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§ 1 . Introduction. 

If R is a Banach algebra and <,ôE:R', the dual space, then we may define a bounded 

,.., 
linear map <,ô : R + R I by 

( ço (x), y) = ( <,ô, xy) Vx,y€R. 

,._, 
We shall show that for suitable p the requirement that each <,ô be p-absolutely summing 

constrains R to be an operator algebra, or even, in certain cases, a uniform algebr a. 

In this way we are able to give generalisations of results of Varopoulos [12] and Kaijser 

[4]. 

The apparently artificial conditions imposed on R may be seen to have very natural 

interpretations in terms of the continuity of the multiplication map M : R 0 R + R when 

R 0 R is equipped with certain ®-norms of Grothendieck [3] and Saphar [9]. We shall 

go into this in more detail in the next section. 

First, let us give precise definitions of the notions with which we work. 

DEFINITION. (a) A uniform algebra is a closed subalgebra of the usual Banach algebra 

C(X) of continuous functions on some compact Hausdorff space X. 

(b) A Q-algebra is a Banach algebra (algebraically) isomorphic with a quotient of a 

uniform algebra. 

(c) An operator algebra is a Banach algebra (algebraically) isomorphic with a closed 



2. 

subalgebra of L(H ), the usual Banach algebra of bounded linear opera tors on some 

Hilbert space H. 

If E and F are Banach spaces and 1 :5 p < 00 , then the linear mapping 

u : E ~F is said to be p-absolutely summing if there is a positive number K such that 

r:-! 
1
llu(e.)!IP ::;:; Kp sup{r;! 

1 
1 (e .,e' >IP: e'E:ball(E' )} 

J= J J= J 

for every fini te set e 1 , ... , e J in E. The least such constant K is written 1T p ( u). 

'1T defines a complete norm on the vector space 1T (E,F) of all p-absolutely summing p p 

operators E ~ F. 

DEFINITION. The Banach algebra R is a p-summing algebra ( 1 :5 p < 00 ) · if there 

is a positive K such that for each cpE:R' the mapping q5 defined above is p-absolutely 

summing and satisfies '1T P (<P) ::; K l lcp 11. If K may be taken to be 1 , then R is said 

to be an isometrically p-summing algebra . 

Charpentier [1] has proved that every commutative 1-summing algebra is a Q-algebra . 

On the other hand, Cole [n] has shown that every Q-algebra is an operator ah!ebra. We 

work in this wider context, but it is perhaps worth noting that Charpentier' s result could 

be obtained by much the same method. 

THEOREM 1 . Every 2-summing algebra is an operator algebra. 

As an immediate consequence, we have a simpler proof of a striking result of Varopou-

los [12]. 

COROLLARY 2. If an ct
00 

-space (in the sense of [6]) has a Banach algebra structure, 

then it must be an operator algebra. 



It would be of interest to know whether one can replace 11;g'
00 

-space" by "the dise 

algebra A(D )" in corollary 2. Indeed, any non-trivial replacement would be welcome. 

3. 

In the case of algebras with an identity (always of norm 1) we are able to generalise 

a result of Kaijser [4] to show 

THEO REM 3. Every isometrically p-summing algebra ( 1 ~ p < oo) with (normalised) 

identity is a uniform algebra. 

In fact, in theorem 3 , the weaker hypothesis that the Banach algebra R has an 

approximate identity whose elements have norm ~ 1 will ensure that l lx 11
2 

= l lx2 
II V xE:R. 

The example of e 1 with pointwise multiplication shows however that some such hypothesis 

is necessary. 

§ 2 . The approach via tensor products. 

The multiplication on a Banach algebra R may be thought of as a linear map 

M : R ® R +R. In the usual defü:ütion, R is given the projective tensor product norm 

and M is required to be a contraction. As this norm is the greatest of the natural ®-norms 

of Grothendieck GJ , it is of interest to consider what happens if M is supposed continuous 

even when R ® R is equipped with a smaller ®-norm. Saphar' s paper [9] contains a 

useful summary of the properties of ®-norms ; we shall use his notation, except that the 

norms L and E are sometimes written w and v, resp. 

DEF:Il\JITION. Let ex be a® -norm. The Banach algebra R is said to be an cx-alge-

bra if the multiplication M : R ® R -+-R is continuous . If M is a contraction, then 
-- (X 

R is said to be an cx-algebra . 
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Varopoulos [10] was the first to give significant results about cx-algebras. He was 

concerned with E-algebras (E is the familiar injective tensor product norm) and showed 

that the commutative .s-algebras are precisely the "direct" Q-algebras [11] . Kaijser [4] 

specialised this to prove that unital E-algebras are uniform algebras. On the other hand, 

Charpentier [1] generalised Varopoulos' results, showing that commutative y_t-algebras 

(which are in fact the commutative 1-summing algebras) are Q-algebras. 

The most interesting 0-norms from our point of view are the norms dq ( 1 < q ::; oo) 

introduced by Saphar [9] and Chevet [2]. Their crucial property is that if E and F 
A 

are Banach spaces, then (E ® d F)' may be identified isometrically with rr (E, F' ) under 
q p 

the norm TT ( ! + l = 1 ) . It is now an immediate consequence of the definitions that the p p q 

p-summing algebras are exactly the d -algebras and that the isometrically p-summing _g_ 

algebras are exactly the dq -algebras. We may thus rephrase theorems 1 and 3. 

THEOREM 1 1 • Every d2 -algebra is an operator algebra. 

THEOREM 3'. Every d -algebra (1 < q:::; oo) with (normalized) identity is a 
q---

uniform algebra. 

On the other hand, the natural ® -norms of Grothendieck GJ are of basic importance. 

The ones which interest us in this paper are E, w , H, H/ and H' . In view of the results 

of [ 6] , H, H/ and H' -algebras may be defined quite simply in terms of factorisations of 

the mappings -cp introduced in If C denotes a C(K) space, denotes a 

Hilbert space and L 1 denotes an L 1 (µ )-space (as defined in [6] ), we have : 

R is an H-algebra if, for each cp€R 1 , the mapping 'éjS factorises as follows : 
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~ 
R 

cp 
R' 

Œ l î y 

C L1 
(3 

R is an Hl -algebra if, for each cpE:R'' 
...,, 

the mapping cp factorises as follows : 

R 
cp 

R' 

Œ l î y 

C L2 
~ 

~ R is an H 1 -algebra if, for each cpE:R'' the mapping cp factorises as follows : 
,..,, 

R 
cp 

R' 

a:\ /P 
L2 

In each of these cases a:, {3 and y are bounded linear mappings, the product of whose 

norms does not exceed a fixed multiple of 11;:p J J. 

As Saphar has observed, the norms ~ and Hl are (uniformly) equivalent (sinrP 

every bounded linear mapping C + L 2 is 2-absolutely summing), and d and V/ 
00 

are 

equal. Thus, yet another formulation of theorem 1 is 

THEOREM 1" . Every Hf -algebra is an operator algebra . 

This complements Charpentier' s result that every operator algebra is an H' -algebr 1 a. 

Sin ce H/ and H ' are adjacent in Grothendieck' s table of natural ®-norms, we see that 

there are operator algebras which are not Hl -algebras, but I do not know of an H' -algebra 

which is not an operator algebra . 

Finally, in the spirit of corollary 2, we may combine our results with theorems of 
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Kwapien [5] and Lindenstrauss-Pelczynski. [6] to show that the possible Banach algebra 

structures on the ;i, -spaces of [6] are rather limited. This gives, in 4b and 5b, a partial 
p 

answer to a question in [12], and provides a stronger version of corollary 2. 

THEOREM 4. 

(a) An ~
00 

-space with a Banach algebra structure is an H-algebra. 

(b} An /;l, -space (2 s p < oo) with a Banach algebra structure is an J-I' -algebra. p~--

( c) An ~p -space (2 s p < oo) with an r-summing algebra structure ( 1 s r < oo) 

is a 2-summing algebra. 

(d) An ';fJ -space (1 < p :s; 2) with a 2-summing algebra structure is a 1-summing 
- P---

algebra. 

(e) An ~ 1-space with an H' -algebra structure is an E-algebra. 

As interesting special cases, we have 

COROLLARY 5. 

(a) An ;t, -space (1 -s p s 2) with a commutative 2-summing algebra structure is 
- p--

a Q-algebra. 

(b) An ;;!, -space (2 < p < oo) with an r-summing algebra structure ( 1 s r < oo) - p___;;__-

is an operator algebra . 

(c) An ~ 1-space which is an operator algebra must be an E-algebra. 

An _t2..,.space which is a Banach algebra is always an operator algebra 52]. 

§ 3 . The tools . 

To prove theorems 1 and 3, we rely on results of Pietsch and of Varopoulos . 
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THEOREM P [s] . Suppose that u is a p-absolutely summing operator from the 

Banach space E to the Banach space F. Write S for the unit ball of E' provided 

with the weak * topology. Then there is a pI'obability measure µ on the compact set S 

such that llu(e)II:,; "/u) Ds ks,e)!P dµ(s)] l/p Ve E: E. 

THEOREM V [12]. The Banach algebra R is an operator algebra if there is a 

positive K such that for any cpE:ball(R' ) and any positive integer N, there are a 

Hilbert space H, linear mappings L : R + L(H) (1 :s; n :s; N) each of norm :s; K, and 
n ----- --

h,kE:ball(H) for which 

for every choice of x 1 , ... , xN in R. 

Here ( . , . ) denotes both the duality between R and R' , and the inner 

product on H . 

à 4. The proofs. 

Proof of theorem 1 . Suppose that the Banach algebra R satisfies 'TT 
2 

(cp) :s; K !lep 11 

V cpE:R' . We shall verify the condition of theorem V for N = 3. The same procedure clearly 

works for arbitrary N. Fix cpE:ball(R' ). We first construct the associated Hilbert space. 

By theorem P, 
,..,, 
cp may be factorized as follows : 

~ R ____ <P _ _, R' 

I l î ~ 
2 

C(S) J ► L (µcp) . 

Here S is the unit ball of R' under the weak* topology, µ <P is the probability 



~ measure corresponding to cp as in theorem P, I is the natural map X ~ f 
X 

8. 

where f (s) = < s, x > (sE:S), J is the formal inclusion and <P is a bounded linear map 
X 

Thus, if x,y,zE:R, we have 

(cp,xyz) = (ép(xy},z) = (<PJI(xy),z) = (JI(xy), t<P(z)) 

where tep: R" ~L
2(µcp) is the transpose of <P. Consequently, if we write 

t 2 
Zcp = cp(z) E: L (µ cp), we have 

( cp , xyz ) = J < l/) , xy) Z ( l/) ) dµ ( lj> ) • s cp cp 

~ Now, applying the same process to 1/J and using the natural notation 

< cp,xyz) = js [t Lx)Y /H dµ "'m] Zcp(I/J) dµ cp(I/J ). 

We may thus define a probability measure µ~
2

) on S x S such that 

< cp 'xyz > = J s X s < ç 'X > y lp ( ç ) z cp ( 1/> ) dµ ~) ( 1/> ' ç ) . 

Let us now take H to be the Hilbert direct sum {: EB L2(µ ) e L2(µ (2\, and define cp cp 

three operators L,{x), L
2

(y), L
3

(z) in L(H) by 

L,{x)(cx,f,g) = (O,O,Gx) where Gx(l/J, c;) = ( c; ,x) g{lj;, c; ), 

L2{y){o:,f,g) = (0,0,F y) where F y(I/J, ç) = Y l/J (c;) f(I/> ), and 

L/z)(cx,f,g) = (O,A
2

,0) where A
2

(1/)) = ex Zcp(I/J ). 

Itiseasytoseethat IIL1(x)II ~ llxll, IIL2{y)II ~ K!lyll and IIL
3
(z)!! ~ K!lzll. Thus, 

we may produce linear opera tors L 
1 

, L2 , L
3 

: R ?" L(H) which are bounded in the right 

way. A simple calculation shows that 

and so the condition of theorem V is indeed satisfied for N = 3 . 
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Proof of corollary 2. If R is an ~
00

-space, then R' is an .:t1-space [7]. 

Hence, [6] , there is a K > O such that every bounded linear operator u : R "'R I must 

be2-absolutely summing with 7T2(u)::; Kl!ull '. The conclusion follows immediately from 

theorem 1. 

Proof of theorem 3. If R is our algebra, we have 1T (rp) ::; I J<P 11 p V<P€R 1 • 

The main idea of the proof (used by Drury and Kaijser in the case of E-algebras) is to 

show that every extreme point of the unit ball S of R 1 must be a scalar multiple of a 

multiplicative linear functional. Once again, we use theorem P to factorise 
,...., 
<P : 

R <P R 1 

~/4 
. ....., 

Writing µ<P for the probability measure on S corresponding to cp , A is the p 

-subspace of LP(µ ) formed by taking the closure of the natural image of R in C(S) cp 

under the LP(µ<P) norm. I is the canonical map x 1--+- fx, with fx( s) = < s ,x) (s€S ), 

and <I> is a linear map of norm 7Tp(cp). 

Now, if x, yE:R, 

(cp,xy) = (cp(x),y) = (<I>I(x),y) = (I(x), t<I>(y)) 

where t<I> : R" ~ (A )' is the transpose of <I>. p 

1 1 o (- + - = 1) where (A ) is the annihilator of 
p q ' p 

shows that t<I>(y) has a representative function 

In particular, if e is the identity of R, 

But, 

AP in L q(µ <P). A weak* limit argument 

B € L q(µ ) of norm llt<I>(y)JI . y Cf) 
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or, symbolically, <p = j 1/J S ( 1/J ) dµ ( 1/J ) • 
S e <p 

Suppose now that <p is an extreme point of S and that S = S 
1
us

2
, where 

S 
1 

and s
2 

are disjoint measurable sets. Define 

(i = 1 , 2). 

In fact, lb. li =] dµ (1/J ), for 
1 S. <p 

1 

1 = li<fJII s ll<p1 Il+ ll<p2'I s lise Il 1 s lise Il q s lie Il = 1. 
L (µ <p ) L (µ <p) 

Since q ~ 1, the equality Ils Il 1 = Ils Il = 1 gives I S (1/J) 1 = 1 µ -a. e .• 
eL eLq e <p 

Thus ll<fJill = J lse(I/J)ldµ<p(ip)= J dµcp(ip). If µcp(s 1)/=0, thefactthat <p is 
S. S. 

1 1 

extreme now gives <p = <p 
1 
/ 1 lep 

1
11 , 

J <p dµcp(ip) = J ip Be(ip) dµcp(<Ji). 
s, s, 

i.e. 

This equality is thus valid for every measurable subset of S , whence 

<p = 1/J B ( 1/J ) µ -a . e . e <p 

Consequently, ( <p , e) ( <p , xy) = ( <p , e ) j ( l/J , x ) S ( 1/J ) dµ a/ 1/J ) 
s y '1"" 

= J (cp,e) B (1/J)(iµ,x)S liµ) dµ (1/J) 
S e y <p 

= J (iµ,e)(<p,x)B (iµ) dµ (1/J) s y cp 

= (<p,x) (cp,y). 

Easily, 1 ( <p ,e) 1 = 1, and so <p/ ( <p ,e) is a multiplicative linear functional. Now, 

for xE:R, llx
2

11 = sup{ 1 ( cp, x
2

) 1 : cp extreme point of S} 

= sup { 1 < <P , x2
) 1 : cp extreme point of S} 

(<p,e) 

= sup {I ( cp , x) 1
2 

: cp extreme point of S} 
(cp,e) 

= llxl12
• 
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The result follows at once. 

Proof of theorem 4. We shall only prove (e). The rest is a straightforward consequence 

of the fact that the dual of an :i -space is an ~ -space ( ! + l = 1) (see [7 J) and of the p q p q 

results in [5] and [6]. Note that for (a) we need the fact [6] that an cicspace which is 

a dual space - and so complemented in its bidual - is a complemented subspace of an 

L 1 (µ )-space. 

Suppose now that R is an ~ 
1
-space with an H' -algebra structure. In all that 

follows, the constants K ( with or without a subscript) will be inde pendent of the algebra 

structure of R. If <,0E:R ~ it follows from § 2 that ~ factors through a Hilbert space 

H . But by [§, p. 2 86] a bounded linear operator f : R + H is 1-absolutely summing 

and satisfies 77 
1
(f) :5 Kl!f!l. Hence R is a d

00 
-algebra. To show that it is an ~-algebra, 

choose { x 1 , •.. , x J, y 1 , ... , y J} S R and consider the closed subspace generated by 

the se elements and { x 1 y 1 , ... , x Jy J} . This is contained in some subspace E of R 

of finite dimension n for which there are isomorphisms 

Il~ 
such that I lu! 1 ::;; K1,and v o u = IdE. Since R is a 

u: E + e~ and 

d -algebra, 
00 

IIÏ,~ 1 X.y.IIR :5 K. llil 1x.0y.llR~ R::;; Kl!I;~ 1 x.0 y.li~ E 
J= J J J= J J 'OI d J= J J r::,= d 

J 00 ~ 

= KlljE1 v(u(xj)) 0 v(u(yjnllEiE 

J 
::;; Kil!; u(x.)0 u(y.)11 o1~ e1 

j=1 J J Ln n 
J 

= Kil ~ u(x .) 0 u(y .)Il e1 ~ e1 by definition of V/ 
j=1 J J n n 

J 
~ K. K; 11::R xj 0 yjllE ~ E 

== K.K;II ~ f=l xj 0 yjll~ R. 

1 
V: e +E 

n 



12. 

Since our choice of the x. 1 s and y. 1 s was arbitrary, R is an E-algebra. 
J J 

Finally, corollary 5 needs no proof. 
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