 

and since 9u(x)(x) !l}tx) 1 = f(x,u(x)) h(x) 

F(uo+u,B) - F(uo,B) = f1/u(x).lu(x)ldµ(x) = fsf(x,u(x)) h(x) dµ(x) 

and, by definition of h , e = hdµ 

F(u 0+u,B) - F(u
0

,B) = J 
8
- f(x,û'(x)) de(x). 

So, F(u
0
+u,B) - F(u

0
,B) = J

8
f(x,u(x)) d0(x) 

and F(u,B) = f
8

f(x,'u(x)-¾(x)) de(x) + F(u
0

,B). 

End of the proof of Theorem 2.3 

For Proposition (2.33), F = sup Fr; more precisely 

V w<:::{Yn, Vv~v, F(v,w) = lim 1' F (v,w) . 
r~oo r 

Since for every r E="-lN , Fr satisfies the hypothesis of the Proposition 



II.18 

(2:36), (2.35(d)), it can be represented as an integral functional 

with er a positive measure of finite energy and vr(B) = Fr(u
0

,B) . 

Let us choose u
0 

s V such that : 

B ~ F(u
0

,B) is a positive Radon measure (i.e. V K compact, 
K c Q, F(u0 ,K) < +oo) and denote v(B) = F(u

0
,B) . 

Since vr ~ v and v is a Radon measure, by the Radon-Nikodym theorem, 
we can write vr = kr dv; so 

Let us now consider the other term of Fr(v,B) and let us rewrite it 
also as an integral functional with respect to a fixed measure (independent 
of r €- :N ) : 

By construction, dp is a positive Radon measure of finite energy and 

Since dp is a positive Radon measure, it fol lows by appli'cation 
of the Radon-Nikodym theorem that 

de 
__ r_ = h .dp; so 
2r/l der Il r 
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Taking X= p+v, since X is a positive Radon measure and P$X, v~X 
applying once more the R.N. theorem 

p = hX , v = kX and finally 

Fr(v,B) = J
8

[2r!lder11-fr(x,v(x)) hr(x) h(x) + kr(x) k(x)J dX(x) 

Denoting gr(x,t) = 2rlld9rl1-fr(x,t) hr(x) h(x) + kr(x) k(x). 

We have that for X-almost every x, (gr(x,v(x))rc lN is an increasing 

sequence (This follows from the growth of the sequence (F r)r E:, 1'l) • 

By the Beppo-Levy theorem denoting 

g(x,t) = lim t 9r(x,t), we obtain for every w stYn 

F(v,w) = J g(x,v(x)) dX(x) ; 
w 

more precisely, since v = k dv it- d v , r r · kr t 1 , and, 

g(x,t) - k(x) = f(x,t) h(x) ; 

finally (with the convention f(x,t) = 0 if h(x) = 0) 

F(v,w) = Jwf(x,v(x)) h(x) dX(x) + fwk(x) dX(x), 

F(v,w) = J f(x,v(x)) dp(x) + J v(x) = Jwf(x,v(x)) dp(x) + F(u
0

,w) 
w w 

which is the conclusion of Theorem 2.3. 

(2.37) CoroZZary 

Let 1/J be ~ function from n into IR and let us assume that 

u
0

(x)? 1/J(x) ~ V-quasi everywhere. 
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F(v,B) = 
~ 0 if v(x) ~- i.J;(x) q.e. on B 

/ +oo e ZseûJhere. 

Then F\VJC. etn belongs to -.,y; consequently, there exists 1J a 

positive measure which does not charge the polar sets, and an integrand f 
borelian with respect to x , convex decreasing with respect to t, such 
that: 

Vv.s V, V WG:e"n, v(x) ~-1./J(X) q.e. on w ~'> J f(x,v(x)) dµ{x) = 0. 
w 

This last equality turns into f(x,v(x)) = 0 , µ a.e. x 

(Let us remark that in the integral representation v(w) = F(u0 ,w) = 0) . 

Since t ~ f{x,t) is convex, decreasing, and positive 

f(x,t) = 0 ~ ~ t ~X(x). 

t7f(x,t) 

X t 

Finally, there exists a 
function x _,,. X(x) 
borelian such that 

(2.38) V viz V , V w s trn , v'(x) .~ i.J;(x) q.e. on W<=--;> v(x) ~ X(x) µ a.e. on w. 

Let us remark that 'v(x)? i.J;(x) q.e. on w ____ 7 v(x) ~ i.J;(x) µ a.e. on w 

(since µ does not charge sets of zero capacity); consequently 

V vc V , V w <::.~ ô~ , v(x) 9 X(x) µ a.e. on w -·--") v(x) ~ 1./J(X) µ.a.e. on w, 

~ and X(x) ~ i.J;(x) µ a.e. on w, 

,"'-, 

where X (resp. ~) is the quasi-s.c.s. regularization of X (resp. 'l/J) • so 
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I'\,, 'V 

(2.39) X? ip µ a.e. on w. 

On the other hand, there exists a sequence vn ~ V n éf;c(~) such that 
A,,· 

vn(x) t 1/J(x) quasi everywhere. 

Since µ a.e. on w, going to the limit 

as n -+ +00 , we obta in 

(2.40) 
rv 
ip ~ X fl a • e . on w • 

1\/ ,,_., 

This implies that 1jJ ? X 'IJ, a.e. on w and finally 

,,V ,,,.,, 

ip = X ·µ a .e. on w • 

Since v ~ X 
.-V /\_/ 

µ a.e. on w ~ > v ~ X µ a.e. on w we finally get 

If we start with 1jJ which is quasi s.c.s. the formulation is simpler: 

(2.42) Vv ~ v, ~wE-t'n, v(x) ~ ip(x) q.e. on w~.> v'(x)? w(x) µ a.e. on w. 

So for any obstacle 1jJ there exists a measure µip (which depends on ip!) 

such that, µip is a positive Radon,vmeasure of finite energy and, it is 
equivalent to take the constraint u ~ 1jJ in capacity sense or µ-measure 
sense. 

If l/J is regular, i.e. 1jJ f=- V we refind a classical result of potential 
theory ; taking µ = dx the Lebesgue measure and w an open 
set 

Let us observe finally that (2.42) can be extended to V~ R(F) where 
R(F) is a rich family of borelian subsets of ~. 
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CH.III r-LIMITS OF OBSTACLES 

In this paragraph, we still denote 

and introduce two classes of functionals : the energy functionals ë P 

and the constraint functionals .97Y. 

(3.1) a p is the family of functionals <P V ->r lR+ of the following 

type: <j)(v) = JQf(x,Dv(x))dx with 

{ 

Àlz!P ~ f(x,z) ~ M(l+lzl P) 

(3.2) x t--4- f(x,z) is borelian measurable. 

z ~ f(x,z) is convex continuous. 

For any G0 Ë- efn and v e:. V we denote <j){v,w) = tf(x,Dv(x))dx ·. 

We recall the following compactness result concerning the family 5 P 

(3.3) Given a sequence (<Ph)h E: ll of functionals of ~ p , 

one can extract a subsequence (<Ph) such that: 
kke=:ll 

V v "2 V , V ◊J e(Y , r-(s-LP(Q)) lim <Ph (v,w) = (j){v,w) exist, 
n k+1-oo k 

and <t, still be longs to ~ p . 
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Bf is the family of the functionals of ~ satisfying 
y 

Inf [F(v,w)~lvllv"l ~ y(w) < += • 
Vf?..V 

Now we can give the statement of the main result of this chapter 

( 3. 5) 'l'heoPem ( :t) 

Let 

Let 

~ sequence of functionals Ç!f_ the class 

~ sequence qt functionals qt the class 

Then., thepe exists ~ subsequence (hk\ tfi=.jN ., ~ Pich family R qt boPeZian 

subsets qt n., and two functionals <P and F belonging pespectively to 

~ and gf such that 
Cp - y ----

(i) 

(ii) 

V ve:V., 

V VE: V., 

<P(v) = r-(s-LP(r,iJJ 

~ w e. ~ nR 
Um <Ph (v) 

k 

n ., 

<fi(v) + F(v.,w) = r-(s-LP(r,i)) Zim 
k-++ro 

The functional F can be Pepresented: 

F(v.,w) = f h(x.,v'(x))dµ(x) + v(w) 
w 

whePe µ and v are two positive Radon measures., µ qt finite enePgy; 

h(x., t) is borelian with respect to x ., convex decreasing and Zower 

semi-continuous with respect to t. 

(3.5)bis Corollary 

Let ( iµh) h E: :J:/ ~ sequence Ç!f_ functions iµh n -'> IR such that : 

(*) In this paragraph we shall prove the Theorem (3.5) only in the case 
of quadratic energy functionals. 
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Then, there exists ~ subsequence (hk) k «-. JN ., ~ rich family R Ç!_f 

bore lian subsets Ç!_f _Q, , such that : 

J.; -lp' y V f E- w ., (Q.) ., I' lJ0 L R . 

Mirt fJ IDv Pdj_,· ... <f,v>_} __._ 
l~Ew;-., P (n) ~ k++= . 

S Min 
1 

.{J~lnv[Pdx + ih(x,v(x))d}.(x) - (f,v>} 
;,_V~i/Jh on w v E w 'P (0,} 

k o 

where µ is ~ positive finite energy measure, h is borelian with respect 

to x ., convex, l. s. c . ., decreasing wi th respect to t . 

Proof of Theorem (3.5) 

From (3.3) we can extract a subsequence (~h) 
k k EN such that 

From now on, we shall work on this subsequence and therefore may assume 
that the r-lim of the sequence (~h)h E: N exists. 

Let D be a dense denumbrable family of open sets ; from the classical 
compactness theorem ( cf. (15] ), and a diagonalisation argument, we can 
extract a subsequence (that we still denote hk) such that: 

(3.6) Vve V , V w e:: D , r-(s-LP(~)) lim [cph (v)+Fh (v,w)] exists 
k-++oo k k 

Let us defi ne two functi ona 1 s F+ and F- : V v E:. V , V w,;;;:. trn 

(3.7) 
{

~(v) + F+(v,w) = r-(s-LP(~)) lim sup(~h (v)+Fhk(v,w)J 
k-++oo k 

~(v) + F-(v,w) = r-(s-LP(r2)) lim inf[~h (v)+Fh (v,w)J . 
k-++oo k k 

By definition of the r-lim, and from (3.6), (3.7), we have 
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( 3 .8) V v eV , V w e: D , 
+ -F (v,w) = F (v,w) . 

From the classical properties of the r-limit and the properties of the 

functionals (Fh)h s :N and (cph)h E.:" :N it follows easily that the 

functionals F+ and .F- are lower semi conti,nuous with respect to v and 
positive increasing with respect to w. 

Let us now show how these regularity properties are enough, in order 
to extend the equality (3.8) to V x R(F) , where R(F) is a rich 
family of borelian sets : 

(3.9) Definition 

Let ~ the class of the functionals G : V x 9->n ~ R + satisfying 

(i) ~ v e: V , B 1-+- G(v,B) is positive increasing 

(ii) Y B"E ~n , v 1----"r' G(v,ÔJ is lower semi-continuous on V • 

In order to extend_the_~ro~ertl (3.5) we introduce: 

We shall denote Be(G) the class of all borelian sets B satisfying 

V VG. V, V À>O, GÀ(v,B) = ~n! GÀ(v,A) 
B:,A 

and by Bi(G) the class of all borelian sets B satisfying 

V V€: V , V À>Ü , 

(3.10) Proposition 

For any functionai 

are rich in ~ ---- ·n. 

GÀ(v,B) = ~U_!: GÀ(v,A) 
B::iA 

the sets B (G), B.(G) and B(G) 
e 1-, 
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Proof__E_f Proposition (3.10) 

Let us take a sequence (À,), ~1 , A.>O, ~- ~ 0 and, 
1 l E:. J, 1 1 . 

1"?+u, 

since V is separable a sequence (vj)j E.. N dense in V . 

For each (i ,j) c::=-_ N ><. N , the set R. . of all borelian sets B 
1 ,J 

satisfying 

(3.11) 

is rich in in , 

Let us take R = 

by Proposition (2.6). 

n R •• ; by 
(i,j)EN>'-N l,J 

Proposition (2.5) R is stîll 

rich in 33 n and (3.11) is satisfied for any B .s. R and any (i ,j) e. N ·l'o N 

using the lipschitz continuity properties of G~(v,B) with respect to v 
and À , we can go to the limit on (3.11) and obtain 

V vs V ,YÂ ► Ü 'iBE:R' _:_u~ Gi\.(v,A) = GÀ(v,B) = ln! G/v,A) 
AcB A~B 

so, B(G):;; R and B(G) is rich. 

In the following proposition, we shall see that the sets B(G) enjoy 
some continuity prolongation properties relatively to the functional G: 

(3.12) Proposition 

Let G
1 

and G
2 

two functionals _Ef the class ~ and let us suppose 

that: 

Y v €. V , ] D(v) ~ dense subset !lf_ :Bn (which may depend on v) such that : 

Y DE. D(v) , 

Then, B ( G
1

) = B ( G
2), and f B e:: B ( G) , f ).. > 0 , f" V E V , G~ (V, B) = af (V, B) ; 

consequently: 
PvE.V, r'ffcsB(G)fltY, n 
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Proof of Proposition (3.12) 

Let us prove that V ;\>0 

(3.13) 

If B<:. B (G1) then (3.13) implies cleàrly that BE: B(G2) i.e. 

B(G1) c B(G2) by symmetry, we can prove that B(G2) c B(G1), and the 

equality B(G1) = B(G2) will follow. Moreover, we shall get 

( 3 .14) V ;\>0 , V B E'. B ( G) , Y v e V , 

Going to the limit on (3.14) when À goes to zero, we obtain 

(3.15) YB c;;: B(G) f) trn , VvE. V , 1 2 G (v,B) = G (v,B) . 

So, let us prove (3.13) and let us begin by proving the left inequality 

i nf G~ ( V ,A) ~ i nf Gf ( V ,A) . 
0 _ 0 ·-

(3.16) 
A>B AJB 

By defi ni ti on of the i nfimum, gi ven Ei > 0 , Ei ~ 0 , for every i e: lN 
0 

we can fi nd A; e. .%n , A; .::> B such that 

ln! Gf(v,A) ➔ G~(v,A;) - Ei ; 
A)B 

by definition of G~(v,A.) 
t\ l 

YiE. 1'l ,J V;G:,V s.t.: 

Combining the two last inequalities we get 

!n! G~(v,A) ?' G\v; ,A;) + ~À Jlv-v;!I~ - 2E; . 
A:,B 
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By assumption, there exists a dense subset of\ ,D(vi) such that 

ÎD€D(v.), 
1 

0 -
Since A.::) B and D(v.) 

1 1 
is dense: 

V ie:l'J, 30. e, D(v.) s.t. : Be D. c D. c Â. c A •• 
1 1 1 1 1 1 

Since G1(v; ,.) is increasing and A;:> Di 

2 1 2 
~ G (vi,Di) + 2À llv-villv - 2s; 

2 . 1 2 2 
? !:~ {G (z,Di) + 25:"llv-viJlv} - 2s; = GX(v,Di) - 2si 

~ !n! Gf(v,A) - 2s; and since this is true V; E..:N , 

A:JB 

l
0
nf G~(v,A) ~ lnf G2(v,A) (and by symmetry there is equality!). 

,.. 0 - i\ 
AJB A.)B 

Let us now prove the right inequality of (3.13) 

(3.17) 

0 

Let A be fi xed, A c. B and 1 et us prove tha t 

1 2 (3.18) GÀ(v,A) ~ ~u~ GÀ(v,C) . 
CcB 

- 0 - 0 0 

Since Ac B there exist C e:.~n such that Ac C c C c B ; 

By definition of GI(v,A) , 

For every z E- V , there exi sts by defi ni ti on a dense subset D(z) of _1) n 
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such that YB E- D(z) , 1 2 G (z,B) = G (z,B) . 
0 

Since D.(z)is dense and Ac C, there exist D
2 

E. D(z) such that 

- 0 - C -- 0 

AC Dz C. Dz è: C C. C C B ' therefore 

Yz eV , 1 1 1 2 
GÀ(v,A) ~ G (z,D2 ) + 2À llv-zll 

2 1 . 2 
~ G (z,D2 ) + 2À !lv-z!I 

2 1 2 
~ G (z,C) + TI /lv-zll . 

Since this is true for every z E: V 

0 

Since Cc B , we finally get 

End_of_Ste~_l: We first remark that, by assumption, since the 

functionals Fh belong to g:;- v -'7 Fh(v,w) is lower semi-continuous 

for any w E: trn! 

From (3.8) and (3.12) it follows that 

+ -F (v,w) = F (v,w) , 

so the r-limit exists for any VE: V and wE:i(F) n ô'n with B(F) a 

ri ch fami ly. 

In order to obtain a precise representation of the r-limit we need more 

information about the dependance of F+ and F- wi th respect to BE: :ï\ 
and V€:,. V . 
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(3.24) Lemma 

p' VE. V ., f A., BE:, $n ., + + + F (V., A U B) ..::; F (V., A) + F (V., B) • 

Proof of Lemma (3.24) 

By definition of r-(s-LP(n)) lim sup , there exist two sequences 
A B 

(vh)h e :N ' (vh)h e:.:N : 

(3.25) 
{

qi(v) + F+(v,A) = lim sup 
h++oo 

qi(v) + F+(v,B) = lim sup 
h++oo 

[</lh(v~)+Fh(v~ ,A)] ,v~ s-LP(n)),, V 

h++oo 

[ h B h B ] B s-Î_P(n'.._ .... V • 
<l> (vh)+F (vh,B) ,vh - l-,,--

h++oo 

Since vA V v8 s-LP(n)>-v , it follows from the definition of the 
h h h++w 

r-ts-LP(n)) lim sup: 

(3.26) qi(v) + F+(v,AUB) ~- lim sup [cflh(v~Vv~)+Fh(v~Vv~,AUB)] . 
·h+i-co 

From the additivity of A l-r Fh(v ,A) 

(3.27) 

From the decreasing property of v 1--+ Fh(v,A) 

From 

(3.29) 

it follows combining (3.26), (3.27), (3.28), (3.29) : 
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~ lim sup [c/>h(v~)+Fh(v~,A)J+lim sup[c/>h(v~)+Fh(v~,B)] 
- h-++oo 

+ l im sup [-cj>h (vAh /\ vh8)] 
h++co 

Finally combining (3.25), (3.30) and (3.31) 

+ u + + F (v,A B) ~ F (v,A) + F (v,B) . 

(3.32) Lernma 

t v €.V, f A,B open sets satisfying : An B = ~ and AU B E:-$(F-) 

(-which_is the rich farniZy 9.1 reguZar boreZian sets _with respect to F-) 

Proof of Lemma (3.32) 
0 - () -

Let A + A , B· + B as s } 0 such that A :> A , B ~"> B , A () B = 0 
E: E: E: E: E ' E 

and 

(3.32)bis F-(v,A U B) = lim t F-(v, A U B) 
(E+O) E E 

Let us fix E>O ; by definiti on of F- ( v ,A \,J B ) : 
E: E 
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in s-LP(n) such that 

XEB-W1' 00

,(n) such that xBE = 1 on B XE O on n B n,..xE..-1 =.. ùG , B : ù6' f:, W:, ~ • 

On the other hand, let 

rA in s-LP(n) with 
(3.35) h 

~V 

ZB in s-LP(n) with h ➔ V 

Let us define 

~

, v~,E = X~ V~+ (1-X!)z~ 
(3.36) 

B,E E E E B vh = x8 vh + (1-X8)zh 

and compute cph(v~'E) and cph(v~'E) : 

For any t E:] 0 ,1 [ 

h A - cp ( V ,Q"-A) cp (zh,Q\A) ~ 

h B - <1>(v ,n,s) cp ( zh ,Q\ B) ~ 

From the continuity of fh and the majoration fh(x,z) ~· M(l+lz/P) , 
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So 

(3.37) 

From (3.34) , 

(3.38) 

~ lim inf[JA fh{x,Dvh)dx + J
8 

fh(x,Dv~)dx + Fh(vh,AE) 
E E 

moreover 

(3.39) lim inf J fh(x,Dv~)dx ~ J f{x,Dv)dx 
h+tŒ n'\(A u B ) n'\(A u B ) E E E E 

Combining (3.37), (3.38), 

(3.40) 

+ li~~f[~h(tv~'t)+Fh{v~,BE)] 

+ lim inf[-(1-t)M {J 2+lv~-z~!Ploxf!P 
h++oo n 

+lv~-z~!P!ox~!P}J 

+ lim inf[-J _fh(x,Dz~)dx - J _fh(x,Dz~)dx] 
h++00 n\A n\B 
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From (3.33), (3.35), (3.39), (3.40) turns into 

cp(v) + F-(v,A UB ) 9 lim inf[cph(tv~'E)+Fh(vh,A )] 
E E h-++oo E 

+ 1 i~~f [cph ( tv~ ,E )+Fh (vh ,BE)] 

- f f(x,Dv)dx - J f(x,Dv)dx + J f(x,Dv)dx . 
Q\A Q\B Q\(AE u BE) 

since vE - vE,A on A 
h - h 

On the other hand, we use 

cp(v) + F-(v,AEUB
8

) ~ tP lim ~nf[cph(v~'8 )+Fh(vh'A,A)] 
h+,-oo 

+ tP lim inf[cph(v~'E)+Fh(vh'8 ,B)] 

- f f(x,Dv)dx - J f(x,Dv)dx + f f(x,Dv)dx . 
Q\A n,B n,(A U B ) 

From the definition of F-(v,A) and F-(v,B) , since 

and vB ,s s-LP (n); v 
h 

E E 

- f f(x,Dv)dx - f f(x,Dv)dx + J . f(x,Dv)dx. 
____________ n_\~- mB n,(At,U BE) 

(*) When cph does not verify this condition, it is easy to adapt the prove since 
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Making t --. 1 and E ~ 0 , from (3.32)bis 

- f f(x,Dv)dx - f f(x,Dv)dx + f f(x,Dv)dx 
mA n,B n,(AUB) 

(3.41) Lerrona 

+ 
1/J' 1~ F (v_,B) is decreasing. 

Proof of Lemma (3.41) 

Let BE:. ~n and v1, v2 E: V wi th v1 ~ v2 by defi ni ti on of 

F+ ( v 1,B) 

(3.42) cp(v1) + F+(v 1,B) = lim sup[<Ph(v~)+Fh(v~,B)] , 
h++= 

Let us consider the sequence v~ y v~ s-LP(n)>- v1 y v2 = v2 ; (*) 
h-++oo 

(3.42) 

From 

cp(v2) + F+(v2·,B) ~ lim sup[l(v~)+Fh(v~,B)]+ lim supI<t>h(v~)] 

+ l im sup [-<Ph(v~ A. v~)] 

1 2 + 1 1 
~ cp(v) + cp(v) + F (v,B) - cp(v ). 
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We have use the inequality lim sup[-4'h(v~ /\ v~)] .$- -cr(v
1
) , or, 

equivalently, ~(v 1~ lim inf'-l-h(v~A v~) ; this last inequality follows 

1 2 1 2 · 1 
from : vh A vh -+- v A v = v in 

Finally, 

(3.45) Lemrna 

Proof of Lemma (3.45) 

We assume that 

with h h a .. = a .. , 
lJ Jl 

+ 2 + 1 F (v ,B).;;;;. F (v,B) • 

+ v ._ F (v.,w) is convex (p=2) 

J 
N av av 

<l>(v,w) = ' a .. (x) - - dx • 1; 
1 

, J ax. ax. 
Wl .,J= l J 

V i ,j=l, ..• ,N ; we denote 

h N a h v \ a av A V = - \ - (a .. -) , Av = - l -" - (a .. -) 
• f; l ax. lJ ax. oX, lJ ax. 
l ,J= 1 J 1 J 

<l>(v,~) = <1>(v) = (Av,v) = a(v,v) • 

For any v E: V , let us define v~ by : 

(3.46) h ~ A vh = Av i.e. 

Then, 

(3.47) V and V i = 1, .•. , N 
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Let us prove that: 

+ F ( V ,w) = 

+ By definition of F (v,w) , 

qi(v) + F+(v,w) = Min lim sup [qih(vh)+Fh(vh,w)] . 
2 h-++oo 

{vh ~ v} 

Let v~ defined by (3.47) and let us write vh = v~ + zh ; then 

Let us compute 

(3.49) 

By assumption 

By construction 

~ qi( v) ; let us prove that 
h++oo 

~ 0 
h-++oo 

azh 
-"'- dx • aX, 

1 

* h avh w-L2 
I a . . - ~ 
. lJ 3X. 
J J 

\ . -av 
la .. - • . , J ax. 
J J 
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Moreover, 
azh 

rot ( ax. ) . = O , 
1 1=1, ... ,N 

* h avh 
- di v ( }; a . . -

6 
-) = Av 

j lJ xj i=l, ... ,N 
is compact in -1 

H • 

So we are in the situation where we can apply the theorem of compactness 
by compensation of Murat-Tartar [ 19] and 

( [19] tells us that 
:t 

h avh azh 
\ ( \ a ) ~ O in D 1 (n) ; 
~ 1-t ij ax. ax. 
1 J J 1 

since it is bounded in L2(n) it converges weakly to zero in L2(n) and 

J Y a~. av~ azh ~ 0 ) • 
.Q. ï":-j 1J axj axi 

Finally 

and 

Now, we remark that v -"7"' Lh(v) is a linear operator; the convexity of 
+ F (.,w) follows easily: let 

zl 
2 s-L 0 h ~ 

2 

z2 
s-L 
---,. 0 h 

2 
So, ÀZ~ + (1-À)z~ s-L_ O and 
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+ F (Àv1+(1-À)v 2 ,w) 

. 1 2 1 2 <: l1m sup {cph(ÀZh+(l-À)zh) + Fh[Àzh+(l-À)Zh+Lh(W 1+(1-À)v 2),wJ} 
h -++oo 

(3.50) Definition 

For any v E: V and w E. ft' we define : n 

* + -F (v,w) = ~up F (v,B) = â_UP F (v,B) 
Bcw Bcw 

+ The last equality results clearly from the equality of F (v,.) and 

F-(v,.) on a dense subset of :On (cf. 3.19)). 

(3.51) P1'oposition 

I .. Vv ,a,/ ______.__ R+ b-, cr .-- vn ~ e1,,ongs to ,;, . 

Proof~f Proposition (3.51) 

a) By definition, cp(v) + F+(v,w) = r-(s-LP(~)) lim sup[<t>h(v)+Fh(v,w)] ; 

i t fo 11 ows from the genera l properti es of the f- l imi t tha t 

v ~ cp(v) + F+(v,w) is lower semi-continuous for the topology 

s-LP(~) (or equivalently, .w- w1 'P(~)). 
0 

Since v \--+- cp(v) is continuous for the strong topology of V = W~'P(~) 
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+ it follows that v ~ F (v,w) is lower semi-continuous for the strong 
topology of V . By Lemma (3.41) and (3.45) it is convex (p=2) and 
decreasing. 

~ Clearly F (.,w) as a supremum of convex, l.s.c., decreasing functional 
is still convex, l.s.c. and decreasing. 

Let us now prove tha t F* ( . ,w) i s proper : 

By assumption, Inf [cph(v.)+Fh(v,w)] ~ y(w) < +00 , so there exist 
v~v 

w vh = vh in V such that cph(vh) + Fh(vh,lù) ~y(w) + 1 . 

Since Fh is positive and the ~h equicoercive, the vh are bounded 

in V 

w-V w 
~ V 

and 

So, - w F (v· ,w) < +oo 

proper. 

Vh 
__ {vhk if h e: {hk}k 6 ~ taking 

v otherwise 

-,(_ y(w) + 1 . 

i.e. 

b) Let us prove that F~(v,.) is a measure: 

1 et w = w1Vw2 wi th W1 ,w2 e:. rrn and W1 n w2 = 0 then 

(3.52) 

(3.53) 

Let us prove first (3.52) : let Be w1 U w2 = w; then 

* F (,,w) is 

8 = ( B n w1) U ( B n w2) and B () w1 c w1 , B n w2 c w2 ; so frôm ( 3. 24) 
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Let us prove now (3.53) : 

Let 8Ï c w1 , and 82 c w2 ; since B1 U B2 c w1 U w2 , by definition 

of a rich family there exist II e:.~(F-) such that 

Since II(lw1 ::::>81 and rrnw 2 :>8 2 and F-(v,.) isincreasing 

Since this inequality is true for any 81 c w1 and B2 c w2 , 

~ The a -addi ti vi ty wi 11 fo 11 ow from the conti nui ty property of F ( v,.) on 

increasing sequences : 
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(3.54) 

let B c \J w = w ; from the Borel-Lebesgue theorem, there exist n sl-l n o 

such that B c w ; so 
no 

and lit ~· F (v,w) ~ lim t F (v,w) 
n-++co n 

si nce V n '== J.l , * lit F (v,w
0

) ~ F (v,w) the converse inequality is true 

and (3.54) follows. 

The extension of F*(v,.) to all the borelian sets as an outer 
measure makes of Fllt(v,.) a borelian measure: 

(3.55) 

c) Now let us prove that F1
(. ,w) is local 

(3.56) Lemma 

Proof of Lemma (3.56) 

Let A,Be.6'n, such that Ac Be B cw; by definition of F+(u,A), 

LP(Q) there exi st vh h+-t<S>:> v such that 

(3.58) ~(v) + F+(v,B) = lim sup {~h(vh)+Fh(vh,B)} . 
h-++co 

Let us define Xe w1'
00

(n) such that X = { 6~x~~ A 
O on n ·, B 

and 
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(3.59) 

We define uh = Xvh + (1-X)zh and remark that 

) Xv + ( 1-X)u = u 

l u on n, w • 

on w (since v=u 

By definition of F+(u,A) , 

~(u) + F+(u,A) ~ lim sup {~h(uh)+Fh(uh,A)} . 
h-++oo 

Si nce uh = vh on A and Ac B 

+ h -~(u) + F (u,A) ~ lim sup {~ (uh)+Fh(vh,B)} . 
h-++oo 

Now let us compute ~h(uh) : as in the proof of the Lemma (3.32) we get 

So, 

tP[~(u)+F+(u,A)] ~ li~~p [f nfh(x,Dvh)dx+Fh(vh,B)] 

+ lim sup [J _fh(x,Dzh)dx] + lim s.up [-J fh{x,Dvh)dx} 
h-++oo n \ A h-++oo n, B 

Now, we remark that 

(3.60) lim sup [-J fh(x,Dvh)dx] ~ -f f(x,Dv)dx , and 
n,B · · Q\B 
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s-LP s-Lp vh ~ v , zh --~ u and v = u on w; using (3.58), (3.59), 

(3.60) and (3.61) : 

- f f(x ,Dv)dx + J f(x ,Du )dx 
Q\8 n,A 

+ (1-t)M Jndx . 

Making t converging to one, we obtain 

- -and (3.62) is true for any A,B with Ac B c B cw ~ 

Since B c w, (3.62) implies 

-Taking the supremum with respect to A, Ac l\): 

Fi(u,w) + Jf(x,Du)dx ~ F~(v,w) + f f(x,Dv)dx. 
w w 

Since u = v on w, fl:(u,w) ~ ~(Y,w) and interverting the role of a 
and v , we obtain 

d) Let us end the pr,oof of the Proposi:tion (3.51' oy provi'ng the 
following lemma 

( 3. 63) Lèrtona 



Proof of Lemma (3.63) 

Let B c: ~ and 
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Si nce Uh /\ vh s-Lp un>-u A V and uh V vh s-Lp ( Q)), u V V , by defi ni ti on 

of F- , 

By addition of these two last inequalities 

~ lim inf[~h(uhAvh)+~h(uhVvh)+Fh(uhAvh,B)+Fh(uhVvh,B)] 
h-H-<x> 

~ lim inf [~h(uh)+Fh(uh,B)+~h(vh)+Fh(vh,B)] 

~ lim sup [~h(uh)+Fh(uh,B)J + lim sup [~h(vh)+Fh{vh,B)] 

+ + ~ ~(u) + ~(v) + F (u,B) + F (v,B) 

since, ~(u Av) + ~(u Vv) = ~(u) + ~(v) it follows that 

(3.64) 

Let us take now oo e ~ and A,B e trn such that 7f c: w , B c w • 

Let us take r:J E tr such that A U B c î,' c îrcw ; from (3.64) 
n 
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Si nce AC tr and B C tr 

Taking the supremum with respect to A and B , 

End of the proof of Theorem (3.5) 

From (3.19) YwE...93(F~l Ot\ = j)(F-) n rrn , F+(v,w) = F-(v,w) 

By definition 

F*(v,w) =._J;up F-(v,B) . 
Bcw 
B c!r 

n 

For v fixed, by Proposition (2.6) the set of Ae$ such that 
n 

F-(v,A) =_sup F-(v,B) is rich in 5\; 
BcA 

so for any V€- V there exists a dense subset of open sets such that 

* -F (v,w) = F (v,w) . 

By Proposition (3.12) it follows that 

J)(F*) = ~MF-) and V v E.. V , Vw E:$(F*) n ô'n , F*(v,w) = F-(v,w) 

We can do the same deduction with F+ and 

:.n(F*) =:î1(F-) = '.b(F+) and VvE:-V,fwE":".2(F*)fH\, F-(v,w) = F+(v,w) = F*(v,w). 

Since F*E.'.Y we can apply the conclusion of Ch.II and 

Finally, we have construct a subsequence (hk)kE:. 1'l and a 11mit 
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functional F still belonging to 'Y. such that y 

+ - J 'V F (v,w) = F (v,w) = F(v,w) = h(x,v(x)) dµ(x) + v(w) . 
w 

The conclusion of the Theorem (3.5) follows immediately. 

Let us now examine in detail the properties of the limit functional F 

when the (Fh \ e::. J.l are pure obstacles : 

(3.65) Proposition 

Let F(v) + JlvllP1 w-'P (W 
0 

where the (Fh)h 
8 

IN are pure obstacle functionals : 

{ 

0 :!:î._ V~ ~k 

+oo otherwise. 

on Q 

The two following statements are equivalent 

(i) F is ~ pure obstacle functional 

t 
(ii) 

Then (F h) h E IN converges in Mosco sense to F • 

Proof of Proposition (3.65) 

(i). >(ii): 

Let us assume that F is a pure obstacle functional, F = 1I K ; 
l/J 

then, for every v e Kl/J , there exists vh E Kl/Jh such that : 
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~ Jlvh Il:~ ,p ( 11) 

' V h h#OO 

Therefore vh - v in s-W~ ,p (n) 

w -w1,P(n) 
On the other hand if vh e: Ki/Jh , vh o . v , 

and F(v) <+oo i.e. VE'-Ki/J; so Ki/Jh ~Ki/Jin Mosco sense; 

(ii) ;>,,(i) : 

If (Fh)h E :N converges in Miosco sense in wl,p , its limit 

functi ona 1 F takes on ly the va 1 ues zero or +oo ; therefore F i s the 

indicator functional of a closed convex non void set K: F = lK; 

moreover K clearly wi11 be unilateral i.e., 

{ 
K stable for the i nf-operation 

K + V+ c K • 

So, K = Ki/J = {v E:. V/ v(x) ~ 'l'(x) q.e.} ( cf. [ 2 J ) , and, 

Ki/Jh -+ Ki/J in Mosco sense. 

It follows from [ 1 J that 

( Il -li ~ + Il K ) 
i/Jh h E. :N 

converges to (/1-!IP + 'Il K) in Mosco sense 
i/J 

and 11-!IP+nK =H-JIP+F i.e. 
1/J 

F = TI K • 
i/J 

Moreover, Fh h#OO> F in Mosco sense in that case. 

Let us examine now how F depends on the energy functional 
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(3.66) Example 
-V 

For simplicity, let us take Fh(v,w) 
= { 0 if v~\/)h q. e. on w 

+oo elsewhere 

ç O on nh · 
w here tji h = ) 

~ -oo elsewhere, 

and let us denote: 

llvllP1 P + F(v,w) = r-(s-LP(n)) lim {Il vf 1 P + Fh(v,w)} . 
W

0
' (n) W

0
' (n) 

Then, V ),>0 

Proof of (3.66) 

We remark that with the choice we made of \Ph , 

11>..v/lp + Fh(ÀV,w) = l {)lv/lP + Fh(v,w)} 

i.e. (11-lf+Fh(.,w))(lv) = Àp {11,IJP+Fh(.,w)}(v) 

This property of homogeneity is clearly preserved by r-limit process so 

F(ÀV,w) = Àp F(v,w) 

and if F is nota pure obstacle, i.e. if we are not in the situation 

where (Fh)h 2 ~ r~converges to F, then the limit functional F depends 

on the energy functional! 

Let us take p=2 ; then, from the Theorem 3.5 

V VFV, VwE.~, 
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Since F(ÀV,w) = À2 F(v,w) it follows that 

h(x,Àt) = À2 h(x,t) . 

Clearly, in the situation studied in (3~66) h(x,t) = 0 if t>O ; 
so 

F(v,w) = fwh(x,~-(x)) dµ(x) = fwv
2
(x) h{x,-1) dµ{x) = f:-2(x) dv(x) . 

(3.67) Remark 

Suppose that the Fh are obstacle functionals and p=2 

2 - 2 2 h llvl/ + F(v,w) = r (s-L (St)) lim {!!vil +F (v,w)} . 
h-rroo 

From the equality 

h 
F = {

o 

+oo 

it follows that 

r-(s-L 2(St)) lim 
h-H-oo 

1/2 
1-l!v(l+Fh(v,w)] = {r-(s-L 2(St)) lim [llv.f+Fh(v,w)]} 
- h-H-oo 

2 1/2 
= Il/vil +F(v ,w)] 

= llvll + G(v,w) 

with G2(v,w) + 2)lvljG(v,w) - F(v,w) = 0 i.e. 

i.e. G does not enjoy special properties and it is not easy to give 
directly a description of G. It is only for particular energy functionals 
that it will be possible to give a simple description of the limit term F! 

(3.68) Corollary of theorem 3.5. 

The same statement of theorem 3.5 is still true when the hypothesis (iii) 
of the definition of '1Ç is replaced by the hypothesis: 

lf w E: &n , v t---------'> F(v,w) is increasing . 
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CH.IV STUDY OF THE NON QUADRATIC CASE 

(Variational problems associated with a non quadratic energy functional 
and highly oscillating potentials). 

Let us consider the situation described by Carbone and Colombini 

in [sl. 

Let "4\/=.: L~0c(Rn) be a sequence of p-locally integrable functions 

on IR n such that : 

( i) 3 "ljJ regular s.t. 1/J 
E: 

lim sup f !Dn lp dx ~ v(w) , (l<p<+co) 
E:-+o w E: 

holds with v a positive Radon measure and for any open 
bounded set w such that v(aw) = O. 

A typical situation corresponding to (~) ~ the following 
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0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
_.,,,-,-· 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Let 1/JE = 1 on u si where 
i EJ-.l a E 

centered at xi in the square pi 
E E 

si 
a is 
E 

and 1/Jê 

__ __,_._ ___ si 
E 

--------s; . a 

--- -'} 

2a 
E 

the open ball of radius a E 

= 0 elsewhere. 

Let us compute f anE 2 P 
•. (E la-x.1 )2 dx , where 

pl l 
E 

1 on si 
a E 

nE = f1pnE = 0 on Si"-.Si 
E a E 

0 on Pi, s; 
€ E 

s: is the open ball of center x! and radius E nE is radial, so 

dn p 
lefl pn-l dp de 

JE dnE P n-1 
= 2Il l"ëJ"i:)I p dp • 

a P 
E 

We take nE minimizing this integral with the boundary conditions 
n (a)= 1 , nc(E) = 0 ; the Euler equation is 

€ E c. 

E 
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p-2 
d ( n-1 ldnl dn) = 0 . dp P dp ap , .e. 

p-2 . 
n-1 I dn I dn C dn h P dp ap = 1 so dp as a constant sign and 

p-1 c, 
( _ dn) = · 1 · 

dp n-T. , 
p 

1 
p-1 

dn So + ap = -· 
Cl 

n-1 
C2 

~ n(p) = + -- + C , n-p 3 
p=î 

p 
p-I 

p 

and 
c2 

+ · + c3 = 1 n-p 
p-1 

as 
c2 

+ + c3 = 0 n-p 

==;'-> C2 \/ - _l_ + _1_\ = 1 n-p n-p 
p-1 p-1 1 s a . 

E 
p=î 

E: 

Since dn _ n-p 
dp - -( p-1) 

f e: I dnl p n-1 d d.. P P = ae: P 
dp 

Hence, 

f an 2 P P P 1 
( ~ 1 E 1 )7 d = C ( n-p) pi ax1. - x 2 p=î -p--n-

e: (p=-r) 

(n-pl 
(a E) p-I 

=--'-E_. __ _ 

2IT 
n-p n-p p 

( 
p-1 p-1 \ 

E - a e: / 
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Let P (~ ~ then there exi st -"' m( ~) square P~ in P . 
E 

n-p P 
(n-p) ('p=I) (n-p) 

a E - E 
E 

n-p n-p P 
n (' p-1 p-T \ 

E E - a / 
, E 

Let us take k 
aF = f , k,>l then 

but k(n-p) + (~=i)P < (n-p) + kp(~=i) 

,, __ >. k + L 1 < 1 + kp :, k (L - 1) > _p_ - 1 -,;,;--- p- p:-1 ' 7 p-1 p-1 

<; --> k > 1 0. K. 

We are in the confitions of (J&) if k{n-p) ~ n i.e. 
n ( ( é3n P 

If k = n-p , Jp\DnEIP dx ~ C(n,p) Jp(I\é3x~l2YZ dx 
l 

n k ~­n-p 

. p-1 
~2ïT m(P) ( ~=i ) C(n,p) = v(P) 
E:-+0 

Remark 

If P>n, and if we ask the (n) to be bounded in Wi'P(lRn) , 
E E>O OC 

by Sobolev inclusions, they Will converge uniformly to zero and the 
conclusion follows : the limit problem is associated with the obstacle zero. 
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Now let~ return to the general situation exposed at the beginning 
of the chapter (assumptions Jl) ; from Carbone and Colombini [8 _l , 

Theorem 1 and Theorem 2 : 

Let Av be the fami ly of open bounded subsets of Dl such that 
n 

m(an) + v(an) = o 

. Then, there exists a subsquence Ek such that denoting 

(4.1) 

JO if u(x) ~ ~ (x) a.e. on Q 

L +00 el sewhere 

such that u(x) ~ ~(x) a.e. on Q 

wi th ~ 1-1 = v + dx 

( j : 1R ~ x R u X R ~U 
-T 

~ 1R i s a convex normal i ntegrand. 

If u(x) < ~(x) for some x e:: n , then these quantities are equal to +a,. 

Moreover, 

We shall prove in this chapter that j splits : 

(4.3) 

( 4. 3) Theorem 

Under the hypotheses {:Je) !?.f._ Carbone and Colombini, there exists 

~ subsequence ( Ek) k e:. IN such that : 

., v li __ 7 co n f Q E,'. An , t u e: w-, (IR ) satisfying u(x) ~ ~(x) a.e. on Q 
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r-(s-LP(n}) Zim {J IDulpdx + F (u,D)} = f IDulpdx + f j(x,u(x)) dµ(x) 
k++oo n Ek n n 

with 

{

µ=v+dx 

n -+ 
j : R >< R ~ R . is ~ convex, normal, decreasing 

(with u), integrand. 

If u(x) < ijJ{x) for some x Ë. D , then these quantities are equaZ to += • 

Proof of Theorem (4.3) 

From (4.1) 

lim {f !Du/Pdx+F (u,n)} = f j(x,u(x),Du(x) dµ(x) 
k-++00 n Ek n 

= Jn!DuiPdx + F(u,n) . 

So F(u,St) = fnj(x,u(x),Du(x)) dµ{x) - fniDujP dx; from the Radon-Nikodym 

theorem dx = h(x) dµ , so, 

Moreover, from (4.2) , Vu E: W~~~Rn) such that u(x) ~ lj;(x) a.e. 

Let x0 €: n a Lebesgue point of j such that u(x
0

) > ijJ(x
0

) • 

Taking w
0 

an open neighbourhood of x
0 

, w
0 

sufficiently small 



Let 

If 

and 

\.: 
1xr-::.wo, 

w c % ; for any 
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v(x) ~ ip(x) . 
+ k 2. lR , let us define 

lllv-u lllk w = ½-llv-u llc,o + }!lov-Du Il P 
' o L ( w) L ( w) 

O ~ f j(x,v(x),Dv(x)) dµ(x) = G(v,w) ~ c[J (l+JDv/P)dx + f dv] ~ c1 w w w 

and v ~ G(v,w) is a convex, positive functional which is bounded 
on the ball /llv-u/1/k ~ 1 ; so, it is lipschitz on any ball of radius ,w 
strictly less than 1 and it follows that 

V vl'v 2 E- w;;:(Rn) such that l]v1-ul!L 00 (w) < E0 , 

lJv2-ul!Loo(w) < eo , 

there exists a constant Ck such that: 

(4.5) if {j(x,v 1(x),Dv1(x)) - j(x,v 2(x),Dv2(x)} dµ(x) / 
w 

The same argument as for Lemma 3.41 tells us that: 

(4.6) V rt is..t'n , v 1-+ F(v,rt) is a decreasing functional. 

Let us prove in a first step that (4.4), (4.5), (4.6) imply that the 
integrand k is an affine function of Du : 
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u 
Let u ~ ü ·~ U+E: , with D~ 

€ € 

oscillating between 2 1 and 2 2 . 
Similarly~ we define G = u -E: . 

€ € 

Since F(.,Q) is decreasing 

(4.7) V E:>Û , 
V A 

F(u ,Q) ~ F(u,Q) ~ F(u ,Q) . 
€ € 

Taking Q sufficiently small, Q 3x
0 

, we shall get 

From the definition of F, (4.7) can be written 

(4.8) V E:>0 , f k(x,t (x),Dü (x)) dµ(x) ~ F(u,Q) ~ J k(x,C (x),DG (x)) dµ(x) . 
Q € € n € s 

From (4.5), remarking that (since 

(4.9)iJ {k(x,C' (x),Du,(x))-k(x,u(x),DÛc(x))}dµj ~ Ck[_!_ ll~é-ull 
00 

J ~ 0 
Q € t: c.., E: o L ( Q) E:-+o 

From (4.8) ana (4.9) , 

lim J k{x,u(x),Du (x) dµ(x) ·~ F(u,Q) ~ lim J k(x,u(x) ,DG (x)) dµ(x) . 
s-+o Q s s-+o Q E: 

DAU v Since s and DuE: oscillate between 2 1 and 2 2 it follows that 

i.e. V Q :; x
0 

, Q sufficiently small, F,: > 1/J(x
0

) , 
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t zl+z2 zl+z2 1 f zl+z2 zl+zz_ 
.J.~(x,t,;+<x, 2 >, 2 ) dµ(x) = 2 Q k(x,t,;+<x, 2 >,z 1) + k(x,t,;+<x,- 2-,, ,z

2
)) 

d 1-J( x) . 

Dividing by lµ(D) 1 , and making D + {x
0

} , we get : 

z +z 
Since this is true for any t,; such that t,; + <x

0
, 

1
2 

2> > 1/J(x
0

) we get 

z 1---+ k(x,t,;,z) is affine. 

~!~~-!~Q: Let us prove that k is independent of z . 

From (4.10), Y D'=::. Av 
n 

n 
V U>i/J, F(u,Q) = J [.I g.(x,u(x)) ~~- + q(x,u(x))] dµ(x) . 

D 1=1 
1 0 1 

Let t,; > 1/J(x
0

) and z € lR l'J ; taking Q 3 x
0 

, n sufficiently small 

the function u(x) = t,; + <x-x
0

,z> will satisfy 

u ( x) 7 n ? 1/J ( x) wi th 

Since v t-----+ F(v,n) is decreasing 

F(u,n) ~ F(n,D) i.e. 

( 4 . 11 ) J [ Ï g . ( X , U (X) ) Z . +q ( X , U (X) ) ] dµ (X) ~ JDq ( X , n) dµ (X) , . 1 1 1 D 1= 

....,< c1 µ(D) (from 4.2) 

Dividing (4.11) by µ(Q) and making µ(~) go to zero: 
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( 4. 12) µ - pp X , 

n 
Since this is true for any z eç- lR , (4.12) implies that 

q.(x,ç;) =0 O -, ' (7i=l, ... ,n) 

From the defi nit ion of the i ntegrand j (cf. [8 J ) , it fo 11 ows tha t 

Let us corne back to the situation described at the beginning of 
this paragraph : 

we are going to compute the limit functional by a compactness argument 
we assume that the obstacle is periodic ; in each all ·tE. is given by 

pi 
E 

/~ \5 

1/JE = 1 on u Di 
i E 

~ l'-.,. 1/J 
' u pi, Di E 

1/JE 0 on = . 
i E E 

E( 2E :,. 
Let 

lim {J !Du\Pdx+FE(u,w)} = f \DujPdx + J j(x,êî(x)) dµ(x) 
~ Q Q 

Ç O if u(x) ~ t-/JE(x) 

Î +co elsewhere. 
\,__, 

on w 

Clearly, j(x,t) = 0 it t>l by an homogeneity argument (the homogeneity 
is preserved by r-limit) 
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So the limit term can be written j )Du 1P dx + J r(u(x)-·lf jP a(x) dµ(x) 
, Î, lJ.) 

The problem being clearly invariant by translation, the ·11easure adtt 
is theHaarmeasure on ~n , so C s.t. adp = C dx; f'\nally 

r-(s-LP(Q)) lim [J \Du\Pdx+FE(U,ul)J = f \Du\Pdx + cf (lti:.-";-lr/ dx 
~ Q w 

The constant C depends on the share and the siz~ of the oi a~d on 
s 

p and n . 

By definition of the r-(s-LP) limit 

lim inf f \Du )p dx 
E~ Q E 

In fact (4.13) holds for a subsequence Ek . The convergence result 
for the whole sequence will follow from the identification of C , i.e. 

from the independence of C from the subsequence ek . In order to 
compute C it is sufficient to compute the right hand side for a 
particular function and a particular domain. 

Let us take u=O and n = D ; remarking that mes(D) = 1 

(4.14) lim inf f \Du lp dx . 
E-+o D € 

We assume that C is finite i.e. 

(4.15) 0 with Il v JI 1 ~ C . 
"- W ,p(D) 

0 

That 1 s the case in the situation described at the beginning of ~his 

chapter when 
{ 

~, = 1 on ,::, n 
n-p 

a = E , 
' t 

~) si 
a 

E 

~r = 0 elsewhere 
C 
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From (4.14) cleariy C = Min 
\ LIE: ➔ Ü 

lim inf J1ou IP dx 
s-+<> D s 

thi s fo 11 ows 

~ UE:~Q 

I. u = 1 
E: 

from the fact that the troncature r ---+ r ~ 1 operates on W~'p(D) . 

Let ns be the function defined at the begining of this chapter. 

2s 
> oi pi 

{ 
1 on 

E: 
E: 

si ns 0 on P ; \ si 
E: E: E: 

' Si \ Di ' 
"" 

- lip n = 0 on 
E: E: E: 

such that n ~ O in s - LP(o) . 
E: 

(4.15) Then C < l im i nf J I Dn I P dx . 
s-+e D s 

In [11], when p=2 and when the oi are spheres, Murat and Cioranescu 
proved that the converse inequality is true 

(4.16) C = lim J jDn 12 dx . 
s-)-() D s 

It seems reasonable to conjecture, for any p and any oi , that C 
E: 

is given by: 

p . 
with Cap Dl 

E: 

C = lim J IDn IP dx 
s-+e D s 

= lim l Cgp Di 
n s s-+e ( 2s) 

= Min . J1oujP dx 

iu=l on D1 
E: • 

U=Ü on clP1 
- E: 

In the situation described at the beginning of the chapter 
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c = _rr_ (n-p)p-l for Di of radius 
2n-1 p-1 E 

Let us interpret very simply this constant: 

by a change of scale, when Di is the homotetic of coefficient aE of 
n E 

D c R , we get : 

C = l im 
€-+0 

Taking u(x) 

C = lim _l_ Min 

v~W~'P(s~ \ as 

€-+0 

~ 

a . 
' € · 

n 

We refind that C = 0 if a ~ Ên-p 
€ 

and when 

n 

C = +oo if a ► En-p 
€ 

n 
a = n-p 

€ € / 

C - _l l i m Min J I Dv I p dx 
2n E-+0 ) v=l on D IR n 

V-::w1,P,s , 
\_ 1 ' 

) 0 \, :€ 
" 
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Clearly Kf = ~V 0:- w1·P( Rn) / V = 

converge in Mosco sense to 

(we remark that _E_ --:,.. +00 when E 
a 

E 

1 on D, v = 0 outside of S l 
L( 
aE .· 

0) so 

So C can~e interpreted~s the capacity_J_n R n of the set D • 
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CH.V BILATERAL CONSTRAINTS 

Theorem 1 

Let V = ~, P ( ri,) , iµ ~ V and two sequences qf_ functionals (F~) hêlN 

and (F~)h e:-JN satisfying (i), (ii), (iv), (v), F~ decreasing, F~ 

1 2 
increasing, F h ( i/J, w) = F h ( iµ, w) = 0 for every w e: ~ . 

Then there exist F1 and F2 satisfying (i), (ii), (iv), {v), 

F1 decreasing, F2 increasing and there exists E!. subsequence (hk) such 

that: 

\luljP + F1 (u,w) = r- (s-rP) Um fllv!lp +F! (v,w)] 
v-+u k 

!lullp + F2 (u,w) = r- s-rP) Zim Lllvf +F! (v, w)] . 
v-+u k 

Proof 

By Theorem 3.5 and corollary 3.68, 
(denoted by h for simplicity) such that 

there exist F1 , F2 and hk 

11 ·llp + F1(. ,w) = r-(s-LP) lim fll-.llP+F~(. ,w)] 

li !jP 2 - p [ p 2 J .. , + F (.,w) = r (s-L) lim 11-11 +Fh(.,w) 
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We shall use the following very simple lemma 

Lerrffna 

-----+ 
Let l/J <?: V and F : V -+ R such that F(l)J) = 0 and 

.~ u~ v :=- V ~ F(u V v) + F(u ,'i v) ~ F(u) + F(v) • 

Then if_ F is devreasing ( resp. increasing) for every u E V 

F(u) = F(u /\ l)J) (resp. F(u) = F(u V l)J)) • 

Proof of the Lemma 

We have F ( u A l/J) + F ( u v l/J) ~ F ( u ) • 

If F is decreasi'ng F(u) * F(u f, l/J) and if F is increasing 

F(u) ~ F(u V l/J) • The result follows. 

Let us prove now the Theorem. Let u e: V • There exist uh ~ u 

in LP such that 

r-(s-LP) lim [~v!IP + F~(v,w) + F~(v,w)] 
V..c,-U 

~ lim [lluh/-,l/Jllp + F~(u~Jl/J,w)J + lim [rluhYl)Jf + F~(uh\'l/J,w)] - !ll/Jl'p 

~ !lu :\l/JI/P + F\u i,l)J,w) + :1u Vl/JI/P + F
2

(u Yl/J,w) - ill/Jllp 

Conversely, let u.;::: V • There exist u~ ~ u(l/J in Lp and 

u~ ~ u V iJ; in Lp such that 
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= - !llfJ/IP + !lu A l/JJJP + IJu \/ l/JJ/P + F\u A l/J,w) + F2(u Vl/J,w) 

= - lllfJf + lim [j)u~J/P + F~(u~,w) + /lu~J!P + F~(u~,w)] 

= - 11 l/J J!P + 1 im au~ t + F~ ( u~ A l/J ,w) + il u~ l:p + F~ ( u~ Y l/J ,w )] 

~ - lll/JIJP + Tfiiï [Jlu~JIP + F~((u~A lf;) V (u A 1/l),w) + \ju~Jf 

+ F~((u~ V lf;) /\ (u V l/J) ,w)] 

~ - !llfJl/p + Trin [lJv~J/P + F~(v~,1D) + llv~lf + F~(v~,w)] 

+ lim (1/u~!f - l!v~f/PJ + lim [llu~!!P - !lv~fj 

where v~ = (u~/\lf;) V (u;\l/J) and v~ = (u~Vl/J) ~ (uVl/J). 

But 1 im [lu~ f - /Jv~ fJ 

= lim [1/u~ I\ lfJt + !lu~VlfJ/lp - !ll/J!lp - ljv~j!PJ 

= lim [U(u~/llf;) ~ (uAlfJ)/lp + Jlv~f- llurlfJJIP + 1/(u~Vl/J) /\ (u/1l/J)lf 

+ ll(u~ Yl/J) V (u f1lf;)!JP - lju l\l/Jl!p - ;ll/Jltp - [lv~!jP] 

~ lim [1/(u~ /\lf;) A (u !\lf;)/lp - )lu~lf;JjPJ + lim [11(u~ Ylf;) ;\ (u ltl/J)!lp - iJu.\l/JIIPJ 

+ lim [J!(u~ \llf;) V (u~lf;)f - l)l/J!IPJ 

1/ 0 • 
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With a similar decomposition we obtain 

Hence we have 

llullp + F\u /1 i.jJ,w) + F
2

(u V i.jJ,w) 

~ -!li./Jilp + TTm [/lv~/lp + F~(v~,w) + 11v~:( + F~(v~, w)J 

Let us define vn by 

Since 

v~ - i./J = (u~-i.jJ)+ A (u-i./Jt ? 0 

and i nf ( (u~-i.jJ)- A (u-i./Jf , (u~-i.jJ)+ A (u-i.jJt) = 0 

we have 

. . Lp In addition vh -r u in • 

It follows 

llu/lp + F
1

(u A i./J,w) + F
2

(u Vi.jJ,w) 

~ - lli./Jl!p + lim [!lvn A i./Jlp + F~(vn!\ i./J,w) + !lvn V i./Jl!p + F~(vn Y i.jJ,w)J 

_;>, lim fllvhilp + F~(vh,w) + F~(vh,w)] 

~ r-(s-LP) TTm [l!v!IP + F~(v,M) + F~(v,w)] 
V-+ll 
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In conclus ion 

\lu!lp + F\u A 1/J,w) + F2(u V l/J,w) = f(s-LP) lim [Il vjf + F~(v.w) + F~(v,w)] • 
v~u 

Example - Problem with holes 

Let S~ be a hole as in paragraph IV and 
1€ 

Let Fh and F~ be defined by (ë = t) 

~ o if u ~ l/J on w () ( V s!E:) 

C +oo e 1 sewhere 

f O if u < l/J on w n ( U s:E:) 

( +oo el sewhere. 

By Theorem V.1 and result ôf IV, we obtain 

and in particular 

If l/J = O we obtain, since c1 = c2 = C , 
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