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CHAPTER I - HYPERBOLIC SYSTEM OF CONSERVATION LAWS 

1. Introduction 

Many physical laws are written in the conservation laws and if we 
ignore the mechanisms of dissipation such as viscous stresses, heat conduc
tions etc, then we have the following first order system of conservation 
laws in the one space-dimensional case 

(1. 1) 

where t is the tirne, xis the space variable, u is a n-vector of the physical 
state variables and fis a n-vector smooth function of u. We consider the 
initial value problem for the system (1.1). When the smooth solutions to 
(1.1) are considered, the differentiation of (1.1) gives a quasilinear 
system of first order equations : 

(1.2) A= grad f 

Definition 1.1 - The system (1.1) is called h_yperbolic if the system {1.2) 
is hyperbolic, i .•~-, if the matrix A = grad f has real and distinct eigenvalues 
\ = ;\(u), k = 1, ... ,n, for all values of uE:ncft which are arranged in 

the increasing order 

( 1. 3) 

The corresponding right and left eigenvectors of A are denoted by rk = rk(u), 

.tk = ,Q,k(u), k = 1,2, .• .,n. 

Definition 1.2 - The k-th characteristic field À= Ak(u) of the system 
(1.1) is called 9enuinely nonlinear if for all ue0 

( 1.4) 

Definition 1.3 - The k-th characteristic field À= lk(u) of the system (1.1) 
is called linearly degenerate if for all UËrî 

( 1. 5) 

Definition 1.4 - A function z = z(u) is a k-Riemann invariant of the system 
(1.1) if it satisfies the condition 
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( 1. 6) rk . grad z = 0 

for all values of u 6 a. 

These definitions and the following proposition are due to Lax (1957). 

Proposition 1.1 - There exist n-1 independent k-Riemann invariants for each k. 
Here the independence of functions means that their gradients are linearly 
independent. The proof is given by the classical theory of single first order 
homogeneous partial differential equation (1.6) for z as function of u. 
(cf. Courant-Hilbert, vol. II, Ch. II.). 

Example 1.1 - The equation of ideal compressible flow in the lagrangien 
coordinate: (cf. Courant-Friedrichs, Guel 1 fand) 

vt - ux = O 

( 1. 7) ut+ Px= 0 

u2 
(e + 2)t + (p u)x = 0 , 

where t ~ 0, x = Lagrangian coordinate, v = 1/p = specific volume, 
u = ve 1 oci ty, p = pressure, e = ·interna ·1 energ_y and s = entropy. 

The equation of state p = p(v ,s) depends on the gas and the polyt1"0-
pic gas has the form: 

(1.8) p = a2 v-y exp ((y - l)s/R), 

where a,R are positive constants and y~ 1 is the ratio of specific heat. It 
fo 1 lows from ( 1. 8) that e = ~-f + constant and p = R p T, because T = es and 
p = - ev. Here the energy conservation law of (1.7) may be replaced for the 
smooth solutions by st = O. Then the conservatïon laws (1.7) gives the fol"lo
wing quasilinear system for the unknowns v, u and s. 

( ~) + U· 
-· 1 

~s) ( ~ ) ( 1. 9) 0 = 0 

0 
t X 

This is hyperbolic in a= {(v,u,s), V> Ü } if p < 
V 

O. The eigenvalues 
and the corresponding right eigenvectors and Riemann invariants are given by 



( 1.10) 
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"\ = - r-op 
11. 1 V' 2 1 = s and 

u - r r:p"v dv ; 

V 
23 = s and u + J il-pv dv . 

It is genuinely nonlinear for Àl and À3 if Pvv ! 0 and is linearly degene
rate for À2. 

Example 1.2 - Isentropic gas motion {s = constant) 

(1.11) 

where 
assumed, 
equation. 

(1. 12) 

vt - ux = 0 , ut+ p(v)x = 0, 

2 -v p(v) = a v 1 (a> 0 and y~ 1 are constants) is usually 
y~ 1.4 for the air and y= 2 for the shallow water wave 

If Pv <0 in v >O , thE! system (1.11) is hyperbolic and if pvv# 0, it is 
genuinely nonlinear for Àl and À2. 

Example 1.3 - Nonlinear wave equation 

(1.13) 

where a= a (v) is a nonlinear function of v, for example a= v + a v2, 
v + av3 (a>O), or v//1+ v2. If we put v = Yx, u = Yt, then the equation 
(1.13) gives 

(1. 14) 
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0
1 (v) > 0 is the hyperbolicity and 0

11 (v) -, 0 is the genuine nonlinearity. 

2. Development of Singularities 

Here we see in details that the genuinely nonlinear hyperbolic system of 
two equations developes in general the singu1aritïes in finite time..cf .l.ax (1964). 

This means shock wave formations in gas dynamics. For the genuinely nonlinear 
r:;perbolic systems of n equations we refer John (1974). Consider the ~;ystem 

( 2. 1) 

Assumption 2.1 - The system (2.1) ·is hyperbolicin an open set r2 e R2 i.e., 
the matrix 

A= (ab) 
C d ) 

has real distinct eigenvalues 

(2.2) À(u,v) < f-A-(u,v) for all (u ,v) 1= Q • 

Let (i 1, i 2) be the left eigenvector of A corresponding to the eigenvalue À 

Multiply the first equation of (2.1) by i 1, the second by 22 and add. We 
obtain the characteristic equation 

(2.3) i 1 u' + i 2 v' = o, where 1 = a/ at +À. a/a x. 
Let ~ = ~ (u,v) be an integrating factor for (2.3) such that wu=~ i 1, 
wv = ~ '2 for some function w = w (u,v). Multiplication (2.3) by cp gives 

(2.4) 

For the other eigenvalue µ we get a similar equation 

(2.5) 

where ... = a/ at + µ a/ ax 

The functions z and w are the 1- and 2-Riemann invariants of the system (2.1) 

respectively. (cf. definition 1.4). 
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Assumption 2.2 - The map (u,v) e n ➔ (w,z) e D1 = { (w,z) e 1l ; w = w(u,v), 
z = z (u,v), (u,v)e D} is one to one, onto and t:1-class. 
The Riemann invariants w and z diagonalize the system (2.1) to the system (2.4) 
and (2.5), where À= 11.(w,z) andµ= µ(w,z) by assumption 2.2. 

Now we consider the 'G1- solution for the initial value problem of 
the system (2.1), i.e., for the system (2.4) (2.5) with the t:1- initial data: 

(2.6) 

where (w0,z0) (x) e D 1 for any x e ~-

Lemma 2.1 - The t>1- solution to the system (2.4) and (2.5) with the initial 
data (2.6) has the a priori estimate: 

Proof The characteristic equation for (2.4) is given by 

~~ = À (w ,z) , dw _ O 
dt -

, i.e., 

t 
(2.8) x(t,B) = B + [ À(w(s,x (s,B )) , z(s,x(s, S )))ds, w(t,B ) = w0 (S) 

0 

for B e lR 

For (2.5) we have a similar expression. qed. 

Remark : It follows from lemma 2.1 that if there exists the rel solution for 
the system (2.4) (2.5) with the initial data (2.6) which belong to n1, then 
the solution also belongs to D1 and thehyperbdicity remains to hold. 

Assumption 2.3 - The system (2.1) is genuinely nonlinear in O, i.e., 

(2.9) 1c > 0 , µ > 0 w z for all (w,z) € n1 

This genuine nonlinearity is equivalent to that in definition 1.2. In fact 
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= À (w r
1 

+ w r2) + À r.grad z = À ~(t r
1 

+ 12 r2) # O 
WU V Z W 1 ' 

Thérefore changing the sign of w or z if necessary, we may assume (2.9). 

Theorem 2.1 - We suppose the assumptions 2.1, 2.2 and 2.3. Let the initial 

d~-ta (2.6) E. e1 and the rectanqular c~ Wa, _±_ Zo) C nl. where \;JO= supj~Jo (x) 1, 
z0 = sup !z

0 
(x) 1 . If w0 ,x ~ 0 and :z0 ,x ~ 0 for all u;F, then the 

initial value problem (2.4) (2.5) (2.6) has a unique f1 solution in the 
large intime. If w0 < 0 or z0 < 0 somewhere x E ~. then the solution 

,X ,X 
for (2.4) (2.5) (2.6) developes the singularities in the first derivative 
in finite time, i.e., wx ➔ - 00 or zx ➔ - 00 as t ➔ t0 <+ 00 • 

Proof : cf. Lax (1964), Keller and Lu Ting (1966), Yamaguti and N·ishida (1968) 

Differentiation (2.8) in B gives 

(2.10) 
t 

.. 1 + f ( À w
0 12 

+ À z x
13 

) ds 
~) W ,;., Z X 

Define the fonction h(w,,z) by 

(2.11) 
À - p 

If we note by (2.5) 

(2.12) 

1·1e have 

zt + À zx 2
1 

z =---- =-
X À - µ À - µ 

3h(s,x(s,B))/3s = 3h(w0 (B), z(s,x(s,B)))/3s 

= h
2 

(zt + 11.zx) = h
2 

2
1 

= 11.2 zx 

S•1hstitution this into {2.10) gives 

t 
x6 (t,B) = 1 + { Àw w0 ,B + h

5 
x6 ds . 

0 

Therefore we can differeintiate this in t for fixed B. 
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, i.e., -h -h 
( e x6) t = À w e w 0,B 

The integration in t gives 

Lus we arrive at the following expression for the first derivative 

wx (t,x) = w /x = w /x = 1/eh(t,x) (e-h(0,6,1/w + 
B B O,B S 0,B 

t 
+ f À e-h(s,x(s,B)) ds), 

0 w 

where h(t,x) & h(O,B) are bounded continuous if w and z are so. Also 
>,w > ô > 0 in the rectangul ar (±_ w

0
, ±_ z

0
). Therefore the theorem fo 11 ows. 

3. Weak Solutions for the Initial Value Problem 

The initial value problem for the nonlinear hyperbolic system of 
conservation laws can not be solved generally in the class of smooth func
tions in the large intime as shown in§ 2. Thus in order to construct the 
solution in the large intime one has to introduce weak solutions to the 
initial value problem for the system 

( 3. 1) in t ~ o, x e R, 

with the initial data 

(3.2) in x ~ R. 

Definition 3.1 - A bounded measureable n-vector function u(t,x) is a weak 
solution of (3.1) (3.2) if it satisfies the following integral identity 

(.3.3) f { u. z;;t + f(u). z;;x dx dt+ f u0 (x). z;;(O,x) dx = O 

t).0 t=O 

for all smooth n-vector functions z;;(t,x) with compact support in t ~ 0, xf f. 
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Of course if the solution u(t,x) of {3.1) (3.2) is smooth, it satisfies 
(3.3). In fact multiply (3.1) by ç and integrate it in t ~ 0, x €.. R, and 
the integration by parts with (3.2) gives (3.3). 

Our definition of a weak solution implies that the following "jump 
crnditions" must hold aci·oss any smooth curve x = x(t) of the discontinuity 
ir, solutions 

(3.4) j = 1, 2, ... ,n, 

where D = dx/dt is the velocity of disc:ontinuity at the point in 
question, and [ ui J denotes the difference in quantity ui across the dis
continuity curve. If the k-th characteristic field À = Àk(u) of thE~ system 
(3.1) is linearly degenerate, then the corresponding discontinuity in solu
tions is called a contact discontinuity and it is characterized by (3.4) 
with 

(3.5) 

where u1 and ur are the left and right hand side quantities of u on the 
discontinuity respectivE~ly. If the k-th characteristic field À= À

1
/u) is 

genuinely nonlinear, thi~n the corresponding discont'inuity in solutions is 
called a shock wave, the relation (3.4) is called Rankine-Hugoniot shock 
condition and it is also required that 

( cf. Lax ( 1957)). 

T ' . . n, s cornes from the stability of shock waves physically and is required for 
the uniqueness of weak solutions mathematically. 

There is a celebrated theorem by Glimm (1965) on the existence of 
weak solutions in the large intime for the initial value problem of the 
general system {3.1) with n conservation laws, which may be summarized 
as follows : 
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.!:!.l2.2_thesis 3.1_- The system (3.1) is considered in a neighbourhood Q of a 
constant vector c =(c1, ... ,en) and f is smooth in ué n. The system (3.1) is 
hyperbolic and its characteristic fields are genuinely nonlinear or linearly 
degenerate in n 

h,:lothesis 3.2 - The initia·, value u
0

(x) ·is given in Q for any x ~ ft and 
:, ·; the fini te total variatfon on F.. Put 

½rere Il . 11
00 

is the L
00

- norm and TV means the total variation on x IC: tR. 

Theorem 3.1 - Under the hypotheses 3.1 and 3.2 there are a K < + 00 and 
e. () > 0 with the following property. If the initial data u

0
(x) are giv,=n so 

that d ~ o, then there exists a weak solution u(t,x) of (3.1)(3.2) in the 

large intime such that 

(3_8) 

(3.9) TV u(t,.) ~ K TV u0 (.) 

(3-10) [
00 

ju(t 2 ,x) - u(t 1,x) 1 dx ~ Kltz-· t 11 TV u0 ( .. ) 

-oo 

The proof (Glimm (1965)) relies on the solutions of the Hiemann1 s initial 
value problem and onthe use of the Glimm1 s finite difference scheme with a 
nonlinear functional on the approximate solutions which E!nables the uniform 
estimate of total variation of approximate solutions and gives its conver
gence to a weak solution. (cf. Kuznecov & Tup~iev (1975) for a generalization). 

:=-or the genuinely nonlinear hyperbolic systems of two equations Glimm and 
Lax (1970) show the existence and decay of weak solutions to the Cauchy proble .. n 

with the initial data which are bound measurab1e functions with the small 
:,., 

L - norm. 
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4. Riemann Prob·lem for the System of a Polytropic Gas Motion 

The equation of ideal compressible flow of a polytropic gas has 
the form {cf. example 1.1) : 

( 4.1) 

ut+ Px= a 

vt - ux = a 
(pv + (y-l)u 2/2)t + (y-1) (pu)x = O 

where the equation of state for gas is assumed polytropic 

(4.2) vY = a2 p-l exp ({y-1) s/R), 

a ,R > 0 and y ~ 1 are constants. 

Here the unknown variables u, p, s are considered basic ones and 
its quasilinear form is given by the following 

(4.3) 
1 

a 
a 

The characteristics, eigenvectors and Riemann invariants are summarized 
as follows : 

À= -1/Fv'""_ p' 

(4.4) v = O 

where v = v(p,s) is given by (4.2). 

z2 = u and p, 

p 

z = s and u - { ✓-v dp 
3 1 p 
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Définition 4.1 - Denote the Riemann invariants which are not the unknown 
variables as follows : 

~ (4.5) Z = u+a(s) (p Y· -1)/(y~l) R-' W = u-a(s) (p Y-1)/(y-l), 

where a(s) = 2 a11Yy112 exp ( (y-l)s/2 y R). 

They give a one to one mapping from Q = \_(u,p,s) E F3 ,p > 0} 

onto S\ = {(W,Z,s) € R3, Z - W > - 2 a(s)/ (y-1)} • 

The Riemann problem for system (4.1) is an initial value problem 
for system (4.1) with the special initial data 

in X< 0 

in X > 0 

where (ui' P;, s;)i=l, 2 are two constant states in Q i.e., P; > 0 
(i = 1,2). The Riemann problem (4.1) (4.6) is invariant under the similar 
transformation x +ax, t +at, it has the selfsimilar solutions which are 
fonctions of l; = x,/t. In fact the substitution of (u,p,s) (t,x) = (u,p,s)(t;) 
into (4.1) gives 

( 4. 7) 

(4.8) 

{ 

- l; ul; + pl; = 0 

- l; V - U = 0 
l; l; 2 

- l;(pv + (y-l)u /2)[; + (y-1) (pu)l; = 0 

in l; e R 

The initial data (4.6) turn out to be a boundary condition as follows 

l; ➔ -co 

(u,p,s) (l;) -

So we want to solve the ordinary differential system (4,7) with the boundary 
condition (4.8). It is solved by the following elementary waves (i) ~ (vi). 
First the system {4.7) has the constant solutions : 
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(i) (u,p,s) {~) = constant vector 6 n 

Next, if we seek the smooth solution of (4.7), then we can differentiate 
it in~. Remembering the reduction from (4.1) to (4.3} we have the 
quasilinear system 

(4.9) 
1 

0 

0 

Thus for the smooth solution we have 

(4.10) s(~) = constant, 

and so the system (4.9) reduces to a system of two equations 

(4.11) 

• 

which can be diagonalized by the Riemann invariants (4.5) with s = constant 
as follows : 

(4.12) 

( - ~ + ;q dW/ d~ = 0 

( - ~ + µ) dZ/ d~ = 0 

s (~)=constant 

Therefore the diagonal system (4.12) gives the nontrivial smooth solutions 
of the system (4.9), if 

(ii) ~ = À , dW/d~ > 0, Z = constant 

(iii) ~ = 1-1, dZ/d~>O, W = constant, 

s = constant or 

s = constant. 

Definition 4.2 - Let (u., p., s.)€ n, i = 1,2 be given. The R1-curve with 
1 1 1 

the initial (u1, p1, s1) is defined by 
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(4.14) 

Then any (ul'p 1,s 1) en can be_ connected to (u3,p3,5i) ~ R1(u1,pl's 1) on 
the right by the backward rarefaction wave and any (u2,p2.s2)en can be 
connected to (u4 ,p4,s

2
) E R

2
(u2 ,p

2
,s

2
) on the left by the forward rarefaction 

wave as follows : 

(ii) R1 - wave (the backward rarefaction wave) 

(4.15) 
(ul ,pl ' 5 1) 

(u,p,s) (/;) = ( u ( 0 , p ( /;) , s 1) 

(iii) R2-wave (the forward rarefaction wave) 

(u4,P4•s2) 

(4.16) (u,p,s) (i;) = (u(I;), p(I;), s2) 

(u2,P2,s2) 

in I; < À (p1,s 1) 

on I; =À (p(i;),s 1) 

in I; < µ(P4• 52) 

on I; = µ ( P (/;) ' s2) 

in /; > µ (p2 ,s2) , 

where (u(I;), p(i;), s2) € R2(u2, P2, s2) for µ(p4,s2) < I; < µ(p2,s2). 

Definition 4.3 - Let us denote the Riemann invariants (4.5) with a fixed 
s = s0 by 

y-1 

z = u + a0 (p 2y-l) / (y-1) 
(4.17) y-1 

w = u - a0 (p 2y-l)/ (y-1) ' 

where a0 = a(s 0). 

This is a one to one mapping from (u,p), p > O onto (w,z), 
z > w - 2 a0/ ( y- l ) • 

Lemma 4.1 - Let (u., p., s.) e. n, s. ~ s0 (i "'1,2). 1 , , , 



14 

Then the Ri-curve, i = 1,2, is the straight half-line in the plane 
(w,2) given by the follO\ving 

where a.= a(s
1
.), (w., 2.) = (w(u.,p.), 2(u.,p.)), i = 1,2. 

l l l 11 11 

Proof: The R1-curve with the initial (u1,p1,s 1) is defined by (4.13) i.e., 

W. ~ u+a1(p Y -1)/(y-1) = u1+a1(p1 Y -1)/ (y-1) 

Also by the definition 4.3 we have 

21 = ul + ao 
tl 

(pl Ty -+)/( y -1}' 

(pl ft-1) /(y-1) 

If we eliminate the constants u1 and p1 in these three relations, we have 
a relation in u and p 

-fvl a a 
u + a1 (p y -1)/(y-l) = t {{l-f) w1 + (1 + t) 2 1 } 

0 

Substituting u and pin terms of 2 and w by (4.17) into this relation 
we arrive at the first expression in (4.18). 

qed. 

In addition to the smooth solutions (ii) and (iii) for the system 
(4.7) the discontinuous transitions are possible, if the jump conditions (3.4) 
are satisfied across the discontinuity, which are written in our case as 
follows : 

(4.19) Ç D (uJ = LP] ' 
lD [pv + (y-1Ju2/2J 

0 [vj = - [uj 
= C (y-1) puJ 

and 
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where D = f, is the velocity of discontinuity and [.] is the difference 
in quantity . across the discontinuity. The jump conditions (4.19) give 
the following three discontinuities according to the characteristics fields 

\) ' À, ]J. 

in f, < 0 

in f, > 0 

where p3> 0, u3, s3, s4 are arbitrary constants. 

where (u1, p
1

, s1) e Q is an arbitrary constant state, 
D
1 

= - {((y+l) p3 + (y-l)p 1) 2y pll/y }112 / a(s 1), and (u3,p3,s 3) is 
any constant state on the s

1
-curve with the initial (u1, p1, s1) defined by 

the fo 11 owi ng : 

u - u = 1 

exp (y-1) (s-sl) = L{ (y-l)p + (y+l) P1 / } • 

R pl (y+l)p + (y-l)p 1 

(vi) s2 - wave {the forward shock wave). 

r4• P4, S4) in f, < D2 
(4.23) (u,p,s)(f,) = 

( u2' P2' s2) in f, > D2 

where (u2, P2, s2) en is any constant state, 
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1/y 1/2 D2 = {((y+l)p 4 + (y-l)p 2) 2y p2 } / a(s 2), and (u4,p4,s 4) 
is any constant state on the s2-curve with the initial (u2,p2,s 2) defined 
by the following : 

(4.24) 

u - u2 = 
(p - p2) a(s 2) 

' 
{((y+l) p + (y-1) p2) 2y P2 l/y} 1/2 

(y-1) ( s-s 2) 
=_p_ 

(y-l)p + (y+l) P2 y 
exp R 

{ } } 
P2 (y+l)p + (y-1) P2 

In bath cases (v) and (vi) s > s1 or s > s2 i s requi red by the entropy condi
tion. The global geometry of shock curves s1 and s2 are given by the following 

Lemma 4.2 : Assume that 1 ~y~ 5/3 and let (w;,z;) = (w(u;,P;), z(u;,P;)), 
a.= a(s

1
.) for any (u.,p.,s.)ED and s. ~ s

0
, i = 1,2. Then the s1-curve 

1 1 1 1 1 
is expressed in terms of w,z as follows : 

(4.25) 

The s2-curve is expressed as follows: 

(4.26) 

Here the functions f and g have the properties : 

(4.27) f(O) = g(O) = g'(O) = f 11(0) = g"(O) = 0, O<f(y), g(y), g'(y),f 11(y),g 11(l 

for y > 0 , 
a. - a

0 O.$f'(O; p
1
.,s

1
.) = /+a < f'(y; p.,s.) < 1 

l O 1 1 
for y > O, 

0 .:S flll (0), 9111 (0) • 
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proof It follows from (4.17) and (4.22) that 

y-1 y-1 
z -z J 1 

= u - u + a 
w - w 1 - 0 

2 y 2y (p - p )/(y-1) 1 
1 

y-1 y-1 

(p - P1) al -

= {((~+l)p + (y-l)pl) 2ypliy}l/2 + 

ao ( P 2y - P 1 2y) 

y - 1 

= 

y-1 
a p2r a-1 

1 1 { + 
(2y)l/2 {(y+l)a + (y-1)}1/2 

where a = p/p1 ~ 1. 

It is easy to see that for a) 1, w1 - w ~ 0 and d(w1 - w)/da >O 
and sa that a= a(w1-w) ~ 1 for w1>,.w, a(O) = 1. Thus we have for Y?O 

f' (y) 
d(z1 - z)/da 

= d(w1 - w)/da 

Then using the assumption 1 ~y~ 5/3 the direct calculation 
shows that f"(O) = 0 and f 11(y) > 0 for y> O. Therefore we have for y> 0 

a - a 
0 ~ f 1 (0) = 1 0 < f 1 (y) < 1. 

al+ a 
0 

The other inequalities in the lemma are shown by the analogous computations. 

qed. 

Now, we can solve the Riemann problem (4.1) (4.6) i.e., (4.7) (4.8) 
by these six elementary waves (i)~(vi). Let us consider the projection of 
two points (ui,P;,s;)E n ,i = 1,2 on the plane (w,z) i.e., 
(wi,zi) = (w(ui,pi)' z(ui,pi~' i = 1,2 defined by (4.17). Draw the four curves 
R1(u1,p1,s 1), s1(u1,p1,s 1) and R2(u2,p2,s2), s2(u2,p2,s2) in the plane (w,z) 
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which are characterized by lemma 4.1 and 4.2. They intersect exactly atone 
point (w3, z3), which belongs to one of the following five cases : The 
solution consists of four constant states (ui,pi,si) i = 1,2,3,4, where 
(u3,p3) = (u4,P4) = (u(w3,z3), p(w3,z3)) defined by (4.17), which are 
connected by the elementary waves as follows 

I. (w
3

,z
3

) ~ R11\R
2 

f\ {z>w - 2 a0/(y-1)} 

The solution consists of four constant states (u.,p.,s.) i = 1,2,3,4 which 
1 1 1 

are connected by the R1-wave (4.15), by the contact discontinuity (4.20) and 
by the R2-wave (4.16), where s3 = s1 and s4 = s2. 

II. (w3 ,Z3) ~ s1 n R2 
They are connected by the s1-wave (4.21), by the contact discontinuity (4.20) 
and by the R2-wave (4.16), where s4 = s2. 

II r. (w
3 

,z
3

)e s1 ('\ s2 

They are connected by the s1-wave (4.21), by the contact discontinuity (4.20) 
and by the s2-wave (4.23). 

IV. (w3,Z3)E R1" s2 

They are connected by the R1-wave (4.15), by the contact discontinuity (4.20) 
and by the s2-wave (4.23), where s3 = s1. 

= (u1,P1,s1) in ~ < À (pl ,s1) 

6 R1(u1,p1,s 1) in À(p1,s 1)< ~ < 0 
(u,p,s)(~) 

, e R2 (u2 ,p2 ,s 2) in 0 < ç < µ(p2,s2) 

= (u2,P2,s2) in µ(p2, 52) < ç 

when the solution attains the vacuum p = 0 on~= 0 and has a discontinuity 
in u there, which should be considered in the Eulerian coordinate. 
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5. Glimm's Difference Scheme and Interaction of Elementary Waves 

We are going to salve the initial value problem for the equation of 
the polytropic gas motion : 

in t;::.O, xEf, 
where 

(
5

_
2

) { veY== a2 p-l exp ( (y-l)s/R) , •~:; O, ¼y..; 5/3 

(pv - a21Y)/(y-1) = a21Y(pyexp ((y-1) s/R)-1)/(y-l) 

with the initial data 

(5.3) (u,p,s) (0,x) given in xE~. 

We seek the weak solution (u,p,s)(t,x) which are bounded functions and 
satisfy the integral identity: 

(5.4) 

ff [u ~t + p ~x + v 1./Jt - u 1./J + (e+u2/2) xt + 
t > 0 X 

p u Xx ] dx dt + f u~ + Vl./J + ( e+u2 /2) x d x = 0. 
t=O 

for any smooth functi ans ~, 1./J, x with compact support in t ~ 0, x e: IL 

The weak solution in the large intime for the initials with finite total 
variation is obtained as the limit of the approximate solutions constructed 
by the Glimm's difference scheme. To simplify the argument we restrict our
selves to treat the system (5.1) with y= 1 + 0 i.e., 

(5.5) 

where 
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(5.6) v = a2/p, e = a2 (log p + s/R). 

In this case the characteristics and the Riemann invariants which are not 
the unknown variables u,p,s are given by the following 

V= 0, 

{

À =-p/a, 
(5. 7) 

w = u - a log p, 

µ = p/a 

z = u + a log p 

Since these quantities are independent of s, the entropy s may be considered 
as a secondary independent variable for the system (5.5) (5.6). Also the 
Riemann invariants w,z define a mapping : 

(5.8) n = {(u,p,s), p >O} _. n
1 

= { (w,z,s) E f 3 } . 

The shock curves and the rarefaction curves are given by the following 

+ } 

p 
s-s 1 = R (log - 1-+ 

p 

p < P1 } , 

p 
= R (log -1., + 

p 

Lemma 5.1 - The Riemann problem (5.5) (5.6) for the initial data 

X < Ü 
(5.10) 

X > Ü 
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where P; > 0, u;, s; are constants, has a piecewise continuous and piecewise 
smooth weak solution in the large intime and satisfies the estimate: 

{ 

w(t,x) =_ w((u,p,s) (t,x}):;:. w0, 
(5.11) 

z(t,x) = z((u,p,s) (t,x))~ z0 , 

where 
(5.12) w0 = min w ((u,p,s) (O,x)), z0 = max z((u,p,s) (O,x)). 

Therefore the speed of propagation is bounded as follows 

(5.13) 

The proof is a special case of that given in§ 4. However the case V there 
does not exist here because of n1 = ~3 by (5.8), and so the Riemann problem 
is always solved without the vacuum. If we note that the quantities (5.7) 

are independent of s, the estimate (5.11) and (5.13) follows from the consi
deration of each case I, II, III, IV in the (w,z)-plane and from the proper
ties of the rarefaction- and shock-curves (lemma 4.1, 4.2J. 

Definition 5.1 -

(5.14) q = 2 
- w = a log p . 
2 

3 This define a mapping (u,p,s)en ={(u,p,s), p>D}-(u,q,s)6:n 2 =R. 

Lemma 5.2 - Let (u;, Q;, s;) = (u1, a log P;, s;) for any (u;, p1, s;)6&°2, 
i = 1,2. The sHock-curve S;(u;, P;, s1) and rarefaction- curve 
R;(u;, P;• s;), i = 1,2, in terms of (u,q,s) have the same figures respec
tively and are independent of the initials (u1, 9;, s;) i.e., 

(5 .15) 

s1(ul'ql's 1) = { (u,q,s) : u - u1 = - 2a sh(q-q1)/2a, 

s-s 1 = R(-(q-q1)/a + sh(q-q1)/a), q) q1} , 

R1 (ul'ql's 1) = { u-u1 = - (9-q1), s = sl' q < 91 } , 

S2(u2,92,s2) = { u-u2 = 2 a sh(9-q2)/2a, 

s-s 2 = R (-(q-9 2)/a + sh(q-q2)/a), q >92 } 

R2(u2,92,s2) ={ u-u2= q-q2 ' s=s2, q <qt 
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The proof is easy if we note that q-qi = a log p/p; and the fact that the 
shock - and rarefaction- curves depend only on PIP; in (5.9). 

Now we introduce the Glimm's difference scheme to get the approximate 
solutions (Glimm, 1965). Suppose that the initial data (5.3) are bounded 
and have bounded total variations and define 

(5.16) 

(u+, P:p s;) = li!]] (u, p,s) (O,x) 
X➔ +oo 

Po = inf p(O,x) > o , s0 = inf s(o,x) 
X 

w0 = inf w ((u,p,s) {0,x)) 
X 

z0 = sup z ((u,p,s) (O,x)). 

The initial data are approximated bythestep functions with the mesh length 
2 h (o < V h ~ h

0
) 

( 5. 17) h U (O,x) = U(O,mh) in (m-l)h<x<{m+l) h, m: even, 

Let us define the time mesh length _9., by 

(5.18) 

and set 

(5.19) Y ={(n,m); n,m are integers, n+m is even and n ➔ l} 

Definition 5.2 - (Glimm's difference scheme) 

We choose any random sequence of equidistributed numbers in (-1, 1) 

(5.20) 
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and set the mesh points as 

an = (n R, mh + a h) for (n,rn)'=" Y, m n 
(5.21) 

a0m = {O, mh), m: even . 

The approximation uh (t,x) on the mesh points a0m is defined by {5.17). Sup
pose that our approximation uh(t,x) has been defined for {t,x) = a;:Î and 

n-1 h li for (t,x) = a m+l (some (n,m) E Y). We define U (am) as follows : 

Let U = (u,p,s) (t,x) be the solution of the Riemann problem for (5.5) in 
t ~ (n-1)9,, Xé R with the initial data 

U((n-l)t,x) = { U(an;\ ) in x <mh 

U (an;} 1) in x > mh 

Set the approximate solution as 

(5.22) 
h {(n-l)t~t<n,Q;, 

U (t,x) = U(t,x) in (m-l)h~x~ (m+l)h 

and define the approximation uh(t,x} on the mesh point (t,x) = an by m 

(5.23) h n n U (am)= U (am) . 

Since the Riemann problem for (5.5) is always solved by lemma 5.1., our 
approximate solution is defined for all anm' (n,m) E. Y. Furthermore the 
approximate solution uh (t,x) is the exact weak solution in each strip 
(n-1),Q, ~ t < nt, xEF. In fact it follows from the estimate (5.13) and 
from the choice of (5.16) and (5.18) that there never intersects the two 
waves coming from the neighbouring discontinuity points (t,x) = ((n-1)1,mh) 
and ((n-l)t, (m+2)h) for any m such that (n,m)E. Y. Thus the approximate so
lutions for any a and for any he (O,h0) have been defined in t ~O, x€f. 

Before we prove the convergence to a weak solution we need to consider 
the interactions of elementary waves and to get some preliminary bounds for 
them. Remember that the solution of the Riemann problem has four constant 
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states U; = (u;, P;, s;), i = 1, 2, 3, 4, connected by three of the elemen
tary waves : 1-wave (s1- or R1-wave), 0-wave (contact discontinuity) and 
2-wave (S2- or R2-wave). We denote this vector of three elementary waves 
joining four constant states u

1 
(i = 1,2,3,4) by B = (B1, s0, s2), y and 

so on. 

Definition 5.3 - The magnitude of each i-wave Si' i = 0, 1, 2, in S is 
measured by the di fference of q or s as fo 11 ows (cf. ( 5. 15)) : 

(5.24) 
s1 = q2 - q1 ~ 0 for s1- or R1-wave respectively, 

s2 = q3 - q4 ~ 0 for s2- or R2-wave respectively. 

Its absolute value is called the strength of i-wave. 

and 

The increase of the entropy in the i-wave i.e., in the S;-wave (i = 1,2) is 
denoted by 

The interaction of elementary waves is considered in the following way: 

Suppose that seven constant states Ui(i = 1,2, ... ,7) are connected by two 
vectors of three elementary waves B = (S1,s0,s2) and y= (y1,y0,y2). The 
solution of the Riemann problem (5.5) with the initials u1 and u7 in x < 0 
and in x > 0 respectively has the four constant states u1, u8, u9, u7 
which are connected by a vector of three elementary waves denoted by 
a= (a 1,a 0,a 2). Our aim is to estimate a by Band y in the above interaction 
denoted by S + yi+ a. There are the following basic interactions of 
S + y~ a , into whi ch the others of S + y.+ a can be reduced : 
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B., y. >0, i = 1,2, there are three cases in a. 
1 1 

a) Cl; >O, i = 1,2 i.e., (S1, Ca, S2) + (S1' Ca, S2).-+(S1, Co, S2), 

where c0 denotes the contact discontinuity. 

b) Cl1 > 0, Cl2 ~ 0 i.e., (S1, Ca, S2) + (S1, Ca, S2) 14 (S1, Ca, R2) . 

c) a1~o, a2 >0 i.e., (S1, c0, S2) + {S1, c0 , s2)--+ {R1, c0, S2), 

which is symmetric to {b) and can be reduced to {b) for the estimate. 

(II) If B1, y1 >O and s2, y2 ~ 0, then a1 >O and a2 <0 i.e., 

(S1, Ca, R2) + (S1, Ca, R2) ➔ (S1' Ca, R2). 

{II') If B1, yl ~ 0 and B2, y2 > 0 , then a1 < 0 and a2 > 0 i.e. 

(R1, C0, S2) + {R1, c0 , s2)>-+ {R1, c0 , s2), which is symmetric to (II) 

and can reduced toit for the estimate. 

(III) If B1' B2 > 0 and y1, y2 ~ 0, there are four cases. 

a) a 1,a2 ~ 0 i.e., (S1, CO, S2) + ( Rl, Ca, R2) 1-+ (S1' CO' S2). 

b) a1 ?O, a2 ~ Ü ; . e. , Il 
\-+ (S1' CO, R2). 

c) a1 ~ 0, a2 ~Q ; . e. , Il ➔ (R1, Ca, S2). 

d) a1 .$ 0, a2 .$ Ü ; . e. ' Il 
--+- (Rl, CO, R2). 

(III') If s1, s2 ~ 0 and y1, y2 > 0 , there are four cases which are symmetric 

to (III) and can be reduced toit for the estimate. 

( IV) If B-, y.~o, i = 1,2, then a
1
.,::SO, i = 1,2 

1 1 
i.e. 

Lemma 5.3 - Suppose that the interactions of elementary waves of B + y'4- a 

occur in a fi xed bounded reg ion n Oc { ( u ,q ,s) E ~
3} . Then there exi sts a 

constant G > 0 ~uch that the following estimate holds : 
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(I-a) There exist O<Q<min (s1 + y 1, s2 + y2) such that 

al= Sl + Y1 - Q > 0 

a2 = B2 + Y2 - Q > 0 , 
(5.27) 

E ~ e:0 + E and E ~ € 0 + E - GQ or 
al µ1 yl a2 µ2 Y2 

e: ;::. E O + E - GQ and E :;-. E 
O 

+ e: , 
al µl yl a2 f-12 Y2 

1 ao 1 ~ Isa 1 + 1 y O 1 + 1 € - € Q - € 1 + le: - Es - E 
ctl µ1 Y1 ct2 2 Y2 

(I-b) There exists O<S 2 + r 2 < Q <8
1 

+ yl such that 

(5.28) 

al = 81 + y 1 - Q > 0 

a2 = 82 + Y 2 - Q ~ 0 

(II) There exists O < Q < r
1 

such that 

c\ = 81 + y 1 - Q > 0 

ct2 = - 1 82 1 - 1 y 2 1 - Q < 0 
(5.29) 

a.1 = s1 t Q ~ 0 

a2 = s2 - 1 y 2 1 + 1 y 1 1 t Q ;::. 0 

(5.30) s ~ s
0 

+ min (O,GQ) 
et,_ µ1 
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a 1 = s1 + Q > 0 

(5. 31) a2 = B2 -IY2 1 + IY1! + Q ~ 0 

e=: ~ c0 + min(O,GQ} 
al µ1 

laol~I~ I+ IYol +I E:Bl-Eall + EB2 

(III-c) There exists B1 ~ Q <!Y11 such that 

(5.32) 

( I II-d) 

{5.33) 

(IV) 

(5.34) 

a1 = B1 - Q < O 

a2 = B2-IY2 1 +IY11 - Q ~ 0 

Ea ~ EB + min (0, G(-IY2I +IY11 ~ Q)) 
2 2 

!a0l~I B0 I + lr01 + IEq._ - Es 1 + Es 
l 2 1 

There exists s1 ~ Q<IY11 such that 

a.1 ~ 1\ - Q ~ O 

a.2 = B2 ~ 1 y 2 I + 1 yl 1 ~ Q ~ 0 

la0 1~ IB0 1 + lr0 1 + EB + Es 
1 2 

al = Bl + y 1 ~ 0 

a
2 

= B
2 

+ Y
2 
~ 0 

Proof. First we remember that the shock curves (Si-curve, i = 1,2} have the 
same figures independent of the initial point in the variables (u,q,s) by 
lemma 5.2, which is essential in the proof. In the case of (I-aJ the existence 
of Q >Qin the first two equalities cornes from the convexity of the S;curve , 
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in (u,q) plane by (5.15). The fifth inequality is easy if we note that 
for the entropy it holds 

The third and fourth inequalities for the entropy follows from the following 
lernrna. 

Lemma 5.4 - Let (u2, q2, s2), (u3, q3, s3)e:.S1 (upq 1, s1), 

(u4, q4, s4)~ s1 (u2 , q2, s2) and u3 = u4 with q3 > q2. 

Then there exists a constant G such that 

(5.35) 

and also it holds 

(5.36) 

The inequality (5.35) is an easy consequence of the mean value theorem. 
The second inequality is shown as follows, where we put q2 - q1 = B1, 
q4 - q2 = Yi and q3 - q1 = a1. The representation of S;-curve in q-variable 
(5.15) gives the following identities. 

u1 - u2 = 2a sh {B1/2a), u2 - u4 = 2a sh {y1/2a) 

u1 - u3 = 2a sh {a1/2a). 

Therefore if we use u3 = u4 here, we have 

{5.37) 

On the other hand it follows from (5.15) for the entropy 

s3 - sl - {s4 - s2 + (s2 - sl)) 

= R { - a1/a + sh {aiJa) - {- f:\/a + sh {131/a) - y 1/a 

+ sh {Yi/a)} ~ R[ 2 ch{aif2a) { sh (a/2a) -

- sh {S1/2a) - sh (y 1/2a)} + {S1 + yl - a1)/a] > 0, 

where lemma 5.2 and (5.37) are used. 
qed. of lemma 5.4. 
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We return to the proof of lemma 5.3. (I-b) can be treated analogously to 
(II), whi ch i s proved as fo ll ows. The existence of Q > 0 cornes a gain from 
lemma 5.2 and the fact that s1-curve in (u,q)-plane has the gradient 
greater than 1 and is convex and that R2-curve in (u,q)-plane is the half 
straight line with thegradient -1. The third inequality cornes from lemma 5.4 
and from that R2-curve has the gradient -1. The fourth is easily obtained 
by the entropy equality. 

(III-a) The existence of Q>O follows from lemma 5.2 and if we remember 
the gradient of the Si- and Ri-curbe in (u,q)-plane. The third and fourth 
cornes from lemma 5.2 and 5.4. Also we have the entropy equality 
sa + s0 - s8 + Yo = s + a0 - s , which give the last inequality. 

µ1 2 al a2 

(III-b) and (III-c) can be treated analogously to (III-a). 

(III-d) and (IV) are easy to get. 

qed. of lemma 5.3. 
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6. Bounds for the Approximate Solutions and the Convergence to a Weak Solution 

The approximate solutions U = uh by the Glimm's difference scheme 
a, 

will be estimated on thepiecewise linear curves called I-curve j. 

Definition 6.1 - I-Curve O is composed of the all line segments joining 
0 1 1 0 am to a m+l and a m+l to a m+2 for all even m. An immediade successor 

I-curve j 2 of I-curve jl is composed of the same line segments except two 
n n 1 n-1 n h · h segments joining am to a ;+l and a m+l to am+2 , w 1c 

are replaced by those joining amn to anm+¾1 and an+l to an +2. Then 
m+l m 

all I-curve j are obtained by the successive procedures to take an immediate 
successor starting from I-curve O. 

The bounds for the approximate solutions are obtained by means of a functional. 
The functional F = F(Uh/j) = F(j) is defined on the approximate solutions 
uh restricted on each I-curve j. It dominates the total variation of uh 
on j and decreases as function of j in the partial order introduced by 
the immediate successor. Since Uh/j consists of various shock and rare
faction waves and contact discontinuities as seen in §5, F is defined as 
a function of these elementary waves as follows: 

Definition 6.2 - Let us use the notation for the strength of waves in Defini
tion 5.3. 

where the summation is over all vectors of three elementary waves 
B = (B1, a0, s2) in uh crossing j and a constant M0 > o will 
later. 

be chosen 

Hypothesis 6.1 - The initial data (u,p,s) (O,x) are bounded, have bounded 
total variation and 

(6.2) Po= inf p(O,x) > o 

From (5.14) it is equivalent to that (u,q,s)(O,x} are bounded and have 
bounded total variation i.e., 
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{ 

T V l : T V(u ,q) '.o, Ï 
T v2 =TV s(O, ) 

< + 00 

< + 00 

where TV means the total variation in x tf{. 

We define the intervals in q as follows : 

(6.4) 
{ 

lq • {qeR; ~ - 2 TV1 ,;q<': 

I 2 q = { q E ~ ; ~ - 4 TV l ~ q .( q 

+ 2 TV1 } 

+ 4 TV l } 

where q = min{ liw q(O,x)} , q = max{ xlJm
00

q (O,x)} 
- X➔ "'Foo -. 

Hereafter we excludethe case TV1 = 0 , which is not interesting at all, 
because its solution 

U(t,x) = U(O,x) for any t ~ O. 

Lemma 6.1 - Under the hypothesis 6.1 we choose M0 in the functional (6.1) 
as 

(6.5) Mo = min { 1 , 1/2 G, TV/2 TV2 } 

where G i s the constant in 1 emma 5. 3 for r2q. Then we have for a 11 uh 

(6.6) for 1-curve 0 

where I-curve j 2 is an immediate successor of I-curve j 1. As a consequence 
it holds 

(6.8) for any I-curve j , 
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Proof. First lemmas 5.1 and 5.2 give for I-curve 0 

where ! denotes the summation taken for al 1 f, on O. Thus 

Therefore we can estimate by lemmas 5.1 and 5.2 

F(O) = r{le11 +ls21 + M0 (le0~e:~
1 

- e:f3
2

); a on o} 

~ TV(uh, qh) (0,•) + Mo (GTV(uh,qh)(O,·) + TV sh(O,·)) 

3 
$. 2 TV l + M0 TV 2 ~ 2 TV l , 

where {6.5) is used. 

The inequality (6.7) is proved inductively by lemma 5.3. Let 

(6.9} 

The difference of I-curve jl and its immediate successor r-.. curve j 2 is 
d. d d f f t . . . n n-1 n d n+l a 1amon compose o our segmen s Joinrng a m' a m+l' a m+2 an a m+i • 

The waves S and y enter in the diamond and interact there and the wave a 

goes out of it. All the other waves crossing jl and j 2 are common to both 
of them. If we remember each interaction in lemma 5.3, the second hypothesis 
of induction (6.9) gives 

{6.10) l2q' 

Therefore lemma 5.3 wtth the constant G for 1
29 

applies to the interaction 
of S and y to a in the di:amond. Thus we treat each case of I-IV. 
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(I .. a) i = 1,2. 

- s + EQ + E ) .:$. - 2Q + 2 Mo GQ = -2Q {l-Mo G)< 0 
a2 µ2 Y2 

where (5.27) and (6.5) are used. 

(I-b) S + y 1+ a, where S;, Y; .)..0, i = 1,2 and a1 ~ 0, a2 < O. 

F(j2) - F(jl) = al +la2I + Mo (1 aal- Eal) - {(31 + 82 + Mo(ISol - ES1- E82) + 

Y1 + Y2 + Mo(lrol- e\1 - EY2 )}~,- Q + (Q - 82- Y2) - S2 - Y2 + 

+ MQ (E - E0 - E + ED + E - E + E0 + E + ED + E ) 
a 1 µl Y1 µ2 Y2 al µl Y1 µ2 Y2 

F(j2) - F(jl) =al+ la2! + Mo(laol - Eal) -

- {f31 +ls2 1 + M0(1s0 1 - ss
1
) + Y1 ¾ IY2 1 + M

0
(1Y0 1 - sy

1
)} 

~ -Q + Q +ls2l+lr2I -IS2I -IY2I + Mo ( s - Ea - s - s + EQ + E ) = o. 
al Pl Y1 al PJ Yi 

(III-a-1) 



34 

-{ s1 + s2 + M0 (1 s01 - Es - Es) +IY11 +IY21 + M0I Yol } ~ 
1 2 

~ Q - 1 Y 1 1 + ( 1 Y 1 1-1 Y,, 1 + o) ) - 1 Y 2 1 + M0 ( E ... E + 1 E .. E a 1 -
L Cll S1 Cl.2 1-'2 

F(jz) - F(j1) = Q -IY1l + (IY1I -IY2I + Q) -IY2I + Mo (lEal~ Es1' + 

/E - Ea 1 - E + Ea ... E + ta ) ~ .. 2 1 Q 1 - 2 IY2 I + 
a2 t->2 al Pl a2 P2 

(III-a-3) 

F(j2) - F(j1) = - 2 !QI - 2lr2I + 2 Mo ( Es1· E0t/ e.f3-2 .. Ea2) 

~ - 2 IQI - 2IY21 + 2 M0 (GIOI + G(IY21 -IY11 + IQI )) 

= - 2(IY21 + IQI )(1-M0 G) - 2M0 G(IY11 - IOI) < o. 

( II I-b) 

This can be reduced to the case (III-a) with a2 = 0 and then to the case (II). 
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+ Mo { e - Ea + E::Q - s + Ea + Ea. )~ - 2 B1{l-MaG) - ?!y,,!< 0 • 
0',2 1-'2 1:-'J (Y,2 1-'J µ2 L 

( I II-c-2) 

( I II-d) 

This can be reduced to the case (III-c-2) with a2 = 0 and then to the 
case (IV). 

(IV} and i = 1,2. 

Thus we arrive at the key estimate (6.7). At last tt follows from (6.10) and 
(6.7) that for the same G, 

(6.11) 
, and so 

qed. 

Lemma 6.2 - For any hE(O,h0) and any random sequence a= fo } 1 h h h n n~ 
the approximate solutions U = (u , q , s ) has the following uniform 

a a a 
estimates with a constant K < + oc independent of h and o< • 
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(6.13) 
TV(u,q)(t,•) ~ K TV1 

TV s(t,•) ~ K(TV1 + TV2) , 

(6.14) +oo 

[
00

IU(t2,x) .. U(tl'x) ldx~ K( 1t2-t 1 I+ 3l) (TV1 + TV2) 

proof - It follows from lemma 6.1, (6.11) and (6.12) that 

(6.15) for any t ~ 0, any x E ~-

TV q h ( t, · ) = 1 i m TV { q h ( t , x) 1 1 x 1 ~ X } 
X ++oo 

for any t PO • 

From lemma 5.2 (5.15) and (6.15) we have 

where C = q mqax ê 1 \ 2 a sh (q2 .. q1)/2a\ 
2' 1 q 

In the same way we have 

~ r {!Bol+ G(ls1! +1~2 \) ; s on j} 

1 
~ M . L {Mo I Bo 1 + ( 1811 + 1821) /2 ; 8 on j} 

0 

~ F(j)/ Mo~ 2 TV1/Mo + TV2 

Next let t 2 > t 1 in (6.14) and set 

t 0 = max {t ; t ~ t 1 , t = n ..e} and 
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U(t2,x) = uha(t2,x) for any x is completely determined by the data 
U(t1,y) , YE(x-Nh, x+Nh} . Therefore by lemma 6.1 the same argument for 
(6.13) gives 

Thus we have by the integrati'on 

(m+2)h 

f 
mh 

and so 

+oc 
i: 

m=-co 

N 
IU(t2,x) - U(t1,x)j dx~ 2 (K+l) h .r TV {U(t0,•)jm+j)h~y~(m+j+2)h}, 

J=-N 

qed. 

Now we turn to prove the convergence of the Glimm's approximate 
solutions to a weak solution for the Cauchy problern. Remember that the diffe
rence approximation depends on hE {O,h

0
) and also on the random choice 

of mesh points an = (ne, (m-l)h + 2h a ) , (n ,m) é Y, where a = {a } 
1 m n n n~ 

is any sequence of equidistributed numbers in [0,1] . a is considered as 
an element of 

+co 
(6.16) A = nh f0,1] 

which is a probability space as an infinite product of the interval [0,11 
h h h h h .h h with the Lebesgue measure. Let us denote U = (u , p , s ), v =v(p ,s ) 
a a a a a a a 



and e~ = e(p~ , s"a). 

+ (uh )2/2). 
a 
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Remembering the definition of the weak solution (5.4) we consider the 
integral quantity for the approximate solutions 

(6.17) 
+oooo h h h 

o (h, a, 4>) = [ r [u a 'f t + p a 'f.x + V a Vit --
o -oo 

+ (eha + (uha )2/2) Xt + pha uha Xx] dx dt+ 

where <I> = (tf, v;, x) is any smooth function with compact support. Since 
uh is the exact weak solution in each strip (n-l)i.::; t < nt, xe~, we can 

a 
compute 

00 

(6-.18) 
ô(h, a, <I>) = - ; r <I>(nt,x).(Vh (ne,x) - Vh (ni-0,x)) dx 

n=l -co a a 

Here o(h,a,<I>) and on{h,a,<I>), n?l, arefunctionsof aeA. 

Lemma 6. 3 - There is a null set N c. A and a sequence hj -+ 0 such that 
for any aëA~N and for any test function <I> , we have 

(6.19) 

The lemma is given in Glimm (1965) and Glimm-Lax (1970) and is essential to 
the convergence of the Glimm's difference scheme, which is valid in general 
under the uniform estimate on the total variation of the approximate solutions. 
First we have for any bounded continuous function cp 

(6.20) 

This follows from (6.13) and from the inequality 



39 

(m+l)h 
1 r f ct> (nt,x) . (V~ (nt ,x)-V~ (n-l-0 ,x)) dx 1 

(m-l)h 

Now suppose that ct> has compact support and piecewise constant on each 
segment {nt} x [ (m-l)h,(m+l)h] for (n,m) € Y and let h = 2-j, j = 1,2 ... 
In this case we have the fol1owing 

(6.21) 

(6.22) 

ôn ( h , . , '1i) .1 ôk ( h , . , '1i) 

2 llo (h,.,'1i)II +O 

n ! k 

as h = 2-j + 0 , 

where the orthogonality in (6.21) is with respect to L2(A) and the norm in 
(6.22) is that of L2(A). Let k< n and let Â, d& be the measure space 
product with a factor corresponding to n omitted. Put 

LW(nt,x) = vh (nl,x) - yh {nl-0,x) 
a a 

The inner product of on and ôk is a sum of terms of the form 

1 (6.23) if 
(m+l)h 

( J '1i(nl,x). AV (nt,x) dx). 
(m-l)h A 0 

• (j- qi(kt ,x). tiV(kt,x) dx) d an da· 
-o,, 

Since C = ~: '1i(kl,x). AV(kt ,x) dx is independent of an and <D is 
constant on 

{ni} X 

f C <D(ni ,mh) ( f 1 dan 
Â 0 

[{m-l)h,(m+l)h] , (6.23) is equal to 

(m+l)h f 6V(n-f ,x)dx) dâ 
(m-l)h 

[ l J2h (m+l)h 
= c <D(nl,mh) [~;,, { f · (V(ne-o,(m-l)h+an) -

Â o (m-1) h 
,. 

- V(nt-0,x)) dx} dan] da= 0 
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Also if we use (6.20) and note that <P has compact support, we have 

In the same way we obtain for <Il with compact support 

(6.24) 11 ô(h •.• <P) 11 ~ const. 11 <I> 11 
00 00 

with compact support there is a 
a.e .• By the diagonal 

{~;}

00

i=l • Let N be a 

Thus for each piecewise constant <J? 

subsequence hj ➔ 0 such that ô(hj,.,~) ➔ 0 
process we can achieve thi.s for a dense set 
null subset of A such that for i = 1,2, ... 

on A ~N 

We can apply (6.24) with <J? replaced by 4> - <J?; and conclude that as j ➔ too 

(6.25) for any <P 

qed. of lemma-6.3, 

Let uj = uh! for any CY.€A ~N. By lemma 6.2 Uj is uniformly 
bounded and has bounded total variation on horizontal lines uniformly in j . 

By Helly's theorem a subsequence of Uj converges in L1 on bounded inter
va 1 s of any gi ven hori. zonta l 1 ine. By the di agona 1 process we can a chi eve 
the same result for the countable number of horizontal lines at rational times 
t = k/n . For an arbitrary t we have from (6.14) 

f \Uj(t,x) - U;(t,x) \dx ~ f \Uj(t,x)-U/k/t,,x) 1 dx 
jx!~ M jxj~M 

+ J luj(k/n ,x)-U;(k/n ,x) 1 dx + f I U;(k/n,x)-U;(t,x) 1 dx 
jxj~M ~l~M · 

,:s C(jt-k/n 1 + h;+hJ.) + r jU.(k/n,x)-U;(k/n,x) ldx 
jx j~M J 

Thus a subsequence Uj converges (uniformly for bounded t) to U=(u,p,s) 
k 

on the intervals lxl<VM on t = 'v't0. Therefore we have 
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(6.26) k U~00 Uj = U = (u,p,s) a.e. and boundedly, 
k 

and the same fs true for V= (u,v,e+u2/2) and pu. Also the limit function 
is a weak solution of the Cauchy problem (5.1) with (5.6). In fact 

00 00 f f ( u <Pt+ P <Px + v 1/Jt - u 1/Jx + ( e+u2 /2) Xt + pu Xx ) dx dt 
C) - M 

+ J u <P + Vi/J + (e+u2/2)x dx 
t=O 

= lim {ô{hjk'a ,1>) + f (u-u. ) <P+ (v-v. )1/J + 
h . ➔ 0 t=O J k J k 
Jk 

+ (e + u2/2 - e. - u. 2/2)x dx} = 0 
Jk Jk 

Hence we arrive at the fo 11 owing existence theorem in the case '1 = 1, when 
the assumption (6.27) is trivial. 

Theorem 6.1.- Under the hypothesis 6.1 there exist two constants E >0 and 
K < + oo such that for any adiabatic constant ye.[1,5/3) satisfying 

(6.27) 

the Cauchy problem (5.1) with (5.2) has a global weak solution (u,p,s) which 
has the properties 

l(u,p,s) (t,x) 1 < K 
(6.28) 

0 <p.:;; p (t,x) 

TV (u,p) (t,.) < KTV1 
(6.29) 

TV s(t,.) 

in t ~ 0, x€ R 

for a constant p 

where s,K are independent of yt:[1,5/3] . 

The theorern is due to Liu (preprint) and in the case 1 < y~[5/3] it is 
proved by a kind of perturbation from y= 1 under the condition (6,27), which 
is the same idea as Nishida and Smoller (1973) for the isentropic rnodel 
equation. 
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Remark: The above presentation of the weak solution to the hyperbolic 
conservation l aws for the po lytropi c gas mati on is an introduction to i t and 
we have to consult for the full theory and problems on it the works in the 
references, whi'ch are not complete though. Espedally in one space-dimension 
we refer to 
(i) Lax {1957), Gltmm (1965) and Kuznecov-Tupciev (1975) for the existence 
of weak solutions to the general system of n equations, 
(ii) Oleinik (1957), Lax (1971) and Dafermos (1973) for the entropy condition 
and the uniqueness question, 

(iii) Guel1fand (1959), Foy (1964), Kruzhkov (1970)and Conley-Smoller (1972) 
for the relation to the system with the viscosity, 

(iv) Lax (1957À Glimm-Lax (1970), DiPerna (1975 and preprint) and Liu (pre
pri nts) for the asymptoti c be havi ors of weak so 1 uti ons as t ➔ + oc:>, 

(v) Vol1 pert (1967) and Di Perna (1976) for the structure of the weak solu
tions. 
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CHAPTER II - QUASILINEAR WAVE EQUATIONS WITH THE DISSIPATION 

1. Introduction 

We consider the initial value problem for the second order quasilinear wave 
equations with the first order dissipation 

( 1.1) in t~O,xEF 

with the initial data 

( 1. 2) in 

Here a is a positive constant and the equation (1.1) is related to a theory for 
the heat conduction with the finite speed of propagation. cf. Cattaneo (1958), 
Vernotte (1958), Lebon and Lambermont (1976), and also Gurtin and Pipkin (1968), 
MacCamy and Wang (1972), MacCamy (preprint). 

When a= 0 and Oy=O, the equation (1.1) is a nonlinear wave equation in 
the conservation form. Cf. example 1.3, Chapter 1. For the model of the heat conduc
tion the equation (1.1) has the lower order term ct~t with not small a> O. In 
this case Rabinowitz (1969) showed that there exists the time periodic smooth solu
tion (so global intime) for the initial boundary value problem (1.1) with the 
forcing term which is a time periodic fonction. In§ 2 the simplest case (1.1) 
with a= o(yx) is investigated on the global smooth solutions to the Cauchy pro
blem with the initial data (1.2) which is small relative to~ and also on the 
development of singularities in general for not small initial data by the method 
of§ 2, Chapter 1. cf. Nishida (1975). Its application to the integro-differential 
equation of the heat flow in the materials with memory, which is written in the 
form 

t 
= f a(t-s) o(ux(s,x))x ds + f(t) 

0 

is considered by MacCamy (1975) on the existence of global smooth solutions and 
on the asymptotic decay of solutions. In§ 3 , the general case (1.1) with 
cr= cr(y, Yt' Yx) will be consictered on the existence and decay of the global 
smooth solutions for the initial (-boundary) value problem with the small initial 
data by the L2-energy method, which is applicable to the n-space dimensional case 
as shown by Matsumura (preprint). 
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2. The Global Smooth Solution 

The quasilinear wave equation with the dissipation is considered in the 
simplest case 

(2.1) in 

Hypothesis 2.1 

a is a positive constant. 
The equation (2.1) is hyperbolic in a neighbourhood of y = 0, 

X 
i.e., for a 

constant R > 0 

da (v)/d v > 0 

cr (v) é -e,2 ( lvl < R). 
(2.2) in lvl < R 

The initial data are given by 

(2.3) y(O,x) = y1 (x), Yt (O,x) = Yi (x) 

First we transform the equation (2~1) by 

(2.4) y = V 
X 

into the system of two equations 

( 2. 5) {V t - UX = 0 

ut - cr{v)x + 2 au = O 

in X é ~ • 

The principal part of the system (2.5) is the same as the system of the nonlinear 
wave equation (example 1.3, Chapter 1). Therefore the characteristics and Riemann 
invariants are given by the followings : 

À=-/cr' (v) z = cp (v) - u 

(2.6) 

11 = /cr' (v) w = - <P (v) - u } 

V 
where cp(v) = J la• (v) dv 

0 

By the hypothesis 2.1 the system (2.5) is strictly hyperbolic in n = {(u,v) 
u eR, 1 v 1 < R } , and the Riemann invariants give a one to one smooth mapping 
from Q onto 
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n1 = {(w,z) ; 2 cli{-R) < z-w < 2 <P (R)} 

The Riemann invariants w,z diagonalize the principal part of the system (2.5) as 

where 

À = À (z - w) < 0 < µ = µ (z - w) 

The initial data (2.3) reduces by (2.4) and (2.6) to 

(2.9) 
f w(O,x) = w {y1(x), d y0 (x)/dx) = 

l z(O,~) = z (y1(x), d y0(x)/dx) = 

Hypothesis 2.2 

{2.10) 

(2.11) 

w0(x), z0(x) E t; 1 (~) and (w0(x), z0(x)) E n1 for any x € R as fol lows, 

w0+z0 < min { 2cp{R), - 2cp (-R)} , 

where H0 = sup lw0(x) 1 , z0 = sup lz0(x) 1 , 

Lemma 2.1 - Under the hypotheses 2.1 and 2.2 the Cauchy problem (2.7) ~(2.9) has 
the a priori estimate for the 'e1-solution : 

(2 .12) sup lw (t,x)l + sup !z (t,x)I < w0+~0 X X 

for t~O as long as the ~1-solution exists. Therefore the solution remains 
in the region n1. 

Prao~.- The characteristic equation of (2.7} is given by dx1/dt = À , 

dw/dt. = - a(w+z), i.e., 
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t 

{

x1(t,S)_= S+ ~ À(w(s,x1(s,S)), z(s,x 1(s,S))) ds 

(2.13) - at t as 
w(t,S) = w(t,x1(t,S)) = e (w0(S) - a f z(s,x 1(s,S)) e ds), 

0 

In the same way from (2.8) we have 
t 

in Se.f . 

l
x2(t,y)-=y+ & µ(w(s,x2(s,y)), z(s, x2(s,y))) ds 

(2.14) -at 
z(t,y) = z(t,x 2 (t,y)) = e (z0 (y) 

in ye IL 

Let W(t) = sup \ w(t,x) 1 , Z(t) = sup \ z(t,x) \ . 
X X 

By (2.13) and (2.14) we have 

t 
(W(t) + Z(t))eat ~ w0 + z0 + a6 (W(s) + Z(s)) eas ds 

and so we obtain 

W(t) + Z(t) ~ Wo + Za < min { 2 <l{R), - 2 <l{-R)} 

qed. 

Lemma 2.2- Under the same hypotheses as in lemma 2.1 there exista E=e(a,cr) > 0 
and c = c (a,cr) < + 00 such that if w0 + z0 + w1 + z1 < E , then any ,g1-solution 
to the Cauchy problem (2.7) ~ (2.9) has the a priori estimate: 

{ 

lwx (t,x) 1 < 

(2.15) 
1 zx (t,x) 1 < 

Proof - Since by (2.13) 

C wl + C(Wo + Zo) 

C zl + C(Wo + Zo) 

is differentiable in t for fixed s, wx can be differentiated along the first 
characteristic curve (2.13), i.e., 
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(2.16) 
= - o1. w - c< z - À w 2 - À zx wx X X ·w X Z 

By (2.8) we have 

(2.17) 
zt + À zx + a(w+z) 

2x = -- X - µ = 
z1 + a{w+z) 

2 Â 

Define 
1 h = "2" log {- À {z-w)) 

Its differentiation along the characteristic curve gives 

(2.18) h' = 

À w' '\ 
W + /\ Z I -~ Î,_ 

---~--=z_ = --~-- w'-'--(w+z) + 

The substitution (2.17) and (2.18) into (2.16) gives 

2 
(wx)' + (a +Âw wx + h') wx = - ~z• - a ~X+z) 

(2.19) 

Let 

(eh w ) 1 + (a+ À w) eh w = - a eh 
X W X X 2X 

z-w 
g = - a ! 

0 
d ~ 

Then by (2.7) we compute 

g' = 
h 

ae z' -~ = -

Hence (2.19) can be rewritten 

(2.20) 

Put 

(2.21) 

z' -

, namely 
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along the first characteristic curve x = x1 (t,S). Suppose that lwxl is so 
sma 11 that 

(2.22) k(s) ~ a/2 

which is verified later. Then the integration (2.20) along the first characteris
tics gives after integration by parts 

(2.23) 

- ft k(s}ds 
= ((eh wx) (0,B) - g(O,B)) e O 

t 
t -{ k(-r) d-c 
l g(s,x 1(s,S)) k(s) e ds 

0 

+ lg(t,x) I+ sup I g(s,x 1(s,B)) 1 
o,s~t 

+ 

Since h and g are defined in n1 and are bounded in n0 = {(w,z) e n1 , 
!wl + lzl ~ w0 + z0 } , it follows from lemma 2.1 that 

{ 

lh(t,x}I = lh(w(t,x), z(t,x))I ~ C 

lg(t,x) 1 = 1 g(w(t,x), z(t,x)} 1 .:::; a C {W0 + Z0) , 
(2.24) 

where C depends only on cr. 

Therefore by (2.23) and (2.24) we arrive at the estimate 

(2.25) 

In the same way we obtain 

(2.26) 

Now in order to verify (2.22) we restrict w0, z0, w1 and z1 so small that for 
any t > O , x e ~ 
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In fact since IÀwl , jµ
2

j ~ C in r20 , we may take by (2.25) and (2.26) 

w0 + z0 ~ 1/4 c2 

w1 , z1 ~ o./4 c2 

qed. 

Theorem 2.1 - Under the hypotheses 2.1 and 2.2 there exists E > 0 such that if 

then the Cauchy problem (2.1) (2.3) has the unique smooth solution in the large 
intime. 

The a priori estimates in lemmas 2.1 and 2.2 and the well known local existence 
theorem (cf. Douglis (1952) and Hartman-Wintner (1952) for (2.7), (2.8), (2.9) 
give the theorem. 

Remark 2.1 - When the more smoothness of the initial datais assumed in addition, 
the uniform (in t) bounds for the higher derivatives of solutions are obtained 
in the same way. 

Remark 2.2 - If we do not suppose that w1 and z1 are small, the singularities 
in the first derivatives wx, zx develop in general in finite time. In fact for 
example we can see it in the genuinely nonlinear case, i.e., 

(2.27) in 

Under the hypotheses 2.1 and 2.2 the •e,1-solution satisfies (2.12) and (2.24) 

l ·t . . -.o l l as ong as, 1s 1n '° -c ass: 

sup \ w(t,x) \ + sup \ z (t,x) \ ~ w0 + z0 
X X 

(2.28) lh (t,x)I ~ C 

Jg (t,x)I ~ ac (W0 + z0) = c0 

Then we suppose that for the derivative of the initials (eh wx)(O,S) < -(2 c0+ aec/ô) 
. for some Sd~. 
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The integration of (2.20} along the first characteristics gives 

(eh wx(t,x1(t,8)) = (eh wx}(0,8) + g(t,x 1(t,S)) - g(O,B) 

t -h h h 
- ~ (a+ Àw e e wx) e wx ds 

t 
~ (eh wx)(O,B) + 2 c0 - 1

0 
(a+ ôe-C eh wx) eh wx ds 

Therefore if we compare this integral inequality for eh wx along the first 
characteristics with the ordinary differentia1 equation 

dW(t) /dt= - (a+ ôe-C W{t)) W(t) 

we have as t ➔ t0 < + 00 

At last we may note that the weak solution for (2.1) and {2.3) should be conside
red in the large in time for not small initial data, whtle the equation (2.5) 
is not the conservation form. 

3. The Energy Method and the Decay of Solutions as t ➔ + 00 • 

Although the L2-energy method applies to the n space-dimensional case, 
we restrict ourselves here for simplicity to consider the Cauchy problem for the 
equation (3.1) in the one space-dimension and to describe briefly the idea to get 
the global smooth solution by the method. 

(3.1) int~Ü,XER 

where 

(3.2) in XE R 
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Hypothesis 3.1 - a~ 1 without loss of generality. a e G4(n) and cr(0,0,0) = 0, 

where n = { (Y,Yt,Yx) ; IYI , IYtl , JyxJ < R } • Set cr(y,yt,Yx\ = a(y,yt,yx)yxx + 

b(y,yt,Yx)Yxt + c(y,yt Yx)Yx and suppose the hyperbolicity 

(3.3) in n. 

Also we make a restriction 

(3.4) c(0,0,0) = O 

We seek the smooth solution y(t,x) e i2-(t?O, xE R) and 

where 

By a direct calculation or by Sobolev1 s lemma in the one dimension, we have 

(3.6) lf(•)I ~ C !lf(•)II k+l 
.gk H 

where Hm is the Sobolev space of L 2-functions in xER with their m-th 
derivative and 

Thus using the L2-energy method (Courant-Friedrichs-Lewy (1928»we are going to 
solve the Cauchy problem (3.1) (3.2) in the Banach space x3, which is defined by 

oo m-2 Y Ytt (t) € L (t;H ) , 0 ~ t ~ T } , 

where L
00 

(t;Hk) is the space of functions which is bounded in tê(O,T] 
with the values in Hk. 
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Hypothesis 3.2 -

XER, 

(3.8) 

First we note that the classical local existence theorem gives the solution 
for the Cauchy problem of the quasilinear wave equation (3.1) in the space 
Xm (Ym:;;. 3) locally intime. Cf. Schauder (1935), Sobolev (1961), Dionne (1962) 
and so on. In order to get the global smooth solution in t > 0 we only need 
the a priori estimate in the norm (3.5), for which the a priori estimate in the 
norm of x3 is sufficient by (3.6) i.e., 

It is easy to see that the norm {3.9) is equivalent to 

(3.10) 3 E(t) = r EJ.(t) 
j = 0 

for the solution belonging to n in each (t,x), where 

1 2 Eo(t) =2 f (y /2 + y Yt) dx 

(3.11) 

1 2 2 
E1(t) = 2 f (Yt + a Yx) dx 

E2(t) =} J (Ytt
2 

+ (1 + a) Ytx
2 

+ a Yxx
2
) dx 

1 2 2 2 2 
E3(t) =2 f (Yttt + (l+a) Yttx + (l+a) Ytxx + a Yxxx) dx 

Hence by (3.6) we note for y(t,x) with (y, Yt, Yx) en 

(3.12) 

Lemma 3.1 - Under the hypotheses 3.1 and 3.2 there exists a e = e (R,cr) >0 
such that if the solution y(t)ex 3 to the Cauchy problem (3.1) (3.2) is small as 

(3.13) 
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then it has the a priori estimate 

(3.14) E{t) ~ C E (0) in O~t~T, 

where C ;:;:. 1 depends only on a and R. 

Proof: First we assume that the solution y(t) belongs to the space x4 with 
y0(x) E H4 and y 1(x) E H3. Multiply the equation (3.1) by y and yt res
pectively and integrate them in t E: [s, t] , XE~- After the integration by 
parts we have 

= 

1 t 1 t 2 
Eo ( t) - Eo ( s) + 2 / f (J y X dx dt = 2 { f Yt dx dt, 

t 
E1(t) - E1(s) + f f y/ dx dt= 

s 

We compute these by (3.3) as follows : 

where by (3.3) and (3.4) 

(3.15) o = o( 11 y(t) 11 2, sup Ici > = o < IJy(t) 11 2) • 

Here there exists a E > 0 such that if (3.13) is true, then 

(3.16) ô ~ 1/2 in O~t~T. 
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Therefore under ( 3 .13) we have in O ~ t ~ T 

(3.17) 

and also 

(3.18) 

In the same way we obtain the estimate for E2(t). 

1 t 2 2 1 t 2 2 
E2 ( t) - E2 ( s} + 2 f f y tt + y tx dx dt ~ 2 f f I Cx 1 (yt + Yx ) dx dt 

s s 

where Sis the same as (3.15). 
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Therefore under the assumptions (3.13), (3.16), we have 

(3.19) 

Furthermore for E3(t) in the same way we have 

1 t 2 2 2 
E3(t) - E3(5 ) + 2 f f Yttt + Yttx + Ytxx dx dt 

s 

1 t 2 2 2 
~ - 2 f f (1 -o) ( Yttt + Yttx + Ytxx) dx dt+ C(E2(s) + El(s) + Eo(s)), 

s 

where cS i s the same as ( 3 .15) . 

Therefore under the assumption (3.13} we have 

(3.20) 

Thus we arrive at the a priori estimate (3.14) by (3.17) (3.19} and (3.20) under 
the assumption (3.13). This a priori estimate is also valid for the solution 
y(t) in x3 by use of the Friedrichs'mo11ifier (cf. Friedrîchs (1954), Mizohata 
(1973), Matsumura (preprint) under the same assumption (3.13). 

qed. 

Theorem 3.1 - Under the hypotheses 3.1 and 3.2 there exists a constant s > 0 
such that if the initial data are small as E(O) < s , then the Cauchy problem 
(3.1) and (3.2) has a unique smooth solution in the large intime. The solution 
y(t) decays to zero in the l= - norm as t + + 00 • 

The existence of the solution in the large intime is a consequence of the local 
existence theorem and the a priori estimate in lemma 3.1. cf. Matsumura (preprint). 
In fact we choose the initial data so small that 

(3.21) E(O) < s2 / 2 c3 

where s is the same as in lemma 3.1. 



59 

First by the local existence theorem there exists ta> a such that the solu

tion y(t)E x3 exists in a< t~ ta and satisfies the estimate 

E(t) ~ 2 E(a) 

Then by (3.12) we have in a~ t~ ta 

(3.22) lly(t) Il/~ c2 E(t) ~ 2 c2 E{a) ~ 2 c3 E(a) < s2 . 

Thus by lemma 3.1 we have 

(3.23) E(t) ~ C E(a) 

Next by the local existence theorem for t ~ta aga in there exists T = T(CE(a)) > a 

such that the solution y(t) exists in a~ t~ ta + T and satisfies 

(3.24) 

By (3.12), (3.21), (3.23) and (3.24) we have in ta~ t~ ta + T 

(3.25) l!y(t) 112 
2 ~ c2 

E(t) ~ 2 c2 E(ta) ~ 2 c3 E(a) 2 
< E • 

Therefore (3.22), (3.25) and lemma 3.1 give 

(3.26) E(t)~ C E(O) 

Repeating the same procedure with the same time interval T > 0, we complete the 

proof of the global existence of small solution. 

The decay of solution is an easy consequence of the inequalities (3.17) and 

(3.18). In fact 

; )y y j dx ~ 2 ( Jy2 dxfy 
2dx) 1/ 2 

X X 
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(t,x)} 
~ C (E (t) + E (t) + E (t)) l/ 2 E (t) l/ 2 ~ C/t 1/ 2 

(t,x) 2 1 O 1 

qed. 

On the other hand the solution in 0~ t, 0~ x~ 1 for the mixed problem {3.1) 
(3.2) with the zero Dirichlet boundary data decays to zero exponentially as 
t + + 00 • Because by the Poincaré inequality we have in this case 

t 
El ( t) + Eo ( t) + f3 J El ( r) + Eo (-r) d-r .:;; El ( s) + Eo ( s) 

s 

for some f3 = constant > 0. 
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CHAPTER III - AN ABSTRACT NONLINEAR CAUCHY-KOWALEWSKI THEOREM AND ITS APPLICATIONS 

1. Introduction 

It is wellknown that the initial value problem for functions u = (u1 (t,x), ... , 
UN (t,x)) 

( 1.1) 1 
au at = f(t,x,u, au) 

u(O,x) = g{x} 

where au denotes the first partial derivatives in x, is always solved by the 
Cauchy-Kowalewski theorem uniquely in the class of analytic functions in a neigh
bourhood of any point {O,x0) under the assumptions that f = (f 1, ... ,fN) and 
g = (g1, ... ,gN) are analytic in all its arguments. 

Nagumo (1941} pointed out that it is not necessary ta assume analyticity in 
t, i.e., if f is continuous in t with values as an analytic function of the 
other variables, then there exists a unique solution u(t,x) continuously diffe
rentiable in t with values in analytic functions of x . 

Ovsjannikov (1971) and Nirenberg (1972) generalized this result into an abstract 
form of the initial value problem in a scale of Banach spaces in a little diffe
rent formulation, where f is not necessarily a differential operator on u and 
it may be a non-local 11quasi-differential 11 operator on u . 

In§ 2, we improve the Nirenberg's formulation to get an abstract nonlinear 
Cauchy-Kowalewski theorem in a scale of Banach spaces which includes bath theorems 
of Nirenberg and Ovsjannikov. The first applicati'on of it is of course to derive 
the Nagumo's theorem. The second application concerns the nonstationary problem of 
the water waves (the incompressible inviscid fluid flows under gravity) with free 
surface. Although there are many approximate theories to the nonstationary problem 
(cf. Korteweg and de Vries (1895), Stoker (1957), Benjamin (1974) and so on), the 
precise results were not known until recently, i.e., the initial value problem 
with full nonl inearity is solved in the class of analytic functions locally in 
time by Nalimov (1969) and by Ovsjannikov (1971) using the abstract Cauchy-
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Kowalewski theorem, and by Shinbrot (1975), Reeder and Shinbrot (1976). Recently 
Nalimov (1974) solved this Cauchy problem in the class of functions with finite 
smoothness locally intime and justified the linear water wave approximation in 
the 2 space-dimension. In§ 3 by the abstract Cauchy-Kowalewski theorem a justi
fication of the shallow water approximation is shown locally intime for the 
initial value problem of the water waves with free surface in the two-space dimen
sion in the class of analytic functions, which is an extension of Ovsjannikov1 s 
theorem (1976) for the periodic initial data. (cf. Kano and Nishida (preprint). 

2. An Abstract Cauchy-Kowalewski Theorem in a Scale of Banach Spaces 

Définition 2.1. Let S = {B} , 0 p p ?' 
be a scale of Banach spaces and all 

p > 0 be linear subspaces of B0. It is assumed that 

where 

B C B , 
p p 11-11 p' ~ 11- IIP 

Il . Il P denotes the norm in B 
p 

for any p 1 ~ p 

Consider in S the initial value problem of the form 

(2.1) 

(2.2) 

Hypothesis 2.1 

~~ = F {t, u(t)) 

u(O) = 0 

B for 
p 

(i) For some numbers R > 0, T > 0, Po> 0 and every pair of numbers p, p' 

such that O ~ p' < p < p0, (t,u) ~ F(t,u) is a continuous mapping of 

(2.3) {t ; !tl < T } x {uE B ; llull < R} into B , . 
p p p 

(ii) For any p' < p < Po and all u,vé BP with llull P < R, llvllp < R, and for 
any t, ltl< -r, F satisfies the following 

(2.4) IIF(t,u) - F(t,v) Il , ~ p 

C Il u - V Il p 

p - p' 

where C is a constant independent of t,u,v,p or p
1

• 
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(iii) F(t,O) is a continuous function of t, 1 tl< T 

every p < Po and satisfies with a fixed constant K, 
with values in B for p 

(2.5) 

Theo rem 2. 1. Under the hypothes i s 3. 1 there i s a cons tant a > 0 such tha t there 
exists a unique function u(t) which, for every positive p < Po and 
ltl < a (Po - p), is a continuously differentiable function of t with values 
in BP , llu(t) Il P < R and satisfies {l) (2}. 

Remark 2.1. The assumption (ii) on F is simpler than those of Ovsjannikov (1971) 
and Nirenberg (1972). The scale of Banach spaces is also less restrictive than that 
of Ovsjannikov. 

Remark 2.2. When t is a complex variable, Hypothesis 2.1 (i), (iii) must be 
strengthened as follows: 

(i) 1 If O ~ p 1< p < Po and u(t) is a holomorphie function of t, ltl< T, 

valued in BP such that llu(t) Il P< R for all t, ltl <T, then 

(2.6) F(t.u(t)) is a holomorphie function of t, ltl < T, valued in BP, . 

(iii)' 
every 

F(t,O) is a holomorphie function of t, ltl <T with values in B 
p 

p<p 0 and satisfies (2.5). 

for 

Then theorem 2.1 holds for complex variable t, i.e., the solution u(t) is holo-
morphic in t with values in B . p 

Proof - cf. Nirenberg (1972) and Nishida (preprint) 
Let B be the Banach space of functions u(t) which, for every 0~ p < Po and 
1 tl < a (Po - p), are continuous functions of t with values in BP • and have the 
norm 

(2. 7) M[u] = sup 
o~ p<po 

ltl<a (PO - P) 

llu(t)II p 

a(po -p) 
( ltl -l)< +oo 
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We seek a solution of 

t 
(2.8) u ( t) • f F ( s, u ( s)) ds 

0 

with finite norm M[u] with a suitably small. Our solution will be obtained as the 
limit of a sequence uk defined recursively by 

(2.9) 

where k = 0, 1, 2, and 

(2.10) 

Set for k = 0, 1, 2, 

Here, for every 
functions of t 

(2.12) 

P < Po and I tl < ak (p0 - p), uk(t) and vk(t) are continuous 
with values in BP for which Mk [vk] are finite, where 

1 

ak (Po -P) 
lv(t)IIP (-· ltl - l) sup 

0~ p< Po 
ltl<ak(P 0 - P) 

The numbers ak are defined by 

(2.13) 

so that 

(2.14) 

-2 ak+l = ak (1 - (k+2) ) , k = 0, 1, 2, ... , 

+oo 
a= a0 rr (1 - (k+2)-2) > o 

0 

and a0 will be chosen suitably small later. 

Let us imagine that u; are determined for i ~ k with llu;(t)IIP < R/2 
in lt~<a; (Po -p). Then by the assumption (i) vk(t) is well defined. Let 
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(2.15) 

Then 
Àk 

llvk (t)II P~ a /a _ 1 for ltl <ak+l (P0 -p) 
k k+l 

and it follows for [tl <ak+l (P0 -p) 

À k 
lluk+l (t)IIP ~a/a _ 1 + lluk(t)IIP 

k k+l 

and so, by recursion, 

(2.16) 

We will require that 

(2.17) 
k 
r 
0 

À. 

< a-/a. 1 - 1 
J J+ 

R 
-2-

Then for itl <ak+l (Po -p) we have lluk+l (t)IIP<R/2 and so F(t,uk+l(t)) is 

defined. 

Our aim is to estimate Àk so that Àk + 0 as k++ 00 and (2.17) holds for 

any k > O. By the definitions (2.9) and (2.11) we have 

t 
vk+l (t) = f F(s, uk+l(s)) - F (s,uk(s)) ds 

0 

Thus for ltl < ak+l (Po -p), we see from the assumption (ii) that 

llv (t)il < Ci j llvk(s)llp(s) dsl 
k+l P-.;: 0 p(s)-P 

for somechoice of p<p(s) <po - isl/ak+l. We may set 

p ( s ) = ( p O .. i s i / a k + l +p ) / 2 . 

Then we find by virtue of (2.15) (assuming, say, t > 0) 

t 1 1 
llvk+l tt)ll P ~ c Àk 

0
1 ds/ 25 (ak+l (p0 -p) - s). 23k+l (ak+l (p0 - p) - s) 
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t 2 t 
= 4 C ak+l Àk of s ds/(ak+l (Po - P) - s) ~ 4 C ak+l Àk t of ds/(ak+l(Po -p) - s) 2 

t / ak+l (Po -p) 
= 4 C ak+l Àk ak+l (Po -p) (------r-- - 1 ) . 

Consequently 

Àk+l = Mk+l [vk+l] ~ 4 C ak+l Àk sup I f 1 
O~p~ Po ak+l Po -p) 

ltl<ak+l(P 0 -p) 

Hence for k = 0, 1, 2, ... 

Now we can choose a0 . Using the assumption (iii) we know that 

t 
À O = Mo [ J F ( s, 0) ds J ~ K O SUD 

o ~p<po 
lti<ao (po-P) 

ltl (ao(Po-P) ) 
-=----=-- - 1 ~ a0 K. Po - p 

t 

We shall require that for j = 0, 1, 2, ... 

(2.19) 

Assuming that this is true for Àk we find from (?..13) and (2.18) 

provided a0 ~ a' independent of k. 

We have to verify (2.17). From (2.13) and (2.19) 

~ À. 

ffa./a. 1 ~1 
J J+ 

~ Àj k 2 ~ ~- 1 _ a. 17a. = r. À. (j+2) D · J+ J o J 



provided a0 ~ a". If we choose 
defined for all k, with 

(2.20) for 
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we find the functions uk 

Furthermore we have from (2.15) for ltl<a (p0 -p)<ak (P0 -p) 

Since L Ak < + 00 , it follows that uk converges to some u(t) in B. From (2.20) 

for I t 1 < a ( Po -p) 

u(t) is a solution of (2.8). In fact we have for ltl <a (p0 - ~•) and ~•< p 

t 
Il ~ F(s,u(s)) ds - u (t) llp , 

t 
~ b IIF(s,u(s)) - F(s,uk(s)) Il p' d s + llu(t) - uk+l (t) Il p' 

< C 
' p- p' 

by ( i i). A 11 the terms on the ri ght go to zero as k--4> ()0 , and i t fo 11 ows that 
u(t) is a solution of (2.8) and is also a solution of (2.1) (2.2). 

The uniqueness of the solution is proved as follows. Suppose v(t) is also 
a solution. Then w(t) = u(t) - v(t) satisfies 

t 
w(t) = f F(s,u(s)) - F(s,v(s)) ds 

0 

For any fixed pl< ~O , the functions u and v have finite M1 norm, where 

M
1 [u] = sup 11 u(t) Il P (a(~1 -p)/ \tl - 1) 

0~ P < Pl 

ltl<a{p 1 -p) 
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Hence for I t 1 < a (P 1 -p) we fi nd from ( i i ) 

t llw(s)II 
llw(t)llp< C I J -- P (s) 

0 p(s) - p 
ds 1 

for some choice of p(s) < pl - !si /a. 

The same argument to get the estimate (2.18) gives the inequality 

llw(t)IIP $: 4 Ca M
1 [w] /(a (P1 -p)/ ltl - 1) 

and so we obtain 

Hence we concl ude that M1 [w] = 0 provided 4 C a< 1 whi ch can be a lways 

assumed by decreasing a if necessary. Thus 

llw(t)IIP =ü for ltl < a (P1 -p). 

Since this is true for every pl we conclude that w = 0, and the theorem 

2.1 is proved. 

Remark 2.3- Instead of (2.1) and (2.2) or (2.8) we can consider the integral 

equation in the form: 

(2.21) 
t 

u(t) = u0(t) + J F(t-s, s, u(s)) ds 
0 

for O ~ t < T. 

Here u0(t) is a continuous function of t, 0~ t < T with values in BP for 

every p < Po and satisfies with a constant R0 

(2.22) 

F(t,s,u) satisfies the analogues to hypothesis 2.1, i.e., 

( i) For some numbers R > Ra > O, T > O, Po > O 
(t,s,u) ~F(t,s,u) is a continuous mapping of 

and any O~ P 1< P < Po , 

(2.23) {O~t<T}x{O~s< T}x{uE B ; llull < R} into BP, p p 
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and satisfies with a fixed constant K, 

(2.24) 
K II Kl6 

Il F(t,s ,O) Il , ~ 1 -, p p- p 

(ii) For any p'< p < n0 and all u,v tE 8
0 

with llullp< R, !lvllp< R, and 
for any 0< t < T and 0~ s <T , F satisfies the following 

(2.25) 
Cllu-vllp 

IIF(t,s,u) - F(t,s,v)II p' ~ 
p - p' 

where C is a constant independent of t,s,u,v,p or p • 

Under these assumptions there exists a constant a> O such that the integral 
equation (2.21) has a unique function u(t) which, for any p< Po and 
O~t<a(p 0 -p), is a continuous function of t with values in 8

0
, llu(t)IIP< R 

and satisfies (2.21). 

The proof of this statement is an analogue to that of theorem 2.1, but this 
formulation is a little more general than theorem 2.1 and it will be used to get 
the fluid dynamical limit of Boltzmann equation in the level of compressible 
Euler equation in Chapter 4. 

Now as the first application of our abstract theorem werederive the Nagumo's 
theorem as a generalization of Cauchy-Kowalewski theorem for the initial value 
problem 

(2.26) 

(2.27) u(0,x) = g(x) XE D' 

where D = H { lx-1 <Po} , u = u(t,x) 
j=l J 

f and g are N-vector functions. 

Here f is continuous in t with values in the space of holomorphie N-vector 
functions of the other vari ab 1 es for x 6 D, 1 u

1
• I < R, 1 u 1 < R. g i s ho 1 omorphi c X, 

in D and may be assumed identically zero by a suitable ~ubstraction. If f is 
also analytic in t, the same proof for a complex neighbourhood of ltl <, gives 
the classical Cauchy-Kowalewski theorem. 
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First let us reduce the initial value problem {2.26) (2.27) with g = 0 
to a quasilinear form by introducing 
equivalent system to (2.26) 

au/dt= f(t,x,u,p) 

P,· = u , x. 
1 

i = 1, 2, ... ,n. We have an 

ap./~t = f (t,x,u,p) + f {t,x,u,p) u + f (t,x,u,p) 'p , 
1 Xi U X; p X; 

u{O,x) = P; {O,x) = 0 i = 1,2, ... ,n 

Thus it is sufficient to consider the initial value problem for a quasilinear 
system of the form 

(2.28) 

(2.29) 

au/dt= I aj(t,x,u) ux. + b(t,x,u) 
J 

u(O,x) = 0 , 

where u is a N-vector, aj is a NxN matrix and b is a N-vector. We suppose 
that the components of aj and b are continuous in t for \tl, T with values 
in the space of functions which are holomorphie in a neighbourhood of 

n N 
n = •!:!1 { jx.,~po}x -TT1{lu-l <-R} , J- J 1: 1 

where xj and the components LI; are complex values. Then aj and b and 
their first derivatives with respect to xk and LI; are bounded by a constant 
C on { 1 t 1 ~ T} x ~ 

For o < p < Po 1 et B P 
are holomorphie and bounded in 

denote the space of vector functions 
D = II { 1 x. j < p} , and set 

p J J 

(2.30) llull = sup lu(x)I 
p ~ 

u(x) which 

By the Cauchy's integral formula for the holomorphie functions we have 

(2.31) llu Il 1 < llu Il p 
xj P p-p' 

for 0~ p' < p 

Denote I a. (t,x,u)ux. + b(t,x,u) = F(t,u(t)), where u(t) = u(t,x), and let 
J J 
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us check the assumptions (i) (ii) (iii) on F. By the assumptions on a. and b 
J 

above and by (2.30) (2.31) F satisfies (i). F(t,0) = b(t,x,O) is bounded 
by C and so satisfies (iii). Last by the mean value theorem we see that if 

Ju(x)I < R in D 
p 

then in OP, , p' < p 

IF(t,u) - F(t,v)I= IJ~ aJ.(t,x,v) (u - v ) + 
X. x. 
J J 

.:$ I: C i ux . - V i + I: C ( i u j + 1) i u . - V . i X. X. l l 
J J J 

!lu - v Il Il lb 
C I P+ C !lu-vil, ( ut 1 ) 

p-p P p- P• 

C 
Il u - V Il p 

p-p 

by (2.31) 

Thus (ii) is satisfied with C independent of t,u,v,p or p' . Therefore theo
rem 2.1 applies to (2.28) (2.29) and gives the local existence of unique solution 
which is analytic in x near the origin. 

3. Water Waves with Free Surface and the Formulation by a Confôrmal Mapping 

The nonstationary water waves with free surface under gravity in the 2 space
dimension can be described in the Eulerian coordinate by the following : (cf. 
Lamb) 

(3.1) 

(3.2) 

{3.3) 

(3.4) 

in (x,y) E D(t) 

'èJcp/'èJy = 0 on y= O 

a<J?/at + ((a<J?/ax/ + (é3<J?/ay)2)/2 + gy = o on y = r ( t, x) , 

ar;at + a<J?/ax.ar /ax - a<J?/ay = o on y= r(t,x) • 

where y= 0 is the bottom, y= r(t,x) is the free surface, on which the 
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pressure is constant, O{t) = {x~R, O<y<r(t,x) is fullfilled by the water 
(incompressible and inviscid fluid),the fluid motion is assumed a potential flow 
and <li=<li{t,x,y) is the velocity potential, g is the gravity acting downward 
and will be assumed to be 1 hereafter. 

The initial value problem of the water waves with free surface under gravity 
is to determine rand <li satisfying (3.1) .v(3.4) for t~O and the initial data : 

(3 _5) 5 r{O,x) = r 0 (x) > o 

t <li{O,x,y) = 10 (x,y) 

in xe R 

in (x,y)ED(O) 

where the potential <li should satisfy (3.1) in D(t), t~O and so it is deter
mined by the equation {3.1) with the boundary condition {3.2) and with 

(3.6) i(t,x) = <li(t,x, r(t,x)) in t~O,xeR . 

The nonlinear shallow water approximation assumes that the depth of the water 
has the order of s and the initial data {3.5) are so small that 

(3. 7) 

{ 

r(O,x) =sr' {O,x; s) > o 

<li(O,x,y) = s 1l 2 <li' (0,x,y s) 

for a small parameter s)O, where r' > O and <1>
1 remains finite as s ➔ 0. 

If we rescale the variables as follows 

y ....,.. sy' ' 
(3.8) 

f H- sr I , 
~ El/2 -;;, 

, '!' H- '!' 

then the equations (3.1) {3.4) are transformed to the following 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

t
2 <lixx + <liyy = O in D(t) = { xe.R, O <y< r(t,x)} 

<li = 0 on y = 0 y 

s2 (<lit + <lix 2 /2 + r) + <liy 2 /2=0 on y=r (t,x) , 

s2 (rt + <li r) - i = o on y= r{t,x) , 
X X y 
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where the primes are abbreviated and the subscription means the differentiation 
with respect to the variable. Now following Friedrichs (1948) we assume the ex
pansion of ~ and r in 0 = c2 

(3.13) 
f ~ = ~o + a ~1 + 

~ r = r0 
+ 0 r 1 

+ 

Equating the same order of cr in the equations (3.9)~ (3.12) we have the equa
tions for ~k, rk, k = 0, 1, 2, ... successively. As the lowest order approxima
tion we have by (3.9) and (3.13) 

ipo = o 
YY 

and by use of (3.10) we have 

(3.14) ipo = o 
y and <PO is independent of y . 

The first order in a of (3.9) gives 

and by (3.10) we have 

(3.15) 

<PO + <Pl = O 
XX yy 

4>1 
y 

y 
= - ! 

0 

0 0 
4> XX d y= - y <P XX 

The first order in a of (3.11) and (3.14) give 

(3.16) 

The first order in a of (3.12) and (3.15) give 

(3.17) 

i.e., 

Thus the lowest order approximation (3.16) (3.17) is the nonlinear shallow water 
equation, which is a nonlinear hyperbolic conservation laws and is the same equa-
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tion as that describing the isentropic gas motion with the adiabatic gascons
tant y= 2. cf. Stoker (1957). 

Here instead of considering the full expansion (3.13) we salve the initial 
value problem (3.9)~ (3.12) for the unknown functions ~e(t,x,y) and rs(t,x) 
with the initial data 

(3.18) 
} r8 {0,x) = r0(x) > o 
( t 8 {0,x,y) = i

0 
{x,y) 

in XéR, 

in D(O) 

forall sE.(O,e 0), locallyintime t'-(o,t 0), t 0 independentof s,in 
the class of analytic functions and will show that there exists 

lim ( r 8 {t,x), ~8 {t,x,y)) 
E:+0 

0 0 = (r (t,x), ~ (t,x,y)) 

and that the limit functions r0, ~O satisfy the nonlinear shallow water equa
tion (3.16), (3.17) with the initials {3.18). 

At first in order to avoid the difficulty that the demain filled by the water 
D{t) depends on t we use a conformal mapping of D(t) onto a fixed strip inde
pendent of t . Let 

(3.19) z = z(t,s) = x + i y, where ç = ~+in 

give the conformal mapping of the strip 

(3.20) 

onto the domain D(t) = { z = x + i y; x E F, o < y < r ( t ,x) } , 

where n = O .- y = O and n = M·+y = r 

Set the complex velocity potential F = ~ + i '!', where 'l' is the complex conju
gate of the harmonie function ~, and let the complex velocity be 
W = U - iV = F2 • Then we define the functions in the variable ç by 

(3.21) f = f(t,c;;) = F(t, z = z(t,ç)) = f (t,ç) + i 1/J(t,ç) 
' 

and 
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(3.22) w = w(t,ç) = W(t,z = z(t,t)) = F (t,z = z(t,Ç)) = f / z 
z r t 

The equation of the water surface (3.4) may be written in the variables t,ç by 
the following 

and soit has the form 

- u Ys + v xç; 
1 z 1 

l'; 

on n = o 

z f l; 
(3.23) lm _t_ = - Im -- 2 on n = o 

Z Ç j Zz) 

Alsoby ~t = Re Ft and IF 1
2 = ~ 2 

+ ~ 2 the equation (3.3) can be transformed 
Z X y 

into 

(3.24) on n = o 

The boundary condition (3.2) on the bottom is given by 

(3.25) 
z 

Re ( f - f _!_ ) = 0 
t zç 

on n = O. 

Here z, f and zt/zç, ft - zt fç/zt are considered analytic in D0 and 
they can be constructed by the boundary values, which are given on the right hand 
side of (3.23)"- (3.25) . Especially we take the following construction. (cf. Woods 
( 1961)) . Let 

(3.26) w(E;,n) = u(E;,n) + i v(t;n) be analytic in D0 , 

continuous on ~ and v(E;,O) = 0 on n = 0, and let u(l;) = u(l;,o), 
v(E;) = v( s,o) be Holder-continuous in s ER. Then we have for any sa E. JL 

(3.27) 

where the integral means the principal value. The inverse operator of A0 which 
gives u(ç;0) from v(E;) is given by 
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(3.28) 

where 

(3.29) 

Therefore if v(5) is summable in ~ ~ R and Hëlder-continuous, (3.28) has the 
meaning as the principal value and is rewritten in the form 

by (3.29) 

where u is an arbitrary constant. 
-o,, 

Thus 

where 
+oo 

(3.31) cc) v(~0) = k [~ v(~) (1 - th~ (5-?0) )d~ + u_00 • 

By the analyticity of z and f and by the definition (3.26) and (3.27) we have 
on f1 = S 

(3.32) and the same for their derivatives. 

By these operators for {3.23) (3.24) (3.25) we have the equations on vi=f 

(3.33) 
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where "Pç/lzçl 2 E L 1(f) will be verified later. The separation of (3.33) into 
the real and imaginary part, using (3.32), leads to the system of two equations 
for x = x(t,ç,ô) and f = t(t,t,ô) 

(3.34) 

Thus the problem {3.1),,-,., {3.5) is reduced to the equation (3.34) with (3.32) 
to be solved in t ~ 0 , ç é !R with the initial data 

(3.35) { x (0,t,ô) = Re z(O, ç + iô) 
~ ( 0 ,ç, ô) = 4i ( 0, z ( 0, t + i ô) ) 

Before we consider the shallow water limit in the formulation (3.34) with 
(3.32) we note the following properties of the operators A8 and Bô = - A

8 
+ c8 , 

ô é ( 0, ôo ] • 

Definition;3.1.- Let Î)(F) and $ 0 (R), O<cr<l bethespaceoffunctions 
which are bounded continuous and bounded Holder-continuous with the Holder-expo-
nent a , in t ~ R respectively. The norm is given by 

(3.36) 

1 u 10 = sup I u ( t) 1 
\R 

lul
0 

= lul0 + sup 
t1 "f t2 

lu{çl) - u(ç2)l 

jçl - ç2ja 

Let L 1 be the Lebesque space of summab le functi ons in s E R with the norm 

+oo 
(3.37) f ju(s) j dç 

-oo 

Lemma 3.1 

(i) If u E fF} 0 < a< l, then 

(3.38) IAÔ u 1 ~ c I u 1 cr cr 
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where C i s i ndependent of ô '= (0 ,ôO J . 

(ii) If u is continuous and uçeL 1ncS0 , 0~0 <1, then for a constant C 

independent of ôé(O,ôO 1 

Aô u 
(3.39) ô 10 ~ C luçl 0 , and especially 

Aô u 
(3.40) (ç) ~ uç (0 ô as ô + 0 

(3.41) 
A8 u 

C I u~ 1 L 1 IL 1 .$; 
ô 

(iii) 1 0 If V f. L (\ fi> ' 0 ~ 0 < 1, then 

(3.42) 

and speci a lly 

(3.43) ô c
8 

v (ç) + 1s v (s) ds as ô + 0 
-oo 

ô B8 v has the same limitas ô + 0 by (3.38). 

(3.44) 

Proof - (i) The proof is standard for the principal 

'2 +d 
A8 u (s2) - A8u(s 1) = J 

s1 -d 

value. Set s2 - s 1 = d > 0 

u(s) - u (s1) 
. ds 

2ô sh 2~(s-s1) 



81 

for 

c o0 1ul ( f ço-1 d( + (.l!Êf f d ç 
~ (J 

Ü$ç,:S l 0 1~ ~< 7f~ 
sh s 

C da for 
1rd 

> 1 < cr lula 0 ' l 

r2 can be treated in the same way as r1 

I4 + 16 = 0 and I5 has the same estimate as r3. 

( i i) Since 

u((l 
20 

-too + n s) - u(s1) 
A0 u (ç ) = _1 f ds 
- 1 OTT sh s 0 -oo 

~, 
dn sh~ 

<
I us b ls2 - s1_l(J f+oo 1 

' TT 8 
-oo 
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For any s > 0 we have 

~ ~ sup luç(ç 0 +n) - uç(ç 0) \ . f 1r\h~dç +-¾ luçlo 1 !~i < s 

lnl<
2
~M lsl<M 1r lçl>M 

for sufficiently large M and sufficiently small o. 
Thus Ao u (ç

0
) + us(ç;0) as o +O • 

0 

For (3.41) we have by Fubini 1 s theorem 

2oç; 
+oo A U 1 +oo +oo 1 / 1T · dç 

J \-b- (ça) 1 dçO~ÏT f f il luç(ç;a +n) ldrd -
-oo 8 -oo -oo O 1s h ç 1 

ds 1 26 1ç;I 
=; f lshçl 61 of1rf~ç(ç;o +n)I d ç;a Id n 

<: 1_ f _51L lliJ 2 çdç 
1T I sh t 1 ( 1 us IL 1 1T k 7 1 uç IL 1 f sht,; 

(iii) 

For (3.43) we have 

ça ço 
loc

8
v (sa) - ~ v (s) ds l=I ~8L v(s) (-1- th ; 0(s-s 0 )) ds 

as o+a 

by the Levesgue's theorem. 
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If we define the functions r0 and <Ilo by 

(3.49) { 
r0 (t,x° (t,t;)) = yo (t,t;) 
0 0 0 

<Il (t,x (t,t;)) = <P (t,E:) 

then the shallow water wave equation (3.16) (3.17) fol1ows from (3.48). Inversely 
if we introduce an auxiliary variable t; by the first equation of (3.48), then 
the other equations of {3.48) follows from (3.16) {3.17). Therefore for a justi
fication of the shallow water equation we are going to salve (3.46) (3.47) 
for o E (0, o0 J and to get the limi1: (3.48) of (3.46) as o-+ O. They are 
accomplished in the space of analytic functions locally intime. 

cf. Ovsjannikov (1974) for the periodic initial data and Kano and Nishida 
(preprint) for the pure initial data. 

Supplements to definition 3.1. and lemma 3.1. Let L<é"" (O~'°' < 1) be 
the space of summable functions which have the c:r-Htilder continuous integral, 
i.e., 

(3.50) 

It is easy to see that if u~ e Le,-, then for any given u( -G:>) 

(3.51) u = u (-.o) + J:u~ d ~ 
is well defined and has the estimate 

(3.52) 

Furthermore the functions in Ler have analogous properties to those in <Bo
as follows : 

i) If u e L r:r, o<a-<l , then 

(3.53) 
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where and in (ii) and (iii) C is independent of ô<S (o,S0 ]. 

ii) If 

(3.54) 

{3.55) 

iii) 

(3.56) 

(3.57) 

6"' u\e L , o~o-<1 , then 

As ul :$C 
6 L~ 

and 

A~ u ~ u~ ( \} a.e as b➔ O 

(3"" 
If V ~ L , 0 ~ ~ < -1 then 

l 5c v ( + l ~ Je v J ô' ~c I v I L ~ 
ô f!J" o~ d L 

and 

~ 
~ ~ v ( ~ ) ~ [~ ( ~) d ! as S ➔ O 

The proofs of these properties are the same as those for the functions in iB" 
except that the integration in ~ and the integration by parts are needed. 
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4 - THE CAUCHY PROBLEM OF THE WATER WAVES AND THE SHALLOW WATER APPROXIMATION 

The equation of the water waves with free surface for the unknown 

functions xs = v and <P s = u is given by (3.34) after differentiation 

in s 

where t ~ 0 , ~ E R and 

and A
0 

, B g = - A & + CS are the linear operators defined in (3.27) and 

(3.30) for O <8 ~ 80:::constant. The initial data are given by 

(4.3) 

Définition 4.1.- Fix o- ~ (0,1). For any p > 0 we consider the analytic 

functions u(~) in the complex neighbourhood of the real axis 

with the norms: 

+00 

f \ u ( 1 + i t-t) 1 d ~ + sup sup -1-oo 

_ °"' \ri, \<f ii>o 

-u(5+ivt)\ d! 

s;= { u( \ ) ; analytic in Of , 1 u lo-, f < + 00 
} 

Lp = f u(]) ; analytic in Dr, 1 ull~p < 1- °"} 

Xp = f u e œ; and u~ e L; with the norm 
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(4.5) !lu\! =max{lul ,[us! }<+-a>} 
f 6 , P L,a-J p 

S = U {(v,u) ; v, ue)< l will be our scale of Banach spaces. 
f=>O f J 

It follows from (3.51) and (4.4) that if u§e-L~ , then for any u(- 00 ) 

ï 
u(~)=u{-o,:,)+ f u(!) d\ 

-00 ~ 
is well-defined and 

(4.6) 

It is easy to see that for p > O 

for any u.v~ <Br , 
a:i.._(!J" es-

for any Uê'JJp ,v6 L~ • 

It follows frorn the Cauchy's integral formula for the holomorphie functions 

that for any O<p'< ~ 

\uç_lc;,p' ~ \ul(S'"f 
.5 f ~f 1 

(4.8) 

\V, lvll<r , 
~IL~ f ?p 
{ () ~ 

) \ ~ - f' 

for any u ê v3p , 
~ 

for any ve L.f • 

The properties of the operators Ag and B; = - A8 + Cs in lemma 3.1 and 
in (3.52) (3.53) and (3.55) can be extended to the spaces of analytic func-

tions $p and L; 
Lemma 4.1.- Fix~ e (0,1). The operators A3 and c8 , o-<S~&0 = constant 

have the fol lowing estimates in Œr and L6""~ , ~ > 0, with a constant C 

independentof oe(o,8
0

] and of ~)-0. 

(4.9) 

(ii) If 

(4.10) 

'Ô 
and v e L f for ~ > 0, then 
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(4.11) 

If 
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V e for p > O, then 

Il 8 c v \\ ~ c \ v \ ô" 
6 P L , p 

This lemma is a consequence of lemma 3.1 and the supplements toit {3.52) 
(3.53) and (3.55} and of the definition of the norms (4.4). Here we note that (ii) 
and (iii) in lemma are valid also for g = O because of (3.54) and (3.56) 
with (4.6). 

Now we consider the initial value problem (4.1) (4.3) in the scale 
of Banach spaces S. First we assume that the initial data (v0,u0)( Î) E S , 
; . e. 

(4.12) for some ? 0 ). O. 

Then (v±_, u±_) =lim (v0,u0)( 1) exist and it may be assumed that 
~ ➔ ±01> 

(4.13) v+, v_ > o and v0(!) > O for any ~ E'~ 

to avoid the dried bottom and the singularities of the free surface. The 
solutions v(t,.) > O, u(t,.) are.sought in S for O < f < f 0, O~t<a(P 0-p) 
with some a > O. They satisfy ~ll"lc, (v,u)(t, j) = (v±_, u±_). In fact for 
the solution (v,u)(t,.) es with lim (v,u)(t, !) = (v_, u_), we have 

,➔ -0<' 

(4.14) lim (v,u)(t,j) = (v+, u+) ,-'> •HlP 

Because since for any (v,u) e S we have 
we can compute 

[
à d ~()P 

= è! (w A& V As. u + v A~ (w A~ u))- v'i Cs {w Ad u)- v ~ c$ (w A8 u)J_()O = 0, 

where w ~ô u e L~ is used in the last two terms. 

Thus for the solution (v,u)(t,.) in S, (V_:!:, u,:t_) are constant in t, 
and soit is sufficient to seek the solution (v,u)(t,.) in s1 c s, where 

(4.15) s1 = U ((v,u)(\) ; v,uG ')( , (v,u)(~GO) =(v+ ,u+) Î. 
f.>o l ~ _ _ ! 

Furthermore we assume a little more than v) 0, i.e. 
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(4.16) j v(t,f) - v_ 1 ~min{v_, v2 }-=Ro 
0-1 P 4 4C 

for the solution a priori, where C is the constant in (4.9). In this case, 

we have the estimate for w = 1/ { v2 + (Ad v)2
}. 

Lemma 4. 2. Let v E )( p and I v - v _\er,f ~ Ro • Then we have for a constant 
c0 = C (R0} independent of SE{O,éb), where w is defined in (4.2) and 
w_ = w(v_ ), 

(4.17) 

l w ~ 1 ~ ~ c0 \ v \ \ " 
L ,~ L ,~ 

Also let vi.} e Lp , i = 1,2 and \ vi - v_ l~, ,p=' R0 . Put wi = w(v1), 

i = 1,2. Then we have 

(4.18) 

for a constant c0 = C (R0) independent of Je (0, ô0 ) • 

Proof - By (4.7) (4.9) and by our assumption we have 

\ v2 +(A0 v)2\ ~v: - \ (2v _ + (v-v _) )(v-v _) + (A
8 

(v-v _) / j
0 

P 
'5'",~ 

~v: - t(2v_ + v_/4) + c2 v_/4 c2 }\v-v_ \ = v_2 
- ~ v_ lv-v_lo.

0 
5;~ j ( 

Therefore w i s bounded for \ v-v _ \ < v _! 4 and we have 
6',~ 

5 \ v-v \ 
\ w-w \ ~ _j__ - ~, f - ...... 2 

tr,~ V_ 2 V_ 

l 20 
<1 - 5/8) = 3 \ v-v_\ · 

3 v_ c1',~ 

The other inequalities are proved analogously. 
qed. 
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Lemma 4.3. Let w,v,uE ')(f for some f). O. (cf. (4.5)). Then there exists 

a constant C independent of &E(O, ô0 ] such that the following estima

tes hold for any 0-<-p' < p : 

(4.19) \\ (w A~ v A0 u) Il P' ~ _E_, \\w \1 \lv \1 \lu \\ 0 , 
0 ! \ ~-P ~ f \ 

(4.20) 

(4.21) Il (v C& (w A<--u)) \1 .~ ~ llv Il \lw\\ \\u\lf 
0 1 î \' -~ l ~ f 

Proof - By (4.7), (4.8) and by (4.9) in lemma 4.1 

1 
~.--{I w A{' V A~ u \ + 1 ( w A V A u) 1 } 

~ - () 
1 

o o ~ •\> é, a ~ L 0-:-p 

~ ~{_I w I l V 1 1 ut + l Wp l I V 1 1 u 16" 0 

\0 - ~ ' o-, t1 °i f o-, \' J L ~ f ~ f ' ' 

+ lwl \vc.l \u\ + lwl \vl \u~\ s- J ~ _i._,\\w\l \\v\l \lu\10 • 
cr,~ 1 Ls-'p ~,f l!l",f 0-:~ s L ,~ f-~ l' f \ 

The inequality (4.20) is proved analogously by using (4.9). 

The last inequality (4.21) is proved by (4.10) and (4.11) 

\\(v C" (w A~ u)\_\\0 ,,_!_ \\v C (w Ar u)) ~ \ (v C6 (w As u)} \ ô } 
0 " ) " f- €, o O 6"", e ~ L , e 

f ~,{( \ V 1 + \V~ l s- ) \ CO ( W A 
8 

U) \ + \ V \s-,o \ }_ C ( W A0 U) \ 6" 
?-~ <r"1~ 1 L ,~ o-, ~ \" :s L , p 

qed. 

Now we can apply the abstract Cauchy-Kowalewski theorem 2.1 to the 

Cauchy problem (4.1) (4.2) (4.3). Set U(t) = (v 1 (t, J), u1 (t, J)) = (v(t,] )-v 0n) 
u(t,J) - u0 ()}}, where (v0 ,u0) are the initial data given in (4.12}. Since 

the solution (v(t), u(t)) is sought in s
1

, (v
1

,u
1

)(t,±_1JO) = O. Define for 
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(4.22) H U ( t) \l = max ( \\ v 1 ( t) 1\ , 1 \ u 1 ( t) 11 ) 
p f" f 

The equation (4.1) with (4.3) can be rewritten in the variable U 

(4.23) 

where F(v0 ,u0,U) satisfies, in the scale of the Banach spaces S with the 

nonn (4.22), all conditions (i){ii)(iii) in§ 2 by lemmas 4.2, 4,3 provided 

that (4.16) is satisfied. But if 

(4.24) \ Vo ( • ) - v _ \ 6"", p <. Ro /2 and 

\ V l ( t,. } \ < Ro/2 
6',p 

(4.25) 

then (4.16) is satisfied, i.e., 

l v ( t ,. ) - v _ \ ~ \ v O ( • ) - v _ \ + \ v 1 ( t , . ) \ < R0 
~. P "'°, ~ cr, Ç? 

Therefore if the initial data v0 , u0 e')(Po and v0 satisfies (4.24), then 

we can take R = R0/2 in the theorem 2 .1, whi ch gives us a constant a> 0 

such that for any O<<Î ~80 there exists a unique solution U(t) of (4.23) 
Which is analytic in t, \tl < a (Po -r), 0~ P"Po with the value in 

'/,. f ~ y.. P and has the bound 

(4.26) 

Theo rem 4 .1.- Let v0 , u0 e: Xe for some ~ 0 > o and suppose ( 4. 24). 
Then there exi sts a constant 

0

a ) 0 such that for any O..( J < 8 0 the 

solution (v(t),u(t)) of the Cauchy problem (4.1)-(4.3) exists uniquely, which 

is analytic of t, \ t \,( a (Po - f>), 0 ~ t> < ~ 
0 

with the values in Xf © ')( p 

and has the bound 

Remember that the solution of (4.1) depends on ô and write it by (v6(t),ud (t)), 

ô e (0,~ 0) . By theorem 4.1., the solution (VÔ(t),uô {t)) has the uniform 

estimate (4.27) in the fixed region 
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Da = { 1 t 1 < a(~0 -~ ) , o ~ ~ ~ ~c} 
'~ 0 

independent of ~ €:(0,~o ). Thus by the equation (4.1) we have the uniform 

estimate for the time derivative, independent of~, 

(4.28) 

for o~~'<p, {t,~)<ë oa,fo 

Therefore the Ascoli-Arzela's,lemma fo,r the space X? gives the existence of 
a convergent subsequence (vb (t), u 6 (t)) in X~ as d 1 ➔ 0 uniformly on 
any compact in D , i.e., 

a, f O 

(4.29) lim (v6.(t}, uâ' (t)} = (v° (t), u0 (t)) 
s·➔o 

Also by lemma 3.1 we have uniformly in any compact of Da 
,po 

Along this subsequence we can pass to 
in t of the equation (4.1) : 

the limit of the integrated form 

By (4.29) and (4.30) the integrands converge as 
1 a -> o to 

{ 

ct ( o f Î o o ~ 1 o o 
- 1, - V W U ~ d S )' , W = 1/ ( V ) , 
ai -~ r l 

o èi { w
0 o 2 of o o l 

- v5 - OJ 2 (u ) + u -o:o w uJ d ~ f respectively 

which are by (4.28) continuous of t, ! tl< a {fo -e) in X~. Therefore as 
the limit of 81 = 0 we have after differentiation in t 
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(4.32) 

, 

which is the same as the differentiation in f of (3.48). Since lemma 4.1 
(4.10) and (4.11), lemma 4.2 and lemma 4.3 are val id for ô = 0, the limit 
equation (4.32) has the unique solution in Xg for Da,g by the same 
abstract theorem. Thus the whole sequence yô, uS conv~rges to this limit 
as S -t> O. 

Theo rem 4. 2. - Let v O, u0 E-X Îo for some ~ 0 >-0 and suppose ( 4. 24) i s 
satisfied. Then there exists a constant a> 0 such that the solution v~ (t), 
ud(t) of the Cauchy problem (4.1) - (4.3) converges to v0{t), u0(t) in Xs 
for (t, ~) E 0a,J 0 as ô➔ 0, the limit of which is the unique solution of 
{3.48), i.e., the corresponding ,, O {t,x) and ~ O {t,x) satisfies the non-
1 inear shallow water equation {3.16) (3.17). 

Remark - In the solution above yo = xî (t, !) = v0(t,j) and'f~ (t,J) = 

u0(t,!") may have the different values v°(t,±_oo) = v0{±_QO), u0 (t,±_oo) = u0{±_.,..) 
as !-'>.:!:. 00> , which contains the shock wave type solution locally intime 
though. 

There are many naive questions, for example, 

{i) the convergence of the full series (3.13)? 

(ii) the limit globally intime as S➔ O, or the limit in the class of less 
regular functions as ô~o? cf. Nalimov (1974). 

{iii) Korteweg and de Vries equation as the limit? 
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BOLTZMANN EQUATION IN THE 
RAREFIED GAS DYNAMICS 

The nonlinear hyperbolic conservation laws are treated more or less in 
chapter 1 for the macroscopic description of the compressible inviscid gas 
motion. The compressible viscous fluid motions are considered by Nash (1962), 
Itaya (1971,1976} and Tani (preprint} on the existence of solutions to the 
initial (-boundary) value problems locally intime. The global existence of 
the solutions to the Cauchy problem of some model compressible viscous fluid 
equations are given by Kanel' (1968} and Itaya (1976). The relations between 
the compressible Euler equation (nonlinear hyperbolic conservation laws) and 
the compressible Navier-Stokes equation {the compressible viscous fluid 
equations) are not well considered in general. cf. the last remark (iii) in 
chapter 1. 

In contrast to the macroscopic descriptions of the gas motion mentioned 
above Boltzmann (1872) and Maxwell (1867) used the distribution function in 
velocity as well as physical space to describe the microscopie behavior of 
rarefied gas. Here we consider the initial value problem to the Boltzmann 
equation in the rarefied gas dynamics and the macroscopic limitas the mean 
free path Etends to zero at the level of the compressible Euler equation. The 
dimensionless Boltzmann equation can be written for the mass density distri
bution fonction F{t,x,v), t.).0, x e ~3 : the space variable, ve ~ 3 : 

the velocity variable, in the form cf. Grad (1958) 

(1.1) 

where E i s the mean free path and 

( 1. 2) 

1 

where V= lv-v*I , v' and v* are the velocities after 
the collision of the molecules with the velocities v,v*, r,4 are the polar 
coordinate in the impact plane, F,.. = F(t,x,v,.J, F' = F(t,x,v'), 

1 1 1 "" "" 

F* = F(t,x,v*) and G*, G', G* are defined analogously. 
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Define the sunnnational invariants 

( 1. 3) 

which satisfy 

( 1.4) f ~ Q ( F, G) dv = 0 for j =0,1, ••. ,4 

The macroscopic {hydrodynamical) quantities are defined as follows The mass 
density and fluid flow velocity are given by 

(1.5) ~ (t,x) = I F(t,x,v) dv, 

(1.6) u(t,x) "- ; fv F(t,x,v) dv. 

Set the velocity relative to the mean c = y - u. Then the stress tensor 
and heat-flow vector are defined by 

(1. 7) P .. ~ fc. c. F ( t ,x, v) dv = p .. + p ô •. 
lJ 1 J lJ lJ 

(1.8) qi = ! r ci c2 F(t,x,v) dy, 

where p i s the sca l ar pressure = ~ L pkk 

The internal energy per unit mass is 

( 1. 9) es .l.. f } c2 F(t,x,v} dv 
f 

, 

The conservation laws for .f' ,u,e can be written in the form by (1.4) 

"p ar u. 
_o_~ + L. J 
èt "xj 

= 0 

(1.10) L .. ~ (0 u.u.+p .. +p6 .. )=0 
o X. ~ 1 J lJ lJ 

J 

where the equation of state of gas is that of the ideal gas, i.e., 
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(1. 11) 2 RT ;ii. p/p = 3 e 

If the distribution function F is locally Maxwellian, i.e., 

(1.12) F(t,x,v) = 9 (t,x) exp ( _ {u(t,x)-v) 2 ) 
2RT(t,x) (2T(RT(t,x}) 312 

then the conservation laws (1.10) can be simplified to pij = q1 = 0 

of d ~uj 
è t + 'i: èxj = O 

( 1.13) è f U; d <:' 
-+ 'L -s-- ( f u. u. + p c1 •• ) = o a t V Xj 1 J 1J 

c) 2 a 2 
ôt p(e + u /2) +Lbx. (" uj (e + u /2) + p uj) = O , 

J 

which may be considered as the compressible Euler equation derived from the 
Boltzmann equation and is the same as the system for the ideal compressible 
gas motion in the Eulerian coordinate. The system (1.13) of the nonlinear 
hyperbolic conservation laws is also the first approximation of the Chapman
Enskog procedure. The second approximation of the Chapman-Enskog expansion is 
the compressible Navier-Stokes equation. cf. Chapman-Cowling (1952). 

Following Grad (1963 a) we consider the Boltzmann equation (1.1) for 
the gas molecules with the eut-off hard potentials around the absolute Maxwellian 
state: 

( 1.14) M(v)·= (21î)- 312 exp (-v2/2) 

The initial value problem (1.1) with the initial data 

( 1.15) F(O,x,v) = F(x,v) 

whose deviation from the absolute Maxwellian M(v) is assuroed small, was solved 
for fixed s locally intime by Grad (1965) and globally intime by Ukai 
(1974, 1976), Nishida-Imai (1976) and then Shizuta (preprint). The solutions 
decay to the absolute Maxwellian M(v) as t tends to infinity. It is descri
bed in § 3 after the preliminaries on the linearized Boltzmann equation in 
§ 2. The initial-boundary value problem in the bounded doroain is solyed in 
the large intime for the small initial data by Guiraud (1974) with the 
boundary condition of random reflection and by Asano-Shizuta (1977) with 
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the specular boundary condition. The stationary shock wave solutions are 
obtained by Nicolaenko-Thurber (1975) and by Nicolaenko (1974). 

The asymptotic problem of the Boltzmann equation (1.1) as the mean 
free path ~ tends to zero and the relations to the hydrodynamical equations 
by the Chapman-Enskog expansion are considered by Grad (1965) for the 
11semilinear 11 Boltzmann equation locally intime and by McLennan (1965), Ellis
Pinsky (1975) ans Pinsky (1976) for the linear Boltzmann equation. In§ 4 
we solve the initial value problem of the nonlinear Boltzmann equation for 
any O <f .i;;; 1 with the small analytic initial data locally in time. This 
is done by use of the abstract Cauchy-Kowalewski theorem in the form of remark 
2.3. chapter 3. Then in§ 5, the asymptotics of the solutions as the mean 
free path ~ tends to zero is investigated in a finite time interval and it 
is shown that the Boltzmann equation with small analytic initial data can be 
approximated locally intime as~~ 0 by its compressible Euler equation (1.13). 

2 - NOTATIONS AND LINEARIZED BOLTZMANN EQUATION 

x,v E R3 are the space - and velocity - variables and k G. ~
3 is 

the variable for the Fourier transform in x. LP(.) (. = x,v or k) denotes 
the Lebesgue space of measurable functions whose p-th power {1~ p~+ac,) is 
summableinR 3 withthenormlfl . He.(x), ,e,à-0 denotesthe 
Sobolev space of L2(x)-function~P(.) together with the i-th derivatives, 
Ht {k) is the Fourier transform of H.e, (x) with the norm 

Let H be the Lebesgue space of square summable functions in (x,v)~~ 6 

with the norm 

(2.1) \\f\\ =(j!f(x,v)\ 2 dx dv)1/ 2 

Let us introduce the (partial) Fourier transform in x of f€ H by 

( 2 . 2 ) f ( k , v ) = t 2 f e - i k · x f ( x , v ) dx 
( 2 TT) 
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and denote H = .( f ; f E- H } wi th the norm 

(2.3) Il fll =( f I f(k,v)I 2 dk dv)112 = \lfl\ 

Défi ni ti on 2 .1.- Let the Hilbert space H .e, , .t ~ 0 be a subspace of H, 

which consists of H.R-(x)-valued L2-functions in v E R3, i.e., 

{ 

HQ, = L 
2 (v;H;.. (x)) with the norm 

(2.4) 

l[fll = ( ~f(. ,v)l 2 dv)112 
R- J' H2,(x) 

2 -
Also we use the space L (v;LP(x)) , l~p~ 2 which consists of LP(x)-valued 

L 2-function in v E 'R3 with the norm 

(2.5) Il fll 2 P = ( r f{.,v)\ P 
2 

dv)
1
/

2 .<+ o:, 

L' L (x) 

where H = L2 (v;L2 (x)) = H0 

Définition 2.2.- Let B , m, t ~ 0 be a subspace of H n , which consists m,e, )L-

of H~(x)-valued continuous function in v, with the property 

(2.6) 

The norm for 

(2. 7) 

f E B t is defined by m, 

as l v\- + <1> • 

= svup (l+v2)m/2 t f(. ,v) j /\H L.. + ()o 

( k) 

It is easy to see that by Fubini's theorem 

for m > 3/2 , ~ ~ O , 



and that by Sobolev's lemma 
in x and v. 
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f e B n for m, e, > 3/2 m,I(., is continuous 

Definition 2.3.- St =f~o H_p_.s for some .e. ~ O is a scale of the 
Hilbert spaces such that Ht,o = Hi and 

(2.9) 

S = U B m ,e, f ~ 0 m, t , ~ 
that B " 0 = B m,,._, m, t-

(2.10) 

with the property 

for some 
and 

is a scale of Banach spaces such 

Lemma 2.1.- The scale of the Hilbert space S~ for any ~ ~ 0 has the property 

(2.11) 

for any f E Ht, ~ and any ~ 1 ~ '? , O <d"'..:$ 1. 

In order to linearize the Boltzmann equation (1.1) around the absolute 
Maxwellian M(v) we set 

(2.12) 1/2 F(t,x,v) = M + M · f(t,x,v) 

If we substitute (2.12) into (1.1) and follow Grad (1963) (1965) for the gas 
molecules with the eut-off hard potential, we have the equation for f(t,x,v) 

df ~ df l 
( 2 . 13) ot + Li V j ox. = ~ ( L f + -V T1 ( f, f} } . 

J 

Here L i s a nonpos i ti ve 1 i near operator acting on v E: tR3 , 

(2.14) {Lf,f} 2 ~O 
L (v) 

for 

and 
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(2.15) Lf = 0 iff 

It can be decomposed as 

(2.16) L = - v (v) + K in 

where v (v) is a monotone nondecreasing function in I v I and 

(2.17) 

K is a compact self-adjoint operator on L2{v), which has the smoothing pro
perties: 

{ 

Ill Kf lllj,t,~ E K ll\ f \l\j-l,.t,g 
(2.18) 

for any j ~ 1 

Ill Kf U\ ~ K lll f 11\J. " 
o,t,~ 'J 

for some constant K = K(j) < + <lo and any L~O, r~o. 
The nonlinear operator 

(2.19) 

acts on v e ~ 3 and is bilinear in f and g. 

Lemma 2.2.- Let f(x,v), g(x,v)E Bm,.Q. ,~ for some m )5/2,i > 3/2 and 
'f ~ 0. Then we have 

(2.20) 1n ""r (f,g)\\1 6 c ,,1 r (f,g)\\\ 
.Q.,î m,t,~ 

~ C\\\ f\\l \l\g\\l 
m,Q.,~ m,t,~ 

and then 

{v r (f,g),-Wj) 2 = o , 
L (v) 

j = 0, 1, ... ,4. 

Proof - The first inequality is easily obtained by (2.8) and (2.17). The 
second is proved by Grad (1965) and by Handsdorff-Young's înequality. In fact 
for L = 2 we have 
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\U f (f,g) li! = sup (1+v2)m/ 2 1\ (1+k2) e!klS I'(f,g}(k,v)l/ 
2 m,2,~ V - L (k) 

~ C { sup(l + v2)m12 n elklî f(k,v)II l 
L ::t {k) 

·{ sup (l+v2)m/2 Il (l+k2) elklg g(k,v)lj 2 } + 
L ( k) 

+C Îsup (l+v2)m/2 \l(l+k 2)/ 1ff(k,v)II 2 } 
L (k) 

. \ sup (l+v2t" 12 \\e \klg g(k,v)\1
1 

1. 
1 L (k) J 

~C {sup (l+v2}"'12 \l (l+k2) e\k\gf\\ 2 J 
L ( k) 

• Ç sup (l+v2)m/2 Il (l+k2) e \ k\.f g\j } 
i. L2(k) 

Now our aim in this section is to summarize some results on the linear 
Boltzmann equation. 

(2.21) ~ft = -l_v. ~ + .J... Lf. 
Cl J èXj "i: 

Consider two operators 

(2.22) { 

with the domain o(.!. A ) = D (.!. B ) maximal in Ha, .e.~o. 
E e <ë.. s t., 

1 
~ Af generates a strongly continuous semigroup in Ht , i.e., 

..t t 
(2 23) t AE - ~ v (v) t 

· e f = e f(x-?: v,v) 

= 1 [.ik.x etAt1<. 
(2 rr)3/2 

(\, 

f(k,v) dk, 

where 
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(2.24) A~ k = - i z. k. v - V (Y) . 

Since Bt =A~+ K and K is a bounded perturbation, the linear Boltzmann 
operator}Bf generates also a strongly continuous semigroup 

t 
{e Ë 

8e} t~O in Ht for any E e- (0,1 J 

Then we have 

Theorem 2.1.- The linear Boltzmann semigroup is represented by 

where for each k e R3 

(2.26) BE k = - i t. k . V - v (V} + K 

is a unbounded linear operator in L2(v) with the definition domain 
D<Bç_k) = .[ f e L 2 

(v), BE. k f e L 2 (v) 1 and generates a strongly continuous 
semigroup such that for fe L2(v) 

t 
~ Bfk l 

(2.27) e f L2(v) ~\f!L 2(v) 

Furthermore there exist b, fo1, ~2 )>.0 such that the following (i) (ii) are 
val id for any f E D(~k). 

( i) for any k, l î k 1 < 2> 

(2.28) 
t t ("_ 
-rB k 5 Io<· (c:k) 

e s f = jî"; 1 e J ( e j ( - t k) , f) 2 e j ( E k ) 
L (v) 

t t 
'[ Aék f + e-f ~1 Zl + e ( E k , t/E } f, 

where o< j' ej are the eignevalues and the eigenfunctions of B~ k such that 
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aj ,n are constants, aj ,2 > 0 and 

( e j ( - E k) , en ( ~ k)) 2 L ·(v) 
= s . 

J'n 
j,n=l, ... ,5 

( i i) for any k, l ~ k \ > & 

(2.30) 

where 

and 

\\ zj c f. k), t/f. )fil 2 ~ c \1 f\l 2 , 
L (v) L (v) 

where C is independent of E, k, t ~O . 

Prôof - cf. Ellis-Pinsky (1975), Ukai (1976) and Nishida-Imai (1976). 
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3 - THE INITIAL VALUE PROBLEM OF THE BOLTZMANN EQUATION 

First we obtain the decay of solutions to the initial value problem 
of the linear Boltzmann equation 

(3.1) ~~t) = - ~ vj ~~. + lf = Bf 
J 

, 

where and in this paragraph e is assumed to be 1. Let the initial data 

(3.2) f(O) = f(x,v) e H.e, for some f ~ 0 

This Cauchy problem is solved by the linear Boltzmann semigroup in§ 2, i.e., 

(3.3) f(t) = etB f , in , 

which is strongly continuous of t ~ 0 in H..e, • By theorem 2.1 and by 
Planchrel theorem we have 

(3.4) in t ~ 0. 

Theorem 3 .1. 

(i) Let the initials f belong to He for some t ~ O. Then the solution 
f(t) of (3.3) decays to zero 

(3.5) \lf(t) \IL~ 0 as t -+ + Cie' 

2 
(v;L1(x)) ( i i) Let f € H.Q. f\ L for some 1 > 0 and 

(3.6) r "f'/v) f (x, v) dv = 0 for 3 a.a.x ~~ , j =0,1, ... ,4. 

Then the decay estimate has the order as follows 

(3.7) 

Remark - If f € Ht n L2(v;LP(x)) for some .e, ~O 2 ~ p ~ 1, then the 
decay estimate is better than (i), i.e., 
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C ( li f Il + Il f \1 2 p) 
lol l L , 

(l+t)~+lot 1 /2 

for I o<. 1 ~ 12, , 

and 

fo = f (i - ~). And also these estimates can be carried to the solution of 
nonlinear Boltzmann equation, but here we restrictrurselves1D the basic gene
ral case (i), (3.5). See Ukai (1976) and Nishida-Imai (1976). 

Proof.- cf. Arseniev (1965), Scharf (1969) for the special case and Ukai (1976), 
Nishida-Imai (1976) in general. By Fubini theorem and by Planchrel theorem 
we can compute for f(t) 

= 

where b is defined in Theorem 2.1. By theorem 2.1 (ii) we get the estimate 
with fo0 = min (f2 ,v(O)) 

dk 

which means the exponential decay. 

By theorem 2.1 (i) for I we have 

where the integrand of I2 is the first term in the right hand side of (2.28) 

and that of r3 is the second and third ones in that of (2.28) respectively. 

Then theorem 2.1 (2.28), (2.31) with fao = min (fo1, v(O)) gives 

2 -2J3n t f 2 .e.. " 2 
I 3 ~ C e - (l+k) \ f(k,.)\ 2 dk 

1 kl<ô L (v) 

-2/ t 2 
~ c2 e o 1\ f \IL 
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If we set ri. 0 = _min o<. 2 > 0 
J =0, 1, .. ,4 J' 

in (2.29) 

we can calculate for 12 as follows : 

J 2 t to<.(k) " 
12 = (l+k) l~e J (ej (-k), f) 2 e/k)\ 2 dk 

c- L (v) L (v) 
P,<l<c> 

J R, -to< k2 
" 2 

~ c2 ( 1 +k2) e 
O I f ( k,.) \ 2 

\K l<ô L (v) 
dk 

➔ 0 as t ~+ ao 

where the decay to zero is assured by Lebesgue theorem. The proof of (ii) is 
given in the same way, if we note that for j = 0,1, ... ,4 

( e . ( 0) , f ( k , • ) ) 
2 

- l Ç-i k • x ( ~J. f ( x , v) dv) dx = 0 
J L (v) - (2TT)312 j t ) ~ 

and that 

2 
2 -t«ok 

k e dk 

qed. 

Before we treat the nonlinear Boltzmann equation we improve the decay esti

mates in theorem 3.1 into those in the space of B n (m ~3,..e.~2). m,\:. 

0 

Definition 3.1.- e ( [ 0, oo) ; X) denotes the space of functions f(t) which 

is continuous of t€LO,"") with the values in the Banach space X and which 
0 

decays to zero in X as t ➔ 1)P. The norm of f{t) es: t;'([O, °');X), where 

X=H.e, or Bm,t, (,R,,m~O),isdefinedby 
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\Il f{.) llk 
{3.8) 

= max Il f {t) Il;, 
O~t-<:'oo 

\ 11 f ( . ) \ \1 = max Il f { t) 11 
m ,i O ~ t ..( oo m , R.. 

Theorem 3.2.- The linear Boltzmann operator B generates the strongly continuous 
semigr~-~P etB also in B l {m~2, ..t~O). Let fEB .t,. Then we have a 

m, tB m, 
constant c1 < + oo such that for f{t) = e f 

{ li f {t) H ~ c1 \1 f Il and 
{3.9) m,t m,t 

11 f (t) 1\ ~o as t ~ GO 

m,.t 

Moreover define 

t 
(3.10) h(t) = J e(t-s)B vf{g(s), g(s)) ds, 

0 
0 O 

where g(t) E 'e( [0,()1)); B 
O 

) for some m~3, J. ~ 2. Then h(t)e"g(l:_O,oo);B n) m,~ m,~ 
and we have a constant c2< oe> such that 

2 
(3.10) ll!h(.)111 ~C 2 \llg(.)11\ 

m,~ m,t 

Proof - Following Grad (1965) we use the representation 

t 
f (t) = e tBf+ l e (t-s )B ))f(g(s) ,g(s)) ds 

0 
(3.11) t t 

= etAf + [ e(t-s)Avf(g{s),g(s)) ds + [ e(t-s)A Kf{s) ds . 
0 0 

etB is a strongly continuous semigroup in B n (m~2, J. ~ 0) because of the m,~ 
definition of the space B. n with (2.6) and by (3.11) with g ~ 0 and (2.18). m, {, 
The decay (3.9) follows from (3.11) with g e O and from (2.18) 

-Y t (t (t-s)A 
\\f(t)ll ~ e O \\ fit + J,_ e Kf(s)dsll 

o,t 0,,Q, 0 O,t 

-V t t/2 t -v (t-s) 
(3.12) ~ e O llf\l +cf + f e O H f(s)lli ds 

0,t O t/2 

as 



where (3.5) is used. Successively for j = 1,2, ... ,m 

(3.13) 
-Y0t //2 t -v (t-s) 

llf(t)ll. n~e \\f 1~,t+ C + ft/2 e o llf(s)ll 
Jp, 0 j-1,Q. 

ds 

~ O as t ~ a:, • 

For the latter half of the theorem we note that if g(s) B n for some m > 5/2 m,..i:.. 
i > 3/2 , then by 1 emma 2. 2. 

and 

, j = 0,1, ... ,4. 

Thus the rapid decay estimate (ii) in theorem 3.1 applies to this case and 
we have 

t 
\\ h{t) \l -ii [ 

.R. 0 

c ( 11 -v f ( g ( s) , g ( s) )!l ,e + \ h, [( g ( s) , g ( s) ) I\L 2, 1 

(1 + t - s) 514 

t 
~ c[ 

0 

\l g ( s ) \\m , t 2 

{l+t-s) 5/ 4 
ds ~ C !t/2 + ft 

t/2 
0 

ds 

max U 2 
C(o~ s.st/2 \\g(s) m,t) max 2 

= {l + t/2)1/4 + C ( t/2 ~ s ~ t \l g(s)llm,t) 

~ C (\\1 g(. )1\1 )2 and tends to zero as t _,., + QD. 

m,t 

ds 

To get the decay of h(t) in B n we use (3.11) with f = 0 in the same way as m,,I(., 
(3.12) (3.13). 

t -(t-s)v(v) 
\lh(t)II ~sup r e y{V)\\ r {g{s),g(s))\I ds 

j ,t V JO j ,t 
t -(t-S)y 

+ J, e O C \\ h { s) I\ ds 
0 j-1,t 

{ 
max 2 _..; 0 t/ 2 max 

~C O<s~t/2 \lg(s)II · e + t/2~s~t\\g{s)\lm 2
,11 

' "' m, t )(.., 

_ v O t/2 
+ ( max nh(s)tt ) e + max Uh(s)" , } 

O~s~t/2 j-1,e, t/2ts~ j-1,'--
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fôr j = m,m-1, ... ,2,1 and also 

Il li ( max 2 -vot/ 2 max \ 2 
h(t) ~Cl(o~s~t/2\\g(s)\l ) e + <t/2~s-'.t\g(s)\l ) 

0,Q, m,e, m,l 

~ C2 lllg(.)UI 
2 

m,l 

as t ➔ °" 
qed. 

Now we consider the nonlinear Boltzmann equation 

(3.14) d:pt, B f(t) + -vr(f(t),f(t)) in t ~o , 

in the space B 
11 

(m ~3, l ~ 2) with the initial condition 
m,"' 

(3.15) f(O) = f(x,v) ~ Bm,e. (m >,.. 3, il. J. 2) . 

The solution is constructed by the successive approximation (n = 1,2, ... ) 

0 

in the Banach space e(t.O,+Q)); B ), f(O) (t).S O. Let the initial data m,t-
f (O) have E = Hf(O)ll <~ for some m ~ 3, .e), 2. Then by theorem 3.2 and 

m,I:,, 
by (3.16) we have for the same m,L 

(1 

f(n) (t)G 'e([O,co); Bm,e) and 

Ulf(n) (.)Ill ~c
1 

E + c
2 

(lllf(n-l) (.)\ll )2, 
m,t - m,L 

\llf(n+l) (.) - f(n) (. )lU ~c
2 

(mf(n) (. )lll + \l\ f(n-l) (.)Il\) 
m,.e m,t m,l 

111 f(n) (.) - f<n-l) <. )lll 
m, e, 

for n = 1,2, ... 



111 

Therefore if we suppose 0~ E < 1/4 c1 c2 and set a = 1 - Vl-4 c1 c2 E < 1, 
we get 

\Il f(n) (. )111 ~ a/2 c2 and 
m,.e. 

Ill f ( n+ 1 ) ( . ) - f ( n ) ( . ) Il/ ~ a lll f ( n ) ( . ) - f n- l ) ( . ) Ill 
m,e m,e. 

Then f(n) (t) converges in e ( [ 0, O?) ; B 
11

) to f(t), which is a unique solution m,l(. 
of (3.14) (3.15) and decays to zero in B R. as t-o::>. m, 

Theorem 3.3.- Let the initial data f~ B II for some m ~ 3, 2-~ 2. Then there 
m ,"-

exi sts a constant E0 > 0 such that if E = \lfllm,{Eo, the solution f(t) 
of Boltzmann equation (3.14) (3.15) exists in the space B e uniquely in the m, 
large intime and decays to zero as t ➔ 410. 

Remark 3 .1.-

(i) Theorem 3.3. means that the solution to the initial value problem for 
Boltzmann equation (1.1) converges to the absolute Maxwellian distribution as 
t➔ c:,,,, provided that the initial deviation from it is small in the norm of 
Bm (m~3,..R.~2). , e., 

(ii) If m ~ 3 and ~~ 3, the solution is smooth and satisfies Boltzmann equa
tion in the classical sense. 

(iii) The uniqueness of the solution is just proved in a small (in the norm 
of B n (m ~3, ~),,, 2)) neighbourhood of the absolute Maxwellian distribution m,'l, 
cf. Shizuta (preprint). 

4 - THE FLUID DYNAMICAL LIMIT OF BOLTZMANN EQUATION AT THE LEVEL OF COMPRESSIBLE 
EULER EQUATION 

Let us consider the initial value problem for Boltzmann equation 
with f: €(0,1] 

(4.1) 
dF (t) dF~ (t) l 

; t = - }: V j ~ X j + "[ Q ( Ft ( t) , ~ ( t) ) in t ~ 0 
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(4.2) 

First we note the non-negativity of the solution Fé (t,x,v) for fixed 
ee(o,1] 

Theorem 4.1.- Let F(x,v) = M(v) + M(v)112 f(x,v) ~ 0 and f(x,v) ~ B L m, 
for some m ~3, l~2. Then there exist two constants E0 > O and t 0 > 0 such 
that if \l fllm,t. <E0 , then there exists a unique non-negative solution to 
( 4 • 1) ( 4 . 2) in o :::: t ~ é t 0 • 

The solution is given by the iteration which preserves the non-negati-
vity. 

where d w = V r dr d <j> d vf:. , 

(4.4) , n = 0,1,2, ... and 

(4.5) F0 {t) = F(x,v) ~ o 

The proof of the convergence of the iteration uses a modified argument of 
Grad (1965). By the uniqueness of solutions near to the absolute Maxwellian 
for problem (4.1) (4.2) the solution as the limit of n ➔..,.. coïncides to the 
solution given by Grad (1965). See Nishida (preprint). 

We seek the solution of (4.1) (4.2) in O ~ t < t 0, where t 0 is 
independent of te (0,1] , again around the absolute Maxwellian distribution, 
i.e., of the integral equation 

t :t t-s B 
f ( t) = e t' 8t f ( 0) + f e ~ € i v I1 ( f ( s ) , f ( s) ) ds 
~ Q c; E E 

(4.6) 

for E €(0,11 . 

Let f(O) ç; Bm, .t ,f for some m ~ 3, .e,~ 2, f O) O. The solution of (4.6) is 
sought in the Bana2h spaceE, which is defined by 

Definition 4.1.-

13 = { f ( t) ; conti nuous function of t wi th the values in B n " , whi ch m,-1:.,.) 
has the norm 
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(4.7) sup Ill f(t)lll (1-t/a(f 0 - f )) 
o~~<fo m,t,f 

o~t<a(f 0- ~) 

for a suitable smal 1 a > 0} 

Theorem 4.2.- Let the initial data have the norm 

(4.8) E = \1! f(0)III < + «> for some m ~ 3, t~ 2,) 0 ). 0 • 
m,t , ~ 0 

Then there exists E1 > 0, a> O and c1<~ such that for any f(0) with E < E1 
and for any f ~ (0,1] the equation (4.6) has the unique solution fe (t), 
which is continuous of t, 0 ~ t < a(~0-~) with the values in Bm, .e ,~ , 
0 < ~ < f 0 and has the uni form bounds 

(4.9) 

where c1 is independent of€ E(O,lJ 

The proof of theorem 4.2 is based on the fo11owing proposition. 

Proposition 4.1.- The solution of linear Boltzmann equation has a uniform 
estimate 

(4.10) 
t 

lite î' 8e. f(0)lll ~ C\\lf(0)\H 
m,..t,~ 0 m,t,~ 0 

for m ). 3, R ~ 2, ~ 0 ). O , 

where C is independent of é ~(0,1] . Furthermore let us consider the func
tion for any f(t), g(t) të 13, m ~ 3, t ~ 2, 

t-s 
T 8~ 1 e Î v r( f ( s) , g ( s) ) ds. (4.11) 

.t 
h(t) = f 

0 

Then it has a uniform estimate 

( 4. 12) 
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where Nb [h1 is defined by (4.7) with b replacing a and 

(4.13) R = sup lllf{s)\11 
O~s<'b (~0-~) m,.e,,~ 

o~ ~< ~o 
Proof of proposition 4.1.-

By theorem 2.1 (2.27) and Planchrel theorem we have 

f !(% 1 kl f ! /\ 2 
f(0)\11 2 = let k e O {l+k2) 12 f(O,k,v)\ 

~'~0 L2(v) 
dk 

2 
~ \llf(O) Ill for any i,- 0, f10 > 0 . 

l,f o 

It is improved to the estimate in the norm of B , m ~ 3, if we remem-
m, .e ,fa 

ber the representation 

t t t t-s s 
tBe 1' AE ( ~ At K îA~ 

(4.14) e f(O) =e f(O) + J
O 

e "î (e f(O)) ds 

and the same argument used in the proof of {3.9). 

The latter half of the proposition is proved as follows since 
(e/O),-vt1(f,g)) 2 = 0 , j = 1,2, ... ,5, we have by theorem 2.1 

L {v) 

t t-s r 1 f·1 t To<.(&k) " 
h(t) = J. [ 372 tJ.-l e J ik (e' .(-9 ~ k), (--;r) ) e.(€ k) 

0 (21î) - J J 
\ ikl< o 

~Aek 1 n " -~ ft1 
+ e é (vl- J + e t z1 (~ k,t/r. )(vrf} dk 

f t-s t-s ~ 
+ le T A€k t (vf} + e -z 2 t z2( t k, t/~ }{v rf 1 dk J ds 

\ E.kl>~ 5 

The norm in Ht,J has the estimate by the same theorem 

\\lh(t)lll ~c Itî.(j(l+k 2t e2\klS k2 \ (vr)"(s)t2 2 dk) 112 

~ ~ 0 L (v) 
_t-s fo 

€ 0 
+ e 'ê. \\\v r (s)I\I }ds 

Q,~ 
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t 
~ cf J U\f ( s) l~ • t • f ( s) Dl g ( s )U\n • Q • f ( s) 

_ t-s ~ 
e € O Ill f{s)UI e 111 g(s)111 ds 

~ m, .~ m,i,f 
O f(s) -~ 

for some choice of ~ (s), .~ < ~ (s)< f O - s/a, where we used lemmas 2.1 and 
2.2. 

It can be estimated by (4.13) in o,t<b (.fo -_f ), 0$'~<~0 for 

any b < a 

t-s A. 
t \Il g ( s )lll t - ~i"o 

\\\h(t)UI ~ C R ( f m, R.. 'g (s) ds + 
0
r e ~ IUg(s)IUm, .Q ,g ds ) 

t,~ 0 ~ (s) - ~ 

t-s 12. 
t ds t -T l"'o 

~c RN (91 ([ -------- +f __ e __ 
b o (~ (s) - ~)(1-s/b(~ 0- î(s))) O ~ 

ds ____ ) 
1-s/b (f 0-~) 

with ~ < g(s)< î O - s/b. 

Therefore if we choose ~ (s) = (~0 - s/b + ~ )/2, we have 

(4.15) sup 11lh(t)lll (1-t/b(fo -~))~ C(4b+llfoo) R Nb L9] 
o~~.(.~o o.,~ 
0 ~ t < b(~o - î) 

In order to obtain the estimate for Nb Lh) from (4.15) we use the equivalent 

representation 

[
t t~s At 1 [t t~s Af K 

(4.16) h(t) = e f'Vr(f(s),g(s)) ds + e -rh(s) ds 
0 0 

and the same argument as that for (3.10). Thus we arrive at 

qed of proposition 4.1. 

Now we introduce the same approximation as (3.16) to solve (4.6), i.e., 
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t 
Î Bl 

f0(t) = e f{O) 

t-s 

f
t T Bf: 1 

g0(t) = e ~ -vf{f 0{s), f0(s)) ds, 
0 

f 1(t) = g0(t) + f 0(t), 

t t-s 8€ 
g

0
(t) = { e fé. i fitfn(s),gn_ 1(s)) +YI'(gn-l (s), fn_1(s))} ds , 

fn+l(t) = gn(t) + fn(t) 
t-s 

t T 8e 1 
= f0(t) + [ e F~r(fn(s), fn(s)) ds, 

0 

n = 1,2, ... 

It is easy from proposition 4.1 to see that 

(4.18) \llf 0 (t)\\\ ~ C \l\f(O)\\I O "~C lllf{O)lllm .e p:!! R0 mJ., o m,"-') , ,, , , r ·o 

and 

(4.19) p. 
0

a sup 
o~ ~ <fo 
o ~ t < ao ( î o-f ) 

for any a0 > O. 

Then it follows from (4.17) and (4.19) that 

Define a1 = a0 > ù and 

(4.21) for n = 1,2, ... 

and 

(4.22) for n = 0,1,2, ... 

By use of proposition 4.1 and by the same argument as that for remark 2.3 
chapter 3, we have for k:1,2, ... 
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(4.23) 

provided 

(4.24) , and also 

(4.25) 

provided that R0 is small. Thus if we choose R0 small, (4.24) and (4.25) are 
valid. Therefore there exists 

lim fk+l (t) = f(t) , 
k...,.~ 

the limit of which is the solution of (4.6) for tE (0,1] and has the 
uniform bounds by (4.25) 

(4.26) \\1 f (t)\11 ~ R 
m, .t ,~ 

in O~t<a(t 0 -~) , 

where Rand a= lim an 
n~ ci0 

are independent of e e (0,11 . 

qed of theorem 4.2 

In order to take the limit of ft (t) as~-> 0 we need more than 
the uniform bounds (4.9). The uniform continuity intis given by the following. 

Theorem 4.3.- Let the initial data f(O) fi B Q O for some m~3, t:;. 2, 
m, ' \ a 

~ 0 ~ 0 and let 

E = \\ f ( 0) \\ -< El 
m,.e.,~o 

where E1 is defined in theorem 4.2. Then there exist constants O < E2 ~ E1 and 
c2< WJ such that if E < E2, then the solution f~ (t) of (4.6) has the 
uniform Holder-continuity in t: 
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for O<s<t andforafixed ~E.(0,1/2), 

where c2 i s i ndependent of e G ( 0, 1 J 

The proof needs the Holder-continuity of the solution for the linear 
Boltzmann equation and of the function h(t) (4.11). See Nishida (preprint). 
We only remark that the Htllder-coefficient has the singularity of 1/t!t"° as 
t ➔ 0, which corresponds to the initial layer of the rarefied gas motion 
described by Boltzmann equation. 

It follows from theorems 4.2 and 4.3 that by Ascoli-Arzela lemma 
we can choose a convergent subsequence as~ ➔ O such that 

(4.28) 

The limit function has the bound 

(4.29) 1H f o(t)lll :5 cl E 
m,fl,~ 

and the Holder-continuity of (1' e (0,1/2). 

(4.30) lllfo(t) - fo(s)III "C2 Efs(l-tJ;(~ -\'))1~ 
m-o , .t - ô , ~ li . o 

Now we turn to the original mass density distribution function 

(4.31) 1/2 l ( t , X , V ) = M ( V ) + M ( V ) f€ ( t, X , V ) 

which satisfies Boltzmann equation (4.1) (4.2). Taking the limit of the equa
tion (4.1) in the integrated form in t along the subsequence (4.28) as 
t. ➔ 0, we have by the uni form bound ( 4. 29) 

(4.32) Q(F0 (t,x,v), Fo {t,x,v)) = o in O<t<a~ 0 , 

where _ 1/2 F0 (t,x,v) = M(v) + M(v) fo (t,x,v) 

If we assume that F(O.x,v) = F(x,v)~O and ~ (O,x) = f F(x,v) dv > O in x~~ 3, 
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the solûtion has the same properties by theorem (4.1) and by the mass conser
vation laws (1.10) : 

(4.33) F0 (t,x,v) ) o 

(4.34) f (t,x) = f F0 (t,x,v} dv > O 

It follows from (4.32) (4.33) (4.34) that F0(t,x,v) > O and then F0(t,x,v) 
is locally Maxwellian. Thus we can obtain the conservation laws (1.13} for 
F0 (t,x,v) from (1.10) for FE (t,x,v) as the limit of E ➔ O along the sub
sequence of (4.28). The uniqueness of the solution to the initial value problem 
(1.13) guarantees the convergence of full sequence ~ to F0 as E➔ O. 

Theorem - Let the initial data F(x,v) = M(v) + M(v)112 f(x,v) ~ O with 
f(O,x) = jF(x,v) dv > 0 in xe~.3, and let f(x,v)4:-B 

II 
for some 

m, ~, f O 
and set ffifij . m, J.. ,fo = E. If E < E2, where E2 ,s 

defined in Theorem 4.3., then the solution F~ (t,x,v) of Boltzmann equation 
(4.1) (4.2) exists uniquely in Bm,2. ,f, O~t<a(~ 0 -~), 0~~<~ 0 for 
any f.. E ( 0, 11 and i s non-nega t ive there, where a i s def i ned in Theo rem 
4.2. Furthermore there exists 

where F0(t,x,v) is locally Maxwellian distribution. Therefore its fluid 
dynamical quantities satisfy the conservation laws {1.13). 

At last we note that the system (1.13} with (1.11) is hyperbolic and 
has two genuinely nonlinear characteristic fields (cf. Chapter 1), and so 
it developes in general shock waves in finite time even for the analytic 
initial data. 
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