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§ l. INTRODUCTION 

1. 1 Motïvatïon 

Stiff differential equations are equations which are ill­
conditioned in a computational sense. To reveal the nature of 
the ill-conditioning and to motiva te the need to study numer1cal 
methods for stiff differential equations, let us consider an 
elementary error analysis for the initial value problem 

-1 l) y = -Ay, 

y(O)"'Yo 

Here y is an m-vector and Ais a constant m Xm matrix. The dot 
denotes time differentiation. Corresponding to the increment 
h>O,.we introduce the mesh points tn=nh, n"'0.1., .... If 

the solution to (1.1) obeys the recurience relation, 

1. 2) 

For convenience we introduce the function S(z) 
rewrite (1.2) as 

e-z and we 

The simplest numerical procedure 
to y n' n = 1, 2, ... , proximation 

method, 

for determining an ap­
is furnished by Euler's 

1. 4) n = L2 .... 

Uo = Yo • 

Using the fonction K(z) =1.- z we may rewrite (1.4) as 

1. 5) 

By subtracting (1. 3) and ( 1,.5), we find that the global 
error, 
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obeys the recurrence relation 

l. 6) en+ 1 = Ken + Ty n , 

Here T is the truncation operator T =K -S. (1.6) may be solved 
to yield 

en+ 1 

from which we obtain the bound 

1. 7) ~ n max 11 K 11 j max 11 Ty 11 . 
O~j~n-1 O~j~n- 1 j 

Note that nh~t. 
If the numerical method is stable, 1.e., 

1.8) IIKll~i 

and accurate of order p. 1. e., 

L 9) 

then the bound ( l. 7) shows that 11 en 11 = O(hp). (Of course for 
Euler's method p =i to which case we restrict ourselves.) 

To demonstrate (1.9) we note that I IYI I is bounded for 
O~t~t and we show that IITII =O(h 2

). For the latter we use 
the spectral representation theorem which tells us that 

m 
L 

_; "'1 
1. 10) T(hA) = T(hr... )P. (A). 

) J 

Here we have assumed that the eigenvalues /\.;, j "'i .. ,. ,m of A 
are distinct. The P. (z); j =i, . .. , m · are the fundamental pol yno­
mi al s on the spedtrum of A. (i.e. P. (z) is the polynomial of 
minimal degree such that Pj(À.i) ôi./ i,j = i, ... ,m.) We have 

chosen T(z) = K(z) - S(z) to be small at a single point, ·z = O. 
lndeed 

2 
T(z)"'O(z ). 

This and ( 1. 10) assures us that 11 Tl 1 =O(h
2

). More precisely 
we have that 
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1. 1 l 

One proceeds similarly, us1ng.the spectral representation 
theorem to deal witn the requirment of stability.F0r Euler's 
method we obtain stability if 

l. 12) j = 1, , .. , m. 

For the usual e.::iuations one encounters 1n numerical ana­
lysis, IÀ.max\ is not too large and (1.12) is achieved with a 
reasonable restrictiononthe size of h. Inturn (1.11) combined 
with the bound {1.7.) for 1 \en\ lgives us an acceptable error 
size for a reasonable restriction on the size of h. 

1. 2. Stiffness 

A stiff system of equations is one for which \ À \ 1s max 
enormous, so that either the stability or the error bound or 
both can only be assured by unreasonable restrictions on h. 
(i.e., an excessive l y smal 1 h requiring too may steps to so 1 ve 
our problem.) Enormous meansenormous relative to a scale which 
here is t. Thus an equation with IÀ.max\ small may also be stiff 
if we must solve it for great values of time. 

In the literature one usually finds stiffness in a system 
of differential equations to be defined as the case where the 
ratio of the eigenvalues of largest and smallest magnitude, 
respectively 1s large. This definition is' unduly restrictive. 
lndeed as we may see, a single equation can be stiff. Moreover 
this usual de finition excludes the ob~i~usly stiff system 
corresponding to a high frequency harmonie oscillator, v1z 

1. 13) 
2 

W• large. 

lndeed neither definition is entirely useful 1n the no­
nautonomous or nonlinear case. While stiffness is an informa! 
notion we can include most of the problEms which are of interest 
by using the idea of ill conditioning. Suppose we develope the 
numerical approximation to the solution of a differential equation 

2 
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',long thepoints of amesh.for example.by means ofa relationship 
of the type ( l. 5). Then if small changes in un in (1. 5) result 
1n large changes in un~-t then the numerical method represented 
by (1.5) is ill conditioned. To exclude the diff1.culty where-
1.n this unstable behavior is caused by the numerical method and 
1. s no t an i n t ri n s i c d i ff i c u 1 t y t o • the di f f e r en t i a 1 e qu a t i on s 
we will say that a system of differential equations 1.s stiff 
if this uns table behavior occurs in the solutions of the diffe 
rent1.al equations.More formally we have the followingdefinition. 

Def. 1 1 A sysq,m of d1fferent1.al equat1.ons 1s said to be 
st1.ff on the int~rval [O, t] 1.f there exists a solution of that 
system a component of wh1.ch has a variation on that interval 
which is large compared to 1/t. 

The following example shows how treacherous the reliance 
on eigenvalues to characterize stiffness can be: even in the 
linear case. 

1. 14) 

where 

1. 15) A(t) =(s1-nwt 

cos wt 

COS W•t) 
- s, n w-t . 

The eigenvalues of A(t) are ±1. The matrizant of (1. 14) 1.s 

1. 16) if!(t)=B(t) 
sinh a-

--- + I cosho-. 
O" 

Here J 1.s the 2. x 2. identity matrix, 

.. r.:- 1/2 
1.17) u=·rJ.(1-coswt) 

and 

1. 18) 

Thus 

1. 19) 

B( t) 
J__( 1-· cos wt 

w, sin wt 

uniformly for t E [o, t). 

stn w,t ) 

cos wt-1 . 
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Th.'1$ 1$ spite of the eigenvalues of A(t), the solution of 
(1. 14) varies with frequency w, a quantity at our disposal. 

Î"t.S\!lectures will deal with the computational theory of stiff 
equa tions. 

1. 3 warning 

The various methods which are presented and discussed here 
have been selected because of the ideas and properties of a ma­
thematical nature which the expose.No inference concerning the 
efficacity ofa method should be drawn solely from its inclusion 
here and inversely . 

.1. 4 References 

References will be given at the end of each section. Although 
there is a large bibliography for our subject,we will not display 
one.Rather we refer to the references at the end of this chapter. 
These references are of a general nature and conta in large 
bibliographies. 

REFERENCES 

[1.1) Bjurel, G., Dahlquist, G., Lindberg, B., Linde, S., and 
Oden, L., "Survey of Stiff Ordinary Differential Equations", 
Report NA 70. 11, Department of Information Processing 
Computer Science, the Royal Institute of Technology, 
Stockholm, Sweden. 

[l. 2] Liniger, W., "Lecture Notes on Stiff Differential Equations" 
A course given at the University of Lausanne, 0973-74). 

[1.3] "Stiff Differential Equations" Proceedings of the IBM 
Research Symposia Series,Edited byR.A. Willoughby, Plenum 
Press (1974). 

§ 2. REVIEW OF THE CLASSICAL LINEAR MULTISTEP THEORY 

2.1 The Initial Value Problem 

We begin by considering the nonl inear initial value problem 
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x=f(t,x), 

x(a) = s. 

where x, f and s E C (i.e. are m·tuples of complex numbers). 
m 

We seek a solution to (2.1) on the 1nterval I; 

Def. 2.1.: f is said to be an IL-fonction if for all t E I and 
x and y E Cm· there exis ts a constant L such that 

Here 
m 

i =1 

IIJ(t.x) .. f(Ly)II~ Lllx-ylj. 

denotesanynormof x=(x:i., .... ln).For example llxl! 

We may now state the following existence and uniqueness 
theorem for the problem (2. 1). 

Theorem 2.1.: If fis continuous in t for t € I and if f is an 1L­
function, the problem (2. 1) has one and only one solution in 1. 

2.2 Linear Multistep Operators 

The best known numerical methods used to generate approxima te 
solutions are based on the linear multistep operator J;, given 
by 

lfore E 1s the shift operator 

Ex(t) = x(t+h) 

and the Cl. and /3. are given scalars with (a;+~~)• ak/0. k 1s 
J J 

cal led the number .. _of steps of J', . 

Def. 2. 2: ,.t is said to have degree of prec1s1on p, if .-1, anni­
hila tes all monomials tn., n:{,pandp is maximal with respect to 
this property. 

Now let us suppose tha·t x(t)E.C 00 andlet us express .&x(t) 
in the form of a Taylor series. 
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2.2) ~ X (t) 

An alternate defini tion of the degree of precision of .1, 1s 
given in the following definition. 

Def. 2.3: .'1 is said to have degree of precision pif the co­
efficients a. and (3. may be chosen so that cv '"'0, v" 0.1 .... ,p 

d . 1 l .Jh · . an p is maxima wit respect to th1s property. Clearly p ~ 2k. 

2.3 Approximate Solutions 

To construct an approxima te solution to (2. 1), we begin by 
introducing the mesh t ~ a+nh, h>o, nEJh'={0,1 ... ,n }. 

n ' max 

Jli is the set of integers such that tn+iEI, i=0,1, ... ,k. 

An approxima te solution is a sequence {xn}, n E J h where 
xn is considered as an approximation to x(tn),nE]h. We define 

an approxima te solution by means of i, through the linear multistep 
method, 

k oo 

2. 3) F ( x ) '= ~ a . x + . - h ~ (3 _,· f n + 
1
- ·· 0, 

n j=O J n J j-=-0 

He re f n '= f ( t n, X n) , 

The linear multistep method is saidto be explicit if (3k=O. 
Otherwise it is implicit. Each xn+k' n E Jh is obtained from 

(2. 3) through transposing and solving an equation of the form 

In the explicit case solving this equation requires only division 
by ak. 

The linear multistep formula allows the step by step de­
terminat1qn of xn,n E ]h,provided that the values of x 0 , ... ,xk-i 

are known. These so called starting values are determined by 
some independent procedure which may be called the starting 
procedure. As a notation for the starting procedure we will 
wri te 

2.4) x =s (h). m m · m ""· 0. 1, .. , , k- 1. 

The following two definitions are basic. 
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Def. 2. 4: The starting procedure is said to be bounded if there 
ex1sts aconstan M>O, such that I ISm(h) l kM for all sufficiently 
small h. 

Def. 2.5: The starting procedure is said to be compatible if 

Let (C.f.(2.1)) 

2 5) 

The existence and uniqueness of the numer1cal procedure 
1s the subject of the following theorem. 

Theorem 2. 2: A linear multistep formula has one and only one 
solution xn, n € Jh for all starting procedures Sm(h) if O~h<h0 • 

2,4 Examples of Linear·Multistep Methods 

The following are some of the well known linear multistep 
methods: 

i) Adams' method 

k 

Xn+k-Xn+k-1.-h ~ l;,jfn+j=o 
j-=O 

l;,k f 0: Adams-Moulton, k=i: Trapezoidal formula 

l;,k = 0: Adams-Bashforth, k=i: Euler' s formula 

ii) Nystrom's method 

k ~ 1. 

xn+k ·· xn+k- 2 - h J;o /;,jf n+ j 

k = 2: mid-point formula 

iii) Method of Newton-Cotes 

k ""2: Simpson' s formula 
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iv) Backward differentiation formula 

2.5 Stability, Constistency and Convergence 

A linear multistep formula Îs consistent if its order p ~ 1.. 
This is explicitly characterized in the following definition. 

Def. 2.5: A linear multistep method 1s said to be consistent if 

where x(t) is any solution of x' =f(t,.x). (C.f.(2.3):} 
We now introduce the p and u polynomials. 

k 

2.5) p(w,) B j 
= Il jw , 

j=O 

k 
(3 .wÏ u(w) = ~ 

j =O 1 

and we suppose that (pjo) = 1. We now easily conclude the follow-
1ng theorem: 

Theorem 2.3: A linear multistep method is consistent if and 
only if 

~(1.)==p(1)=0 

and 

~(t) =h(p'(i)-u(1)) =O 

The stability of a linear multistep methodis characterized 
1n the following definition. 

Def. 2. 6: Let M be· a constant. A linear multistep formula 1s 
said to be stable if 

max l lxJ 1 ~M 
nE Jh 

uniformly in h, h E (0,h 0 ] for all bounded sta·rting procedures 
and for all f E IL. 
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The study of stability makes use of the root condition 
given in the following definition. 

Def. 2,7: A polynomial p(w) is said to satisfy the root con­
dition if all of its roots lie in the closed unit dise while 
those on the boundary of the dise are simple. 

With this we have the following theorem. 

Theorem 2.4: A linear multistep method 1s stable if and only 
if p(w) obeys the root condition. 

The global or cumulative error of the linear multistep 
method 1.s 

2.6) e. "x -x(t) n n n ' 

A convergent method is characterized in the fcdlowing definition. 

Def. 2.8: A linear multistep method is convergent if for all 
f EL and all compatible starting procedures, we have 

Finally, the main theorem of this subject is the following. 

Theorem 2. 5: A linear mul tistep method is convergent if and only 
if it is stable and consistent. 

REFERENCES 

[2. l] Henriçî,P., "Discrete Variable Methods in Ordinary Diffe-· 
rential Equations", Wiley, New York (1962). 

§ 3. THE METHOD OF ABSOLUTE STABILITY 

3.1 Stiff Systems 

3. 1) 

Consider the linear case 

x = Ax, tE(O,t], 

where A 1s an m x m constant matrix. Let À.j, J '"1, ... ,m be the 
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eigenvalue of A. The following definition characterizes a st1ff 
system. 

Def. 3.1: The linear system (3. 1) is said to be stiff if 

max I À. . t 1 » 1. 
1~j~m .1 

As we may see this is nota precisely defined notion. 

Remark 3.1: A system consisting of a single equat1on may be 
stiff. 

To motivate the first method for dealïng with stiff systems, 
consider the case m"' 2 with À.2 << À.1 < 0 and w1th the solution 

F (t) = 
À.i: t À. t e + e m • 

As t increases from zero there is a transi tory stage du ring 
which F(t) varies extremely rapidly. After a time of the order 

À. t 
À.~1 the component em of F(t) becomes negligible and a new 
permanent stage developes" To determine a numer ical approximation 
to F(t) in the transitory stage we would use a mesh increment, 
h 1 , such that lh1À.ml is s.malL For the permanent stagewe would 
like to use a much larger mesh increment h 2 and one such that 

In this X.ase the numerical theory is applicable for the com­
ponent e 1 t. We do not expec t the same to be true for the o ther 
coinponent.!lowever, if the method is stable no matter how large 
l\,h 2 I is, we may expect the component eÀ.mt to remain negligible. 

This technique cal ls for methods of an extraordinary stable 
character, indeed it calls for methods with a form of absolute 
stability. 

We give three criticisms of the idea. 
i) Getting through the transitory stage requires a number 

of steps proportional to À.;1 and this may not be acceptable. 
ii) If À.mis large in magnitude because it has a large 

im~ginary part, the transitory stage 1s permanent. 
iii) Absolutely stable methods of simple types are rare; 

(This will be seen presently.) 
For the time being we exclude eigenvalues with a large im­

aginary part and we will return to this type of problem in §§12.14. 

3 



3o3 A-stability 

Now we formalize the celebrated notion of·absolute stabil·· 
ity called A-stability. 

Def. 3,2: A linear multistep method is A--stable if all solu· 
tions of the difference equation generated by the application 
of this method to the test equ~tion (scalar) 

3. 2) x "''A.x, À a complex constant, 

tend to zero as n-+co for all À. with Re À.< 0 and for all h > 0 
fixed. 

To determine which linear multistep methods are A-stable, 
we note that when the test equation (3.2) is inserted into the 
linear multistep formula,a linear difference equation results: 

k 
3.3) L (cx.-q~. )y . = o, 

j=O 1 1 n-1 
q =/\h 

The characteristic equation corresponding to (3.3) 1s 

3 . 4) X ( w; q) = p (w) - qa-( w) = 0. 
(cF, (f. ,5 )}, 

X defines a· k-valued mapping of q in.to w. The inverse of 
this mapping, 

3.5) q (w) = p(w)/a-(w), 

defines a single valued mapping of w into q. 
With these observations we may state the following propo­

sition: 

Proposition 3.1.: Let wi' i=1., •.• ,k be the roots of X(w;q)=O. 
Then the follo'h'..ing three statements are equivalent 

a) a linear multistep method is A~stable 

3.6) b) Re q < 0 ~ 1 w. 1 < 1., i=1, ••. ,.k 
i 

c) lwl·>1 =>Re q(w) >o. 

Using this.proposition we may state and prove the follow-
1ng lemma. 

k 
Lemma 3.1: The .linear multistep method 6 (<X.-q[3.)x +· =0 1s 

j =O 1 1 n J 
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A-stable if and only if 

i) The 

and 

roots a-. 
t 

of a-(w) satisfy lo-i 1 ~ 1, 

ii) Re p(w)/o-(w) ;;;o; for all w ~n W={w/lwl > 1}. 

Proof A) We first show that A-stability implies (i) and (ii). 
That A--stability implies (ii) _is obvious. We proceed to 

verify (i) Since (pjof"1, p(a-i }f.0. Thus under the mapprng of 
w->q generated by X(w,q)=O, each o-i is mapped into the north 
pole of the q Riemann sphere, the latter being a point on the 
imaginary axis of that sphere. Similarly each neighborhood of 
':T: is mapped onto a neighborhood of the north pole. Now every 
n~ighborhood of the north pole contains value's of q such that 
Re q < 0. 

Suppose (ii) were not true Then one of the roots Œ"s is 
such that j-:;:ï 1 > 1. Then there exists a sufficiently small neigh·· 
borhood of this ui contained in W. (cf. Figure 3.1). 

w G> 
w 

Figure 3.1 

Thus X=O would have solutions :in W for values of q with 
Re q <o. This contradicts the A-stability, completing part (A) 
of this proof, 

B) (ii) implies (3. 6c) in W. Thus there remains only to 
vérify (3.6c) for lwl·=1. Then let Wo be such that iWoÎ=1 and 
consider two cases; case (a) a-(w 0 )/0 and case (b) a-(w 0 )=0. 

Case a: a-(w 0 )/0 

In this case q(w) is analytic ina neighborhood ofwo. Sup­
pose to the contrary that Re q(wo) < O.Then a-sufficiently small 
neighborhood of w0 will be mapped onto a neighborhood of q(w 0 ), 

the latter neighborhood being entirely contained in Re q < O. 
(cf. Figure 3.2). 
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Figure 3. 2 

This neighborhood of 0 0 contains points w,of Wwhose image, 
q(0) satisfies Re q <o. This contradicts (ii) completing the 
proof of case (a). 

Case b: cr(0 0 )=0 

In this case q(wo) is the north pole of the q-Riemann 
sphere, a point on the imaginary axis. Thus (3.6c) is obvious­
ly satisfied. This completes the proof of case b and the lemma. 

The following proposition is interesting because it in­
creases the similarity of conditions on cr(w0 ) for A-stability 
to the root condition for p(w) for ordinary stabili ty of the 
linear multistep rnethod. 

Proposition 3.2: If a root Wo of a-(w) has magnitude unity and 
is nota simple root, then the linear multistep method is not 
A-stable. 

Figure 3. 3 
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Proof Let m +2 be the multiplicity 9f the root w0 . Then q(w),, 
•m . 

'"Const(w-·w 0 ) (1·,o(l)), Thus the sectors of a neighborhood of 
w0 which are of angle 27! /m (at most · a hal f plane) are mapped 
onto a neighborhood of the north pole of the q-sphere.Since the 
sectors are at most a half plane. we may choose one which lies 
entirely in W (except of course for the vertex w0 of this sec 
tor) (cf Figure 3.3). 
Thus there exists points of W whose images satisfy Re q < O. 
Thus the corresponding linear multistep method is not A stable. 

3.3 ExamDles of A-stable Methods 

We now give several exàmples of A-stable methods. 

1. The t:rapezoidal. formula: 

p(w) =w-1, 

Re q(w) = 

cr ( w) = J:.. ( w+ 1 ) . 
2 

2 

lw.l · -1 

lw+1l 2 

Thus Re q(w) > 0 in W and the root of a- on lwl =1 is simple. 

2. The backward Euler formula: 

p(w) = w-1, 

2 

Re q(w) 
1 wl · - Re w 

> 0, lwl·> 1. 
lwl 2 

3. 
1 

- - hk ( f +k + f ) = 0. 2 n n 

k 
=w 1, 

The roots of cr(w) are the k-th roots of unity. 



1 Re q(w) ,s-k 
2 
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2k lwl, - 1 

icl+1l 2 

> o. 

No te fu r the r th a t p ( 1 ) " 0, p 1 
( 1 ) =O" ( 1 ) k , i m p l y i n g t h e c on s i s te n c y 

of this method. This example shows the occurrence of linear 
multistep methods which are consistent and A stable for any k 
(i.e, any number of steps). 

3,4 Properties of A-stable Methods 

Achieving A·-stability is costly in terms of the restr 1c· 
tians this property imposes on the class of linear multistep 
methods. The first restriction is the loss of explicit schemes 
which requires a greatèr amount•of computation in each step of 
the method. This restriction is characterized by the follow1ng 
theorem. 

Theorem 3.1: An explicit linear multistep method can not be A­
stable. 

Proof: Assume to the contrary that the method is bath explicit 
and A-stable. Then Bk"'O and q(w)"'p(w)/a-(w) has a pole at the 
point, w0 , at infinity on the w-sphere.But Wo as well as neigh­
borhood of w0 lie in W. The image of such a neighborhood under 
the mapping qcc:q (w) is a neighborhood of the point, qo, at in­
fini ty on the q-sphere.Such a neighborhood cont'ains points for 
which Re q < O. This contradicts (3. 6c) completing the pro of of 
the theorem. 

If a linear multistep method is of order p, we have from 
(2.3) that 

3.7) 

If p "3-1, p(1)=0 and since (plo-)"1 then u(l)f.O.Now consider the 
following definition which introduces theso-called error cons­
tant c *, which serves as a measure of qua li ty of linear mul­
tistep methods of the same order. 

Def, 3.2: c*=-cp+tfu(l) is called th~ error constant of a 

linear multistep method of order p ~1. 

Remark 3.2: 

3. 8) 
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The following theorem characterizes the key restriction on 
A stable methods. 

Theo rem 3 2 The order p of an A stable linear multistep method 
can not exceed 2. The trapezoidal formulais the A-stable method 
of order 2 which gives the smallest error constant. c•~i/12. 

Proof The.proof begins with a sicle calculation. 
w+i 

Let z ~--, the well known 1-1 Moebious transformation 
w-1 

carrying w=i into the point z at infinity. Let the transforma­
tion r be defined by 

and let 

r(z) '" fp(w), s(z) ,.,fo-(w). 

Now apply r to (3.8), We get 

p +1 

log z+i - r(z) = c*(z2 ) (i+o(i)), 
z-1 s(z) 

z+i 
Since log 

z-1 

3. 9) 

where 

r ( z) 

s ( z) 

C = { 
co* , p = 2 

p ~ 3. 

Thus we may note that the coefficient of z- 3 in (3. 9) is strict­
ly positive if p ~3. 

Next we translate the conditions (i) and (ii) of Lemma 
3.1. By using properties of the Moebious transformation,we see 
tha t this lemma asserts the equi valence of A-s tabi li ty of a 
linear multistep method and 
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i) The roots si of s(z) satisfy Re si ~0, i 1, ••. ,k 

ii) Re r(z) ~ 0 for all z in Re z ç,Q, 
s ( z) 

Next we make use of the fol lowing variant of the Riesz· 
Herglotz theorem (c.f,[3.l],p.152): 

Theorem: An analytic function cp(z) which satisfies 

a) sup jxcp(x)I <ro 
O<x <ro 

b ) cp ( z ) r e gu 1 a r · i n Re z > 0 

c ) Re cp ( z) ~ 0 in Re z > 0 

may be represented as follows: 

f 00 dw(t) 
cp(z) = . , 

z- 1, t 
00 

where w(t) is a bounded nondecreasing function. 

Now we will show that zcp(z) = z r(z) is bounded for all 
s ( z) 

xd0, 00L We note first that (3.9) implies that xr(x)/s(x) is 
bounded as x -. 00 • By hypothesis the linear mul tistep method is 
A-stable. Then from proposition 3 .2, cr(w) has a zero of order 
at most unity at w=:-1. The saµie then is true for s(z) at z=c0. 
Then xr(x)/s(x) is bounded at x=O.Using (3.10) (i) we may con­
clude that xr(x)/s(x) is bounded for all xon the positive real 
axis. Thus zcp(z) is indeed bounded as claimed. 

Now (3.10) (i) and (ii) imply thatcp(z) is regular andthat 
Re cp(z);:: 0 in the half plane Re z > 0, 

Thus the hypotheses a), b) and c) of the ci ted theorem are 
verified and for x > 0, we have 

f 
o:, 

r (x) x 
x -- = --.- dw(t) 

s(x) x-it 
- ro 

d ·2 2x t 2 

Since -- x = ---- ~ 0 for x ;?;-0, we may conclude from 
dx x2+t2 (x2+t2)2 

this representation that 
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-5!_ [x r ( x) ] ~ 0. 
dx s ( x) 

Next frorn (3.9) we rnay conclude that 

- x -- = •· 2 -- Be x (1+0(1)), d [ r ( x) ] ( 2 ) ., s 
di!: - s { x) 3 

Comparing (3 11) and (3.12) we deduce that 

2 

3 
8c' ~ O. 

X -oo. 

If p ')3, c' = 0 and (3.13) is impossible.This demonstrates 
the first assertion of the theorem. 

2 1 / If p=2, 3 - 8c ~ 0 or c* ~1 12. For the trapezoidal formula, 

p(w) =w-1, o-(w) ~ T (w+1), r(z) =42, s(z) = z/'il2 so that 

r ( z) 2 =-. 
s ( z) z 

2 
Comparing this with (3.9), we deduce that-- 8c*=O or 

3 
* 1 

C =- • 
12 

This demonstrates the second assertion of the theorem and com­
pletes ~ts proof. 

3,5 A Sufficient Condition for A-stability 

Condition (ii) of Lemma 3.1 requires the verification of 
a property of q (w) for all w i,n W. A less stringent requirement 
furnishes the following sufficient ·condition for A-stability. 

Theorem 3.3. If 

i) the roots ui of u(w) satisfy lo-i I·< 1, id, ... ,k 

and 
ii) u(w) =Re q(w) ~O on the unit circle, 

then the linear multistep method is A-stable. 

Proof i) implies that q(w) is analytic in W and 1n particular 

4 
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a t w =· co. Then u (w) 1s harmonie 1n W and from the m1n1mum prin -
ciple 

u(w);::. min u(w) 
l wl = 1 · 

for a 11 wE W. The n ( i i ) i m p 1 i es th a t u ( w) ~ 0 for a 11 wE W. The n 
(3. 6) (c) implies tha t the method is A stable. completing the 
proof of the theorem. 

3.6 Applications 

As an application of theorem 3.3 consider the formula 

3.14) x ·t -X -h[(1-a)x '1-:-ax] =0, n-r n . n-r n 

for which p ~ 1 for all real values of the parameter a. 
For a = 1, 1/2, 0 respecti vely; this formula becomes the Euler 
formula, the trapezoidal formula and the backward Euler formula, 
respectively. In any case we have 

cr ( w) = ( 1- a )w + a. 

The root a-1 =-a(1-a}" 1 of a-(w) is less than unity 1n magnitude 

if and only if a < _i. A calculation shows that 
2 

where 
i 0 

P(e )=(1-2a)(1-cos0). 

1 
if and only if a~ -

2 
Thus ( 3. 14 ). 1 s A--stable if 

Note that the trapezoidal formula (which is A--stable) fails 
to satisfy the sufficient condition of theorem 3.3. 

A seconà application is the following formula 

( -1-a+b)x +2(a·bJ'x . +(1-a+b)x . -h[ax +(2-a-b)x . 1+bi . ] 7 0, n n·ci n,-2 n n-; n,-2 

For this formula p ~2 for all real values of the parameters a 
and b. One may show that for this formula; hypotheses i) and 
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cf tl1t.o,•em J.] 
ii ),\are equivalent to the following two inequalities· 

b -·a> 0 

-i+a+b>O. 
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§ 4. NOTIONS OF DIMINISHED ABSOLUTE STABILITY 

The family of linear multistep methods is so desirable be·· 
cause of its simple form for computation and analysis that the 
limitations imposed on this family by A-stability made a great 
impact. In order to att;;empt to save the family for the solutici'n 
of stiff differential equations a sequence of weakened forms 
of absolute stability were invented in order. 

We will look at one of these_. A(a) stability and see by 
just how much it improves things. We start with the following 
definition. 

4.1 A(a)-stability 

Def, 4.1 A lineàr multistep method 1s A(a) stable, o<a < ~, 

if all solutions of the difference equation arising through the 
appLication of this method to the test equation, ·tend to zero 
as n ->a:) for each fixed rnesh · incrernent h > 0 and for all À. I 0 
where 

We may note the following remarks: 

Re mark 4. 1; Let wi, i=i;, .. ·. k be the roots of the characteristic 
equation, X=O corresponding to the difference equation arising 



from the application of the test equation (c.,f, Def.3.2) to the 
linear multistep method, Then the corresponding linear multi · 
step method is A(a) stable if q E Sa implies that the !wi 1 < 1, 
id .... k. 

Remark 4,2 a) A(a)-stabj.lity ~A(S) stability for o<~<a. 

b) A stability is equivalent to A(;) .. stability 

The case a~O is described in the following definition 

Def, 4.2· A linear multistep method is A(O)··stable if it 
A(a)•stable for all sufficiently small a> O. 

The following lemma is the analogue of lemma 3.1. 
k 

1S 

Lemma 4.1: The linear multistep 

A(a)-stable, a>o, if and only if 

method L (a.-qS. )x .. 1s 
j=O J J n1·1 

i) The roots si of s(z) satisfy·Re si ~O, 1.c:1, ..• ,k 

ii) r(z)/s(z) is in the compliment of Sa for all z 'with 
Re z > O. {c. f. Theorem 3.2). 

For the case of A(O)-stability we have the following nec~ 
essary condition. 

Lemma 4. 2: If a linear multistep method is A(O)-stable then 
{av~O or av~O} and {b

11
?0 or bv~O}, v=1, .•. ,k. 

4.2 Properjies of A(a)-stable Methods 

As usual we will suppose that (plo-)=1 and that p ~1 (so 
that the methods are consistent). 

The first result which shows thàt we do not recover the 
explicit methods is the subject of the following theorem, 

Theorem 4.1; An explicit linear multistep method can not be 
A(O)-stable. 

The order restriction is weakened at least somewhat as the 
following two theorems show. 

Theo rem 4. 2: The trapezoidal formula 1s the only A(O)-stable 
linear multistep method with p ?k+t. 

Theorem 4.3: There exist A(a)•·stable linear multistep methods, 

0~ a<.!!... for k=p=3 and k=p=4. 
2 

We forego developing the proofs of Lemmas 4.1 and 4.2 and 
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of Theorems 4.1, 4.2, and 4.3 since the proofs are generally 
analogous to the proofs in§ 3. 
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§ 5, THE METHOD OF JAIN 

Wi th the limi ted succéss of removing the 
th.e class of linear multistep methods imposed 
notions of absolute stabili~y, there remains 
of retaining the strongest of these notions, 
class of linear multistep methods. An example 
which we will now describe is due to Jain. 

5.1 Description of the Method 

We start with the initial value problem 

5.1) y'(t) =f(t,y), 

y(a) = S. 

Here y and f are m-vectors. 
We consider .the function 

tE(a,b]· 

y' ( t) + Py ( t) 

restrictions on 
by the various 

the _possibility 
but to leave the 
of such a method 

where P is an m x m ma trix 
following three steps. 

to be speci fied, and we perform the 

i) Approxima te y' (t)+Py(t) by a polynom{al of interpol­
ation, Q(t),which uses Hermite interpolatory dataatthe points 
tn-i' i=0,1, ... ,n-1: 

ii) Integrate the differential equa ti ons y' +Py=Q from tn 

iii) Choose P as an approximation to (!; )n = __ 'd_f (_t_n:-/-t n_)_) 
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Step (i) results in 

n n 
5.2) y, ( t) +Py ( t) "' L h. ( t) ( f. +Py. ) + E h. ( t) ( f '. +P f. ) +TE. 

i"'1 i i i i=i i i i 

Here hi and hi are the fundamental Hermite interpolation poly­
nomials of the first and second kind, respectively, correspond· 
ing to the points tn·i' i~,0,1, ... ,n-1. Also 

and 

where 

5.3) 

where 

and 

i"'0,1 ..... ,n-1 

F ( t) = f ( t) + Py ( t). 

Now we apply step ii} (i.e. integrate (5.2)). We find 

y + t "' e .. Ph Yn + e - P t n + 1 [ t H. F. + H. r] + R , 
n i=t i t t t n · 

H; 
--f t n + i e.p t -

• hi(t)dt 

n 

MPtn+t 
R =-e ___ _ 

n 2n! l
tn+1 

t ep t F ( 2n) ( ç )rr 2 ( t) dç . 

n 

As far as step (iii) is concerned and 1n the case where 
m=1 a ~atural choice for Pis 

In the case m > 1, the choices for P de pend upon the re la ti ve 
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Ph 
difficulty in evaluating e A simple choice 1s the diagonal 
matrix whose ii th entry 1s 

i-1 -;, i-i-1 111 

P .. 
,Yn ,Yn·t,Yn ,···,Yn) 

t 1 

As we see in (5 3), the method is far from being a linear 
multistep method. 

5.2 Properties of the Method 

The pr.operties of this method are given by the. following 
theorem. 

Theorem 5.1: The method of Jain is A--stable and of order 2n. 

Proof: Let f(t,y)=Ày where À is acomplex constant with Re À. <o 
(~.e,, the case of the test equation). Then P=-À and for each 
1' 

and 

5.3) 

Here 

F. = f . + Py . = 'A.y . - 'A.y . = 0 
t t t t t 

F '. = f'. + P f . = 'A.y '. - 'A.y '. = O. 
t t t t t 

Then {5.3) becomes 

Then since Re À< 0, _l im Yn = 0 for each fixed h > 0. 
n-+oo 

This demonstrates the A-stability of the method. 
Now insert s=(t-tn)/h into (5.2). It becomes 

.. ph - Ph [ ~ - 1 ] y , 
1 

= e y + he LJ (H.F. +H.F.) + R • 
n.,. n i=t t t t t n 

k . ( s ) = h . ( hs + t . ) 
t t t 

{
1 

Phs-
Hi .,, Jo e ki (s)ds, i=1, ... ,n 



.:>,;; .. 

and 

2n ,· t 1' ,Ph, F/2nj (t' )" '( s )d, R h Ph 
e n 2n! 

2n + 1 

!,'FI'•! (Ç)rr'(s)ds ,O(h 2"' 2) h "Ph 
e 

2n ! 

2n +t 11 h p ·, · - 2n + 2 

2n! 
e hF(

2
nJ (t) 

0 

rr 2 (s)ds + O(h ) 

by the second mean value theorem. Then 

where 

Thus the method 1s of order 2n and the theorem 1s proved. 

5,3 Some Special Cases 

The .integrals for the determination of the Hi ,Hi and Rn 
are of the form 

Phs N i 
I =: e B A.s ds 11 ( ) 

n O i""t i 

where N=N(n) lS an integer. In addition 

2n .. r Ph 2n - r H. ~ a (Ph) e +h 2 b, (Ph) 
t r zi r ,~1 

2n Ph 2n 

~ a (Ph) 
- r L i\ (Ph) 

- r 
H. e + h 

L i "'1 r i ~ 1 

In the sample case, n~l, we find 



h 1 (t)=1 

k 1 (s)"'1 

a 1 =· 1, 

5,4 Criticism 

.. 33 · 

h 1 (t) = t-t 1 

k 1 (s)=s 

a 2 = 0, 

n(s)ccs 

While Jain's method 1s A • .stahle and of higher accuracy, it 
1s costly to use. 
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§ 6. METÙODS OF THE IMPLICIT RUNGE-KUTTA TYPE 

Ry leaving the class of linear multistep methods we found 
in§ 5 in the method of Jain an A--sta.ble method of order 2n, 
n=i, 2, ... . In this section we will discuss the well known class 
of Runge·Kutta methods and show that in this class of methods 
we may also find A-stable methods of higher order. 

5 
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6. 1 Runge-Kutta Methods with v-levels 

We start with the differential equation 

6 , l) X·· f(x) 

where x and f are m vectors. 
A Runge Kutta process wi th v levels is defined by the fol 

lowing relations 

6. 2) 
V 

b) k. ""f(x-rh L- a .. k.). 
i j=ci i1] . 

These relations are used to define an approximation. x_.,. 
to x(tn+i) in terms ofan approximation to x(tn),denoted simply 
by x in (6,2), The coefficients bi,aij; t1j=,1,2, ... ,v are to 
be determined hy a procedure which we will now describe, 

6.2 Determination of the Coefficients 

By using (6.1) we may write the following list of formal 
relations 

(1) 
X =f 

x( 2 ) = f1f 

6.3) x(
3 >=f2f 2 +tU 

xr4> = fd 3 
+ 3(f2f)(fd) 

a F 
rs r s 

Here f 1 =fx, the Jacobian,an array of order 2, f2=fxx' the Hes-
sian, an array of order 3, ... . 

The F,
5

, r=1,2,.,,,s,=1, ... ,pr are called the elementary 
differentials.For each index r,there are P~ suchdifferentials. 
For example, p 1 ,..1, p 2 "'1, p 3 ~,2, p 4 =4, .. , and 



Now let x+ and x 
tn respectively, Next 

35 

denote the exact value of x at tn+l and 
substituting the relations in (6.3) into 

00 

the formal statement x+-x = r; hnx(n) /n!, of Taylor's theorem 
gives n=t 

6,4) a F )· rs rs 

Now if we formally develop each ki, i=i, ... ,, v in a series, 
we mai ,rite the first relation in (6.2) as 

6.5) 

Here the Brs are numerical coefficients while the cprs, are func­
tions of the bi and the aij' 

For a Runge-Kutta proc~ss to be of order of prec1s1on, p, 
it is necessary that the formal series in (6.4) and (6.5) agree 
top terms. Thus we find 

6.6) r = 1., • _ .• _, p, s = i, ... _, p r, 

p 

as a set of M'" ~ p equations for the determination of the 
n=t r 

v(v+1.) coefficients a.,b .. i,J·=t, ... ,v. 
' t tJ . 

One distinguishes three classes of Runge-Kutta processes 
as fol lows '. 

Def. 6. 1.." A Runge-Kutta_ process is said to be explicit if aij =0, 
j ~ i, is said to be semi-explicit if ai("O, j > 1, and is said 
to be implicit otherwise, The number of available coefficients 
in thèse three cases are Ne, N

8
, and.Ni, respectively where 

The relation between the quanti ties v,Ne, N
8 

,Ni, p and M 
1s expressed in the following Table 6.1. 

The M equations in (6.6) are not independent and soit is 
usually possible to satisfy themwith a number N of coefficients 
considerably smaller than M. 
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V N Ns N. p M e t 

1 1 2 2 1 1 
2 3 5 6 2 2 
3 6 9 12 3 4 
4 10 14 20 4 8 
5 15 20 30 5 17 
6 21 27 42 6 37 
7 28 35 56 7 85 

Table 6.1 

6.3 An Exa1nple 

Let us illustrate the last point by means of the case 
p~v=3. In this case an explicit calculation using (6.2) gives 

6. 7) 

where 

This must be set equal to the right member of (6.5) which 1s 

3 

6.8) h(/311</>11)F11 +h 2([3.21</>21)F21 + h
2 

(Ss1<Ps1Fs1 + f3é@s~32) +O(h 4
). 

Comparing coefficients of the elementary differentials 1n 
(6. 7) and (6.8) allows us to determine /3rs<f>rs as fonctions of 

/3q> "' a/ r r a Pr 

f3;12bi "' 1 1 1 1 

/321 2b.c. 
t t 

,., 1/2 2 .f 1 

/33:, L bi cf: 1/3 3 1 } 2 
/33.2 2 Lb. a .. c. = 1/ 3 3 1 

i j t "lJ ;, 

Table 6.2 



the 

6,9) 

a .. 
tJ 

- 3 7 .. 

and the bi, These are 

Next the expressidn in (6.4) must be developed so that the 
ars ·may ,be obtained. This reveals that ·a.11 =1, <X21=1, a.31=1 and 
<X32=1. (Recall that we have already noted that p 1=p.2=1 and 
p3=2), 

Now we may aséemble~he information developed for this ex-
ample in the · Table 6.2. 

One associates the t,1bleau ot coet"fic:Îe:nts ,nÏC1.ble ,.3 with 
the process 

a vv 

where 

Table 6.3 

V 

c. = B 
i j = t 

a .. 
tJ 

A particular solution of the equations displayed in Table 
6.2 1s displayed in the version of Table 6.3 corresponding to 
v=3 as follows: 

0 0 0 0 

1/2 0 0 1/2 
-1 2 0 1 

1/6 2/3 1/6 

Table· 6. q 

with f311=f321=f3s1=1 and (33,2=2. 
This particular solution 1S due to Kutta, 
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6,4 Semi-explicit Processes and the Method of Rosenbrock 

Among the implicit and semi-explicit Runge Kutta processes 
are A-stable methods. The implicit processes lead to methods 
which are difficult to apply in general because at each step 
of the integrat1on the k'°: i 0 •1, ..•. v must be determined as the 
solution of the system oÎ v nonlinear equations (6.2b) 

In the semi -explicit case the nonlinear system is trian 
gular in the sense that the j -th equation in this system con­
tains only the unknowns ki, i~1, ... . j. Thus each equation in 
turn need only be solved for one unknown. 1.e. the i th equa­
tion for ki, i=1_ ... , v. 

Let us consider the semi-explicit case and replace the 
solution proce-dure for the ki _, i~1, . . ', _ v, by a single s tep of 
a Newton-Raphson iteration. The resulting method is 

6.10) 
V 

x+=x+h Z 
i-=1 

b-k-
i L 

where I is the m·x m identi ty matrix. This is an example of a 
method which may be called a linearized semi-explicit Runge­
Kutta process of the Rosenbrock type, or simply a Rosenbrock 
method. 

6 .11) 

The case p 3, v=2 becomes, us1ng Rosenbrock's notation, 

x+ = x + h(R 1 k 1 +R2k 2 ) 

k1 [I-ha1f1J~ 1f 
k 2 [I-h~ 2 f 1 (x+hc 1 k 1 )]-

1 f(x+hb 1 k 1 ). 

The are six undetermined coefficients. The set of equations 
analogous to (6.6) for the determination of the six unknowns 
are four in number and are 

1 
2 

6 .12) 
R1aî +R 2 [a;+(a1·:a 2)b1) 

R2(a.2c 1 ❖ ! b'i) ~ +. 
1 

6 
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A particular solution of (6 . 12) due to Rosenbrock 1s 

al= 1 + 1//6 

a 2 = 1 - 1/% 
· ½ 

b1 = C1 = [-6-'\'6 + (58+20V6) 2]/(6 +2W) 

R 1 = - 0. 413154 

R 2 = - 1 . 413154 

The two matrices in (6 . 11) which must be inverted become 
identical under the constraints a 1 cc.a2 and c 1 ,;,0, This consider­
ably reduces the computation per step . Under these coistraints 
the equations (6 . 12) become 

6 . 13) 

one 

R 1 +R 2 =1 

a1 +R2 b1 = 1/2 

ci:f+'2R2 a1b 1 = 1/6 

R2b~ = 1/ 3. 

(6 . 13) has two solutions. Cal ahan · studied the following 

6 . 5 A-stabil 1 ty 

~o demonstrate the A-stability ofthese linearizéd methods 
requires their application to the scalar .test equation (i.e., 
f=Àx , fx =À) . and a stlidy of the location of the roots of the 
characteristic equation corresponding · to the difference equa­
tion which results . W~ forego these details. 
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§ 7 EXPONENTIAL FITTING LINEAR MULTISTEP METHODS 

7, 1 Exponential Fitting 

We have now completed a rev1ew of some of the ideas and 
methods for approximating the solution ofstiff equations which 
use a technique coupling small mesh increments during a tran­
sistory stage with a property of absolute stability during a 
permanent stage. 

We now turn to a second class of methods which employ a 
different idea. Namely those which employ exponential fitting. 

In the context of a simple example we have seen in§ 1 that 
the control of the error, en=u

11
-yn (c.f.(1.6)), depends on the 

stability of the amplification operator. K(hA), and the close­
ness of K(hA) to the solution operator, S(hA). We saw in that 
example that K(hA) is made close toS(hA) by making K(hz) close 
to S(hz) for z in the spectrum o-(A). This in turn is accomplish-· 
ed by making K close to S in a neighborhood of the origin and 
then shrinking ho-(A) into this neighborhood by taking h small 
enough. 

The methods of exponential fitting replace the single point 
at the· origin by a set of points which we may call the fitting 
points in the complex plane. Then K(z) is made close to S(z) 
at all points in this set. Then by taking h small, the collec·· 
tion of points ho-(A) tend to one or another of the fitting 
points. 

This idea becomes interesting for stiff systems when we 
note that fitting points may be very large in magnitude,so that 
h is not required to scale the entire spectrum of A into a 
neighborhood of the origin. Of course in addition to being 
fitted, a method must be stable and convergent 1n some sense. 
Otherwise it is of no computational value, We discuss these 
latter points in§ 7 .4 and in§ 8. 

7,2 Sorne Examples of Exponeniial Fitting for Linear Multistep 
Methods 

We may see how this idea works through use of several 
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examples. Consider the following linear multistep formulas 
(71) (74) 

7 1) 

The order of the method is P"2 if a"'i/2 and p~1. otherwise. 

7, 2) X ·t -x .. J..h[(J..:.-a)x' +(1.-•a)x )] n·,· n 2 n·d n 

+ .!:._ h 2 [(b+a)x . 1 .. (b-a)x ]·= 0 4 n •c n 

He r e p-= 4 i f b ·0 .!:.._ 
3 

and a"<;) p"'3 if b ""· ~- , 

b~..!:._, (7.2) becomes 

1. 
a/0 and P'"2 if b f-, 

3 
In particular for 

3 

7,3) X +t - X •• .!!.. [ (J.+a)x . i + (J.-a)X ] 
n n 2 · nT n 

2 

+-h- [(1.+3a)x +1 -(1.-3a)x ] = O. 
1.2 n n 

In turn, when a=O, (7.3) becomes 

7 .4) 

(7.2) and (7.4) are not theusual linearmultistep methods s1nce 
they employ second derivatives of x. 

The exact solution of the test equation (c.f. (3.2)) satis-· 
fies the following recurrence relation 

7.5) q = À.h. 

The amplification factor of Fv is Kv(q), v=i,2,3,4 where 

7.6) 

6 

K 1 (q) = (1.+aq)/[1.-(1.-a)q] 

K 2 (q) [4+2(1.-a)q+(b-a)q' 2 ]/[4-2(1.+a)q+(b+a)q' 2
] 

K 3 (q) - [1.2+6(1..,a)q+(1.·•3a)q 2 ]/[1.2-6(1.+a)q+(1.+3a)q 2
]· 

K 4 (q) = [1.2+6q+q 2 ]/[1.2-6q+q 2
]. 

It is a simple matter to verify that 



7. 7) 

as q--0, since p has the various values 2, 3, or -4 as we have 
noted as the case may be. 

We intioduce the following definition ofexponential fitt-
1.ng. 

Def. 7,L A method with truncation operator T(q) is exponential· 
j. 

ly fittedtoorder,atapointcif~T(q) lq"'c"'O., j,::.0,1, ... ,r. 
dqJ 

We note that the formulas Fv àre exponentially fitted to 
order r )v at the origin. The remaining parameters may be chosen 
so that fitting occurs elsewhere as well. If we can adjust Fv 
so that Tv(hy)=O, where the magnitude of y is very large, then 
it is reasonable to use Fv to solve stiff systems whose spec~ 
trum is divided into two clusters.The first cluster lying near 
q=O corresponds to slowly varying modes; the second cluster, 
lying near q=hy=c, corresponds to rapidly varying (stiff) mo··· 
des. 

fittings of the Fv. 
order r=O at c=-ro .. 

Let us now consider some 
For a=O, F 1 is 'fitted to 

1 
For a 2 , the trapezoidal formula, the fi tting 1.s maximal 

at q=O (p=r=2), but there 1.s no fitting at c = -<Xl, s1.nce 
lim Ti(q) -1. 

q-- (X) 

For v=1 or 3, Tv(c)=O defines the parameter 
tion a=av(c) where 

7.8) ( ) - 1 ( - q 1 )" 1 a 1 q =-q--e -

and 

respectively. 

a as a func-

T2 (c)=T 2 (c' )=0 define a and b as fonctions of both c and 
c'. These two functions are respectively: 

a.2(q,q') = 2[f(q)-f(q' )]/[q'f(q)-qf(q' )] 

and 

b.2(q,q') =2(q'-q)[q'f(q)-qf(q')]. 
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7.3 Minimax Fitting 

As an alternate use of free parameters, we may attempt to 
minimize T(q) in some global sense.We illustrate this by means 
of the following example dealing with F 1 • 

Let . 

T (a) = max I T ( q) 1 . 
-o:i<q(-0 

From (7.7) the following lemma· rèsults from a direct cal­
culation. 

Lemma 7.1.: a"'a 1 (c) defines a one-one mapping- of (-C0,0] into 
[O, .t/2L 

Now let a 0 be defined by 

Then 

and the correspondi!lg fitt.ing p~int_ c0 =-8.1.9 •• , • Noti:_ce that 
for the backward Euler for~ula. T(0)~0,204 .,. , while T(1./2)=1 
for the irapezoidal formula. 

7.4 An Error Analysis for an Exponentially Fitted F1 

In the classical case fitting at. the origin is a form of 
control of the local error, i.e., is tantamount to,what we call 
local error analysis. Then we see that exponentiel fitting is 
a somewhat complicated variant of local error analysi~.Just as 
in the classical .procedure wherein a local error analysis by no 
means assures the control of the global error,we also lack this 
assurance in the case of exponentiel fitting.We must supplement 
the local analysis with a stability analysis and them combipe 
the two to demonstrate the value of the method by constructing 
a global errer analysis. 

We will illustrate such a global error analysis with F 1 

(c. f. (7.1)). In§ 8, we will consider a more general framework. 
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When F 1 1s applied to the linear system (Ll), v1z., 

7.9) y =Ay' 

we find the following recurrence relation for the global error, 
e . 

n, 

From this 1n turn we get 

7.11) 

where we have assumed that the initial error, e 0 =0. 
The following lemma follows from a direct calculation. 

Lemma 7. 2i IK1 (z)I·< 1 for z E (0, -00 ) and aE [0,1/2]. 
This lemma asserts that F 1 is A--stable for aE [0,1/2] We 

now consider a to be restricted to this interval. 
Now let us suppose that A is ne'}àrivQ definite and has 

distinct eigenvalues O >>-..1 , > ••• , >Àm. Let the resolution of 
the identity, relative to A be given by 

/JI 

7 .12) I = E P. (A) 
i =1 i 

where the P., i=1, .•. ,m are appropriate polynomials. 
Then i 

The first equality in (7.13) follows from (7.12) while the last 
inequality follows from Lemma 7.2, since the Ài are oe.~a\\l>e 
Using (7.13), (7.11) becomes 

7.14) 

Now from the properties of T1 (z) for z near zero, we may 
conclude that 

7.15) 
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On the other hand given-c>0 and if a=a 1 (c) (c.f. (7.8)). 
then from Taylor's theorem, we conclude that 

From this in turn we have that 

7.16) IT-dz)I ~ constl c-zl, C < 0, z ~ o. 

Now let (J 1 ,J 2 ) be a partition, Il, of the integers 
1"'{1, ... ,m}. Then combining (7.14)--(7.16) andutilizing the re­
solution of the identity, we get the following estimate for 
11 ·en 11. 

7, 17) Il e 11 <~ n cons t min [ max I li2
.\~ I+ max h I Y-À.. 1 J ; 

n II i e I 1 . t i el 2 _t 

• ·2 
~ ~ax [min(I hÀ.. 1 , 1 y-À.• 1 )J. 

i-el i i 

(Recall that c~hy), 
The property of. Lemma 7.1 (i.e. the·fitting) was observèd 

by R.A. Willoughby, while that of Lemma 7.2 (i.e., the A­
stability) was observed by W.Liniger. The global error analysis 
was made by W.L Miranker. Thus, the simple scheme F 1 used in 
an exponential fitting mode for approximating the solution of 
stiff equations is called · the Willoughby-Liniger-Miranker me­
thod. 

REFERENCES 

[7,1]· Liniger, W;, and Willoughby, R., "Efficient.Integration 
Methods for Stiff Systems of Ordinary Differential Equa­
tions", SIAMJ. Numer .. Anal. 7 (1970) pp.47-66. 

[7.2]· See also the appendix.of reference [8.1]. 

§ 8. FITTING IN · THE MATRICIAL CASE 

In this chapter we will stûdy the process of exponential 
fitting in a sett~ng which is more general than that of§ 7. In 
particular, we consider a class of linear mul tistep methods 
with matricial coefficients. 
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8.1 The Matricial Multistep Method 

We consider the initial value problem for the following 
system 

8 .1) x =Ax, 

Here xis an m-vector and A 1s an mxm-matrix of constants.Evi­
dently 

8. 2) 

No~ consider the three functions L(z),R(z) and C(z) given 
as follows: 

L (z) 
r (r-j)z 

= L) (a. +z B-)e 
j =O J J 

8. 3) R ( ) .;._ ( ,,: ) ( r- j ) z z = ,c,__, y.+zu. e 
j = 0 J J 

C ( z ) = L ( z ) [R ( z ) ] -
1 

•. 

Here the aj,Bj,'Yj and '81 , j=O, ... ,r are each mxm-matrices.Note 
that 

8.4) L(hA) - C(hA) R(hA) = 0, 

Lèt P(z) be an approximation to C(z) and c6nsider the fol­
lowing formula, which is an approximation to (8.4), as a nu­
merical method for determining un as 'in approximation to xn, 
n=r, r+l, ... 

.r r [ r r 
8,5) Eœ.u .+h B B.Au .-P(hA) .E a.u .+h Bu.Au ·]=o. 

j=O J n-1 j=:O J n·J . i"'O J n-1 j=O J n-J 

If P(z) were equal to C(z), this expression would be an ident­
ity for solutions of (8.1), (c.f. (8.8)), that is (8.5) would 
be fi tted (exponentially) at all points in the spectrum u(A). 
However, C(hA). is too difficult to calc4late,·. especially if we 
use (8.5) on systems of the form (8.1) where A ~hang~s at each 

. step. Thus wè wi 11 choose ·P(z) as a funÙion for which P(hA) 
is easy to calculate and such thatP(z) is an approximation to 
C(z) in a sense to be made precise. 
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8.2 The Error Equation 

To de termine the quality of (8. 5) as a numerical method 
we proceed to derive an equation for the global error e 00 u .. x . n n n · 
To do this we introduce the shift operator, H where 

8, 6) Hf(t) ~f(t;,-h), 

and we introduce two operations .i(H) and <11,(H) associated res., 
pectively with Land Ras follows: 

8.7) 

Œxcept for the sign change, Bj----Bj' the i here 1s the same 
as the one used in§2). 

Now 

8.8) 

where x 

Thus 

8.9) 

hA 
Hx = e x , 

1s a solution of (8.1). 

(HA-AH)x = O. 

From this we may deduce that 

8 .10) 

and 

8. 11) 

di,(H)x =R(hA)x, 

"'(H)x = L(hA)x 

[~(H)-C(hA)dt(HJ]xn- r = 0, n=r,r+1, ... •. 

On the other hand, we may write (8.5) as 

8 .12) n=r,r+1, .... . . 

Then by subtracting (8.11) and {8.12),we find the follow­
ing error equation 
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8.13) 

n=r,r+1, .... 

8.3 Solution of the Error Equation 

To solve.(8.13) we introduce theoperator d'(H) as follows: 

8.14) :f (H) =~(H) - P(M)dt(H). 
/(H) 

We may writeAas a polynomial in H as follows: 

8.15) 

where 

8 .16) 

r 
./(JI)= E 

j =O 

n·j 
s-H 

J 

s. =s.(A)=<t. +hAl3. -P(hA)(y.+hAo.), 
J ] J J J J 

, · j=O, .. ·., r. 

Thus (8 .13) may be wri tten in the following form 

8 .17) 

Now let 

8.18) 
r 

S(z) = L 
j=O 

r-j 
s.z 

] 

n=r, r+1, ••. 

be a polynomial with the matricial coèfficients sj, j=O, ... ,r. 
Suppose that [zrS(z- 1 )F 1 is an analytic fonction of z in a 
neighborhood of z=O· ~nd let its power series be given by 

8 .19) [zrS(z-1)]·-1 

where the o-j are-matrices. (c.f. Lemma 8.2 below) 

Multiply (8.17) by o-N-n and sum the result over n from r 
J 

to N~ 'Fot the left member of this oper~tion we have 



N. 
8, 20) L O"N-nj'(H)en- r 

n"'r 

4.9 .. 

N r r- j 
= B a-N- n E s .H e 

n °' r j=O J n·r 

N r 
= E CTN" n B s. e . 

n"'r j =O 1 n - 1 

=o·osoeN + (0-1Ào+O"o~1)eN.f +: • •. 

+ (o-N•r~ + • •· +o-Nsn)er 

+linear combination of eo,e 1 ,,,,,er•t· 

From.thedefiningproperty (8.19) of theO"j·' j=O, •.• , we may 
deducè .the following: 

r 
8. 21) E O"N . s . = SN· 0 r j=O ·1 J Ill 

where 1
111 

is the mxm identity matrix. Using (8.21)· in (8.20) 
and ~ssuming that the initial _errors e 0 =e 1 = ••. =er_ 1 =0, we find 
that the right member of (8.20) becomes simply eN. Thus we are 
led to the solution of (8:17), viz,, 

N 
8. 22) eN = ~ O"N-n [P(hA)-C(hA)]R(hA)xn-r. 

n-r 

S.4 Estimate of Global Error 

To estimate eN we require a ~suel stability statement and 
an accuracy statement. Stability is the subject of the. follow­
ing two lemmas. 

. r .. 
"' · r- J 1 Lemma 8.1: If L..; s, (À.)z satisfies the root condition 

j =O 1 . . 

each eigenvalue À. Ea-(A), then. the determinant IS(z)I· also 
tisfies the root condition. 

for 

sa· 

Proof: Let f(A)"' 1::, sj (A).z
1

"'. Suppose that the determinant 
J = 0 ' 

IJ(A)J vanishes for a value of z, then IJ(A)+µ,I
111

--µ,I
111

lvanishes. 
Then µ,=µ,+ f (À.), for each À. t O"(A) or f (À.).=O for that value of z, · 
This completes the proof of the lemma. 

7 



- 50 -

Lemma 8.2: Let the determinant IS(z)I· of S(z) obey the root 
condition.If the determinant of s 0 is not zero,then the matrix 
[zr S(z -

1 
)] -

1 
is analytic in a neighborhood of z=O. Furthermore, 

the matrices o-j, j=0,1, ... , given by (8.19), have uniformly 
bounded norms. 

r . 

Proof: Since {S(z-: 1
) =Es./ and ISol·,to, it lS clear that 

j O J 

[zr S(z - 1 
)] -

1 is artalytic in a neighborhood of the origin. Since 

lzrS(z- 1 )i·=zmr1srz- 1 )I·, the root condition locates the roots 

of the polynomial l:zS(z- 1 )1 outside the open unit dise and those 
roots on the boundary of the unit dise are simple. Since 

i t suffices to show tha t the power series for the reciproca 1 

polynomial, I/S(z- 1 )1-1 has bounded coefficients, given that 
i ts roots are outs ide the open unit dise, wi th those on the 
boundary being simple. Let mr=q and let 

Then 

where the contour of integration lies inside the unit dise and 
encircles the origin. If we move the contour through the unit 
dise and out to infinity in all directions, the integral will 
vanish if q ~ 1. and we are left wi th a sum of residues. If thei:-e 
is a pole , 0 on the unit dise, it is simple. Let the residue 
from it be To. Then 

= ~ J t -io 
1 
~ . j-11-1 

j =O J 

which is independent of n. 
If there. is a pole at , 1 of order p+i outside the unit 

ùisc, let the residue from it be T 1 . Then 
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Let Q(s) be the polynomial g1ven by 

Tuen s1nce Q(s) is independent of s1 

Tuen performing the differentiation we get 

p 

= ~ (-1./(~)n(n+i) ... (n+j-1.)C(n+j) 
J =O J 

Thus 

where F is a constant independent of n. This estimate shows 
that lr 1 I tends tozero when n tends to infinity since 1-sJ·>J.. 
Since there are at most · a fini te number of residues to be ac­
co.unted for, the coefficients un, n=0,1.·, .. . , are bounded un1-
forcily in n and the lemma is proved. 

If S(z) satisfies the hypothesis of Lemma 8.2 then that 
lemma and (8.22) may be combined to yîeld 

N 

8 .23) 11 e N 11 ·~cons t I l ·[P(hA)-C(hA)] R (hA) 1 l ·L I hn- r 11. 
n =r • 

If Nh=1., (8.23) becomes 

8 .24) 

To complete the error analysis the local error,which here 
is l ·1 [P(hA)-C(hA)]R(hA) 11 · must be made o(h). To accomplish this 
we have· at our disp.osal the spec.ifîcation of P, L and R towhich 
we now turn. 
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8.5 Specification of P 

Let P(z) be a polynomial which has contact of order Ti+1 
wi th C(z) at a set of points in the coinplex plane which we 
denote by hz., i=1, .... ,p. That is 

t 

8.25) p(m) (hz. )-C(m) (hz.) = 0, 
t t 

We suppose that zifO, i=1, ... ,p and we set z 0 =O. 
Now di vide the eigenvalues of A into p+1 disjoint clusters 

called k 0 ,.~·•kp, respectively, where 

Ties are decided randomly. 
Let 

d. 'r max I À . - z . I ·, 
t . À. Ek . J t 

] . 
Now we resolve the identity by writing 

8.26) 

where the Zij are appropriate polynomials and where for sim­
plici ty We have supposed tha t the eigenvalues of A are distinct. 
Using (8.26) we may obtain 

8.27) P 

[P(hA)-C(hAJ]R(hA) = 6' E [P(M. .)-C(hÀ. )]R(hÀ. )Z .. (hA). 
i=0 À.Ek. J J J tJ · 

J t 

Using Taylor's theorem with remainder and (8.25), (8.27) 
becomes 

8.28) [P (hA)-C(hA)] R (hA) = E [P (M.. )R (hÀ. )-L (M..)] z0 . (hA) 
À . Ek o J . J J · J 

} 

R(M.. )Z .. (hA). 
J tJ 
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,., ~ 

The À .. and the À• . are values of À a.rising in the remainder 
tJ tJ 

term. 

8.6 Specification of Land R 

8.29) 

To specify Land R we make the hypothesis 

L ( z) = O ( z µ,+ 1 ) 

This hypothesis says that the classical (matricial) lineat mul­
tistep methods ~(H)un-r =0 and df,(H)u~-!" =O have order of accuracy 
µ and v, respectively. 

Using (8.29) in (8.28) gives 

8.30) l l [P(hA)-C(hA)]R(hA)I I ~C 1 max(lhd 0 lv+tlhd 0 lµ,+i) 

Here C1 and. C2 are appropriate constants. (8.30) 1s the local 
error (estimate) for the numerical method, (8, 5) which we are 
studying. Combining (8.30) with (8.24) gives finally the global 
error estimate 

8. 31) 

Remark 8.1: The classical theory of linear multistep methods 
corresponds to the case P=P· 

8. 7 An Example 

A simple example of· the method C8. -S) -corresponds to the 
case r~•i, a~=1, a1 =-1 and-o 1 "'1. All other coefficients are zero. 
We select one cluster, i.e., p=1 and P(z) is taken to be the 
constant, C(hz d- The. numerical method is 

hz 1 
e -1 

un ., un-1 ·- ---- hù. t · hz 1 . n· 
8. 32) 
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For this method µ=v=T 1 =O. Thus the method has accuracy of order 
zero at the origin and at z 1 . This low accuracy method may be 
viewed as the forward Euler method with amesh increment scaled 

by (eh z 1
- 1) / ( h z d. 

For this method S(z)=Iz- (I+((ehz 1 -1)/z 1 )A). By Lemma 8.1, 

IS(z)I· obeys the root condition if z-j-((ehq_1)/zdÀ. doès for 
every eigenvalue À. of A. This latter requirement is seen to be 
satisfied for any choice of z 1 in an interval which itself is 
contained in the interval (- 00 ,À.). (We are assuming that À. <o). 
Thus if z 1 is chosen as any lower estimate for the spectrum of 
A, (8.32) will be stable. 

Let us choose z 1 = min{À.-d)for some d~O. To simplify 
À.eer ( A J 

things, let us consider the s.pecial case 
and to say À.2 =-1 and À.1 some very large 
difference scheme then becomès 

8. 33) 

s1nce À. << -1. 

8.34) 

where 

Ah 
Now sinçe x =e x n n-1 

corresponding to m= 2 
nega ti ve number. The 

T(h/\.) is then the difference between the exponential e
t\.h 

. h(À.1·d) / . 
and the straight l1ne 1-(e -1)À. (À.1 -d).At the e1genvalue 
À.1 , we have 

The following figure in<Jicates how a forward Euler-type 
formula may be used to stably integrate a stiff system. 

From the figure we see that we scale the z-axis so that we 
use the method (the straight line) ina regionwhereit isstable, 
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but where its value (of the straight line) is equal to the value 
of the exponential (the transfer function of the solution) at 
the large eigenvalue. 

...,z 

Figure 8.1 

We remark that the matricial class of methods being dis­
cussed here is very wide and the opera ti ve qua li ties of the 
class ar~ by no means restricted to the scaling concept af the 
ex~mple. 

REFERENCES 

[a.l] Miranker, W.-L., "Matricial Difference Schemes for Inte­
grating Stiff Systems of Ordinary Differential Equations", 
Math. Comp. 25 (1971) pp.717-728. 

§ 9, FITTING IN THE CASE OF PARTIAL DIFFERENTIAL EQUATIONS 

Partial differential equations of evolutionary type along 
with their numerical treatment are subject to being ill con­
ditioned. In some cases this ill conditioning resembles thè 
state of affairs for stiff ordinary differential equations.The 
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remedy of exponential fitting for the latter has a counter part 
for partial differential equations and we will review this coun­
terpart in this chapter.As we might expect in the ~artial dif­
ferential .equations case, the idea of exponential fitting is 
susceptible to a much wider scope of possibilities and. results 
than in the ordinary differential equations case. 

We begin wi th a review of a simple problem and an element·· 
apy error analysis to motivate our discussion. 

9.1 The Problem Treated 

Let D be the domain of points, D={ (x, t) 1 td 0, T], 1 :x I · <co} 
and consider the initial value problem 

u(x, 0) = f(x), 

(x, t)ED, t,fO, 

t = o. 

Here À is a scalar and u and f are real valued scalar functions. 
This elementary problem has the solution 

9. 2) U (X, t) = f{ x+À t). 

In the half plane, t ~O, we set clown a mesh, M, with in­
crements ôt and.Ôx, i.e. M={(x.,t )=(j6x,n6t) j=0,±1, •..• ; 

J n 
n=0,1, • .. }. We may suppose ,without loss of generality that 
6t=6x=h. 

Let un (x) = un = u(x, nh) .. Then letting S denote the solution 
operator of (9.1), we find 

9.3) un + 1 = S (h d~ ) un , n=0,1, •.. . , 

À.z 
= e S(z) 

as (9.2) shows. 
As a numerical approximation to un we take vn=vn(x) where 

9.3) " j. v +t = L.! a.H vn, 
n lif~l J 

n=b,1, .. •.•. 

v 0 =f(x) 

Here Z ~O 1s an integer.ind His the shift operator,Hf(x)=f(x +h). 
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(9.3) is commonly called a two 
If l a z 1 + 1 ·a_ z 1 -f O , w e w i 11 s a y 
write (9.3) as 

level explici t di fference scheme. 
that this s·cheme has width l. We 

9.4) 

where K 1s the amplification operator of the schème. 

If the powers I IKI lj, j=1, 2, ... are bounded, then the num­
erical scheme 1s stable and we may obtain the following bound 
fo~ the global error, en=vn~un. 

9.5) 

Here·T=K-S 
dénote the 

Using 

9. 6) 

lie ll·~const n max l·ITu l·I. 
n ' O~p~n P 

is the trunca.tion opera tor and we are us1ng 11 ·• ·1 ·I · to 
norni in L 2 [-oo,col. 
Taylor's theorem and the consistency relations 

t - E 
lil~ l 

a. = 0 
] 

À- [; ja. =0, 
fil~ l ] 

(9.5) becomes 

9.7) l le Il ~const nh 2 max llu"(77JIL 7JE(x-lh,x+lh). 
n · O~p~n p 

If u; exists and is bounded by a constant M uniformly 1n the 
domain D, the bound (9.7) becomes 

9.8) 11 ·e 11 ~ cons t Mh , n 

provided that nh ~ T. 
As the data, f(x) or the solution, up (x) be.cornes less 

smooth, the bound, ( 9. 8) be cornes less satis fac tory and con­
vergence of the pointwise error to zero with h becomes slower 
and slower. Indeed, when the ·data or solution becomes discon­
tinuous, there is no bound; M, at ail and the convergence or 
the pointwise error is a delicate question. This difficulty in 
turn is reflected in an inadequate state- of a,ffairs in actual 
computations for such problems.The problems are ill-condition-

8 
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ed. Indeed, as the data becomes less smooth; the values of its 
Fourier transform at larger frequencies tend to grow.Since the 
spectrum of 'A.o/ox is continuous, we see then that as S('A.o/ox) 
develops, the solution,it receives increasing input at greater 
frequencies as the data degrades. 

We see then that the situation is quite analogous to the 
case of stiff systems of ordinary differential equations. 

What we will dois to return to the bound (9.5) for 1-J-e 11· 
and make \\·Tupl·l·as small as possible.That is we will minimize 

11 Tup 11 · over the set of real coefficient vectors a=( a_ l, ... _,al). 

An alternative approach would be to minimize the max\ 1-Tu \ \, a 
u p 

p 
procedure which resembles the minimax fi tting discussed in § 7. 3. 
We will not discuss this possibility here, but refer to [9.2] 
and [9,3] for details. Instead wewill consider a set of special 
cases in which we replace this maximation over up · by an ap·· 

propriate choice of up itself. The principle being that if we 
wish to derive a numerical method with desirable Properties 
relative to a given type of problem (or data), we cause the 
properties which are wanted, to be taken on by constraining the 
minimization or fixing the weight function up. We will hence­
forth drop this subscript p. 

9.2 The Minimization Problem 

To formulate the minimization problem to be considered we 
introduce the Fourier transform f off where 

9.9) 

Here 

9 .10) 

,,. .... J -i Cù,X f = f ( w) = e f ( x) dx , 

Then the minimization problem becomes 

min\\ -Tul ·\·=mini 1 (.K-S)~\ \ ·, 
a a 

Rrz) = E 
1 il~ z 

" i Àz S(z) = e 

i j z 
a.e 

J 

Then the function to be minimiz·ed is 
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Finally consider the following definition and the ensurng re­
mark. 

Def. 9.1: We call the schemes which use the vector of coef­
ficients, a, determined by the m1n1m1zation problem (9.9), 
schemes with best possible (local-) truncation error,or simply 
best possible schemes. 

Remarks 9.1: Schernes for which the 2Z+1 degreeé 6f fréedorn re­
presented by a are chosen so as to achieve the relation 

9 .12) K(hûJ) = S(w) + O( (wl ), p = -2l 

are the classical schemes.These schernes are schemes of maximal 
order or of maximal (local-) accuracy.They have been named the 
most accurate schemes by G. Sttang. 

The relation (9.12) for any p~2l is equivalent to the 
following p moment conditions 

9.13) ~ .r• r 
LJ J a. =À , 

UI ~l 
1 

r=0,1, .... ,p, 

9. 3 llighly Oscilla tory Data 

Derivation of the Quadraiic Form 

p ~ 2l. 

For problems with highly oscillatory data, a good choice 
of u(x) is one such that 

9 .14) 

In this case we denote J (c.f. (9.11)) by.J t· Evidently c .. 

9.15) 

For c=TT /A, we find 
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TT 

9 .16) 
sin j-

2À À ---a.----
TT J À.-j 

krr 
2l sin-

+2À. E ( L à. a. \_11. 
TT k=t j 1~ j 2=k ] 1 J / k 

l''or c=rr, we find 

9 .17) J = 1 + E a~-2 
1T lil~ P 1 

sin À.TT ~(-1./ ~ 
TT À 

For c=pTT, .pan integer, we find 

9 .18) J = 1 + E a~. 
p1T lil~l J . 

Consistent Formulas 

Let us .minimize J 17 with respect to a and subject to the 
constraints of consistency (9.6). We may expect the resulting 
fini te di fference schemè to be good uni formly over all fre­
quenc ies. The minimizing aj is 

1 ~ ( - 1.) 1.· 'v 9.19) ~ k [ 
a. = -- 1-p L.J +- À.-p LJ 

J 2l+1 lil~l À.-k] 2S2 lil~l 

p"' 

9 .2 0) 

Sin À.TT 

TT 

If 1n (9.19) we set À=m, an integer, we get 

a. = 15 • • 
J Jm 

In this cas~ the difference scheme propagates information pre­
cisely along the charact~ristic of the partial differential e­
qu•tion, i.e., the numerical solution is exact. 

In the case l=l, (9.19) becomes 
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9.21) 

We also find that the m1n1mum of Jp-rr 1s taken on when 

9. 22) 
1 . À. 

a. =-- +-J-. 
1 2 l +1 2S2 

This scheme 1s always stable. To see this note, that 

p (l+i)- 3 
min a. =a_z =-----'-------- > 0, 

lil~l 1 p(l+1)(2l+1) 

s1nce p ~ 2, l ~ 1, and appeal to the following lemma. 

Lemma 9.1: Difference schemes of 
E aj=1 and aj ~o, j=0,±1, ... ,±l 

lil ~ l 

the type ( 9. 3) 
are stable. 

for which 

Consistent Formulas Which Are Fi tted at Digh Frequency 

If the data has large frequency components,theconstraints 

9. 23) T(z) 1 z= ±.:.. = 0 
h 

suggest themselves. The minimum of Jp-rr subject to the fourcons­
traints 

·9. 24) " ,., ,..( ") ( ") T(0) =T'(0) =T\:h =T -ph =0 

occurs at 

1 j --.-+--
2l+1 2pS2 . 

p even 

9 .2 5) a. 
J l 

[1-(-1/]·[ (-i) +_J_]+ J p od'd. 
l (1+2l) 2l 2p S/ 
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In the case of even p, 

min a. = a l 
lil~Z 1 -

p(l+J.)-3 -----'-----''----- > 0, 
p (l+J.) (2l+J.) 

since p, l ~2. Thus in the case of even p, theschemes g1ven by 
(9.25) are always stable. 

9.4 Systems 

Derivation of the Quadratic Form 

This approach to the determination of difference schemes 
inar; be carried over directly to the case· of systems of first 
order partial differential equations. 

Let u and v be q-vectors and let A be a q x q matrix. We 
consider the initial value problem for 

9 .26) ut = Au " , (x,t)ED, tfO. 

The difference scheme lS 

9. 27) V n +1 = L B.Ji V 
lil~Z J n 

where the B., IJI·~ l are q xq matrices. 
J . . 

Proceeding as before by taking Fourier transforms of (9.26) 
and (9.27), we are led to the problem of minimizing the follow-
1ng functional 

9 .28) J = l ·1 ·(K (hw)-S (hw) )u (w) 1 1 
2

• 

Here K(z) and S(z) are the q xq matrices given by 

K(z) = L B.eijz 
li 1~ l J 

9. 29) 
"" i zA 
S(z) = e 

respectively. 
For the weight function we choose Û(w) to be 

9. 3 0) 
{ 

1., 
a (w) = TJ • 

0, otherwise 
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Here ~ is the q-vector all of whose components are unity. This 
choice of û(w) makes Jcorrespond to the functional JTT in (9.17). 

Now using (··, •·) to denote the inner product in Euclidean 
q-space, we may rewrite Jas follows: 

9. 31) 
1 JTT A A 1\ A J. = - ((S(z)-K(z))~ J (S (,:. J - K(z))~)dz 

2TT · 
-TT 

Now suppose that Ais asymmetric matrix with eigenvalues, 
li.,, i=i, •. •Jf/• Let U be the unitary matdx which diagonalizes 

t ' 
A, viz., 

9. 32) 

where A Ïs the diagonal matrix whose ii.-th entry is Ài, i=1, • . •. ,r,, 
Let UBjU- 1 =Cj and let Urj=µ,, Tuen (9.31) becomes 

[ TT(~ ( 1 i Az i j z · i Az i j z 
9. 3 3 ) J = - e · - E C. e ·· ~µ., e • - Î: C. e · z' µ, '\ dz. 

217 -TT lil~l 1 ) lil~l 1 ) / 

Now let C.=(cj ), m,n=1, •.• ,q and let µ,=(µ,, ••• ,µ,q/. Also let 
J IIR 

q . 

9.34) 
. ~ ) 

_J - ~ C Il. 1 111-n=t mn,-n•· 

Tuen J becomes 

9. 35) 

j 
q ~ sin À.111•TT -v ,, ] t-- 2 j 2 '°' (-1)j ✓111r-m ·• J = LJ µIll+ E (y/li) - 2 --- LJ 

m=t lil~l TT lil~l À-j 

The constraints of consistency are 

9. 36) 
'°'. k k 
LJ j B. =A , 

lil~ l ) 
k=O, 1 

or 

9. 37) k=O, 1. 

·An Example 

Let us consider the case corresponding to the wave equa-



- 64 -

9.38) and 

J becomes 

9. 39) 

The solution to the constrained minimization problem 1s 

Bi 1 C 1 . 
"'-Y-1M1 +-M'2 +-Ms 

2 4 4 ' 

9.40) Bo 1 1 
=-YoM1 --Ms 

2 4 , 

B1 
1 C - _!;_ Ms' . =-Y1M1 --Mz 
2 4 4 . 

Here 

9.41) 

a and Sare arbitrary·parameters and 

9.42) 

sin crr 
with p = 2--­

rr 

J. C J. 
Y- 1 =- .. ---

3 2 6 

p 

c+J. 
2c 

2 
- 1 

c(c-1) 

Yo = l:_ + ..!:_ .f:.. (1 ·+ ..!:_ 1 + c z ) , 
3 2 C 3 C2-J. 

J. C p 2d2 -J. 
o/1 =-+- _,.;___ ---

3 2· 6(c-1) c(c+i) 

a and S may be chosen so that the resulting difference 1s 
more like the usual scalar scheme. This may be accomplished by 
demanding that 
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9. 43) -k=O, ±1., 

where the Pk (A) are polynomials 1n A. We find that 0:="'f3=0 and 

9.44) 
1. 1. 

Po (A) = - Yo I + - Yo A , 
2 2c 

9o5 Discontinuons Data 

The Scalar Case 

We return to the scalar case and consider the problem of 
optimizing the difference scheme when the datais discontinuous. 
Thus we are interested in minimizing 1-1 Tul I when 

9. 45) 
{ 

1., 
u (x) = 

0, X< 0. 

In this case 

9.46) I
d 

" . i (,)X • i i (,)d 
u(w)=l1.m e un(x)dx=l1.m-[e -1.J. 

d-oo _ d d-oo w 

With this choice of Û(w) and the àssociated weight fonction 

1 û (w) l 2, we denote the corresponding value of IJ Tu l l 2 by JD •. 
Then 

9.47) J oo 1 . d 1 
-i(,) 1. 2 

JD = l im . 1T(hw)1
2 

e - dw 
d-oo w 

00 

f 
00 

-2 dw f 00 

2 cos wd 
= 2 IT(hw)I - -2 lim. IT(hw)I ---dw. 

2 d-oo ,.,2 
-00 W -00 ....., 

Both integrals exist if T(O)=O-, which we will always assume. 

9 



- 6 6 -

The last integral here tends to zero as d-<ro as an integration 
by parts shows. 

A straightforward calculation now gives the value of JD 
which is 

9.48) 

We now m1n1m1ze JD over the vectors a and subject to the 
constraints of consistency (9.6). The minimum occurs at the 
following value of a. 

9.49) 
{

À.+1.-j, 

a j = -À + 1. - j 

0, 

j-1.~À~j, 

j~À.~j +1. 

otherwise, 1 j I ·~ l 

These aj ("-) are the translates of the cardinal spline of order 
unity. From (9.49) we see that only those coefficients corres­
ponding to mesh points which immediately surround the charac­
teristic of the differential equation, (9.1), which passes 
through the forward time point, (x, (n+J.)6.t) are non-zero.Notice 
also that the a. given in (9.49) are non-negative. Thus this 
most accurate s~heme is always stable. 

Systems 

The procedure of§ 9.4 for a system may be carried over tci 
the case of discontinuons data at hand. The details are quitè 
similar andwemerely display the following analogue of (9.40). 

B_ 1 = ! (! .t) + -=--(1. .t 4 1. 1. )- J_(a 
1. 4 ~ ~), 

9.50) Bo .tci-1.) c(-1. .t) 1.(a 
=2 -i. ·1. +2 i. .:1. +2 r, ;), 

B1 = : (! !)+: (_~ ~!)-(: ;). 
Casting Bj into 

bj are scalars and I 
a = (3 and 

the form P. =a. I+b.A, j=O, ±.t where a
1
. and 

) J ) 
is the 2 x 2 iden ti ty ma trix, we find tha t 
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P- 1 (A) 
1+c- a 

I - 1+c- a A 
4 4c 

9.51) P0 (A) 
1-c+ a 

I 
1-c- a 

+ A 
2 2c 

A simple and interesting special case of (9.51) corresponds to 
setting a= c. 
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§ 10, METHODS OF BOUNDARY LAYER TYPE 

10. 1 The ldea of the Method 

The generic initial value problem for a singularly per­
turbed system of differential eq~ations may be written in the 
following form: 

10 .1) 

dx 

dt 

dy. 
8--= 

dt 

f(t,x,y,ê), x(O) =ç, 

g(t,x,y,ê), y(O)=TJ, 
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where x(t), fERm and y(t), gERn. f and g depend reg~larly on E 
and g(t,x,y,0)/0, 

We observe that this class of systems are stiff. For ex­
ample, in the case that f=y and g=x+y, th~ eigenvalues of the 
system are E-

1t!J.~1) and ~i+O(e). In a sense the smaller is E, 
the stiffer is t e system. Thus the large collection of analytic 
methods\commonly called boundary layer methods,used to charac­
terize solutions of singularly perturbed systems,should be ex­
ploited to generate numerical methods for stiff systems, Since 
the approximations produced by these analytic methods improve 
with decreasing E,we may expect that the numerical methods will 
likewise improve with increasing stiffness in the system. 

We will refer to numerical methods developed according to 
this idea as numerical methods of boundary layer type. 

10. 2 The Boundary Layer Formation 

We be gin wi th a reviéw of the formalism of boundary layers. 
The solutions x(t) and y(t) of (10.1) have expansions of the 
type 

10 .2) 

10. 3) 

oo r oo r 

y(t)~L,y (t)~+LY ('r)-
8
-, 

r=O r r! r=O r r! 

where 

10 .,4) T = t/E . 

The symbol ~, is us·ed to denote the fac t tha t the series 
in (10.2) and (10.3) are asymptotic expansions. The first and 
second sums in (10.i) and (10.~) are called the outer solution 
and the boundary layer respectively. 

Following well known procedures (c.f. [10.2] and [10.4]) we 
find that the coefficients {xr, y r} of the outer solut_ions are 
determined· from 

Xo = f(t,xo,Yo, 0) 
10.S)o • 

0 = g ( t, Xo, Yo, 0) 

x =f (t,x 0 ,Yo,O)x +f (t,xo,Yo,O)y +Q r x r y r r 

y 1 =g (t,xo,Yo,O)x +g (t,x 0 ,y 0 ,0)y +R r- x r y r r 

r = 1,2, ... 
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The dot represents d/dt, fx denotes the mXmmatrixwhose ij-th 
component is the derivative of the i-th component of f with 
respect to the j-·th component of x. f ,g and g are similarly y X y . 
defined. ·Qr and Rr d~pend on t,xo,Yo.,••·,xr .. t'Yr .. J.' r=i,2, ... 
In particular 

l O. 6) 

The subscript E denotes d/dË. 
Notice that for each r"'0,1,2, ... , the fi_rst equation 1n 

(],0.S)r represents a system of differential eqùations, while 
thé second represents a system of finite equations. 

Continuing to follow well known procedures, we find the 
fol\owing equations:. 

l O. 7 )o 
Y~ =g(O,xo(O)+Xo,Yo(O)+Yo,O) 

' 

+g (O,x 0 (0),y 0 (0)+Y 0 ,0)Y +q y . r r 

r-=1,2, .... , 

from which the coefficients {Xr, Yr} of .the boundary layer are 
determined.The prime represents d/dr. Pr and qr depend only on 

T,x 0 (0),y 0 (0), .•. ,xr_ 1(0),Yr~t(O),Xo,Yo, ... ,Xr-t 'Yr-t' r=i,2, ... 
In· particular 

10.8) 

Supplementing the equations (10.S)r and (10.7)r for the xr,Yr, 
X and Y is the set of initial conditions: 

r r 

x (O)+X (O)=çô 0' 
~ r . r 

10.9) 
r=0,1,._.,, 

where ôrO is the Kronecker-?>. The determination of the expansion 
is still not complete, requirin;g yet the following procedure 
for d·istributing the underdetermined initial conditions (10.9). 
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(i.e., there is one condition for each pair of variables). 
We require that the Xr,Yr be boundary layers; namely that 

10.10) l im xr (T) = l im yr (T) = o. 
T-00 T-oo 

Now the specification of the coefficients in the expansions 
is complete, and we de termine them in ordered groups of four; 
{Xr,xr,Y,.-,Yr}, r=0,1, ... ., as follows: 

From (10.5), (10.7), (10.9) and (10.10) we have for r=O 

a) X' 0 = 0, limX 0 =0 
r-ro 

b) Xo =f(t,xo,Yo,O), Xo (Q) =ç 
10.11) 

c) 0 = g(t,x 0 ,Yo,O), 

d) y~ = g(O,,;,yo(O)+Y 0 , 0), Y0 (0) =TJ-Yo(O). 

(10. lla) has the solution X 0 =0, and the succeeding equations 
uniquely determine x 0 ,y 0 and Y0 . The condition (10.10) for Y0 

is satisfied if the eigenvalùes of gy, denoted À(gy), satisfy 

10 .12) 

Note: This condition (10.12) characterizes the class of stiff 
systems to which the methods which we are now discussing 
are designed to be applied. 
We henceforth assume that (10.12) holds. 

Similarly, for r=1, we have 

a) X~ = p 1 (T), l im X 1 (T) = 0 
r-ro 

b) ·x1 =fxx1+fyY1+fe, X1(0) = -X1(0) 
10.13) 

C) Yo = g"x1+gyy1+gE, 

d) y~ =g"X1+gyY1+q1 Y1(0) =-Y1(0). 

To solve (10.13) we proceed as follows. From (10.13a) we get 

This arid (10.9) determine x 1(0)=-X 1(0) so that (10.13b) and 
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(10.13c) may besolved simultaneously for x 1 andy 1 .Then (10.13d) 
may_ be solved for Y1 . This procedure may· now be repeated for 
each r=2,3, ... . 

10.3 The Boundary Layer Numerical Method 

We describe a numerical method which consists of construct­
ing the formal boundary layer expansion by solving the equa-
tions determining its terms numerically. ~ 

Let h >o be a mesh increment.Let z=(x,y) and Z=(X,Yyî be 
N=m+n vectors. Then·from (10.2) and (10.3) 

10.14) 

Since the eqùations are stiff we are interested in the case 

10.15) h >> E. 

This !:!-nd condition (10.10) imply that Z0 (h/e) and Z 1 (h/e). will 
be tiear zero. In facit these terms will in general be exponent­
ially small in h/E. Thus we approximate z(h) by z 0 (h)+Ez 1 (h), 
the approximation.being O(t 2

) (i.e. itimproves•with increasi~g 
stiffness)._ The nùmerical method consists of calci.ilating zo(li) 
and z 1 (h). We must still compute Z0 _in order to obtain the in­
itial condition xi(O),required for the'determination of z 1 (h). 
{Of course more terms 1n the expansion may be calculated if 
they are wanted). 

The numerical method consists of the following steps {i )­
(i V): 

{i) Solve 

10.16) 
b) 

for x 0 (h), y 0 (0) and y 0 (h). The numerical method for solving 
(10.16a) should be of the self starting type. 

(ii) Having determined y 0 (0) in step (i), solve 

10.17) 

for Y0 (r), 'T ~ O. This must be clone for a net of 'T-values, $ay 
{0,k,2k, ... ,Mk}, so that 
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10.18) 

can be approximated to some prescribed degree of accuracy by a 
quadrature rule: 

( i i i) 

10.19) 
M M 

f1 = ~ ajp1(ik) = R. ai [f(O,f,Yo(O)+Yo(jk), 0)-f(O,f,yo(O),O)] 

(iv) Having determined ç 1 , the approximation to x 1 (0), 1n 
step (iii), solve 

10.20) 

a ) x 1 = f" ( t , x O , y o , 0) x 1 + f Y ( t , x O , y o , 0 )y 1 + f E ( t , x O , y O , 0 ) , x 1 ( 0 ) =t 1 

b) y 1 = - g; 1 
( t, x O , y O , 0) [ g" ( t, x O , y o, 0) x 1 - y O + g E ( t, x o, Yo, 0)] 

for x 1 (h) and y 1 (h). 
Comment: Steps (i) and (iv) determine z 0 (h) and z 1 (h) res­

pectively. Steps (ii) and (iii) deal with Z0 and are used to 
determine the initial condition, ç 1 , for x1. The method seems 
to step across the rapidly varying modes (the boundary layers) 
as they change over the comparatively greatinterval (O,h).This 
is not qui te true, nor is it accomplished without -cost. Steps 
(ii) and (iii) perform a mesh calculation with increment k in 

T. Since T=t/E, k will be hO(e). Thus,in order to calculate Z0 
and x 1 (0), a fine mesh calculation must be performed. The cri­
tique of this boundary layer method is: 

a) the parts .or aspects of the given initial value problem 
upon which to perform the fine mesh calculation are a well de­
fined subpart of the original system. 

b) this fine subpart may be calculated with less precision 
than the coarse part (step (i)). To see that this is so_, note 
that z 1 (h) depends on the fine part of tqe calculation through 
x 1 (0). Thus an error in determining the fine part leads to a 
proportional error in z1(h). But the approximation to the so­
lution is z 0 (h)+Ez 1 (h). Thus the effect of such · an error is re­
duced in order by the stiffness. Thus here again the stiffer 
the system, the less precision needed in the fine part calcul­
ation, 
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Remark 10.1: In Section 10.5 we will show how toeliminate this 
fine mesh calculation. 

10.4 An Example 

We will now consider an ex•mple forwhich the step~ of the 
numerical method may be carried out analytically;. (i.e., to 
infinite precision), 

The example consists of the following initial value prob-
lem: 

10.21) 

The exact solution 

= _i_+G X 

100 
10.22) 

y t (, = 100 + T/ 

. 
X =y-X, 

y = -100y+1, 

of this problem 

1 

X (0) = Ç 

y(0)=7J. 

18 

1 
7/ - 100 

t ) . ' 
,,, - ioo 

+ - -- e 
99 100 .. 99 

• t ~o) •. '° o ' 

-tOOt 
e 

The steps of the numerical method are the foli"owing ones: 

(i) Solve 

x(O) =ç 
10.23) 

0 = Yo 

for x 0 (h), y 0 (0), and y 0 (h). We use Euler's methôd with 1ncre­
ment h in t to solve (10.23). We find 

10.24) 
x 0 (h) = (1-h)ç_ 

Yo(0) =yo(h) =0 

(ii) and (iii) Solve 

10:25) 

on the mesh Ti=ik, i=0,.,. ,M. Then evaluate 

10 
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10.26) 

Using Euler's method with increment k inT on (10.25) and us1ng 
the rectangle rule on (10.26),with the upper limit of integra­
tion replaced by kM. We find 

10.27) 

(iv) Solve 

Ag_ain us1ng Euler' s method wi th increment h, we find 

M+t 
X 1 ( h) = h + ( 1- h )( 1- k )7] 

10.28) 
Y1(h).=1. 

Combining (10.24) and (10.28) we find 

M+1 
x(h) = (1-h)ç + e(h+(1-h)(1-·k )7]) 

10.29) 
y(h) = e. 

Identifying ê with 1/100, (10.29) becomes 

X (h) 

10.30) 

1 ( 1 1 M+t ) =-+(1-h) ---+ç+--(1-k )7] 
100 100 100 

y (h) 
1 

100 

which approximates (10.22) to the claimed accuracy. 

10.5 The e-independent Method 

A cri ticism of the boundary layer mèthod which we have 
just discussed is that it d~pends on. the stiff system being 
given in a form in which there is an identifiable small para­
meter wh,ich characterizes the system as one of singular · per­
turbation type. 
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Ta deal with this criticÎun wewill now consider how bound­
ary layer methods may be developed even though there is no i~ 
dentifiable sinall parameter. Then the bound·ary layer numerical 
method will be capable of being applied to wider classes of 
s t i f f s y s te rrfs . . T . T . .. T 

We proceed by writing k=(f,g), z=(x,y), and t"'-{ç,TJ) . The 
initial value problem (10.1) issupposedly given in the follow­
ing form. 

10:·31) z "'k(t,z;e), 

e here, although displayed, is regarded:,as unidentifiable. We 
solve the system (10.31) numerically al'ong .the mesh -with in­
crement h, proceeding às if the system.wère riot stiff.In terms 
of the -notation in §10.3 we start with m regarded as equal to 
the numb~r of dimensions, N, in z and with n as equal to z~ro. 
Our method then p'roduces ~0 (h) .bY a standard ·self-starting me­
thod. Now we compare z0 (h) and·~ component wisé, i.e., we test 
the fbllowing inequality: 

10. 32) 
ho,J (h)-,i I· 

1+i-, .1 
• J 

> 0, j = 1, .. . • .,N .. 

Here 0 is a prescribed tolerance. If the tolerance is not ex­
ceeded by any component of zo(h), we accept the value of z0 (h) 
p~oduced. If the tolerance is exceeded by a set J(j 1 , •••. , jn) 
of n > 0 components of z 0 (h), we rej ect the integration step and 
redoit as follows. 

Set 

10.33) 

and set 

10. 34) 

f · = k., t · l 

y. = z. 
} } 

g . = k., 
1 J 

i = 1, ... ,N, i,t.J, 

j = 1. , • _. • , N, j € J. 

Now the system has the form 
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x=f(t,z;E), 

y= g(t, z; €), 

X (Q) =c Ç 

y(O) "'T/ 

The parameter E is still unidentifiable, but we make the fol .. 
lowing assumption: 

Assumption 10.1: f(t,z.:€) and g(t,z;e) are analytic in € in a 
neighborhood of E·=O except that g(t, z; E) has a simple pole at 
c"'O. We also main tain the requirement of (10.12) assuming the 
boundary layer nature of the solution. 

We look for a solution of (10.35) 1n the form 

10.36) 

10.37) 

X ( t ) "' X O ( t ) + EX 1 ( t ) + X O ( T) + c:X 1 ( T) + • • • 

y(t) "'Yo(t) + Ey 1 (t) + Y0 (T) + c:Y1 (T) + ..• 

For the outer solution we have 

10.38) 

10.39) 

By our assumption,the terms g,gx and gY. have simple poles 
at E=O. Thus from (10.38) and (10.39) we deauce the following 
equations (10.40) and (10.41) for xo,Yo, and for Ex 1 and Ey 1, 
respectively: 

10.40) 
Xo =f(t,Xo,Yo;E), 

0 = g(t, Xo, Yo; E). 

x 0 (0) =ç 

Notice that we do not set E=O. 
For c:dn11s~we will hereafter suppress the arguments· (t, 

x 0 ,y 0 ;E) off and g. The equations for EX1 and. Ey 1 are 

10. 41) 

We solve the last equation here for Ey 1 as follows: 

10. 42) -·1[' ] -1( -1( f) ] EY1 = g Yo-g Ex1 = g -g gt+g -g Ex1 . y X y y ~ X 

Here we replace y 0 by its value obtained by differentiating the 
second equation 1n (10.40) with respect to t. 
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Combining (10.41) and (10.42), the equations determining 
Ex 1 and Ey 1 are respectively 

10. 43} 

Notice that E is still unspecified,but the quant1t1es Ex~ 
and EY1 which are sought are,except for the initial condition, 
Ex 1 (0), well defined. Moreover examining tlie · right members of 
(10.43) we see by Assumption 10'.1 that _the large qu•ntities g, 
gx and gy are neutralized, in the sense tha t they occur as 
quotient-s, one of the other • 

.To determine the initial condition, Ex 1 (0), 'we obtain an­
E-independent determi,nation of the boundary layers. Inserting 
(10.36). and (10.37) int~ (10.35), we find 

10.44) 

EX~ (ET) +E'2; ~ (ÈT )+X~ (T )+EX~ (T) +,., 

= Ef (ET, Xo (ET) +EX 1 (ET) +Xo (T) +eX 1 (T) +; •• _, Yo (ET)+, , , ; E) 

Ey~ (Er )+E· 2y ~ (ET )+Y~ (T )+EYi{T )+ ••• 

;,,Eg (ET, x 0 (ET )+Ex i{ET )+X0 (r )+EXi(T )+ •• _;, y0 (ET)+ ••• ,' E). 

Here and hereàfter we use the prime to denote differentiation 
with respect to argument, 

Using Assumption 10.1, we deduce · the following equations 
for Xo, X 1 , and Y0 from (10.44). 

First 

10.45) 

As before X0 (0)=0, since X0 (0)+x 0 (0)=ç, so that Xo(r)=O. Next 
from (10.44) we deduce the following equations for X 1 and Y0 : 

10. 46) 

and 

10.47) 

X~(r) =f(O,ç,y 0 (0)+Yo(r);E) -f(O,ç,yo(O);E), 

Yb(T) = Eg(O,Ç,Yo(O)+Yo(i);E). 

We integrate (10.46) from zero to infinity, using the 
boundary layer property, lim X(r)=0. AI:rn using, x 1 (0)+Xi(0)=0, 
we get 

-r-oo 
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10.48) ex,/0) "' f,00

[f(O,/;,yo(O)+Yo(r);,) - f(O,/;,y 0 (0);e)]dr, 

Now since Yo(r) vanishes exponentially fast as r increases 
from zero,the bulkofthe value of the integral in (10.48)comes 
from the neighborhood of r=O. Thus we may expect a good approx­
imation to the integral by replacing the integrand by an inter­
polant using data at r=O. This datais first, 

10.49) Yo ( 0) = 77-y o ( 0) . 

from the initial condition, y 0 (0)+Y 0 (0) =77, while from (10.47) 
itself we have 

10.50) Y~(O) =eg(O,ç,77;e) 

While we can obtain mor~ _data by ~ifferentiating (10.47), 
let us approximate (10.48) using just (10.49) and (10 .. 50). The 
simplest. approximation cornes from replacing the integrand in 
(10.48) by its tàngent at r=O and integrating this tangent :from 
zero to i ts positive root. In this manner we obtain from (1 O. 48): 

10. 51) ex 1 (0) 

·2 

1 [f(O,f,77;e)-fiO,ç,ya(O);e)) 

2 fy(O,ç,r,;e)g(O,ç,77;e) 

In (10. 51) all arithmetic is èomponehtwise except the matrix 
vector product fyg in the denominator. Notice tha.t as. far as e 
is concerned, the dimensions of both ·sides. of (10. 51) are ln 
agreement. . 

A second choice in approximating (10.48) is to use the data 
(10.49) and (10.51) to fit an exponential to the integrand,and 
then to integ~ate the exponential fromzero to infinity.In this 
manner we obtain from (10.4a): 

10. 52) 
f(O,f,yo(O);e)-f(O,ç,~;e) 

fy(O,ç,77;e)g(O,ç,77;e) 

The arithmetic here is to be performed exactly as in the previous 
ca;;e. 

Wi th ei ther (10. 51) or (1 O. 52), (10. 43) de termines ex 1 and 
EY1 completely. 

We now solve (10.40) for Yo(O), Yo(h) and x 0 (h), by a 
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numerical method as described earlier in 10.3. Then (10.43) 
and (10.51) or (lb.52) are used to salve for Exi(h) and Ey 1 (h) 
by a numerical method also described earlier. Finally we take 

10. 53) 
(

x 0 (h)+ex 1 (h)) 
z(h)= . . 

Yo(h)+eyi(h) 

We now repeat the procedure on the interval (h, 2h). This 
time we start wi.th the sys·tem already divided into a regular 
and singular part as in (10.35). We then make a tolerance test 
on z(2h) compared with z(h) analogous to (10.32·). If the tol­
erance is not exceeded by any component of z(2h),we accept the 
int~gration step. Otherwise .we reject it ~nd redivide the sys­
tem according to the s~heme described abo~e. W~ then redo this 
integration step. Once a component is placed int·o the singular 
part of the system, we do not remove it, ~ven thobgh its solu­
tion settles down and passes the tolerance test. Thus the flow 
of components of z from x status to ystàtus is one way. If this 
policy is not followed, the component in question usually re­
generates a stiff mode (becoines uns table) at once and it is then 
pushed back into the singular part anyway. This aspect of the 
E-independent numerical method concerning the tolerance test is 
an algorith~ic aspect and should be adjusted to the particular 
problem being'considered. It is likely that for nonlinear sys­
tems where the stiff~ess cornes and goes as · the solution pro­
gresses,. a two-directional flow components of z between the 
regular and singular paris may be called for. 
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§ 11, BOÙNDARY LAYER ELEMENTS 

11.1 The Model Stiff Boundary Value Problem 

The difficulties assocïated with stiffness for the numerical 
solution of initial value problems are also present for boundary 
value problems. In fact,the computational aspects of the latter 
class of problems may be richer than those of the former (cf. 
[11. 7) · and [11 ·. 9) ) . The techniques of. boundary layer analysis 
allow us to take a brief look at some of these aspects and for· 
a model problem, and so we are at a natural place in this course 
for this small detour away from the initial value problem. 

11.1) 

11.2) 

The model problem is 

vu"+u'=O, xE(0,1), 

u(O) = 0, u(1) = 1. 

Here u is a scalar, vis a parameter, considered small and the 
prime denotes differentiation with respect to x. 

11.3) 

The exact solution of the model problem 1s 

1-exp(-x/v) 
u(x) =--~---'-

1-exp(-1/v) 

exhibiting a boundary layer near x=O._ 
To discretize (11.l) we introduce a m~sh increment, h, 

Nh=1, N a prescribed integer and the following difference oper-
ators 

f (x) 
f (x+h)- f (x) 

% h 

11. 4) fx(x) fx (x-h) 

f,., (x) 
1 

=-(! +f-). 
% 2 % % 



Then uh (x) is a numerical 
termined as a solution of the 
value problem 

approximation to u(x) and is de­
following difference boundary 

h h 
vu _ + u,.. = 0 

X X X 

11.6) i(O)=O, uh(1)=1. 

This well known ·and canonical numeri cal approach yi'e.lch, the 
exact solution 

h 
u (kh) = 

_ (2v-h )k 
1 . 2v+h 

' (2v-h)N 1- -­
. 2v+h 

h vf-
2 

k=0,1, ... ,N. 

As is well known lim uh(x)=u(x). However,the limit isnot taken 
k-+O 

on uni formly in v. Indèed if v=h , 

and 

uh(h) = 2- 1 (1-fN f 1 

u (h) = (1-e- 1 )(1-e-N f 1 , 

lim [u(h)-uh (h)] = 2- 1 -e- 1
• 

h-+O 
v=h 

This lack of uniformity is a characterization of the stiff­
ness or ill conditioning of the boundary value problem. 

11.2 Methods for Obtaining Uniform Convergence 

A first idea for obtaining uniform convergence 1s due to 
Ilin (c.f. [11.4] ). We note that the differential equation, 

vu + au = 0, 
XX X. 

has the particulal'. solution, exp (-ax/v ), Then in place of the 
difference equation (11.5) take 

11. 8) 

H 

h h h h 
L u =')'u _ + au...,x "' 0, 

XX 
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where the coeffi~ient Y is determined by the con-

dition that Lh annihilates the particular solution in question, 
l, e., 

This g1ves 

11. 9) 

Notice that 

11.10) 

h 
L exp (- ax/v) = 0. 

ah ah 
y =-eth-.-. 

2 2y 

l im y = v 
h-0 '. 

In [11.4], the following theorem is proved. 

1'heorem 11..1; Let u(x) be a solution of the boundary value 
problem 

vu"+ a(x)u' = f(x), 

u(O) = u 0 , u(1) = u 1 , 

h 
and let u (x) satisfy the same boundary conditions and be a so-
lution of the following difference equation 

on the mesh {O,h, '2h, ... ,Nh,.,1}, Let there exist positive constants 
a and m such that 

Then there exists a constant M ~ M(m, a) independent of v such 
that 

at each point of the mesh. 
Another technique for obtaining this uniform convergence 

is due to Abrahamson, Keller and Kreiss {c.f. [11.5) ). They 
produce the same result as that of Theorem 11.1 and moreover in 
the case of a second order system.They use a device résembling 
upstreant differencing (c.f. [1L3]) and choose Y in (11.8) to 
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be v+ch, i.e., they stretch the boundary layer. They show that 
a best stretching is achieved for Y*"'v+I ·al h/2 . .Notice that Y* 
is a linear interpolant of the y given in (11.9) which uses the 
limiting values, (11.10), as interpolatory data. 

11.3 Finite Elements 

The fini te element method may be used to produce uni f9rmi ty 
of convergence as well, provided that the right elements are 
used. This approach has the advantage of suggesting a systematic 
procedure for stiff boundary value problems (c. f. [ll ;a]). · 

· The •fini te element approach de termines an approximation 
v(x) to u(x)°where 

N 

ll.11) v ( x) = ~ Y/1\ ( x) + ~b ( x). 

<:pi (x) is an element which 1s associa ted wi th each mesh point 
xj =jh, j=0, .•• ,N and b(x) is a so called boundary layer element 

11 .12) b(x) =e~x/v_ 

Let (•·,•) denote the inner·product In L 2 (0,1.). Then the 
conditions for determining ~·and the 'Yj, j =0, ... ,N are 

i=i, ... ,N--1., 

. Li 
ii) 0=(vv"+v 1 ,b)=t1v'bl

1 
+2 v'bdx, 

. 0 0 
ll .13) 

iii) 0=Yo<Po (0)+(3, 

(11.13) (i) a~d (ii) form the statement that vis the weak so­
lution of . (11, 1) in the span · of b and the 'Pi, i= 1., • • • ,N-1.. 
(11.13) (iii) and (iv) assert that v obeys the boundary condi­
tions (11.2). 

Now we specify <:p (x) to be the most primitive finite ele­
j 
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ment c/>j (x)"'cf>(x-jh), j~0, ... ,N where 

X 

11.14) cf>(x) 

--+ 1 h , 

X 

--1 h , 

xE(0,1), 

X€ (-1, 0), 

0, otherwise. 

In this case (11.13) (i) and (ii) become respectively 

~ Y·+t - 2Y· +y._ t Yj+t-Yj-1 
11.15) 0=hv 1 1 1 

+ 
h2 2h 

. h h h 
-1 v --

V 
- 2 + e 

V 

J (3 2 e e 
j =1, ... , N-1 - V 

h2 

and 

ll.16)~_J!! _.1_ _1_ -2(1-h) N-t 2jhJ 
v v v · 2h "'""' - "'ïr" 

0 = (3 e - e +e -e v - 2 cosh - L; e 
V j =t 

Now 

and. f= (0, •.. ,0,1) 

be (N+2)-vector113 and write (lLlS), (11.16) and (11.13) (iii) 
and (iv) in the form 

11.17) Sc = f 

where S 1s an (N+2)x(N+2) matrix. Let µ.=exp(-h/v). Then 
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11.18) S =S 0 (1+O(µ, 2)), 

where 

0 
3 3 

2µ - - + 2µ -- 4µ 
2 2 . 

1. 1. 0 0 

v 2 (:2µ.-1.) v-h/2 -2v v+h/2 

-v2µ 0 v-h/2 -2v v+h/2 

11.19) So= v-h/2 -2v v+h/2 

v-h/2 __ 2v v+h/2 

1. 

All missing entries in So are zero. 
In the limi t as v - 0, the system Sc= f b~com(l!-S 

0 = ~ + Yo 
11.20) 

The solution of (11.20) is 

11.21) j=0,1., •.• ,N. 

This is the desired limiti_ng form of the numerical solution as 
an inspection of (11.3) shows. 

11.4 A Numerical Experiment 

A computation wi th Soc = f was pèrformed wi th the resul ts 
displayed in the following table. 



· 86 ~ 

~ 3 5 7 

1 6.9 3.3 E-1 2.3 E- 1 

. 1 2.9 E-2 4.0 E-2 4.8 E-2 

. 01 5.1 E-4 8.9 E-4 1.1 E- 3 

. 001 5.9 E-e 1. 3 E- 5 2.1 E- 5 

Z2 -norm of error 

The numerical results displayed in this table show remark-­
able accuracy for very few elements; ( the analogue of a course 
grid). They do reveal a disturbing feature. There is an im-­
provement at first as N increases which is then followed by 
degradation. An examination of S 0 shows that the finite equa­
tions which generate the approximation arenot of positive type. 
Thus as N ge~ large we may expect some instability;lt seems we 
are not disappointed. 

li.5 Some Remarks 

We conclude S 11 with several remarks. 

Remark 11.1: The fini te element procedure is a variant of a well 
known technique of finding Galerkin approximations tosolutions 
of problems with singularities. For those problems one adjoins 
to the set of functions in terms of which the Galerkin approx­
imation is sought, special functions having the same singular 
formas the soluti~n. 

Remark 11 2: The special elements needed to be adjoined in the 
case of a singular perturbation are well known. In fact, the 
body of literature d~aling with these problems has the charac­
terization of the boundary layers as one of its themes (c. f, 

[11.1) and [11.2) ). These elemen.ts are known even in the case 
of systems of equations, nonlinear equations and equations in 
more than one independent variable. Thus the numerical method 
outlined here 1s applicable to all of these classes of problems. 

Remark 11.3: The boundary layer element does not have compact 
support which causes the total loss ofsparseness in the stiff­
ness matrix, S. Nevertheless,as we have seen in§ 11.3, the ex-
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ponential decrease of the boundary 
stiffness matrix which is sparse up 
ponentially small, 

layer • element gi ves us a 
to an error which is ex-

Re mark 1.t. 4; A proof of the uni form convergence of the Galerkin 
approximation, which includes boundary layer elements, to the 
solution of ihe singular perturbation problem follows along 
familiar lines: 

a) We choose a sequence of manifolds which contain the 
right kind of functions to secure a uniform approximation to 
the solution, 

b) The results of the analytic theory of singlllar .. :pertur­
bations suppl y us wi th the fonctions needed for this uni form 
approximation. 

c) The Galerkin approximation to the solution in each of 
t;he manifolds i.n (a) being •itself the best approximation to the 
solution in each of these manifolds respeçtively,will have the 
property pf uniform approximation, . 

d)'lle kt bt So B not of pbsitive t.vpë mqst be dealt with. . 
Remark 1.r:~~~he projection procedure giving the numerical re-
sults supplies us qui te simply with a matrix S which is in fact 
a discrete version of a matching matrix. The latter is a key 
elèment in the analytic theory of singular perturbations and 
is in general very difficult to construct. 
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. § 12, EXPONENTIAL FITTING IN THE OSCILLATORY CASE 

12.1 Failure of Previous Methods 

The numerical methods which w_e have discussed thus far have 
used the fact that the rapid changes in the solution are tran­
si tory, al though possibly recurrent on a time scale which is 
long compared to that of the rapid changes.When the stiff sys­
tem has solutions of a highly oscilla tory character, the methods 
which we have looked at do not work at all. For example, the 
key idea behind the introduction of notions of ·absolute sta-­
bility was based on the existence of slowly varying stages in 
the development of the solution. In this section we begin our 
considerations of this oscillatory problem with a discussion 
of a method which e·mploys a form of exponential :fitting based 
on a pro c e s s c a 11 e d a 1 i as in g ( c . f. [ 1 2 . 3 J ) . 

12.2 Aliasing 

Let f(t) be periodic with period Zrr. For a fixed integer 
N>O, let the following values of f(t) be given: 

12.1) t . = (L) '2rr 
J 2N ' 

We will call these points tj, the_ data points. 

In terms of these values, the discrete Fourier se ries, 
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CN(t), of f(t) lS 

Ao 
N 

12. 2) CN (t) ~ (A cos rt + B sin r t) =-- + 
2 r"' 1. r r 

The coefficients of this ser1es are 

A 

12.3) 

B 

r 

r 

1 
N 

1. 
N 

2N-t 

~ f(t.) cosrt. 
i ~o J J 

2N- 1. 

B f(t.) sinrt., 
j o.= 0 J 1 

AN 
Nt. +-- cos 

2 

If f(t) is highly oscillatory, then for a good represen· 
tation of f(t) by Cn(t) we require N to be quite large.In fact 
we would need 2N values of f(t) (c L (12.1)) and. 2N terms in 
the series (12 ,2), a large number of values and terms respec·· 
tively. 

~ow suppose that f(t) bas a special form so that its fre­
quencies fall into clusters. In particular suppose that 

p 

12,4) f(t) cch(t) ~ C 
m 1 

cos R t ,. d 
m m m sin R t, 

m 

We suppose that h(t) 1s a smooth function, That 1s 

12,5) h(t) 

and that there exists an integer L > 0 such that the quantities 
1 a; 1 and I b; 1 are negligible for r > L. Furthermore we suppose 

that the fre·quencies Rp >Rp"t > ... >R 1 >L are known (and are 

large). 
The objective is to estimate the coefficients cm and dm, 

m~d, ... ,p and the coefficients a; and b;, r,d, ... ,L. This may 

be efficiently accomplished through aliasing. 
Note that at each of the data points, the functions cos R t m 

and sin Rmt can be replaced by cos rmt and sin rmt,respective· 

12 
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ly, where Rm >N > rm. This 1s accomplished by use of the fol·· 
lowing identities: 

cos[(2q)N+r] t. = cos rt. 
] ] 

cos[(2q+1)N+r]t. =cos(N-r)t. 
] ] 

sin[(2q)N+r]t. =sin rt. 
] ] 

sin[(2q+1)N+r]t. =-sin(N-r)t .. 
J J 

One may view the first of these identities,for example; as the 
statement that cos[(2q)N+r] t takes on the same values as cos rt 
at the data points but oscillates faster in between. Thus if 
we use a coarse mesh composed of 2N-d mesh points where N <R,ip 
each of the high frequencies Rm will be replaceable by a har­
monie with the lower frequency rm < N. 

The relation between the Fourier coefficients (ar, br) of 
f(t) and the coefficients (Ar,Br) of its finite Fourier series 
(c f. (12.2)) is 

12.6) 

A 
r "'a r 

B = b 
r · r 

( a - a ) 2mN+r 2mN-r 

( b N - b .N ) • 2m +r 2m - r · 

Thus the replacement of higher frequencies by lower ones 
will not confuse components if N is chosen in such a way that 
e ac h o f the fr e que n c i e s w "" 0 , 1 , 2, • • . , L - 1 , R 1 , ~ 2 , • • • , RP oc c u r s 
in a separate sum in the right member of (12.6). Clearly N~L+p 
but usually N is smaller than R making the process reasonably p . 
efficient. 

12.3 An Example of Aliasing 

These ideas are clearly illustrated with the following ex­
ample. Suppose that f(t) is the sum of a slowly varying fonc­
tion plus three ha.rmonics of frequencies 177, 589 arid 1000, 
respectively. Using N=52 or 105 data points we have 
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cos 1000 t . ~ cos 40 t. 
J J 

sin 1000 t. 
J 

-~ -sin 40 t. 
J 

cos 589 t. 
.J 

~, cos 35 t . 
J 

sin 589 t . "' - sin 35 t. 
J J 

cos 177 t. 
J 

= cos 31 t. 
J 

sin 177 t. = - sin 31 t. 
J J 

where t.=jrr/52, j=0,1, ... ,104. 
J 

Thus if we find the discrete Fourier series for f(t) at 
these data points, viz., 

f(t.) 
J 

Ao 
=--+ 

2 

51 

L (A cosrt. +B sinrt.) 
r=t r J r J 

A +f cos 52 tj, 

we can say that at the data points 

f(t) 
30 

L 
r = t 

(A cos rt +B sin rt) 
r r 

+ A31 cos 177 t- B31 sin 177 t 

+ A 35 cos589t- B 35 sin589t 

+ A40 cos 1000 t- B40 sin 1000 t 

wi thin an error depending on the size of the Fourier coeffi­
cients of the slowly varying part of f(t). For a precise error 
analysis of this procedure we refer to (12.4). 

12.4 APPiication to Highly Oscillatory Systems 

We begin by describing the method of Certaine (c. f. (12. 3) 
and (12 .4)) which is a simpler variant of that of Jain treated 
in§ S. 

The system of differential equations is written in the form 

12. 7) y'(x) =-Dy(x) +g(y(x),x). 

Here y and g are m-vectors and D is an m x m constant 
matrix with at least one large eigenvalue. We integrate ( 12. 7) 
to obtain 
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. - Dh 
12.8)y{xm+ 1 )=e Yn 

Certaine's method consists of the following two steps. 

i) Approximate g(y,x) by an interpolation polynomial, 
gk (x), of degree k at the points xn-k ,xn-k+t' • •• ,xn. Replace 

g in (12 .8) by gk and use the resulting expr~ssion for .y(xn+t) 
as a predictor. 

ii) Using the predicted value of y(xn+tJ re_peat step (i) 

using the points xn-k+t'' •• ,xn+t to determine the correction. 

Thus Ce-rtaine 's method is given by two utilizations of 
the following expression 

12.9) 

We ·now make several observations about Certaine' s method. 

Remark 1.2~1.: The integral in (12.9) maybeevaluated explicit­

ly; If the exponential matrix e-D is 'difficul t to evaluate one 

may take D=D1 +D2 where e·D 1 is easy to evaluate a·nd eD.zx is 
adj oined to g .. 

Remark 1.2. 2: If g is a polynomial of order less than k+i the 
method is exact. Thus the method Ïs A-stable. 

In the oscillating case the polynomial gk is replaced by 
a trigonometric polynomial. In this case as well,the integral 
in (12.9) may be explicitly evaluated. However, we will have 
an inefficient procedure unless we use aliasing. That is we 
must know the higher frequencies in the prohlem (i.e., the large 
imaginary eigenvalues of D) and then we must alias these higher 
frequencies so that gk is a trigonometric polynomial of low 
degree. 

A cri ticism of this method arises in the case of a non­
linear system. For in such a system, even though the frequencies 
are known to start with, we may find the introduction of sum 
and difference freque~cies into the solution as it develops. 
Of course the determination of N depending on L and the Rj, 
j=i, .. !,p requir~s a computation also. 
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§ 13. A TIO-TIME METHOD FOR THE OSCILLATORY PROBLEM 

13.1 The Model Problem 

We continue our study of the highly os_cillatory problem 
through use of·the two .time technique of singular perturbation 
theory. To illustrate this approach we consider the following 
model problem: 

u. (0, T], 

U ( Q) = Uo , 

where u 1s an n-vector and A0 and A 1 , are nXn matrices. 
In terms of the matrizant lf'(t,e), we may write the solu­

tion of the model problem as 

U = 'l' ( t, E ) Uo, 

13.2) 

The numerical evaluation of this matrix at t=T, 1s difficult 
when E: is near zero. 



.. 94 .. 

If we introduce a new time scale 

13.3) T = t/E, 

the solution becomes 

13.4) 
A O r+A 1 t u = e u 0 , 

This indicates that the solution developes on two different 
time scales, t called the slow time and T called the fast time. 
If Ao and A 1 .commute, (13.4) becomes 

13.5) 

In this case the dependence on the two scales separates and in 
principle we could determine each of the factors in (13.5) se­
parately. 

However in genèral Ao and A 1 don't commute andmoreover it 
is not necessarily the cas.e that the development of the solu-· 
tion on the T-scale is even useful to approximate numerically, 

13.2 Numerical Solution Concept 

Consider the example corrèsponding to 

[
-1 0] 

0 -1 

t 

·Figure 13. l 
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With these matrices the motion described by (13.1) corresponds 
to a slowly damped ( t-scale) extremely rapid ('T··scale) harmonie 
motion, The solution, schematized in figure 13.1 for the case 
n=2, is practically a space filling cuive. 

As E -- 0 the solution converges (in an approxima te sense) 
to the cone obtaine·d by rotating the curve l ·1·u0 1-1 e- t about the 
t-axis. Thus the meaningfulness of describing a traj ectory by 
a set of its values on the points of a mesh is lost (i.e. 1s 
an ill conditioned process). 

A variety of alternate rttimerical solution concepts may be 
formulated. Consider the following one: 

Solution concept: Given E
1 >0 and 15>0, we say that U(t) is an 

(E_, ,oi) (numerical) approximation tou(t) if there exists 'T with 
,I Ti~ 15· such that 

Of course 15=0 for the usual concept of (numerical) approx­
imation. ln figure 13.2 an example of this approximation 1s 
g1ven. 

Figure 13, 2 

In terms of the model problem, we rnay accep't by means of 
this solution concept a numerical approximation to the slow time 
part of the solutioi as~ numeric~l approximation to the solu-
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tion itself. The problem is to extract this part out of the whole 
solution and to do this we employ the method of two times. Of 
course nothing pr:events us from computing the fast time part, 
as we shall !ilee, locally. That is to remove the ill-condition­
ing of the highly oscillatory problem we must abandon some as­
pect of the solution and in particular we will abandon the de­
termination of its precise (fast-time) phase. 

13.3 The two time expansion 

We seek approximations to the solution of (13 .1) in the 
form of a general two-time expansion 

00 

13.6) u =,?; Ur (t,'T)Er. 

This will be a useful ser1es for purposes of approximation, if 
we have 

13.7) 
r r- 1 

ur (t, t/e)e = o(e ), r=1,2, ... , 

as e-0, uniformly for O~t~T. With (13.7) valid we say that 

(13.6) is an asymptotic expansion with asymptotic scale Er. A 
sufficient condition for (13.7) is that 

13.8) u (t,r) = o(r) r. 

as 'T -+oo for r=1, 2,... . 
The expansion resulting from this prescription of the form 

(13.6)-(13.8) of the solution will bederived below.It is some­
times possible to obtai~ more information from the expansion by 
placing a stronger condition on the coefficients than (13 .8). 
In particular we will determine conditions on Ao andA 1 sa that 
the requirement 

13.9) Ao -r 
u (t,r) ""o(re ) r 

as 'T -oo. for r=1, 2, ... , can be used to obtain a valid expansion. 
If A0 is an oscillatory matrix (all eigenvalues have zero 

real part), then conditions (13.8) and (13.9) are equivalent. 
If A0 is a stable matrix (all eigenvalues have negative real 
parts), the condition (13.9) is more restrictive than (13.8}. 
In the stable case it may not be possible to obtain an expansion 



of the solution of (13, 1) in the form (13, 6) whose coefficients 
satisfy either (13,8) or (13,9), However, we will descrihe an­
other restriction on the problem which when used with (13.9) 
guarantees that the solution of (13.1) can be approx1mately 
sol ved in the f orm (13. 6). This approximation technique proceeds 
via the twotime approach. This result is valid when the eigen-
values of A0 lie in the stable half plane; therefore, it con·· 
tains hoth the stable and oscillatory èases.In the stable case, 
the expansion· found by this method reduces to the one .which 
woùld be obtained by the method of matched asymptotic expan­
sions, In the oscillatory case,· this result reduces to an ex­
pansion equivalent to 'the one 'obtained by the Bogoliubov method 
of averaging. 

13.4 Formal Expansion Procedure 

We consider the initial value problem for the system (13. 1) 
and we write the initial conditions in the form 

(X) 

13.10) u(O) = ~ 
r"'O . 

r 
a 8 r 

To simplify computation let 

13, 11) 

Since v 1s considered as a function of the.two variables 'T' and 
t=ê'T', 

13.12) 
dv(et,T) 

dt 

êJv ( t, T) 
8 ------- + 

dt 

dv (t, r) 

êJr 

Tuen (13.1) becomesthe foLlowing equation for v: 

13.13) 
ov ov 

e-+-=eB(r)v ot or ' 
where 

13. 14) 

(X) 

v(O) = L, 
r=O 

r 
a 8 · r 

We seek a solution 1n the form (13.6) which hecomes 

13 
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(X) 

V= L V (t,T)Er 
r = 0 r 

subject to the condition (13.9) on the ur. In terms of the vr, 
the latter becomes 

13.16) v (t,r) = o(r) 
r as r-oo 

' 
r = 0, 1, .. . • . 

Substituting (13.15) into (13.13) and equating coefficients of 
the like powers of E g1ves 

ov 
13.17) 

r 

Here V- 1 =0. 

ovr-1 
= B(r)vr-1 ---üT-- r=0,1, .••.. 

The problem (13.17) isunderdetermined.The equation (13.17) 
for v can be integrated to give r 

13.18) 

r = 0, 1, ... , 

where 

13.19) v(0)=a. 
r r 

Except for (13.19), î\(t) is arbitrary.Differentiating (13.18) 
with respect to t gives 

13.20) 
ov ov f ,,.[ ovr-t 

__ r = __ r_ + B(u) ---
Ot ot ot 

0 

Combining this with (13.18) g1ves 

13.21) 

where 

dîf,._ 1 

dt 
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J
O" "'.'., , 

OV r _ t ( t I CT ) 

R (t,cr) = - rB(cr) . _ 
r L ot 

0 
13.22) 

(13.21) and (13.22) hold for r=0,1, ... , where V- 1 =R0 =0. Letus 
impose the growth condition (13.16) in (13.21). To do this di­
vide (13. 21) by r and take the limi t as r -co. This resul ts in 
the following condïtion for vr~t. 

+ lim(.!_1rR _1 (t,cr)dcr), 
r-oo r r 

0 
r=0,1 ...• 

13.23) 
d t -1 ( 1 fr ~ r = l im - B(cr )der îf _ 1 

dt . r-oo r r 
0 

When the se limi ts exist, (13. 23) along wi th (13. 19) de termine 
vr' r=0,1, . ... 

This approach dependes critically on the existence of the 
limits in (13.23). The development will be simplified by using 
the notation 

13.24) i
r 

- 1 f = l i m - f ( x) dx. 
r-oo r 

0 

If f exists wè will call it the average off. In terms of this 
notation (13.23) becomes 

13.25) r=0,1, ... , 

provided the averages exist. 

13.-5 Comments on the existence of the àverage and estimates 
of the remainder 

In the case that A0 is an oscillatory matrix, Bis an al­
most periodic function {cf. (13 .14)) and so the existence of 
the average, B is_assured. The existence of R 1 is implied by 
this existence of B. These ~tatements are proved in [13.U .The 
existence of these two averages provides us with the approx­
imation v 0 +ev 1 to v. This approximation is adequate for our com-



10 0 

putational purposes. In [13 ,2], Hoppensteadt and Miranker c1.e-· 
velope a more complete treatment of (13.1) by the two time me­
thod in the general case where the eigenvalues of A0 may be 
anywhere in the comple?{ platte and where nonli~ear forcing terms 
are adj oined to the system as well. However we restrict our 
descriptions tQ the setting of the earlier paper of these two 
authors since that description of the results,being less tech­
nical, is easier to present dS '.l~ the ensuing numerical develop­
ment1 

Under the hypotheses that the matrix A0 has simple ele• 
mentary divisors and in the case that the eigenvalues Ài, 

i=1,,, .. , n of A0 are such that Re Ài ~ 0, we find the followingihre« 

results in that earlier paper. 

Theorem 13.1: fr exists if and only 
vanish whenever Re (À. -À.) > O. 

J t 

if the elements 

Theorem 13.2 R 1 exists whenever B exists. 

Theorem 13.3· 

max \v(Ei',T)-v 0 (ET)--Ev 1 (ET,T)\·..-:;;const E
2

• 

O~r~T/ë 

13 6 The Numerical algorithm 

1 a .. 
tJ 

We take the leading term, u 0 (t,T) of the expansion (13.6) 
as approximation to the solution of the initial value problem 
(13.1) with the initial condition given by (13.10). 

Then from (13.11) and (13.18) 

13.26) 

œ(T) is the fundamental matrix given by 

13.27) 

while from (13.25) 

13.28) 

From (13.14) 

13.29) B = l im 
r~oo 
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We describe the algorithm for replacing a 0 the approxima­
tion to u(O) by U(h) the approximation to u(h) (in the sense 
of the solution concept in section 13.2 above). The algorithm 
is to be repeated approximating u(t) at u(2h), ... ,u(nh) suc­
cessively, 

Algorithm 

i) Solve (13 .27) on a mesh of increment k in the T scale 
by some self starting numerical method, obtaining the sequence 
il?(jk), j=O, ••. ,N. 

ii) Using the values iJ!(j k) obtained in (i), approxima te B 
by truncating the limit of integration T and replacing the in­
tegral in (13.29) by a quadrature formula, say 

Ë 1 

N 

N 

E ck iJ!-1 (jk) A1 i1?{jkJ. 
j =O 

The integer N is determined by anumerical criterion which 
assures that the elements of the matrix B are calculated to some 
desired accuracy. 

iii) With Ë (approxirnately) determinedin ii),solve (13,28) 
for v0 (h) by some self starting numerical method. 

i v) Compute u 0 (h, Nk)=-i1?(Nk)îf0 (h) and take this as the ap­
proximation to u(h). 

Refinement - The method may be refined by adding an approxima­
tion of Ev 1 (h,h/s) to v0 (h) prior to multiplication by i1?(Nk) 
(step (iv)), This approximation· in turn is determined from a 
numerical solution of the equations defining v 1 (t,r); viz. 

In figure 13.3 we schematize the computation. Of course 
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in practice E will be extremely small so that unlike the sche­
matic an enormous number of oscillations of 'P will occur in the 
t interval [O,h] .Notice how far the computed answer 1(Nk)v 0 (h) 
may be from the usual approximation to the ~olution, u0 (h,h/E). 

u.0 (h,h/e) 

-</>(t/é) 

~ ,P(Nt)~(h) 

Figure 13.3 

The fundamental matrix q;( T) is composed of modes correspon­
ding to the eigenvalues of A0 • Since the eigenvalues of A 
lie in the closed left half plan, the profile for (a component~ of 
95 wiU after some moderate number of cycles settle down to an 
(almost) periodic function. Thus the set of mesh points 
{jk 1j=O, ••• ,N} may be expected to extend over just these cy­
cles {approximately). 

13.7 Numerical Results 

In this section we tabulate the results of calculations 
with thn,e sample problems, Pi, i=1.,2,3. P1 corresponds to a 
damped case (A0 has real eigenvalues), P2 to a purely oscilla-
1..orv A0 and P 3 to a mixed case.The numerical rtlethods ùsed were 
cho~en to be the most elementary (e.g. E~ler's method for dif­
ferPntifll equations and Simpson's rule for integrals) so that 
the results are accurate only to a few percent,Moreover E/h=,1 
or .2 so that the exarnples are not particularly stiff, 
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TABLES 

Problem P 1 (damped case) 

Ao =[o o] 
0 -1 

_ [-1 1] Ai -
0 0 

t ~ Uo 

0 1.00 1.00 
. 05 . 953 1. 
.10 . 908 1. 
.15 . 865 1. 
. 20 . 824 1. 
.25 . 785 1. 

Prob lem P.2 (os cil la tory case) 

-[0-1] Ao -
1 0 

[- 2 Ai = 0 ~] 
"' t Uo 

0 0.5 0.5 
. 01 . 495 . 495 
. 02 . 490 . 490 
. 03 . 485 . 485 
. 04 .480 . 481 
. 05 . 475 . 476 

Problem P3 (mixed case) 

0 0 0 0 1 1 1 0 

0 -1 0 0 0 1 0 0 
Ao = Ai = 

1 0 0 0 -1 1 1 0 

0 0 1 0 0 0 0 1 

t 
,.., 
Uo 

0 1.0 1.0 1.0 1.0 1.0 
. 05 1.05 1.05 1.06 1.04 1.05 
.10 1 11 1.11 1.12 1.09 1.10 
. 15 1.17 1.16 1.18 1.14 1.17 
• 20 1 .. 23 1,22 1.24 1.19 1.22 
.25 1.29 1.28 1. 31 1.24 1.28 

1.0 
0.0 
0.0 
0.0 
0,0 
0,0 

E =. 01 
h =. 05 
k = • 05 

q;(kN )u 0 

1. 00 1. 00 
.953 0.0 
. 906 o. 0 
. 862 o. 0 
.820 0.0 
. 780 0. 0 

E =. 001 
h = . 01 
k = , 05 

g;(kN )u 0 

0.5 0.5 
. ,325 . 605 
.184 . 669 
. 007 . 687 

-.167 . 660 
- . 327 . 589 

E = . 01 
h = . 05 
k = • 05 

g; ( kN )îf 0 

1.0 1.0 
-1.45 . 327 

. 534 .. 1. 46 

. 997 1.31 
· 1, 72 .149 

. 846 -1.60 
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§ 14. A METHOD OF AVERAGING 

14, 1 Stable functionals 

Consider the following model problem 

14 .1) 

and the following family of solutions 

14. 2) x ( t ) = a s ln À. t + 
s .i.n t 

For À large, this solution family consists of a high frequency 
c a r rie r w av e , a s n À. t, mo du 1 a te d by a s 1 ow w a v,e , ( s in À. t) / ( 1- 1 /11.. 2 

) • 

The specification of the value at a point ofsuch a function i.i. 
an ill-conditioned problem. 

We have seen that the linear multistep class of rnetl_!od1': 
is highly desirable for numerical analysis since lhe~ methods ~re eaJ>y 
to calculate with and easy to analyze. However these methods 
consist of a linear combination of unstable fµnctionals of the 
solution of (14.1), namely values and values of derivatives at 
points. In this section we will show how to r~place these uns­
table functionals by stable ones, thereby producing a class of 
linear multistep methods suitable for the stiff problem. 

We will not characterize the classes of function~ls which 
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are stable in an abstract way. Rather we select two special 
functionals which are. an averaging functional and. an appropria te 
evaluation functional which ought to be stable in the sense 
discussed. We construct the numerical methods out of these two 
functionals. 

14.2 The Problem treated 

We develop our method 1n the context of the problem, 

14.3) 
x +X.2 x = f(x, t), 

x(0)=x 0 , 

where x and f are scalars. 

td0, T], 

The solution of this problem will be required to exist on 
the larger interval I= [-T, T] where the quantity -r > 0 will be 
specified in (14.9). Thus, we assume that f(x, t) is continuous 
in t, tEI .and Lipschitz continuous in X for all such t, with 
Lipschitz constant IL. ln particular f(x, t) is uniformly bound­
ed for tEl and x restricted to any compact real set including 
in particular the set of values taken on by the solutions x(t) 
for tEl .. 

At first we restrict our attention to the linear problem 
in which f(x, t)=f(t). Then in section 14.9wemake somecomments 
about the nonlinear case and the case of second order systems. 

14,3 Choice of functionals 

Let N>O be an integer,let.h=T/N and let ti=ih, id0,±1, •• 
be the points of a mesh. We seek the functional y(t) of x at 
the points of .this mesh. Let z(t) be a -functional of x which 
can be calculated at each mesh point.Tuen we seek to determine 
Yn =y(tn), in terms of Yn-i, i =1.,.; ... ,r and zn-i =z(tn .. i), 

i = 0, 1., .•• , s by means of the linear multistep formula 

14.4) b. z . ;,,. 0, 
i n- i 

n = 0,1., ... ,N. 

The initial values Yi• i=-1., . .. ,-rare assumed to be fur­
nished by some independent means. 

14 
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In the case (14.3) of interest and À large we choose y(t) 
to be 

14.5) y(t) = J:k(t-s)x(s)ds, 

where 

14.6) 
1 {1, 

k(z) =-
t:, 0 

I 

-6<z<o, 

otherwise. 

Thus y(t) represents the average of x(t) over the interval 
[t-6,t]. 

The functional z(t) is chosen to be [~+À2 ]x(t), i.e., 
dt 2 

f(t), which can be calculated at each mesh point. Thus with a 
change in normalization (14.4) may be written as 

14.7) y =t c.y .+h 2 t d.f. 
n i=t t n-t i=O t n-t 

14.4 Representers 

We introduce the reproducing kernel space, 'N=1fm which 1s 
the Sobolev space w:[-00,00)· with the inner product 

n 

14.8) < f I g > = j~ ( ; ) (t ( j ) I g * (j ) ) / 

where 

An as terisk is used to denote the complex conj uga te through · 
out. Since we are interested in solutions of (14.3) on the in­
terval 

14.9) I = [-h6, T] 

we may identify bath a solution of 14.3 and f(t) appearing 
in 14.3 with the unique functions of minimal norm in# with 
which they agree on I, respectively. Of course on I, f is re-
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quired to have m-1 absolutely continuous derivatives and an 
m-th derivative a.e. which is square integrable. 

We use a carot to denote the Fourier transform, v1z. 

1 100 

i wt" 14.10) f(t) = - e f(w)dlù, 

5 00 1
00 

" 1 -iwt 
f(w) = -- e f(t)dt. 

6 00 

Tuen the 1nner product in '#may be written as 

14.11) J
O) 

1 ... ·2 
<f,g> =- f(w)g*(w)IP (w)I dw, '\t'2rr" m 

- 00 

where 

14.12) P (w) = (1-iw/. 
m 

The reproducing kernel in9iC is 

14.13) J
O) i ( s - t) w 

m 1 e 
R =R (s) =- --~ 

t t _,,,-;;--: 2 

·y2rr oo \Pm(w)!' 

dw. 

"' A second Hilbert spacè, '# 1s introduced as follows: 

14.14) 

" The 1nner product in ?:fis 

"' .... 
14.15) < f, g> 

A 

( 14 .11) de fines an isometric isomorphism between 'il and ïl. The 
symbol "', will de note this isomorphism. Then from (l_¾ .11) we 
see that the isomorphism bet~een Rt and its image in 'J:f ·is ex­
pressed by 

- i Cù t 

14.16) R "'_e __ _ 
t ·2 

\P (w)\· m 
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Then for the representer, ~t f 
d2 '2 

0 -- +t\. 

dt 2 

- i wt 

we have 

14.17) ~t =R; +A:.2Rt "'(-w2+À. 2) __ e ___ 2_ 

IPm(w)I 

For the representer kt of y(t) given by 14.5 and 14.6 we 
have 

k = k (s) = : J t Ru (s )du 
t t Ll 

t- !::, 

[ 

t - i wu 

,_,J:_ _e -du 
6 

1 P (w) l 2 
t- !::. m 

14.18) 

" 

1 

- i wt 

-iwt 
e 

1.-e 
[ 

- i w/1] 

_e ___ {i; k(w), 
2 

1 P (w) 1 m 

where k(w) is the Fourier transform of k(z) given in (14.6). 
With these representors, the formula (14. 7) leads us to 

introduce the following linear functional gn. 

14.19) 

gn will be zero if x is the numerical solution. In general gn 
is not zero and is the analogue of the local truncation error 
for classical linear multistep schemes. 

14., 5 Local Error and General ized Moment Conditions 

g is characterized in the following definition. 
n 
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Def. 14 1 Using (14 .15) as a de finition we call the linear 
functional, _gn appearing there, the local truncation error of 

the method (14.7). 
To estimate the local truncation error we write 

14.20) -E 
j=t 

wh·ere as usual 

14.21) l ·1 :xi f 2 

=<x,x> and 
2 

11:xl-l;., =<x,x>" • 

We will drop the subscript,"', since no confusion should 
result. 

Now using (14.15), (14.18) and (14.19), we find for the 
right member of (14.20) that 

where 

14 23) 

Here 

14.24) 

r 

t(w) ~~k(w) .L 
j=O 

and 

f
a, 

1 ·2 
•::,- lt(w)I 
G' 00 

dw 

IP (w)I 
2 

m 

s 
i j wh h 2 (' 2 -2) "-' s . e - /\. -w LJ 

J j = t 
d 

ij wh . e . 
J 

j=J,, ..•. ' r. 

Expanding t(w) formally in a Taylor series with remainder 
gives 

14.25) 
p - 1. l 

t(w) = L (ihw) mz +R 
l =O p' 

where from (14.23) and (14.25) we obtain 

1 
(l+i)! 

14.26) 
s 

l! 
" .ld 1. L..J J . -
j=O 1 (l-,2)! 
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and 

R (ihw/ [ 1 f.._ (p+1 ijh{,). 1 (" L)p+1 ijh(1+L){,) .. 2) 
= -------- ---- w s. J e J, - 1+ e J, 

P p! L(f+1) j =O 1 

14.27) 

In (14.26) and (14.27) we have used 

14.28) L =6./h. 

That. i~ in terms of the functional k of (14.5) and (14.6) 
the interval; 6., over which the average is taken is a multiple, 
L, of the mesh increment h. In (14.25) the quantities w- 1 and 1, 

w. 2 , j =0, ... ,r andw-. 3 andw. 4 , j=O, ... ,s are values ofw 
1 , 1 , . 1, 

which arise from the calculation of the remainder in Taylor's 
theorem. 

The quantities mz are characterized in the following de­
finition. 

Definition 14.2: We call the mz, l=0,1, ... , the 

moments (of the coefficients).Analogously mz=O, 
be called the (generalized) moment conditions. 

Consider the following remark. 

(generalized) 
Z=0,1, ••. ,w:i,.11 

Remark 14.1: View the equations m1"'0, l=O, ... ,r-1 as r equa­

tions for the r unknowns s., j=1, ... ,r. The Z-th row of the re­
l 

sulting coefficients matrix which has a~ its j-th term 

14.29) 
1 

(l+1)! 

is a linear combination of the first Z rows of the Vandermonde 
matrix. Thus the system of r equations has a solution in this 
case. Indeed by èhoosing the dj, j=O, ... , s to be proportional 

to À.-
2

, we obtain a solution for the sj, j=1, •.. , r which is 

0 ( 1 ) + 0 (À. -
2 

) • 

From the form of t(w) given in (14.23) we may make the 
following remark the assertion ofwhich follows from a familiar 
arguement which proceeds by breaking up the range of integra .. 
tion in (14.22) appropriately. 
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Remark 14. 2: If p is chosen less than m and the coefficients s., 
j~1, ... , r and dj, j=O; ..• , s are chosen as solutions of the ge~­
eralized moment equations mz=O, l=0,1, ... ,p, we may obtain an 
estimate of the local truncation error of the following form. 

14.30) l ·1 ·gn J ·I · 5 mat 1 'gn 1 · ~ 0 ( l + 
1 

) , p < m. 
"€JV 

11 xi 1-~ 1 

We collect these remarks into the following theorem. 

Theorem 14.1. There exists a choice of coefficients sj, j=1; ... , r 

and dj, j=O, ... , s such that the local truncation error has a 
bound of the form (14.30). Moreover, this bound is unifotm in 
À. for I À.1 ~À.o ::;,-O. 

14.6 Stability and Global Error Analyses 

Yn' n::0,1, ... denotes the values obtained by the multistep 

formula, (14.7) from the initial values Yn' n=-r, ... ,-1. Let 
Yn, n=-r, -r+1, . .. denote the exact values of these functionals. 
Let 

14. 31) en = Yn - Yn' 

denote the cumulative error. For convenience, assume that the 
initial funct{onals e =0, ~=-r,-r+1, ... ,-1. n 

Subtract the following identity 

r s r s 

14.32) Y = ~ ç.Y . -:-h 2 L d.f . + Y - ~ c.Y . ·· h 2 E d.f .. 
n j=t J n·J j=O J n-J n j=t J n-J j=O J n-J • 

from (14.7). We get 

14.33) 

Here 

14.34) g = -Y 
n n 

e 
n 

r 

+L 
j = t 

r 

I: 
j = t 

c.Y . +h 2 

J n- J 

s 

L d.f . 
) n ") j =O 

1s the value of the linear functional, gn of (14.19) applied 

to x, the exact solution of the initial val~e problem (14.3). 
To solve (14.33) for en, we use the polynomial S(z): 
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14.35) s ( z) 
; ., j 

s. z . 
J 

Since s 0 =1, [z',,. S(z~ 1 
))-

1 is an analytic function of z in 
a neighborhood of z=O. Then let its power series be given by 

CO 

14.36) ~ u.z1 
j = 0 J 

Now mul tiply (14. 33) by CTN •n and sum the resul t over n from 
r to N. The result Îs the solution of (14.33): 

N 

14.37) ~ 
n=r 

We use the following definition. 

Definition 14.3 (Stability).If the sequence k
1

,j=0,1, .. . } 1s 
bounded, then the method is said to be stable. 

We recall the following definition. 

Definitions 14.4: S(z) is said to obey the root condition if 
all of its roots lie in the closed unit dise while those of its 
roots which lie on the boundary of that dise are simple. 

With this definition wemay state the following lemmawhich 
characterizes the stability of the method. 

Lemma 14,1 If the polynomial S(z) obeys the root 
then the sequence {u

1 
,j=0,1 .•. . } is bounded. i.e. 

is stable. (cf. Lemma 8.2). 
If this lemma is applicable (14.37) g1ves 

14.38) 

where xis the exact solution of (14.3) 

condition, 
the method 

Combining this with (14.30) gives the following theorem. 

Theorem 14. 2. If the choice of coefficients characterized in 
Theorem 14.1 give ~ise to a stable method, then for the method 
(14.7) with those coefficients, 

14.39) p < m, 

uniformly 1n À for 11\.1 ~Ào > O. 
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14.7. Examples 

We now consider some examples ofmethods of the type (14. 7) 
1n which the coefficients are determ1ned by the generalized 
moment conditions. 

From 14.26 we have for l=0,1 and. 2, respectively, 

r s 

o. m0 = ~ s . - h2 X} 6 d. 
j =O l . j =O l 

r r s 

14.40) 1. m1 = L js. +.!::.Es. - h2A2 L jd. 
j =O l 2 j =O l j =O 1 

2. 

Consider the case 

A. m0 =m1 =0. 

For r~s~1, we get 

C1 

14. 41) 

r 1i2x'2 s s 
ES.-·- E j 2d. -Ld .. 
j =O l 2 j =O l j =O l 

1 2 2 h2,.2d --+- /\. 0 
L L 

In the special case d0 =0, (14.41) becomes 

2 
C1 1- -

L 
14. 42) I 

2 
d1 

h2À.2L 

These coefficients (i.e. c 1 ) obey the root condition if 
and only if 

14. 43) L ~ 1. 

In the special case d0 =d 1 , (14.41) becomes 

15 
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{ c, , J 
2 ---

L+1 
14.44) II 

do = d 1 
1 1 

=--
h2À 2 L+1 

Under the restriction L ~O, the root conditi6n 1s equiva­
lent to 

14.45) L ~ 0, 

for the coefficients (14.44). For r=s=l, 

14.46) 

14.47) 

L-3 

2L 

3 

In this case S(z)=z' 2 
- L-

3 
z - L-

3 
and this polynomial,S(z), 

2L 2L 
obeys the root candi tion for a set· of values of L which 1n­
cludes all L ?1. 

In the special case c 1 =c 2 , d 1 =d2 =0, (14.46) becomes 

14.48) IV 

2 1 L 
Here S(z)=z -- - z 

2 3+L 

1 L 
C2 = -

2 3+L 

1 L 
- - -- . This polynomial 

2 3+L 
obeys the 

root condition for a set of values of L which includes all 
L > O. 

In the special case c 1 =c 2 , d 0 =d1"'d2, (14.46) becomes 
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1 L-1 

2 L +1 

1 
i+L 

In this case the root conditions is obeyed for L > o: Now 
we consider a case corresponding to three moment conditions: 

B. m0 =m1 =m2 =0. 

For r=s=i, we get 

14.50) VI 

Notice tha t the root condition is obeyed for L large and 
positive but 1s violated for h~ small compared to L. 

Re mark 14 •. 3: In all of the se example and in the general case, 
we see that the coefficients obtained as solutions of the mo­
ment conditions depend on ~2

• At first sight this seems to be 
more restrictive than the case of the classical linear multi­
step formulas where the coefficients of the formula do not de­
pend on the coefficients bf the differential equation. In fact 
we see no such distinction. In the classical case the coeffi­
cients of the differential equation enter into the method when 
it is used to approximate the differential equation e.g. when 
Yn-i is replaced by f(Yn-i, tn-i ). It is essential after all that 

the numerical method at some pàint bedependent on the equation 
to be solved. In our case this dependence occurs at the outset 
in the determination of coefficients and in the error analysis. 
In the classical case it enters in the error analysis and in 
the use of the methods. 

14.8, Illustrative computations 

We now apply the six sets of methods labeled I,11, .... ,IV 
1n 14.6 respectively, to the sample problem 
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14.51) 
x(0)=0, X 

1 (0) 
À. 1 

=-+----
2 1 - 1/'A.2 

Runs are made over the interval [0, T] = [0,77). In 

Method ~ 1 2 3 1 2 7 

I 10 . 273 .108 .112 .133 .126 .126 

10 3 .113 . 00217 . 0611 . 0283 . 00683 . 0083 

10 5 . 112 . 00209 . 0611 . 0111 .000106 . 00627 

II 10 . 122 .133 .155 .126 .127 .128 

10 3 . 00125 . 0622 .177 . 0241 . 00926 . 0136 

10 5 .00104 . 0621 .177 . 000118 .00627 . 0125 

III 10 . 242 . 111 . 0872 .136 . 126 .126 

10 3 . 0032 . 00422 .00317 . 0294 . 00684 . 00546 

10 5 . 0034 . 00419 . 00313 . 00023 .00112 . 89E- 6 

IV 10 .123 .111 . 0938 .126 .126 .126 

10 3 . 0062 7 . 0144 . 0244 . 0241 . 00684 . 00546 

10 5 . 00623 . 0144 . 0244 . 000133 .000179 . 000264 

V 10 .144 . 152 .156 .127 .127 .128 

10 3 . 0657 . 094 .119 .0249 . 0116 .0136 

10 5 . 0657 . 0939 .119 . 0063 . 00942 . 0125 

VI 10 . 758E4 . 66E11 .124 . 195E1 . 471E1 . 11E2 

10 3 .0447 . 0639 . 244 .0246 . 00901 . 0253 

10 5 .0447 . 0639 . 244 . 00421 . 00629 . 0251 

h . 1 . 01 

1h11 l,2 

Table ! IL 1 
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table 14.1 we display the Z2 -norm of the cumulative er-
ror 

14. 52) [ 

[1r / h] J ½ 
11 e 11 z = h I: e: , 

2 n =O 

for a set of various combinations of h = .1,.01, À.= 10,10 3 _,105 

and L=1, 2,3 and for each of the six methods cited. 
To illustrate both the favorable and unfavorable effects 

in our methods table 14.1 contains cases for which the methods 
are designed to operate well along with cases to which corres­
pond poor or nonsensical results. 

For example although the cases corresponding to Îl.=10 give 
fair risults,these cases are not stiff and we should notexpect 
good results. When h is decreased improvement should occur but 
only for the stiff cases. The cases À.= 10 3 and h =. 01 are not 
stiff and improvement with decreasing h does not always occur 
in these cases. \1ethod VI is used in some uns table cases. Ex· 
amining (14. 27) we see tha t RP is proportional to iP. Thus in 
some cases as L increases we see an improvement due to improv­
ing the averaging (i.e. increasing l,), but ultimately a degra,. 
dation due to the L dependence of RP. The stiff cases for mod­
erate L give extremely good results as we expect. 

14.9 The non linear case and the case of systems 

In [14.1] a discussion of the extension cf th(::results des· 
cribed in sections 14.1 14.8 to the nonlinear case and to the 
case of systems is given. We will give some highlights of that 
discussion. 

In the nonlinear case, fn .. i in the multistep formula (14. 7) 

is replaced by f(y . , t . ) since f . ~f(x . , t . ) can not be n-i n-i n .. i n·i n-i 

computed as we proceed along the mesh. This results in a de· 
gradation of the error estimate (14.39) to the following: 

14. 53) 

Here 

14 54) 

16 
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and 

14.55) dw 
]

½ 

Remark 14.4: The two terms in the estimate (14.53) are not com·­
parable in orders of h. The first term which corresponds to. the 
local truncation error is small for h small. The second term 
is the error by which a function may be approximated by its 
average. We may expect the latter to be small if À. is large. 
(14.53) may be viewed as the statement that modulo the error 
made 1n replacing a function by its average, the numerical me-

thod is globally hp. 

In the systems case, the differential equations (14.3) 1s 
replaced by the second order system 

14.56) x+J/x=f(x,t). 

Here x and f are q-vectors and Ais a q xq matrix. The coeffi­
cients c j (and s j ) and dj of the numerical method are replaced 

by q x q ma tric es (denoted by the same symbols). Many such formal 
replacements of the scalar development follow. For example the 
first two moments become 

=( .t 
s 

mo S. - h2 A 2 E d)( 
j =O J j = 0 J q 

14.57) 

m1 =(t js. 

r s 
L L ·- A2 E jd) Sq +- s. 

j =0 J 2 j =O J j =O 

(compare (14.27)), where (q is the q-vector all of whose com­
ponents are unity. 

The error analysis proceeds similarly (using some of the 
matricial arguments of§ 8 leading to an estima te of the global 
error which is similar to the one described in Theorem 14.2). 

We conclude this summary of the systems case with the fol­
lowing two remarks. 

Remark 14. 5: Referring to Remark 14.3 and the dependence of the 
coefficients of the numerical m~thod on the coefficients of the 
differential equation,we see fr6m (14.57) the way in which the 
dependence appears in terms of the matrix A2

, for the coef-
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ficients determined by generalized moment conditions.It is im­
portant to take note that the coefficients depend on the matrix 
A 2 and not explicitly on eigenvalues of .A2

. Thus, if we know 
that a system is stiff, with highly oscillatory components, we 
may use the methods described here without having to calculate 
the eigenvalues of A 2 which cause this stiffness. 

Remark 14. 6: In the usual systems case for the numerical treat­
ment of differential equations the methods frequently used are 
the scalar methods with the scalar coefficients simply multi­
plied by Iq. We s~spect that the methods developed here in the 
scalar case would work in the same way wi th the simple addi­
tional requirement of replacing À. or À.-

1 by A or A- 1 respec­
tively. At present this remark is only a conjecture and we de fer 
for a further study its verification. 
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