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LE SYMPOSIUM APLASU 7 3 

Les 20 et 21 décembre I9?3, le Département de Mathématiques de l'Université 

Paris-Sud ( Laboratoire Al Khowarizmi) organisait à Orsay un Symposiwn Inter­

national concacré aux problèmes de la manipulatton des symboles en mathématique 

pure et à l'utilisation du système APL. 

Plus de cinquante participants venus de huit pays différents furent acceuillis 

par G. POITOU et participèrent av.x sessions présidées par M. DE11AZURE, H.HAEGI, 

G. MARTIN, J. DELBREIL. 

Une introduction générale au projet LIMA et aux problèmes généraux abordés au 

cours du Symposiwn est publiée séparement (note ECSTASM N°1). 

Nous publions, avec le concours de l'IRIA (*) les communications présentées 

pendant ces deux journées en les regroupant en trois volwnes qui correspondent 

aux trois pôles d'intérêts pricnipau:c. 

Certaines communications n'étaient pas disponibles pour puhlioations,par contre no~ 

avons ajouté plusieurs textes correspondant à des travaux effectués postérieurement 

au Symposiwn et qui permettent de parfaire l'homogénéité de l'ensemble. 

P.B, M.D. 

(x) Contrat SESORI ?3 021 
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INTRODUCTION AU TROISIEME FASCICULE 

par 

P. BRAFFORT 

Notre intérêt pour APL est lié aux intentions mêr::ie qui ont précédé 

à la conception du langage: développer un système formel proche de la no-

tation mathématique et apte à exprimer simplement les algorithmes combina-

toires les plus variées. 

Le livre d 1 IVERSON 

loppement dont APL/30O 

culières. 

contient en fait plusieurs possibilités de deve-

puis APLSV ne sont q_ue des réalisations parti-

Dans la période récente les propositions de modifications - mais 

surtout d'extension - du langage ont été nonbreuses. 

Ce troü,ième fascicule en donne un échantillon q_ui nous semble signifi-

catif mais ne prêtent évidemment pas à l'exhausticité. 

Le premier article est une version révisée et augmenté d'un exposé 

présenté à Pise à l'occasion du XVI ème meeting de la SEAS (share Européen 

Association). 
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On s'y propose de situer le problème général àl.'APL et de définir 

un cadre théorique pour les extensions 

Le second article est plus particulièrement orienté vers le problème 

de 
des structuxes)données. Il permet d'utiliser une liaison entre les problèmes 

typiquement APL et les recherches de sémantique formelle comme celles 

développées par l'école de Vienne. 

Enfin le troisième article décrit une expérience complé.te de conception 

et de simulation d'une extension d I APL
0 
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APL in perspective 

by 

Paul BRAFFORT 

1. Preliminary remarks 

2. From a linguistic point of view 

3. Birth of a natation 

4. Names, types, structures, orders, etc 0 • 0 

5. From APL to NAPLES 

References 0 
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1. Preliminary remarkso 

This paper is a revised and expanded version of an invited paper to 

the 
th 

XVI meeting of SEAS (SHARE European Association) held in Pisa 

(Italy) 1971 [1]. 

My intention was, at this tirne, to pin point the peculiarities of APL 

viewed as a notational system, from an epistemological point of view. 

Recent developments of APL as programming language have shown 

convincingly the adequacy of an approach of this kind and even asks urgently 

for a more comprehensive and systematic treatment. 

We shall proceed as follows: 

- we first describe the problem fvom a linguistic point of view with an 

emphasis on the triad: notation system/mathematical formalis.rr(programming 

language. 

- next we show how APL fits in the natural_ history of notation systems. 

' consider . belonging 
- then we various concepts · to the field of for:œal systems 

theory which happan to play some role in the development of APL. 

finally we put APL's history in perspective, with respect to the 

afore. mentioned considerations and we offer some prognosticfüions of the future. 

Many thru1ks are due to K. IVERSON for his criticism of a first dn.ft of 

this paper. 
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2. From a linguistic point of view. 

In her well-known Magnum Opus on prûgramming languages [2] 

Jean SAMYŒTT finds herself uneasy when dealing with APL. 

Indeed, APL is present at two different places in the book: as 

"APL 360" in section 6 (on-line systems) of Chapter IV (;J-anguages for 

numerical scientific problems), and as "APL" in Chapter X (significant 

unimplemented concepts) and she says (p.715) : Il the question has been 

raised as to whether this is a language or a notation•. 

Assessing APL 36 0 with objectivity is certainly made difficult 

by tre merging of the normal seductions of -a very fine conversational system 

with the sometimes dazzling novelties of a deliberate systematics for 

mathematical notation. 

The various aspects which conçurr to make APL' s appeal to a wside 

variety of users are more easily sorted out if one goes to the trouble of 

a thorough ~inguistic (better say II semiotic 11) investigation. 

Since MORRIS, semiotics has beendeveloped along three main axes 

syntax, semantics, pragmatics. 

- The syntactic pecularities of APL are a consequence of its objective to 

be a genùine rational notations system O It is enough here to mention for 



the richness of the alphabet 

explicit and systematic 
the restriction of '1valence" (number of arguments) to 0,1 

standard 
the prefix notation for monadic objects. 

III.t.3 

and 2, and 

- the absence of function precedence and the left to right association law 

for parenthesis read:1bili ty 

the indexing convention avoiding typographical difficultes of s~bscripting 

and syperscripting. 

All these aspects of APL could be - and in·part have been - put into practice 

in the teaching of mathematics and in the preparation of text bookas [3]. 

- The semantic aspects of APL are connected with the need for entities 

representing a large sample of mathematical objects. Here we must notice 

= the variety of elementary "types" (Boo,lean, integer, character, etc •• some 

of them - being implicit. 

= the structuring of abjects into arrays: vectors, matrices, etc 0 •• of 

finite rank 

= the scaling of functional precedence : variables (and constants), functions 

(primitive and àefine), and operators (such as / ' 

- The :eragmatic aspects of APL are just a manifestation of its conception 

as an information processing system: 

= interactive facility 



= "system commands" and "system functioœ"(I. Il, etc ••• ) 

= "shared variables" and the very notion of a "precessor" in API.SV. 

This impliet3 that 11pragmatics" here is undestood as the third fundE.mental 

component of linguistics, that is "relatranship of ob,jects of the lang11age 

to users of the language and notas a lund of "ad hoc" fractial devices • 

.And innovatiun in notation was certainly not the least obstacle, 

despite evidences for the urgent need of a rat:i-onale, as a.rgue·d in the 

following paragraph. 

3o Birth of a Notationo 

Mathematics started and came to an already high level of sophistication 

without an.y special effort on the notation problem. After all mathematical 

entities are concepts among other concepts and ordinary language is a natural 

tool for de.aling with them 0 The v,ery distinction between "logistics" an.à 

"arithmetics" was not clear before the time of PLAT0 and the use of letters a 

symbols for the numerals is attested not long ago B.C. But such a notational 

system - limited as it is - remains awkward (for example 29342 could be 

written or, '){.001:µ~ 1 (3), and one must wait for DIOPHANT0S 

( N 300 A0 D0 ) to find a symbolic notation for variables as well. For him 

an equation which, for us, could look li.Re 
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(x3 + ax:) - (5x2 + 1) = x 

should be written, however, 

V V x a ÇÇ~ ~ ô e µ ô a Ça 

which is not very transparent 0 

The current notational system for elementary algebra is rather recent : 

using x,y,z for the unknovvn cornes after DESCARTES (1637). At the same 

time Il + , X Il are adopted. The "=" symbol cornes from RECORDE (1557) 

but NEWTON or others used 11
~

11 instead in 1600 and latero 

If one takes the trouble of having a closer look into this evolution 

it becomes evident that the general trend is economy of space in writing 

formulas and decrease in the number of possible ambigui ties. 

It is interesting to notice that algebraicfunctions for which one 

tries to find an ade1uate symbol are restricted to monadic and dyadic ones 

(and this i€ still the case with BOURBAKI). 

But it is still more striking to realize that, sixteen centuries 

after DIOPHANTOS, the standard system for algebraic notation is not completely 

free from ambiguities [(4)}, 

However,. at the end of the last century and the beginning of this one, 

a true notational expl~sion took place. FREGE invited radical innovations 

when introducing his system of the calculus of propositions. For example 
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our 

(N A) 4' B 

would be, wi th FREGE 

l1.--.--A 
L__B 

FREGE's inventions are very interesting from a syntactical point 

of view: they show the .invention of a bi-dimensional system of notation 

almost simultaneously with be -symbolic system itself. Of course a one-dimensiona 

system will be preferred for reasons of typographical convenience. 

"Graphical" representation will nevertheless find their way is modern 

and 
algebra (trees, diagrams of maps in category theory) - decisively - in 

computer science 

The Polish logici:ans introduced later a number of interesting suggestions 

(and among them the famous" polish" notation (prefixing) for dya die predicates 

and operations). In particular LESNIEWSKI developed an interestjng ideogra-

phic system for his logics, including a systematics for the 16 binary pre-

dicàtes; one has, for example, 

9 stands for coimplication : true if and only if its arguments have the 

same value, both being true or both false, and so coimply each other. 

-0-- Disjunction : true if and only if its arguments are disjunctive, exactly 

(i.e., at least and at most) one being true, the other false. 
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? Con.junction : true if and only if its arguments are conjointly true. 

-Ô-Exclusion: true if and only if at most one of its argwnents is true, 

excluding the other, which is false Il etco .. 

FREGE's and LESNEWKivs systems remained unused, but nobody 

objected to the proposals as such. Reductance to innovation came oftem 

from the field of applications. One remembersthe hostility of many physicists 

to vectoria;l notation. LORENTZ had to argue at length before using it 

for decribing MAXWELL's equations 

PEANO and hif;l school during the period of 1889 - 1906 made a 

decisive effort to set up a complete and rational system of notation, intro-

ducing in partmcular many of the symbols ofmodern logics and set theory. 

As BURALI-FORTI says : 

11 The logical symbolism presents i tself under two distir.""lct aspects ; 

as an abbreviated writing or tachygraphy, and as a powerful instrument for 

analyzing ideas, their logical relation and their development. 11 [(5 )1 

The main purpose ofthese authors is to set up a system which gives us an 

econon:y: in wri ting and a securi ty of understanding. One can ci te here PADOAl6) 

"Cependant - tandis que l'idéographie algébrique, étant composée de signes, 

est arrivée, relativement, en peü. de temps à un si haut degré de perfection 

et d'universalité - l'idéographie géométrique, étant composée de mots et en-

travée par les exigences philologiques et par une tradution millénaire, est 
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restée nationale et souvent ambigué dans une même langue. De sorte que, 

lorsqu'on veut construire une idéogTaphie nouvelle, il est préférable d'avoir 

recours à des signes, brefs et universels, au lieu de gaspiller son temps à 

analyser, débattre et sanctionner la signification des mots; c'est pourquoi 

l'idéographie logique a été composée de signes plutôt que de mots". 

4 0 Names, types, structures, orders, e te ••• 

The notational idea in APL is simply to stick to current mathematical 

practice as far a coherent one is already at work, and to suggest novelties 

only for the sake of rationality. 

But granted that a solution has been found for the problem of for~ 

we are faced with ahuge problem of content. 

The modern- axiomatic - usage in mathematics uses structures to define 

and study formal objects. The Bmphasis is on cartesian product (or power) and 

functional mapping ("application"). This implies use of a basic set and 

escalation over it. 

In a càlebrated manuscript : ~aµµ•~~s (the s&nd reckoner) ARCHIIvŒDES, 

in order to show that very large, but finite aggregates of finite objects 

are countable, developed a technique of enumeration which is not new as 

far as notation is concerned - because ordinary words are still used - but 
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shows a system at work[(7)]. 

The arithmetic of this time having names for numbers up to A= 108 

(a myriad of myriads) and not more, ARCHIIJIEDES proposed to define two new 

concepts : "orders" and 11periods 11
• 

The first period has got A orderst 1 st order is made of integers from 1 to A 

2 nd order is made of integers from A to A
2 

A th order is made of integers from 

The second period will go the same way from A to B2 and so on till the 

A th period which will give the possibility to reach which is a very 

large sum indeed. 

This is a very neat example of escalation over a basic set: here the 

finite set of integers from 1 to A. 

The ckallenge of renderin_g ARCHHlEDESi idea in a formal system is not 

met by APL, but the concept of an array is a partial answer 

while the use of arrays satisfies the need for cartesian 

product, mapping are realized through primitive and defined functions. As 

a matter of fact function definitioh looks very much like CHURCH's (after 

RUSSELL) notion of functional abstraction • Only the syntax differs. 

All this boils down to the following concepts 
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a) Enti tieso 

There are only two entities in APL 360: data and functions (this is 

well in evidence in[(s)~. It is enlighting to examine to which point they are 

similar or dissimilar: 

- data and functions can be primitive or defined 

primitive and àefined data are respectively the so-called "constants" and 

"variables". 

Primitive entities are presented (for input and output) as special characters 

from the APL character set but primitive functions are always expressed 

by ~ symbol only (while an integer will use up to 16 decimal symbols) 0 

Defined entities will be named via an identifier which is a word in the 

alphamumeric subset of the APL character set. 

But the specification which gives such an identifier its meaning comes, 

for defined data, from the assignent operator ~ " -1:- " ,and, for defined 

functions from a complex arrangement including the entering into definition 

mode via the Il Il operator, the special "header syntax" etc ••• 

data and funëtions are diversely connected to the foùr basic sets: 

N = integers < 10
16 in absolute value} 

75 Q = { ratinnal number < 7o10 in absolute value} 

B = {0,1} 

A= {APL accepted character set} 

( the numérical values e.re, of' course, implementation de pendant). 
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On one hand the concept of "valence" establishes a correspondence between 

datu.m 
data and functions (a can be viewed as an "anadic" function). 

On the other hand data sets may be "ezcalated", that is, one may take date 

from Np, Qr et. which means vectors if you consider the components as 

such, or array of rank n if ~ou write 

This way of building compleN objects from simple ones by taking cartesian 

products is usual in mathematics. But then one loses. again parallelism 

between data and function except for the special case of the primitive func-

tions 

which can be viewed as vectors. It is worthwhile to notice that in his 

pre-implementation book [(9)], !VERSON used a matri»-like primitive function 

V t,. 
Q I= = 

b) Orders 

Another point of view, when considering the relationship between 

data and functions cornes from the concept of orde~. 

If you consider data as belonging to the lowest level :order o, and 

functions to order1, there is a rational tendency to look after entities of 

hit:';her order. 
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Such entities exist indeed in APL 360 but with some peculiarities of their 

own 

- the concept of "inner product" can be interpreted as the implementation 

of a 'brder 2" dyadic primitive function, represented by the symbol Il Il . ' 

the argument of which are the so-called "dyadic scalar primitive functions" 

(which are or course oforder 1) ; 

the concept of "outer product" can be interpretàd as the implementation 

of a 'brder 2 11 monadic primitive function, represented by the seq_uence of 

symbols 11
0.

11 
, the argument of which is a dyadic scalar pr,imitive function 

- the concept of "reduction" can be interpreted as the implementation of 

a "order 211 monadic primitive function, represented by the symbol 11/ 11 

the argument of which is a dyadic scalar primitive function. 

The only trouble is that 110
0

11 is made of two symbols, and, what is more 

regrettable, / has got to put its argument on its left in contradiction 

to the regular syntax of APL monadic functions (+/v, when v is a vector 

is eq_uivaltnt to 

1 = length of v 

v(l) 

I = origin 

c) Extension to arrays 

Extension to arrays of scalar functions is straightforward. 
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But this is just a case where traditional notation satisfies itself with 

insufficient rigour and it could be interesting to go into more details about 

it. 

If cJ is the symbol used for a primitive "scalar" dyadic function (such 

as + , ➔ r , etc 0 • 0 ), the current practice in mathematics is to use the 

same symbol for the funotion (Ex B -+E) than for the function 

(En x En-+ En) defined by the well-known canonic correspondence. 

But if cJ is in fact a name for a special subset of (Ex E) XE, this is 

certainly an abuse of language to use the same name for a subset of 

( n n) n E XE XE , even if there is a standard link between the two. 

Therefore it should be worthwhile to make 

the distinction explicit between the symbols for a pri:rdtive 

function ~hen the arguments are scalars or arrays of various ranks 0 

This could be done by letting primitive functions be themselves considered 

as arrays. Then 

X a y , when X and Y are scalar, would become 

X cJ [pX]Y when or Y are conformable arrays 

of a non-null rank 9 

This introduces aga.in the idea of ranking and dimensioning primitive func-

tions, bringing them closer to primitive data. 
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All these observations indicate the presence, in the conception of APL 

objects, of a number of attributes which remain incompletely explicitated 

and are not all reachable form the user: 

= tll:J.e structural attribute are dimension and rank - but this le™=l aside lists 

and trees. 

= the "~" attribute remains implicit (boolean, charE.cter, integer, 

decimal) but can be reached indirectly (using 1022)0 

= for non constants objects a ~ attribute is provided ( which covers va-

riables, def:ined functions, , etc ••. ) , the 

sorti.ri.g of which implies other attributes. 

= a new attribute appear with APLSV this is sharing which indicates when 

an object is reachable by more than one user (at the same moment)o 

So we understand that a variety of for~Bl (or formalizable) concepts is 

attached to APL abjects. Some of those concepts are familiar to the user 

of mathematical notation, some are not. But :in any case there is a strong 

incitation to carry over here the trend toward .systematization and ratiœa-

lization. This must certainly be the main guide for future ~tensions and 

implemontation of the language. 
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5 0 From APL to Naples 

* APL is not the last word for ever in notation or language research, 

and modifications are already being offered by authors and considered by 

implementors, ([10],[11],[13]) • 

While it is essential to maintain a reasonable stability, for the 

security of users (this implies an emphasis on extensions against modifications 

experiments are needed which should open new ways (whence the acronym 

New APL Experimental System) o 

But such experiments should be conducted in accordance with the 

fundamental objective, which were present at the very beginning of the 

conception. 

- on one hand, to remain close to ordinary mathematical notation (with possibly 

some improvement in the coherence of the notation itself) means intrmducing 

new types, new structures and further a capacity for defining types and 

structures. 

The concepts of type, structures etc •.• could be embedded in a more 

general notion of type similar to the notion used in mathematical logic 

(for example in the typed lanbda-calculus). This would imply a systematisation 

of the notion of functional. We have pointed out that APLSV 11operc.tom 11 

are functionals, but primitive ones. We could very vrell need in the future 
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user-defined functionalS 

- on the other hand we could question the usefuJness or even the correctness 

of an approach which makes users ignorant of the system which supports the 

language. 

This brings us back to the linguistic aspects of APL. It is now 

customary to refer to the traditional semiotic trinity: syntax, semantics, 

pragmatics [ 16]. 

~ The striking syntactical feature of APL is simplicity : 11 valence 11 

restricted to 2, left association and mode dichotomy (execution, definition). 

- The semantics is certainly unique by its richness as compared to programr::ing 

languages, and even of sta.~dard mathematical formalisms 

- Definition methods currently used for programming language semantics could 

be significantly improved with APL0 

It is a norwzl practice, indeed, to take advantage of an already known 

language or form&l system in order to "program" the entities to be a..~alysed. 

It is even more fashionable to "bootstrap" the whole process by writing an 

interpreter for the language in terms of a smal subset of itself - subset 

to be accepted as sufficiently evident. This has been done for APL by 

LA.THWELL and MEZEI in [ ( 14) l An.other line makes use of a small 

(metalanguage" also supposed to be sufficiently transparent. This is done 
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for APL by ABRÀMS [( 15 ]o 

In each case unanalysed elements remain in the semantics - especially 

the interpretation process itself, and the pragmatics of the language is not 

even touched. 

Therefore it is worthnoting the importance of the 1execute 11 function, 

together with other peculiarities which are on the borderline between semantics 

and pragmatics. In particular, the "carriage return" signe,l, corresponding to 

a special key on the terminal key-board, is to be viewed as a character 

among the other "normal" characters. Used in conjunction wi th execute, one 

finds here a facility for a complete rationalisation of the whole semiotics 

of the system. 

A simple example will help here: 

It is well knnwn that the family of ACKERMANN functions (the first 

members of which are addition, multiplication, exponentiation, tetration, 

etc) may oo generated from addition by primitive recursion. Thus, if® 

representents the 
th 

n nember of the family, one has: 

Another possibility is to use an algorithmic definition including locps. 

Can 

Now let us see how we J deals with this problem: 



a., in APL 360 (XM6), (V~ + , @A!:--)-x 

and @ can be build wi thout loop or recursion by 

b. The whole ACKERMANN family is obtained inductively if @ has been 

defined as ACKN , one has 

Z X(ACKN + 1) Y 

[ 1] z (ACKN)/Y X 

(supposing that the reduction oferator is extended to defined functions) 0 

c. If the 11execute" operator is available, it is possible to show that 

5 ~· (3x (y - 1) p 1 ( x/ • , 1x 1 , (3x(y-1) p' px) 1 and proceed inductively 

from there as in the preceding case 0 J. BROWN has asked whether it would be 

sufficient to define@ in a closed, non recursive form. [12] 

The answer is yes : using ~ makes it possible to define not only 

(f) , and i1;ductively @ frorn O , but even to define directly x@y 

without any locp or recursionô This is a unique example of a non-recureive 

definition of a truly ~§ral recursive function. 
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A function such as "execute" is certainly of a different kind than 

11plus", "drop", or eve.n '~assign". It is not possible te describe its effect 

by mean of a mathematical object : functional application or explicit definition 

"Execute" obtains his .meaning by reference to the APL interpreter itself 

which is - after all - an APL object from a "system" point of view , but 

a hidden one. 

With APLSV many s;ystem f~tion'!;,_ are also introduced. The very 

concepts of snared variables and of auxiliary -processor ririg the (precedently 

ignored) entities of the system accessioie to the language user. No doubt we 

must proceed L~ tbis direction but here the main problem is to keep this 

development in harmony with the first constraint mentioned: compatility with 

the spirit of mathematical notation • 

.An experiment of this kind is in progress and will be described 

elsE?where [ 17]. 
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PREFACE: 

The following is intended as a contribution to the symposium APLASM 

III,2 
-1-

( APL applied to Symbol Manipulation) to be held on December 20 and 21 1973, 

in Université de Paris-Sud, Centre d'Orsay, Mathématique, Owing to other 

commitments the author is unable to present the paper in persan. 

The paper consists of two sections. In the section headed "Abstract data 

structures" the abstract set of objects used in the Vienna definition method 

is introduced; its properties are defined by means of a system of axioms and 

a linear notation is established for the members of the set; it is well-known 

that the objects themselves can be represented by labeled, rooted directed trees, 

In the second section with the title "APL representation of abjects" the 

representation problem of the members of the general class in APL is considered. 

The following suggestions for extensions to APL are introduced: 

- nomination of selectors and elementary abjects 

- specification of composite selectors 

specification of µ mapping 

- specification of selection. 

Using these suggestions the Viennese linear notation for abjects is easily 

transcribed into APL. Exrunples are given, As a result means and techniques 

for the discussion of semantics of computing processes become available in 

APL. 
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ABSTRACT DATA STRUCTURES 

Computational processes are concerned with the manipulation of data, be it 

scalars (numbers, characters etc.), sequences of scalars (strings), arrays and 

so on. It is useful to introduce a general class of data structures, which 

contains all of the data needed for dataprocessing. We call the classa class 

of abstract data structures, or abjects because their properties are given by 

a system of axioms and the representation problem is only considered afterwards. 

Axioms for abjects 

Let ( O , S, o ) be a system of abjects, selectors and an operation for which 

the following is supposed: 

- S is a finite non-empty set 

0- con tains a fini te non-empty set [ 

Let (s*, o, I) be the free monoid generated by S in the usual way with 

0 as the group operator and I as the identity element. s* is called the 

set of comEosite selectors. Finally let 0 also be a relation 

and 0- with some special proporties to be discussed presently. 

system ( 0 ' s, 0 ) eight axioms are chosen: 

Al. se A E O -------------------(closure under selection) 

A2. (Ko s) A= K (s(A))----------(composite selection) 

A3. I O A = A --------------------(identity operation) 

A4. (3 w) (V s) s o w = w----------( existence of null object) 

A5, (\1 w)[(Vs) s ow = w => (VA)(3 K)K 0 A= w] 

between 

For the 

-----------------------------(composite selection of null abjects) 

A6. (V K,e) [K(A) = e <=> K(B) = e] => A= B 

---------7-------------------{equality) 

Aî, (v' A, K, e)(.:I B)[K(B) = eA (\/T)[-,dep(K,r) => T(B) = T(A)]] 

-----------------------------(existence of constructed abject) 

s* X V-

AB. (J is the smallest set including the null abjects and the elementary abjects 

such that axioms 1-7 hold. 

In above formulas A, B f-(J, e e f, s € S, K,T G s* and w is a null object. 

The deEendency relation dep is defined as follows 

dep(K,T) = (3 o) [K = (J O TV T = (JO ~ 

with * 0 E S • 
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Discussion 

From axioms 1 and 2 it is seen that o can be regarded upon as a relation 

between S *x 0- and <J (i.e, a non-empty subset of this Cartesian product) wi th 

the following property: 

for every ( K ,A) e s* x 0- there exists a unique object B such that 

(K,A,B) E o , The relation o can be regarded upon as a selection operation: 

for every K Es* and A E 0- a unique B is selected, In other words: the 

abject A has structure in general and given a composite selector K the 

component B of A is selected. We wri te for this operation Ko A, K(A) or 

KA • Note that o plays a double role as i t is also the group operator in the 

monoid ( s*, o , I) • 

Theorem 1, 

There is exactly one null abject, 

Proof: Suppose that w1 1 w2 satisfy axioms 1-5, Axiom 5 states that there is 

a composite selector K such that Ko w
1 

= w2 ; if K. = I we have an immediate 

contradiction, if K 1 I we get a contradiction using axiom 4. 

Definitions (s ES as usual) 

- The unique null object 1S denoted by n 
A = { a 1 (3 s ) s o A = n} 1S called the set of atoms 

E = {ele 1 n A (\ls)s 0 e = n} is called the set of elementary abjects 

- C=O--E is called the set of composite abjects. 

For a.composite abject A "in there is at least one selector s such that 

s(A) 1 n • 

Theorem 2. 

If A, BE (J and K é s* such that K(A) = K(B) ~ n then 

(\1 ,) [,dep(.,K) => ,(A) = ,(B)] =>A= B 

Proof: If . , é s* such that ,(A) = e then ,(B) = e because 

(a) if ---, dep(.-,K) then from ,(A) = ,(B) follows ,(B) = e 

(b) if dep(,,K) then 

(b,) T : Ç. 0 K and from K(A) : K(B) follows that ,(B) : e 

or (b2) K = Ç. 0 T and if ~ = I then ,(B) = K(B) = K(A) = ,(A) = e 

if E;. j I then K(A) = n which contradicts the assumption. 

As a result of this: 

if there is no , such that ,(A)= e then there is no , such that ,(B) = e 
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From axiom 6 we can now conclude the validity of the theorem. 

Theorem 3. 

The object B which satisfies axiom 7 is unique. 

Proof: Suppose that B
1 

and B
2 

satisfy axiom 7. Then K(B
1

) = K(B
2

) = e 

and from (\/,)[-, dep(-r,K) => -r(B
1

) = -r(B
2

)] and theorem 2 we conclude that 

B
1 

= B
2 

• 

Definition 

µ : Û x s* x E-+ 0- is a total mapping where the value of µ(A,K ,e) is the 

(unique) B satisfying axiom 7. 

Theorem 4. 
For any B é (; - {Q} there exists a finite sequence 

i = 1,2, ... ,n > such that B = B n 

B. = µ{B. 
1

,K· ,e.) 
l. l.- l. ]. 

Proof: Choose B = Q. If B = e then B = µ{fl,I,e) and the theorem is proved. 
0 

If B 4 f then there exists at least one selector s and at most a finite 

number of selectors such that s(B) # Q; further there exists at least one 

composite selector K and at most a finite number of composite selectors such 

that K(B) = e ; both statements are a result of axiom 8. Suppose that 

i = 1 ,2, ••• ,n ~ 1 • For 1. # j we have , dep( K. ,K.) • If B 
l. J n 

is Ki(B) = ei 

defined by B. = µ{B. 
1

,K. ,e.) 
l. l.- l. l. 

i = 1,2, ••• ,n > 1 with B = Q, then we can 
0 

prove with axiom 6 that B = B • This proves the n 

Definition 

theorem. 

For any B éÜ' the characteristic. set associated with B 1.s 
I 

B = {<K. : e. > l 1 < i < n} 
l. l. - -

with as defined in theorem 4. If B = Q then B = {}. 

Theorem 5. 

A = B <=> A = B 

Proof: Trivial with above definition and axiom 6. 

Theorem 6. 

If <K1 : e 1>,<K2 : e2> E B then -, dep(K
1 

,K2 ) • 

Proof: Trivial. The condition î dep( K 1 ,K2
) is called the characteristic 

condition. 



Theorem 7. 
If Z = {<K. : e.>11 < i < n} is a set for which the characteristic condition 

1 1 - -

is fulfilled, then there exists BE 0- such that B = Z. 

Proof: By induction, too lengthy to reproduce here. 

We mak.e now a few remarks on the representation of members of the class of 

axiomatically defined data structures. With each object B is associated B 

i.e. a set of pairs. If for example B = B
3 

where 

B. = µ(B. 
1

,K· ,e.) 
1 1- J. l. 

i=1,2,3 wi"th B =,..., K =s K =s os K =s· os 
0 a, 1 1' 2 1 2' 3 2 2 

then 

B = {<s 1 : e 1>,<s 1o s
2 

: e2>,<s 2 o s 2 : e
3

>} and B can be represented in its 

turn by either three rooted, directed, labeled trees without bifurcations, or 

as one rooted, directed, labeled tree, We have in figures 

B = 

B1 
s, 

= e, 

B2 
s2 s, 

= e2 or 

B3 
s2 s2 

= e3 

in which 0 indicates a root and • 
edges carry selectors as labels (each 

mutually distinct labels), leaves are 

other nodes are labeled. 

Theorem 8. 

B = 

a leaf. The labeling is done as follows: 

two outgoing edges of anode carry 

labeled wi th elementary objects, no 

If the characteristic condition holds for two sets 

X= {<K.: e.>11 < i 2_n} and Y= {<K.': e.'>11 2-i 2_m} 
1 · 1 - 1 1 

and if K e s* then the characteristic condition holds for 

Z = {<T : e>l<-r : e> E: X ", dep(K,-r)} U {<-r o K : e>l<-r : e> f. Y} 

Proof: straight forward using theorem 6. 

Definition (extension µ function). 

For any A, B E. O- * and K ES the unique object C for which 

C = {<T : e>l1(A) = e ", dep(-r,K)} U {<1 ° K : e>l1(B) = e} 

is denoted by µ(A; <K : B>) 



Theorem 8 states that there exists an object C with the charad;eristic set 

as shown and that it is unique. If B = e then µ(A; <K : e>) 

satisfies axiom 7 so that it is justified to use the function name µ in 

above definition. 

Note that µ(A; <I : B>) =B. Further 

µ(A; <K : n>) = A if and only if (\! ,) dep(K,,) =>,(A)= n. 

In order to illustrate the use of the extended µ function we can write for 

above example 

B1 = µ(n; <s1 e,>) 

B12= µ(n; <s1 e2>) 

B' = µ ( B1; <s2 : B12>) 
B = 1-1(B' ; <s

2 
o s

2 
: e3>) 

Definition (further extension µ function) 

µ(A; <K1 : B
1
>,<K

2
: B

2
>, .•• ,<Kn 

= 1-1(A; {<K. : B.>j1 < i < n}) 
1 1 - -

B >) n 

= µ[µ(A; <K1 : B1>); <K
2

: B
2

>, ••• ,<Kn 

B1 = {<s1 e >} 
1 

~,2= {<s, e2>} 

B' = {<s, e
1
>,<s

1 
o s2 e2>} 

B as shown before 

For n = 0 µ(A;)= µ(A;{})= A; for n > 1 we have a recursive definition. 

For A= n we write µ ( ••• ) instead of µ(n; ..• ) . 
0 

In above example we have 

B = µ(rl; <s 1 : e
1
>,<s

1
o s

2 
: e

2
> <s

2
o s

2 
: e

3
>) 

but also 

B = l.1 (<s, : e 1>,<s 2 0 
: B12>,<s 2 o s

2 : e3>) 

with B12 as given ab ove. Note that µ(B; <K : B>) 1S a ligitimate expression; 

the value of it is B if and only if K = I or B = n if K = S for 

instance the value of it is a new abject C with the property that s(C) = B . 
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APL REPRESENTATION OF OBJECTS 

It is obvious from the axioms gi ven ab ove that one must have two sets in 

advance if one considers applications: the set of selectors and the set of 

elementary objects. It is suggested that individual selectors and elementary 

objects are nominated in APL as follows (we give a few exa.~ples) 

a'S' 

a 'E1' 

a' E'LEM' , ' 1 ' 

Here a is some suitably chosen APL symbol. For the moment we need not 

distinguish between selectors and elementary abjects, 

Using above "type declaration" we can specify composite selectors. If S1 and 

S2 have been nominated and so exist in the system we can specify for instance 

K + S1 ° S2 

P + S1 ° S2 o S2 

Q + S1 ° S2 o a'S3' 

and we introduce here the identity selector I by the specification 

I + a" 

Next we consider the problem of building objects from the nominated selectors 

and elementary abjects. If the objects A and B have been built and if K 

is a composite selector then we write for the µ mapping µ(A;<K:B>) in 

APL 

AKB 

So that K is considered to be a dyadic operator. Each object A is 

characterised by its characteristic set A; it can be nominated as an 

elementary object by 

a A 

The null object could be given a special APL character, but it is suggested 

to introduce first a selection specification and afterwards specify the null 

object instead. 
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If A is either an elementary abject or a composite abject built by a 

sequence of µ mappings, and if K is a composite selector, then K(A) 1.s 

again an abject by axiom 2. It is proposed to use the compression operation 

in APL and to write 

B + K/A 

With ax.1.om 3 we have then for any abject A • 

B + I/A ~A~ A 

However if E 1.s an elementary abject and K is net I, K(A} is the empty 

abject, and so we can give it a name (for instance O ) in APL by 

0 + K/E 

Note that a O is then the characteristic set of the empty object (i.e. the 

empty set} and that this is not equal to a'' • Since we do not need a special 

character for the null abject it is reasonable to write for 

A= µ(Q;<K:B>) 1.n APL 

A+KB 

Finally we need an APL notation for the extended µ mapp1.ng 1.n which the 

µ function is given more than three arguments. It is proposed that the 

result of the following statements 

K 
1 
+ K 1 ,K2 ,K3 

B + B1 ,B2 ,B3 

C+AKB 

(where either the K's 

B's are abjects} is 

APPLICATION 

are nominated selectors or composite selectors and the 

µ(A; <K1 :B1 >, <K2 :B2>, <K3 :B3>). 

We consider only binary arithmetic expressions in this section. An expression 

E in this class has three components: SOP1(E} and SOP2(E) are variables, 

constants (elementary abjects) or themselves binary expressions and SOP(E) 

is a binary arithmetic operator (an elementary abject). 
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So for the expression E =a+ b * c ~e have 

SOP1 (E) = a 

SOP2(E) = b * c 

SOP(E) = + 

SOP O SOP2(E) = * 
SOP1 o SOP2(E) = b 

SOP2 ° SOP2(E) = c 

and written as a µ function 

E = µ
0

(<sop
1

:a>,<sop
1

° sop 2 :b>,<sop
2

o sop
2

:c>, 

<s op:+>,<s op os op
2

:H>) 

For above expression we can write using the extensions to APL suggested 

above 

a 1SOP1 

a 'SOP1' 

a'S0P2' 

K1 + SOP1 o SOP2 

K2 + SOP2 ° SOP2 

K +- SOP o SOP2 

E + SOP, SOP1, K1, K2, K (a'+'),(a'A'),(a'B'),(a'C'),(a'*') 

We have then the following structural properties of E 

SOP/E .-. + 

SOP1/E .-. A 

E2 + SOP2/E .-. E2 + SOP, SOP1 , SOP2 (a'*' ),( a I B' ),(a' C') 

If E1 and E2 are two binary expressions then 

E + SOP, SOP1, SOP2 (a 1+ 1 ),E1,E2 

1s a new binary expression. If E2 is as above and E1 + a'A' then E 

as above is retrieved. 
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APL - GA: an irmaediate extension 

of APLSV. 

J. MICHEL 

C.N~R.S. (France) 0 

Résumé : l'évolution des systèmes APL conduit naturellement à des 

extensions dont l'une, celle des structures de données en "tableaux 

de tableaux" a déjà fait l'objet de plusieurs propositions. APL - GA 

est une extension de ce type q_ui aborde également d'uatres problèmes 

significatifs: types, compilation, etc ••• Un programme APLSV 

permettant de simuler APL-GA est produite, et plm,ieurs exemples 

d'applications sont analysés. 

1. Introd.uction 

2. Extensions to arrays of arrays 

30 Some basic ideas for APL extensions 

4. API.GA: description of the language 

5. APL-GA.: Implementation of tLe system 

6 0 API,-GA. in representation 
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1 • INTRODUCTION. APL has been conceived towards 1960. Du.ring almost 

fifteen years many development occured which opened new directions to the 

language and sti11 maintained tre orieinal spirit. 

Since the appeara.n.ce of Iverson 1 s book, several extensions and modifica-

tions have been proposed which are all directed towards greater ,: compactness, 

generality, unifo:rmity and simplicity (see [12]) ; in the first widely used 

implementation, APL\_360, the main innovation was a uniform treatment of 

arrays,in the recently intrcduced APL\SV there is also an explicitatton and 
l 

systematisation. of some of the "pragmatic" part of the language, via the 

concept of shared variables. 

It must always be reme ·.bered that APL wàs at the very begining 

a notation system urg:ing for a r9.tionalisation of mathematical - especially 

algebraic- notation. No spécial application ·was .· foreseen no special imple-

mentation recommanded, not even a parsing strate@Y. 

Therefore APL's efficiency as a programming language is already in 

itself an achievement. 

Yet, the user's opinion is that there is at least two facilities still 

missing for APL to be a most powerful and completely universal language 

- the possibility to handle data structures ofJ more generàl kind 

than arrays, such as trees, files and lists. 
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better control structures. 

In addition, the need is often felt to get faster execution of APL, 

which remains a remote prospect with a system completely in;terpreted at 

high level as is the present one. 

So. a new step forward is needed. But the cqnstraints to 'be obeyed 

are very strong: keep the original spirit of the system, avoid prolife-

ration of dialects etc •.• 

On the other hand recent advances in programming lunguage developement 

may be reinterpreted in the APL way and s1iggest interesting novelties. 

This is the case, in particular of many works devoted to 

"extensible languages" research: (see [13], [16], [17], [18] , [21] .). 

A cormnon feature of most of these tentatives is the explicit definition and 

manipulation of widely differing data structures via the notion of t~pe 

(called sometimes mode or structure) 0 

The possibili ty of going further wi th. APL has been evoked in [20]. 

A specific proposal will be offèred in [26]. 

The present paper is an intermed"iary step. 

It has been found that the introduction in APL of thè notions of 

general arrays (a slight modification of the concept introduced.in [14] 

refered as paper jn what follows). 
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) and of types (in actual fact, a generalisation of this notion which 

we will call also "information predicates") answers the first of the above 

expressed needs: powerful facilities for data structures manipulation 

(with immediate applications to data-base management, symbolic and algebraic 

manipulation, ••• ). 

Fu.rthermore the scheme here adopted provides the possïbility of par-

tial compilation of APL programs depending on the amount of information 

given by the user, via information predicates, in the prog.ram, 

It is probable that compilation of the most often executéd lines of a 

program would solve the problem of execution speed (see [15] for reference 

to previous tentatives of compilation of APL). 
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2. EXTENSIONS 'rO ARRAYS OF ARR.US. 

2.1. Any forLlal system is faced - at the very begirLQing-with the 

problem of data types and structures. 

Let us .study the second one. 

Iverson 1 s book already contains a distinction of four kinds of 

structures: scalars,vectors, matrices and trees. 

The possibility of working in algebras whose arguments could be 

non trivial data structures is a major motivation of APL, as 

K. I\'è;RSON points out, page 2 of his book.: 

11 For example, separate and conflicting notations have been developed 

for the treatment of sets, logical variables, vectors, matrices, and trees, 

all of which may, in the broad universe of discourse of data processing, 

occur in a single algori thm. 11 

At this stage the general notion of an array is not explicited: 

only scalé!l'.'s, matrices and trees are specified 0 Arrays are only suggested 

in the book, §1 . 20 ( 11 Levels of structure 11
) ( t1] , p. '39). Particularly 

interest ing is the footnote * 

11 * Further levels can, of course, be handled by considering a family of 

matrices 1M, 2M, ••• ,nM, or families of families,jiM. " 
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The 1963 presentation of the language [2] and the 1964 joint work 

with FALKOFF t'y SASSENGUTH [3] forget about trees. Arrays of rank higher 

than 3 are introduced sometime beetween 1964 and 1966 0 

The next step is the celebrated "March on Armonk" [4] where 

S. FALKOFF submitted to strong APL users pressure admits that 11 related to 

the file handling and I/0 ~uestion, is the generalization from arrays of 

scalars or single elements to arrays of arrays/ ([4]) p.60) 

Two years later we have the first concrete proposal, made by 

J. RYAN during the third APL users conference ([5]) p.s);a proposal is 

put up by J. BROWN in his thesis [6]. 

In 1972 a proposal was made by G; MARTIN and discussed informallY at 

the APL/SEAS working colililllÎ!.ttee. And finally in APL 73 three papers 

by EDWARDS, [ 7] MURRAY [ 8] and VASSEUR [ 9] . Finally cornes the 

GANDHOUR and MEZEI paper [ 14]. 

2. 2. Before ,going into the various proposals it seems ap:pDopriàte to 

comment on the apparent slowness of all this process. And this can be done 

only by insisting on some peculiarit i es in vol ved wi th any significant 

APL extension. 
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We restrict ourselves to APL/360 and to eor1stan~ s, that is 

ord:i.:1ary (numerical or cl::.aracter) cou.-,,taniB, nnd .primitive fur_ctions. Then we 

note the foJ.lowing 

a) you can enter scalar or vector eonstants, not arrays of rank > 2 • 

b) So you have to use "constructor-s"whichare the primitive functiorrs 

p , (outer products also delivers higher rank results). To these functions 

are associated inverses which give back the structure itself (here the 

monadic p). 

c) admissionof arrays as arguments for primitive functions cause_.no 

problem for the socalled 11scalar functions". For mixed function extension 

is not straightforward 0 • 

Now it should be clear, that any extension of data structures raises 

the following problems. 

a) def;i.ning "constructions" that would bu.ild: the new data 

structures from keyboa~d atlmissible constants (i.e. scalarsand matrices) and 

the corresponding "inverses" • 

scalar 
b) extend:lng the meaning of and mixed functions in such a 

way that nothing wrong happens w}1en the new structure degenerates to an 

11ordinary" array. 

From these req_uirement:J follows that a data structure extension implies :ln 



III.3.8 

faét a cornplete reappraisal of most of tlue language and -'chen necessarily 

interact with consideration corning for other. modifications possibly 

under consideration; of course you rnay choose to :improve those but then don' t 

hope too much for an irnplementation 

2. '3. The main published proposalSwhich irnply a signifiçant. extension of 

the language. 

a) RYA N's proposal : [5] 

construction of lists i.s a~hieved by a combination of semicolo~s 

and ( ) . . 

T T 
T+(A) +➔ + T+(A;R) +➔ I~ 

A A l3 

Selection .is achieved by indexing along a path: 

T+ ( A ; ( (B ; C ; D ) ; E ; F' ) ) 

B -<--+ 

E +-+ 

T[2 1 1] 

T[2 2] 

:Measuremen t cornes for a new primitive 

which returns a vector of lists : 

2 +-+ p[1] T 

( 0 ; 3) +-+ p[2] T 

(0;((0;0;0);0;0)) +➔ pf !J.] T 

.. 
p 
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Some others primitives are added, in particular 

for catenation .of lists 

b) ED~ARD's proposal [7] uses only i;ma.new primitive 

C 

T 
T+cA t which gives 

A-

you vectors of anything. 

Ordinary APL arrays are but special case(scalar arrays) of general 

arrays (having "relative scalars" which could be themselves arrays). 

A special type of indexing is then required, where 

Z[2] is different of Z[,2] 

c) NURRAY's proposal [s] 

Three primitivesare offered: 

::, and c ( conceal and reveal) 

for construction and selection 

a for.measurement. 

d) VASSED"R's proposal [9] 

Here .2.2..nstruction of lists is o:ffered through special brackets 

( { }) . 



Measurement ha:s three primitives 

Indexing is ac hieved via another bracketing system ( E:3') o 

The APL 73 Congress in Copenhaguen was an opportuni ty to discuss 

all thase proposals. A special session was devoted to this problem, 

chaired by P. BRAFFORT, with an active participation of D. FALKOFF and 

K. IVERSON .the APL fathe:rs urged tüe audience to make a complete 

examination of GH.ANDOUR z IJIEZEI paper (not available at that moment) 

nefore going into new experiments. 

2o5o GHANDOUR and I'IEZEI I s propos al is by far the more extensive. 

1J 
Not less than\new primitive functions and operato:mare proposed. A clear 

distinction is offered between the concepts of a function and that of 

an operator. We shall retain many of their ideas but first criticize some 

aspects of their work. 

The first objection one sho.uld make to G « M is that it contains 

no clear definition of what really are general arrays. This lack of an 

adeq_uate formalisation entails a lot of semantic difficulties, together 

with the fact that the G&, M conce·ption of general arrays singularizes 

some objects they call "scalars" (which for them have the property that 

the enc}ose of a scalar is itself), creating some awkward effocts for 
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instance, if the Ith element of a vector A is some array B, AGI 

gives as result B if it is a scalar, and else it gives > B the same 

happens in many other situations. 

Another defect shows in a series of difficulties in the manipulation of 

general arrays due to a lack of means to exami..~e the structure of an 

array: it .is difficult to determine if a variable holds an ordinary or a 

general array. These difficulties in asserting the nature of objects can 

also be found in present APL, and can be traced down to the lack of a notion 

of "type 11
• For example, in present APL and APL SV, 1 t' 1

, l O gives a 

blank as resu1t and 1 t ( l O) , 11
, give::i a zero while they seem to be the 

same object. This is due to the hidden notion of number or character type 

of an object and to the (never explicitely given) laws ruling the composition 

of these types under the primitive functions. In the given example, the 

rules used are: 

-.a character raveled to a number is a character 

a 

- and: a number ravaled to a character is)number. 

And there ara two different empty objects: ' ' which is a character 

and 10 which is a number. We have other laws ruling operations on them, 

such as : 1+1+ 'A, is a blank, and 1+1+1 is O which means that 

1 +'A' is t t but 1 + jl.S l 0 

Similar problems occur in unexpected conversions between reals, 
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integers and booleans, which sometimes cause a workspace to overflow when 

a boolean matrix is inadvertently converted to real (which happens after 

a division, even by 1 !). 

A last flaw we would like to point at in the G and M paper is 

the lack of proper examination of the syntactic difficulties arising from 

the definitions of functionals: they are an important notion discussed in 

G and llI under the name of operato.rs ( we prefer to call them functiOlli'lls, 

in accordance with common use in analysis and logic). 

Sorne syntactic inconsistencies involving functionals are : 

I: /+A it is either I: /+ A 

label plus-reduction 

or I: ! + 

reduction along I
th 

axis 

1. +2 is ambiguous it is either 1. + 2 
real number plus integer number 

or 1 + 2 

integer external product with+ integer 

is semantically ambiguous its definition depends on the 

meaning of " x 11 -used here, monadic or dyadic, and this cannot be 

determined from the context. 

Such syntactic problems hamper further rese a-ch it would be useful 

to allow user-defined functionals in APL this is impossible in 
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Ghandour çllld Mezei's scheme, since all the existing functionals have 

different syntaxes, and these are already inconsistent as has been shown. 

Introduction of any new operators cannot but increase the number of such 

inconsistencies. 

3 - Some basic ideas for our APL extension 

Here we lista series of concepts basic to describe our proposed extension. 

To each object is associated a set of attributes which we describe now. 

A. Names 

The basic abjects of the lang71age have a value ( the::r internal re-

presentation)associated with a name (their external representation). We 

divide them in two classes according to their names 

1 - Autonymous objects, that is abjects whose name coincide with the 

value,. i.e. constants. They are : 

-numbers, with syntax C-] integer [. integer] fE [-] integer] 

or a sequence of such separated by blanks here square brackets denote 

an optional item, and integer a non-empty sequence of digits. It is the 

present APL syntax, excepted that if a 11
." is present it must be preceded 

and followed by at least one digit (which may be zero). This is to prevent 

ambiguities with the functionals external and internal products. 

- literals, wich o bey APL syn tax. 
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2 - Heteronymous objects, whose names are identifiers. The rules of 

formation of identifiers are : 

a) a letter followed by a sequence of letters or digits (in letters we 

include the alphabet, the underscored alphabet, and l and 6 ) . 

~) 0 followed by a sequence of letters or digits (eventually empty). 

y) ['] 

ô) A single special character (that is, any character nota letter, or di-

git , or one of ( ) 1 : [ l A ) • 

This is a restriction compared to APL SV ir>. a single respect these 

rules exclude the identifier of the external product which is a sequence 

0 

of two · special characters • In APL-GA it is represented by the 

period alone. 

The association of names with objects is less rigid than in 

APL SV. For instance, the objects with an identifier of classe ô) cannot 

be user-defined in APL SV but could be in A-PL-GA. 

To enhance such a freedom, we would have liked the possibility of 

creating an infinity (or at least a number adding to 256 with the present 

number) of new characters. This is alas not possible within the present 

implementation (though the alpha fonts had been initially designed to be 

multiplied via overstriking with i underscore - overbar diaeresis "and quad 

(sec [12] )). 



So the characters we will use here to represent new abjects are 

not always the result of deliberate chaise, but rather of the restrictions 

of the present r/o implementation, and so do not represent definitive 

options. 

As a matter of fact a very slight modification in the interpreter 

solvesthis problem. 

B. Order 

Another feature associated with objects of the language is what we 

call 11order 1111
• Its definition is as follows 

- Ob-jects which take no argcunents are of order O (i.e. constants, ordinary 

variables, niladic functions and information predicates). 

- Objects which take arguments of order O are of order 1 (i.e. monadic 

and dyadic functions). 

- Objects which take arguments of order O and 1, at least one of them 

of order 1 , are of order 2 (i.e. functionals). 

- The operator axis of Ghandou.r and Nezei which can take a functional as 

argument, is of order 3. 

This distinction provides a convenient framework for syniactic 
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analysis: approximately, objects, w:i,th order i have syntactic priority 

over ob~ects of order less than i Ideally, this would be not approximately 

but exactly true. We can specify here our criticism of G and M by 

saying that it is probably the fact that this is not true for functionals 

which prohibits the possibility of user-defined functionals. 

C - General arrays --------------

To sum up the structure of objects in our language, we can say that 

they have a name and a value with the value is associated an order. We now 

divide objects in four classes: functions, functionals, types and 

general arrays, We will discuss later the nature of functions, functionals 

and types. We will now define recursively what general arrays are. 

A general array is either 

- a bit , that is one of two basic objects we denote O and 1 0 

- or an object which we represent as 

< n 1 , •• • ' nk / a 1 ' ••• ' aN > where a. E general arrays and 
1_ 

where n. ,k are positive or null natu:ral integers and 
1 

then N = 1) o 

k 
N = Il n. 

1 1 

By this notation we mean that a general array is given by: 

(if k=O 

- a sequence .of integers n
1 

, o •• , nk which we call the "rho" or the di-

mensions of the array k is the rank of the array. 

- a list of general arrays a. , in number the product of the dimensions. 
1 
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We did not give other abjects than th~ bit to build general arrays from, 

because all the usual objects (characters, real numbers, ••• ) will be built 

as special cases of general arrays built with bits. 

This decomposition is not necessary but has two advantages : 

- it allows within t·he language access to the bit representation of abjects. 

- it allows the language to be defined by the means of a small core and of 

a "st.9lldard prelude" (in the termin.ology of [ 13]) of definition,s within 

the language, which makes the language mJ.ch more tractable for semantic ana-

lysis and debugging (see the discussion of this point in [21]), which is 

a very desirable feature for an extensible language. 

D. Types 

What makes possible to build easily general arrays hierarchically 

from bits is the notion of 11types 11
, or information predicates An. 

information predicate is essentially a predicate describing properties 

of a general array. To allow efficient manipulation and use of them, we had 

to restrict the expressible properties and the predicates we build as 

follows: 

- there is the basic predicate "bit" describing an object which is a "bit". 

- when we have two predicates and , we cax1 ~uild a predicate 

p
1
v p

2 
which describes any object which verifies one of the predicates 
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- when we have a predicate p we can build the predicates 

:::ip and if R is a sequence of integers meaning that 

the object refers to objects verifying the predicate p (that is, the 

object a I s verify p) 
i 

and in the second case that in addition the object has R as dimensions 

For type values (we say type or information predicate indifferently 

because our notion seems a natural extension of the current notion of type) 

the interaction between variables and constants is quite peculiar: we 

foresee two kinds of implementations 

- Implementations where the language is completely interpreted; in 

these implementations the type values can be attributed to variables and 

them manipulated without any restriction. 

- Implementations where the language is at least partially compiled there-

from assignnment of a type value to a new variable will be possible only 

by system comr11ru1d and can force to recom:pile code using another meaning for 

this variable .(~) 

(*) This restriction is necessary because it is well known that the efficiency 

of a compilation depends largely on the amount of compile-time type checking 

which can be done. 
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In the interval between two redefinitions of a name holding a type value, 

this name will be considered as a type constantrand the expression:it was 
or atomic type. We then make a difference between such a constant 

assigned to; e.g. if INT was assigned the type iG::i~IT, the operator 

TNT=16::iB"M--ll give as answer false we will introduce a new operator + 

"conforms to" and this time(+IPT)=i 6 ::i7?-IT) will be true. This operator 

is useful in type expressions, enabling to consider atomic types as 

abbreviations 1"or their deU.nition. 

We will corne again to the distinction between atomic and other types 

and to their relation with the definition of general arr~ys in paragraph IV) 

E - Left-values 

The intermediate results of the computation of expressions are carried 

in objects wh0se names are not accessible to the user. We call them internal 

names; among such names, we distinguish a class possessing what we call 

left-values (following the teruinology of r21]). This means that the 

expressions they represent can be computed as a set of memory locations 

belonging to already existing variables. We call them left-values because they 

are exactly the permissible domain for the left-hand side of the assignement 

operator ( + ) • 

They are build according to the following rules: 

- single names have left values 
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- the result of applicatio11 of a selection operator to a left value is a 

left value. We shall see the definition of selection operators in part IV) 

They are indexation, compression, and take and drop for some values of the 

operands. 

These left-valued expressions are· the only instance of reference by name 

in APL all other references to objects are by value. 

F - Extension mechanisms 

The extensibility of APL-GA derives essentially from the concept of 

types. The main procedure used to butld an extension is to introduce a new 

type of objects and extend part or all of the primitives of the language to 

allow interpretation of this new type. 

Wi th this purpose in mind, we first name the predicate value which will 

be the new type, assigning it to a new variable by the system command used 

to this purpose. For example 

or, in APL SV style : 

in polish style )I8TYPE COMPLEX 2:::;FL0/1..T 
vJ!lT 

COUPLEX'nISTYPE 2:::;FLOATvINT 

After this, we now redefine our language primitives as acting on objects 

of the new type and corresponding conversion routines. All this and :nore 

is done by using an important prirJ.itive operator which we call a 11cast 11 

(following the terminology of [ 1'3 J) and wri te 11 11 
• Its uses are the 
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follé!iwing : 

a) Defini tion of new functions meMings when operanp.s are of the new type: : 

permissible form for the function headers in API.r-Gf.\ is, therefore ; 

VV3+[T1:]V1 F [T2:]V2 

where ~ - items within brackets are optional: when omitted we have the 

usual APL header V1, V2, V3 are variable names and F is any 

identifier, and T1 and T2 are types. 

The meaning is that following the header is the definition of the func-

tion F when acting on arguments of types T1 and T2 respectively. 

If we have an ordinary header, that is without type indication for the 

arguments, this means that tne function is defined for all possible types. 

When we have written several such definitions of the same F, the rule is 

that the computer tries each one until it has found one which matches the 

argu~ents and then applies it. This allow to extend easily all primitives 

to new types. 

b) transmission of informations to the compiler. 

The only way to s peed up the execution of a piece of text on a given machine 

is to increase the amount of compilation which is done on it, and for this 

we need to increase the amount of information given to the compiler~ for 

instance, in present APL , when interpreti..,ig A+~~•. the main exp. ense in 

time is due to calling a routine 11+11 fitted for the general case of A,B 
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arrays, one of which may be of bits ànd the other of reals (the+ subroutine 

has more than 200 arguments in IBM's implementation !) when in fact we 

wanted to add integer scalars in the same waywhen interpreting +(A=0)/5 

we call two such general routines when we wanted to make a very 

simple conditional jump depending on a boolean scalar A. 

The solution we offer here is to have an "interactive" compiler. 

amount ,°,f com.pilation de-pending on the 
That would be a compiler able to do a variou~amount of information given 

( 1<:) 
to it.' 

In APL-G, we allow additional informations to be given to the compiler 

via the operator "cast". The general use is : T: A which 6 ives to 

the compiler the information that the object · A conf orins to the- defini tion 

of the type T (jµis is close to use a) ). If on execution the type does 

not mate~ an error message is produced. So, if we want to increase execution 

speed of code for A+ B we can write (T:A)+(I:B) and for +(/1=0)/5 

we can write +((T:A)=0)/5 if I is the type ( 10)::>T!?T 

(&) This is, perhaps, the fundamental .point in compilation, since compilation is 

a translation :rreserving semantics, and the amount of semantic properties 

which can be proved on a program depends directly on the amou_nt of infor­

mation predicates given on each part of it (for this, see Floyd [22]) ). 
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These informations can also be given for the result of a function 

a function header of the type 'ï!T:Z+T1:X F T2:Ymeans that the result 

of P when applied to objects of type T1 and T2 will be of type T 

This allows the compiler to carry type informations through application of 

a function and thus enables the compiler to deduce :informations for a whole 

program from :initial assumptions. 

A last point we have to make about compilation is that, of course, 

a piece of text :involv:ing the execute operator cannot be compiled except if 

there is no modification of the type of any variable dur:ing execution of the 

execute operator 

4 - Description of the language APL-G 

We will now give an organised description of the concepts and primitives 

of the language. This description will be q_ui te brief for functions and 

fùnctionals already present in APL SV or described in G ail.d M and 

more extensive when our definition is new or differs singnificantly because 

of the use of concepts described above. 

In what follows we discuss both implementations with and without 

compilation the only difference is some restrictions in the use of types 

in the second case. We also refer at several places to "our implementation 11
, 

which is a simulation we made in APL SV to test our language and to prove 

the feasibility of simple and fast compilers for it. 



III.3.24 

Our description proceeds· as follows we first introduce the objects of the 

language and discuss which of them are primitive , then, after a brief review 

we 
of the syntactic proble~s arising in our extension, proceed to describe the 

primitives i:t order , beginning by data types and then functions and 

functionals. 

A - Objects_ o±: the_ language. 

We first summarize the characteristics of the four categories of objects 

of the language introduced above. 

1 - Predicates _ or Types ; they refer to properties of general arrays 

We have the basic predicate bit , and the following operators acting on types 

V dyadic P1 V P2 refers to an object verifying either predicate P1 

or predicate p2. 

::, monadic refers to an object itself refering to objects 

verifying predicate p. 

::, dyadic p:::,p where R is an integer vector ; refers to an object 

which refers to objects verifying p and has R as dimensions. 

As a special convention, when one of the elements of R is this means that 

the corresponding dimension is indeterminate. 

Bit and all predicates designated by a single name are called atomic, 

in opposition to predicates designated by expressions involving::, and v 

One can create new ator:iic predicates apart form bit by 
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-in interpreted implementations, assiging a predicate expression to a name, 

INTEGER.+1 G :>T1I~T: 

-in compiled implementations, by the system function QISTYPE 

which cannot be used in definition mode 

and invalida tes already compiled code using another meaning for 'I llTEGER' 

We note here that we accept recursive definitions for types, for 

instance : ':RTREF:' □ISTYPE 2:>.7JT!?EEvBTT to define binary trees with 

bits as terminal elements. 

We have one more operator on predicates apart form the cast (which 

was discussed in part îI) : 

monadic. argwnent should be atomic predicate p ~ refers to an object 

verifying the definition of p (which may or not have the type p)o 

2 - Arrays_ the definition we gave of them in last chapter was, in ------

fact, only an approximation not taking into account precisely how atomic 

types different from bit can be attached to arrays. Their precise definition 

is array = a bit or a couple (< n
1 

, ••• , nk / a
1 

,o••, an >,p) where 

n. 
1 

k 
,kE:N,n=Il 

.i=1 
n. , where the 

1 
a 's 

i 
are arrays and p the predicate 

canonically attache-d to the array. We define recursi vely the predicate cano-

nically attached to an array: - to a bit is attachai BIT 

- to an array 

such that the set of canonical types of the objects a 
n 

' • •• ' a > . n 

is t1 , •.. ,t, 



is. attached the type :, t 
1 

v ••• V t 
n 
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This does not yet provides for the possibility that an atomic type 

different from BI'r be attached to an array. Indeed, this is done with 

the operator cast vrritten li : li 

The value of p : A A array, p predicate atomic is A with 

type p if A conforms to the dëfinition Qf p, otherwise it gives an error 

message. 

3 - Functions 

To summarize what we said in last chapter 

- the variances to standard APL are ; 

a) the general form of the header is v[[T1:]V1+-][[T2:]V2] T' [[T3:]V3] 

(items between brackets optional) which allows several definitions for the 

same function. The effect of a specification T1:V1 is exactly as if the 

last li ne of the function e:x:ecuted was V1+-T1: î/1 

b) the identifier F can be any speciLtl character in addition to the 

ordinary names, which allows redefinition of primitive functions for new 

types. 

4 - Functionals 

They are and • We will discuss them later. 
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B - The primitives. 

1 - General discussion From the extension mechanisms we gave, it 

can be easily seen that we could build our language by progressive extensions 

of a basic language with the only primitives 

- bit= {0,1} as data, bit as atomic type 

- V ' 
(not) and "enclose" and 11choosen as opera tors, and the functionals. 

But in order to·provide a language as pleasant as APL for the user, we 

have to give a lot of primitives in a "standard prelude" (following the ter:ni-

nology of [13]) available to all users. 

The exact choice of primitives .is largely a mat ter of fuste, so the 

propositions we will put forth are more tentative than what preceded. The 

list of primitives we will give was build according to the following ideas 

- the standard APL functionaf_tG and IJl ones really look fundamental, 

which implies their should be kept as they are. We follow the extension pro-

posed by G and H which allows to apply functiona}t~ to user-defined functions 

including functions resulting from the application of functionals to other 

functions (this is natural for us since we do not make a rigid distinction 

between user-defined and other functions). 

- the functions o.f standard APL are the result of a long experience and 

of a lot of thought, and so for most of them represent a natural cnoice, but 

often we differ form Gand IJI on the definition of their extensionio 

general arrays , 
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- the funct ions proposed in G and M are, we think, too nu.merous. We 

settle for a more restrictive set of basic functions. 

2 - Syntactic problems ------------------

We .exposed in part II) the syntactic problems arising from the defini-

tion of functionals in G and M • We will not try here to solve them in 

full generali ty ( which is what we in tend to do in another paper ) but only 

to suppress the most striking inconsistencies 

ambigui ty of ~ : we solve it by suppressing the definition of for 

dyadic functions, since the desired effect can be obtained with the functional 

(scan). 

- ambiguity of I: f+A we suppress the axis operator written Il 

allowing only the usual APL notation f[TJ+A 

- ambi 0 ui ty of 1. +2 the solution is that we prohibi t the constant 1. 

and other constants ending in a period: the only justification for this 

was to specify that the constant is a real, and to do this it can be 

wri-::;ten 1. 0 

- another modification we suggest is the following: 

In standard APL , the symbols / \ represent both ~ function and a 

functional, This introduces extended context dependance in syntactic analysis 

and in some cases ambiguities, This laxity in notation furthermore cannot be 

extended to other functionals and even prevents definition of new functionals 
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so we decided to suppress it. 

/ and \ will stand for the functions compre s sion and expansion. 

-f and \ will s tand for the functionals reduction and scan. 
. ----------

and we will wri te /[1] , \[1] , /[1] ,\[1] for what was written 

-f and \ :in present APL. We found th at this simpl ified and speeded up 

a lot syntactic ana lysis, and hence execution. 

3 - The primitive data types -----------------------
The usual data types are defined by the follow:ing atoruic types 

canonically att ached to them: 

Character : 
ç_ 8JB.TT 

Integer . l. 16J BIT . 

Rea ls . . E. 64JT?IT 

Of course these l engths are depend:ing upon implementation. 

As a test of the ease of :introduction 0f new data types :in APL/G , 

in our present implementation we have two new type s : 

Complex numbers : 

One-v ariable polynomia ls D 

Here we make some remarks about the :input and ouput r epresen~ation of 

constant s and arrays . 

We want first to make the following.po:int about Ghandour's and Iviezei 
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convention for general arrays, which uses an und.Brscore with this 

convention, there how exists 4 different kind of separators which can be 

used to represent objects which have a tree structure in APL 

- Parentheses and brackets are used in pairs of two and a tree of structure 

,/_~ 
ab c d would be represented by ((AJJ)(CD)) using them. 

2 - Quotes can represent a text within a text by doubling them the tree 

used as example above can be represented '' 'AB'·' 1 'CD''' 

'3 - And, finally, we canuses underscores with the convention of G and M. 

the same tree is represented 

So we have 3 completely different rules to represent trees with these 

different kinds of separators. I think that to simplify this is worth of 

study. 

We do not propose any definitive solution for input and out~ut of constants, 

having not done enough investigation on the subject : we follow·standard APL 

or. ad hoc conventions (e.g. [23] for complex numbers) • 

4 - Primitive Scalar functions. 

These are the functions which are primarily defined for basic scalars 

and extended to general arrays by a convention easily described with the 

"itemwise" functional (see [G and i::J and definition below). 

By "basic" scalars, we mean here an array of atomic type bit, [,L or, 

(and we include and E , too, in our implementation). 
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We note here that we allow manipulation of such objects in APL/GA when 

in present APL we can only manipulate objects of type~bit , ~l,'fl. or ::>f_ • 

This simplifies writing of new extensions (see example below). 

The list of primitive scalar functions is ~ 

We follow present APL definition for these functions excepted for the 

following points: 

1 - type of the result of these operators is not presently explicitely 

defined in the language, but can be determined by side effects in the present 

implementations, and one finds for example that : 

- the result of a division or an exponentiation is always real, or the result 

of an addition or subtraction is never boolean, etc ••• 

In our implementation we instead choosed to always give to the result the 

lowest possible type on the hierarchy: bit-integer-real-complex
0 

For instance, 
1+0 

is a bit and an integer. 

2 - we extend many opera tors to complex numbers and polynomials. 

For example is the normand x the unitary number of same argument 

as monadic functions on complex numbers Modulo is extended according suggesti< 

of [23] for complex numbers and according to euclidean division 
f.or polynomials ; the real and imaginary parts oî a complex A are naturally 

given by ,1o 1 and 11°2 (see "slice" and 11 choose 11 functions) 0 
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5 - Other primitive functions and functionals -------------------~ --------------------

Rho written p 

monadic : for an array < n
1 

, ••• , nk / a
1 

, ••• , ~ > gives the 

integer vector < k / n 
1 

, ••• , nk > 

dyadic for A integer vector < k / n
1 

, ••• , nk > B array 

gives an array where is the 

list of the N first items of array B (cyclically repeated if there are 

not enough of them). 

Note that we do not follow the definition of OpB in G and M finding 

it inconsistant. 

Choose written ° 

We make first a fèw defini t ions 

an index to an array A=< n
1 

, ••• , nk / a
1 

, ••• , aN > is an array 

< k / b 
1 

, ••• , bK > 

A where 

where 1 ~ b. ~ n. 
1 1 

It indexes the element a. of 
J 

A path for an array A=< n
1 

, ••• , ~ / a
1 

, ••• , aN > is dàfined recursively. 

I t is a '8Ctor p = < -t/m 
1 ' • • • ' m.f > where 

is an index to an item a. 
J 

of A 
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3 - ei ther K == î (and we say P is a path to a.) 
J 

or 

is a path for the array a. 
J 

We now define A O lJ where A is an integer array and B an array: 

- if A=<'!\ .. Y\i /a ... , au> , the result 
1 I J<. I r< 

z has as dimensions n1 '• · ·' nk-1 • 

- each vector of A obtained by fixing the k - 1 first coordinates and 

varying the last is a path for B and if we fix the k - 1 first coordinate 

of A to 
m1 ·' • • •' ~-1 

and obtain so a vector V, the element of index 

m m. of Z will be the element of B to which V is a path. 
Î ' • • • ' k-1 

monadic o A is a if A=< /a> and gi ves otherwise an error message. 

1 

Slice wri tten A [ B] or A 1 p. indifferently, where B is a vector of integer ! 

arrays: we follow the G and M definition. 

Itemwise functional: we follow the G and M definition it allows 

to define recursively the extension os scalar functions to arrays. If o 

is a scalar function, we define its extension nr:xT S as 

""flEXT O if argwnents are not scalar, ô otherwise. 

□EXT is implemented as a functional of the language accepting scalar 

functions headers as arguments. This allows very easy extensions of scalar 

functions to new types. 

For example we give below a few lLDes of text in APL/GA a definition of 

complex numbers and of some primitive functions on them 



'ï!ÇJ:.: 7,+{Zl:: X+ QE: y 
[1]Z+X+Y V 

'ï/ Qf.: z.+2.r.: xx rl.r.: y 
[1]Z+,X.xY 
[ 2] Z + ( Z [ 1] - Z [ 1~] ) , Z [ 2] + Z [ ::l] V 

'i/QP,:Z+I f.:X 
[ 1]Z+O ,X V 
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and so one • • • After this we have ônly to execute OEXT' +', [JEXT' x' 

etc ••• to have a full extension of complex number operators to any array 

containing complex numbers. 

For the functions and for the functionals 

and we take the same straightforward extension to general arrays as 

G and M. But we give a meaning different from standard one to the scan 

operator acting on ordinary arrays, before extending it to general 

arrays. We first noted that for a vector of n elements and a.non-associa-

tive function, calculation of scan takes n(n-1)/2 applications of the func-

tions in contrast to n - 1 for an associative function. If one takes as 

definition for ô ~ V where ô is a dyadic function and V a vector 

a
1 

, •.• , an , the vector 

a1 

a
1 

ô a
2 

(a
1 
oa

2
) oa

3 
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Then the definition is identical with the present one for associative 

functions and takes only n - 1 operations for non-associative functions. 

We them ,tried to com:pare the respective merits of these definitions: 

it seems that the only useful scans of non-associative functions are, with 

the present definitionr,,\ and$\ (t:,iey are the only non-associative scans 

whose result can be given any reasonable description). 

They give respectively, for bit vectors: 1 at the first 1,0 elsewhere 

and 0 at the first 0,1 elsewhere. 

With our definition we have the useful scans: 

>\ : last 1 of each sequence of 1 

<\ : first 1 of each sequence of 

and furthermore, th.e present meaning of > \ is not lost and can be 

obtained as <\V\ , with less applications of functions whenever n > 5 

Identical wi th 11 == 11 

As in [G and N] we define a boolean function which tests complete 

equality of two arrays. 

Iota 11 l 11 

Monadic iota is the unique array such that, for any array A, A.::,A o 1 pA 

it is defined only for integer vector arguments. 

For dyadic iota, E ruid the functional ~ , we take the same 

defmition as [G and M ] 0 



III .3 .36 

Ravel: Il Il 

' 

Monadic if a = < n
1

. , ••• , nk / a1 ' ... ' aN > ·them, 
-------

k 
/ A is < II n. a1 , ... ' a > 

1 
1 N 

We found that in order, to build character arrays or other 

arrays to be used for output.ing tables or other complicated formatted output, 

it would be extremely useful to have automatical extension for ravelling of 

some arrays. So the following extension fo 11ravel" seems interesting: 

1 - A• B is identical with A,[ (ppA)rppB]B 

2 - A,[I]H : it is authorized that (ppA);;tppB only if 2~(ppA)rppB 

Then the array of lowest pp has its p extended by a one in position i, 

and eventually another one if needed. 

3 - If ( ppA) =ppBthen A, [I] R is identical with (StA),[I]TtE 

where B=T=(pA)rp.73 excepted at position i 
T[I]=(pB)[I] 

where ~[IJ=(pA)[I] and 

4 ..., If pA and rR differ only at position i we take the usual 

APL definition. 

Format 

For the same reasons as our extension of ravel, we modify the 

present APL/SV meaning of format so that °' gives always exactly the 

image of the object on the paper, so that the pp of the result never 

exceeds two. 

Goto We found that the pr:esent control structure of APL is enriched 

and that many condi t±onal branchings can .be done faster wi th an extension 
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of goto to a dyadic meaning: 

A-+ B is allowed for B any boolean expression and means 

"if B then execute A" • The most interesting characteristic is that A 

is not executed if B is false, preventing an error message if execution 

is then impossible. 

We can easily with this extension write some usual control expressions 

Il if B then A else C" [1]A-+H 
[2]C-+~B 

•while B do A Il -+OLC[1],0pA-+H 

Compare with standard APL traduction. 

Finally we would like to indicate some modifications we suggest 

the definition of execute, [7CR ,, ., and r FX 

They are as follows 

1) 11Execute 11 accepts a two-dîmensional array as argument, executing 

sequentially each line. 

2) l' is defined for functions, giving as result the text less the 

header. 

3) While [1C."9 gives only the header, and for an ordinary variable gives 

as result its name (the argument is no more to be put within quotes) 0 

4) and CFX is dyadic, needing as left argument a function header, 

and as right argument a fur'.ction text less the ·header
0 

The role oî these modifications is essentially to make more logical and 
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and uniform the diverse relation existing between tbese funct:ions. 

Furtber, the moclifieation of r,p.x is very useful wlrnn ù.ef:ixdr,g different 

but very similar versions of a function for different types. 

V - Implementation 

Our implementation is - presently -

an 
simy.lation 

APLSV .,..Î to test the feasibili ty of a compiler for our 

language. A very efficient co:Il!Piler (that is, taking is account the double 

level of interpretation) accepting almost our whole language could thus 

be made, along the tollowing principles. 

A) Memory allocation. 

are 
Memory allocation andgarbage collection always, effected through re-

ference counting (cf. [19] , chap. II). TM~ is possible since, due to 

the concept of left-values, all data structures, including data refering 

to other data, can be described as trees. It allows efficient garbage collec-

tion and keeps duplication of identical data to a minimum (insteed of copying 

some data,we increase its reference count by one). 

B) Parsing. 

Our concept of order and the restrictions we discussed under C) of 

Chap. IV allows us to parse a line with a (1 ,1)BRC syntax [24] , with 

a small table. This is the main reason why our compiler iS fast and needs a 
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modest amount of memory. 

C) APL SV representations. 

They are as follows: 

memory block s and all auxiliary functions and variables for the corn-

piler are represented by APL SV variables beginnihg by b or ~ this 

is the only class of names legal in APL/GA but illegal in our irnplernentation, 

Memory blocks are represented by variable bnnn where nnn is an integer. 

Reference count iz done by the means of an integer vector tiNAJVIES whose 

i
th 

element is the reference count of ~i 

An APlr-GA general array is represented by an APL SV vector having the 

same name, and whose structure is as follows (much like standa~d APL 

M- ep.try [25 J). 
The first element is the type, encoded (via a symbol table) as a positive 

integer the same integer is taken negative if the array is a left-

value. 

- The second element is the rank of the array. 

- The following elements are the dimensions. 

- after this is tlle list of elements. If these are not bits, they are then 

thernselves arrays. They are then represented by the index of the mernory 

block where they are stored. 

D) System and compilations 

The present implementation includes 



III. '3.40 

- a compiler t,CO'fP which can compile a single line of APL test 

- a function compiler t,,FCOHP which can compile any APL function and 

which uses t,,CO:!P 

and a superviser ASP which can accept lines and execute them on the 

spot. It is very short and we give it here: 

V SP AA;L6 
[ 1 J (1]+6 t 1 ' • 

[2] +(O=pLA+(-1+(LA~' ')11)+LA+~)/1 
[3] ~QFX((pLA)[2]t'A'),[1] LA+6C0!1P LA 
[lt] +Ali/1 
[ 5] CTI!JE 
[6] +1 

u 

Here l::!.P is a routine implementing our proposed extension for ravel 

andCTIHE gives a timing indication. 

The programs comprising our compiler can be divided in two parts: 

- the compiler itself 

-·semantic routines implementing primitive operations. Our APL SV represen-

tation allows these semantic routines to be APL functions acting directly 

on our APL/GA objects. We will now describe the core of our compiler, 

which consists of about 100 lines of APL. The main function is 

which accepts a-s input a line of APL!GA and gives us output an equivalent 

text in APLjSV. It uses as auxili~ry functions 

liSCAN a functio11 of 2 character vector argu.P.1.ents returning us result 

the index of tlle first occurence of the first argument in the second. 
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M!EHN : a function returning the name of a new block of memory (that is, 

t,i where i is the first index such that the reference count of t::.i is 

zero). 

of 
6CODE : a function returning the inte:.r,m.l representation i ts argument 

: a function returning the name of the semantic routine implementinÉ 

the APL/GA function represented by the second argument of MDic(when it 

has an adicity,,equal to the first argument of 6ADTC ). 

~1 AQ AP AC" are other functions discussed later. Ôli , Ll , Ll , Cu) 

T 

The global variables used are: 

bSPEC,bDIG,bCHARS 

function t,JNIT 

vectors of characters initialised by the 

bFTA!3LE : character vector used as a symbol table for the functions 

recoynized by the system at a given time. 

!:::.COD : dictionary used by AAD.IC to find the name of a semantic routine 

implementing some APL/GA primitive function. 

AG : Parse table for the (1 - 1) BRC grammar. 

In !J.C0!-1P , li'V'es 1 - 15 · accomplish the lexical analysis and the 

encoding of cons~ants, and the other lines do the parsing and translation. 

The local variable are : 

the text, preceded and followed by the character Jl used as a "marker". 

S ~ a vector of integers of same length as the text, used to store the results 

of lexical analysis after it, all charactè.rs, of T belonging to the same 



III. 3.42 

word correspond to positions of s containing the same integer, which 

is the position in T of the first character of that word •. 

N - a vector completing the information of S • N[i] contains an integer 

representing information on the nature of the word b . . . t .th eglll.nJ.ng a 1 

position of 
encoding 

T .There is also an of this information as characters, 

with the following correspondance. 

Integer encoding 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
13 

character encoding 

C 

0 

1 

) 

t 

] 

[ 

( 

Nature of word 

a const-ant 

the name of an object of 
order o 

the name of an abject of 
order 1 

a mari<er of beginning or 

end of line 

) 

the functional 

the functional 

the functional 

] 

[ 

( 

f 
or 

The lines 1 - 7 of build the vector S. Line 8 builds N but 

distinction between abjects of order O or 1 is not yet done. It is 

done in bnes 9-11 , by co;lsiüting t:,PT/LRT,F: 

Lines 1ê-15 replace constants by their internal representation. 
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Parsing then proceeds according to the following sheme 

P is a vector used as pUsL.down store, where a word is represented as 

the index of its first letter in T. It is initialised to the list of 

word of the line and scanned right to left by the variable I • At 

each step, an action is taken taking only in account the nature of the words 

P[ I-1 J, P[ I] , • P[ I + 1 J 

These actions are of the kind: generate a line of text for an 

operator acting on one or two operands and substitute in P the 

result for the operator and the operands. 

The syntax is fully represented by the table , where l\G[I1 ;I2; I 

is a letter representing the address of the action to be taken when p[I-1] 

is of nature I1, P[I] of nature I2 and P[I+1] of nature I3 

Here is a list of all triplets 

STATABI.E 

000000000000000000001111111111A~~AAAAAA)))))))))))))))ffff ... ""]]]~ 
11) ) ) ) ) ... J J J] J J [ : : +-+O O O O O 1 ) ... [ 0 O O O 11 f' -+O O 11) ) ) ) •.• 1 J[ ++1. .. [ O 1. 1. 0 O O ( 
0[1A).[1101A)]+00+001A)][001101A:+O[A10A)0[01A)111)0000110~01011t)~ - . - - - - - - - -
Dfi.KY cTI( Jrnr:KKKKYK CKJU? Y JKKKcT/11(0!! K,TF V J!f A f!HU KKYKKKK K KIŒ.KKKYT? r;G/ŒKGY(:,T Y.KJ 

]]JJ]JJJ]]J]J]JJ[[[(((((((: :: :+++++++-++-+++ 
0 11 ) ) ) ) ... ] ] ] ] ] ++O 1 .. 0 0 0 11 ... 0 1 •. -+O O O O O 1 •. 0 0 0 1 .. 
[0[01~)1101)]+00]011)[0[11t0101~)][011~[01 
,IY. AKKKK GKKKKKKKY K!!H JX J!f,,1 G H K 11 l!JI.JKKK ,Tff!! ,_ry_,_r•rrr 

A P. l1B C substitutes in p words P[I+AJ toPLI +B]by word 

serves to substitute the nature of C i gives the i
th 

item of the line. 
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The meaning of the actions are: 

A Axis operator 

B + 

C choose function 

D a dyadic function 

E . error . 

F end of parsing 

G monadic functional acting on djadic function 

H itemwise of monadic functions 

.J skip back one word 

K skip forward one word 

M . monadic function . 

Q external product 

R I or\- functional 

u monadic-+ 

V label 

y . dyadic-+ . 

AP is a function which c.atenates its argument us a knew line to the 

object-program PC 

We give here,in addition to the listing of all these functions, the 

array !!.COD and some exaunples of translations. 



E - Examples and listings. 

Here are some examples of output of 6comp 

6CO/.JP I P1: Z+(il[ t'] ==I+0) / l pl' 1 

F1 :6140+bfül P 
61 4 1 +-,H T i\ 1 !t 0 
A142+ 1 I 1 âIS ~ 0 139 
/J.143+- 1 i/'t:,C:J P 
A144+6143 bEQ ~142 
h 1 1t 5+-61 tt 4 l!. C,'.J . ld 41 
614G+'Z'6IS 6145 

Notice the trea~ment of axis operator 

6COMP'A:+(f[1]+A=7+XE 11 ABCD' ')/C+4 1 

A:l!.103+'C'bIS 5 0 102 
â104+X bEL 5 1 4 98 99. 100 101 
6105+5 0 97 bAD l!.104 
b10G+A è!.HL' 6105 
'f'AAX 5 0 9ô 
'1'.107 1 !::.iW '11AD' 
li108+6107 t:.106 
6109+ll108 LIClJ t~103 
+ll109 

We deal easily with deep parenthesing. 

ACOUP'(((A+B)x(L+((P+O)+U))))' 
ll147+P MID 0 
A148+61 1r7 bAD U 
Li149~-L bAD 6148 
6150+A 611D B 
6151+/1150 AMP 11149 
h.U1' 11151 

Here is an example of treatment ofdyadic, go to 

ACOUP'K+L+1➔E~K+-L+2+B~1' 
6113+B llNE 5 0 112 
➔ (~1H13)/7+[1LC 

6120+L êAD ~ 1 3 117 118 119 
~121+'~'6IS 6120 
ll1?2-<-.J !:.l/1,' L\121 
-)-(~ll122 )/3+[:Lc 

612~+-L 8~D 5 1 6 123 124 125 126 127 128 
A130+'K'lIS l\129 
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We now give the listing of 6 comp 

'il P{;+I\C(VfP T;S;Z;l!;P;I;L 
[ 1] pr;+ 0 1 p ' ' 
[ 2 ] S + ( ~Sv ;t \ S + T = ' ' ' 1 

) x 1 + ( T+ ' A ' , T, ' /\ ' ) E MJ P F, C 
[3] S+T[P+((T=' 1 )A(S';t-1q>S)vS=2)/1pT]='.' 
[4] +('A'=T[P[2]])/CT 
[5] I\P -1+(P[2]-1)+T 
[6] +0 
[7] CT:S+P[+\(1pT)EP+(~(ZA-1~ZvS)v(SA(1q>Z)A-1~Z+T[P]EADIG))/P] 
[8] ll++/(ACHARS1T[S]) 0 .~ACHARS1'A+A)f.-][(:++' 
[9] +(0=pZ+(N[P]=I+1)/P)/F1 
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[10] IT1:IT[Z[I]]+1+(pl\FTAPLE)~(' ',(Li' ')tL+t.,O P1Z[I]) 15.SCAll 15.FTABLE 
[11] +((pZ)~I+I+1)/IT1 
[12] F1:Z+(N[P]=I+0)/1pP 
[i3] IT2:+((pZ)<I+I+1)/F2 
[14] P[Z[I]]+(YACODE~t,0 Z[I]) AN 1 
[15] +IT2 
[16] F2:I+ 11 p-1+pP 
[17] K:I+I-1 
[18] IT:+~A(;[fl[P[I]];N[P[I+1]];ll[P[I+2]]] 
[19] A:+(ll[P[I+5]]=2)/3+nic· 
[20] I+I+4 
[21] +lf 
[22] AP 1111 ,(15.0 I+1), '''AAX 1 ,/\O I+3 
[23] 0 4 AS P[I+1] 
[2lf] +TT 
[25] T?:tP(L+Al!ET-1!7),'-<- 111 ,(t-,O I),"'AIS 1 ,AO I+2 
[26] -1 2 /\S LAM 1 
[27] +K 
[ 2 8 ] C : t., P ( L+ Ml F rnn , ' + 11 1 , ( /\ 0 I ) , " ' AC H ' , /\ 0 I + 2 
[29] -1 3 AS LAN N[P[I]] 
[30] +F 
[31] D:AP(J,+/1,l!r:TlN), 1 -<-1 ,(AO I),' 1 ,(2 /\ADIC AO I+1),' 1 ,AO I+2 
[32] -1 2 AS L AH 1 
[33] +r.. 
[34] E:1+(P[pP]-1)tT 
[35] ((0fP[I]-2)p 1 1 ), 1 ASYl!TAX FRROR' 
[36] +0,0pDIAGllOSE 
[37] F:+((pPG)[2]~'AIS' ASCAM(-pPG)[2]t,PG)/2~nLc 
[38] AP 'AUT 1 ,15.0 I+1 
[39] F:+0 
[ 1~0] G:AP "",(L+MJEY!l),'"',(1 /1.ADIC t,0 I+1),"",(2 1~ADIC AO I+2),"" 
[41] 0 2 AS LAN 2 
[42] +IT 
[43] l!:/\,P '''',(L+Al!Eflll),'''b.I!f''',(1 AADIC tO .T+2),'''' 
[~4] 0 2 AS L Al! 2 
[45] +IT 



[46] J:I+.T+1 
[47] +I'J: 
[48] lf:t,,P(L~-MJET!N), '+ 1 ,(1 t,,/tl)IC /\0 I+1),' 1 ,/\O I+2 
[49] 0-2 àS L All 1 
[50] -+IT 
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[51] Q:/1,P "",(J,+t:,llETl!J),"'tiF:XT"',(2 6.ADIC t,,O I),' 1 ,(2 6.ATl.TC AO I+2),'"' 
[52] -1 2 t,,S L till 2 
[53] +K 
[ 5 1+] R: t:,p "" • ( L~-td!EF!J)," '/\RD'", ( 2 /\ATJIC AO I+1), "" 
[55] -1 1 /\S LAN 2 
[ 5 6] ·+]( 

[57] U:/\P '+ 1 ,AO I+2 
[58] o 2 t:,S P[I] 
[59] +IT 
[60] V:PG+((1,pZ)pZ),[1]((1-1tpPG),(pPG)[2]fpZ+(A0 I+1),': 1 ,PG[1;])tPG 
[61] -1 2 AS P[I] 
[ 6 2] +_!T 
[63] X: -1 2 t:,S P[I+1] 
[ 6 4] +]{ 

[65] Y;Z+/\CONP T[(+/ScC)t4(L+1+ItP)lS] 
[66] t:,p '->-(~',(/\0 I+2),')/',(T1+(pZH1J),'+f!T,C' 
[67] PG+(((pPG)ro,J,)tPG),[1]((pZ)ro,L+((pPG)rpZ)[2])tZ 

t7 



u 
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.And now a listing of the au:xziliary functions used with it. 

6ALP+ 1 ABCDZPGHIJKLUllOPQRBTUVWXYZ/J.ABCDEFGllIJKL~JO?CRSTUV~XYZ□~' 
/J.DIG,-'-0123 1l-5578<J' 
lSPEC+ 1 +-xf*rLIAV~>~=S<~~~pEw?t+1o@oc~nuiT;\/.a~1e4t~!Y~Ià)f\.-][(:++ AV~ 1 

6CllARS+ 1 ' 11 ,6DIG,6ALP,ASPEC 

àFTABLE+' ~ f ',, 50 2 t 50 1 p6SPEC 

V Z+B b.SCAD A 
[1] Z+(Af(-1+tp,B)~(,D) 0 .=,A)t1 

u 

V t.P L ;11 
[1] PG+(AtPG),[1](A+(pPG)fO,p,L)[2]+,L 

u 

V Z+I /J.H A 
[1) S+S,(pI)pZ+1+p~ 
[ 2 J :l'+T ,I 
[3] J7+il,(pI)pA 

u 

V A i:,S B 

[1] P+((I+A[1])tP),B,(I+A[2])+P 
u 

V Z+AO I 
[1] Z+(S=P[I])/T 

\] 

r; Z...-;.\fië;;/lI 
[1] +( (p!1illl!IES')~Z+t\N1WE'StO)/i, 
[ 2] b.il Al-JES+iJ.llAUES, 1 
[ 3] -► 5 
[ 4] M,7A/,1ES [ z ]+1 
[ 5] è,C!:,+!:,.CL\, Z 
[ 6 J Z+' /J. 1 , "9"Z 

V Z+I /J.ADIC IrEM;L;K 
[1] -►( (p!è.8Pi.,7 C)<;:+/J.SPEC,L+1tZ+ITE!f)/0 
[2] Z+,!J.COD[I;K;] 

u 



Here is the dictionnary fo traduction of primitive. 

What is output here is 1 32 i'J:!t. COD 

CODES 
+-x ❖ •rL jAV~>~=~<~Y~pEw?ti10© 0 c~nuiT;\/,a~4a47I!Y~I 
66A66AA~6666666â66666 6666666~6 AAA6AâA 66~6666 
Pl-!3I",:,'CIA IIR 11 IPED R D E R '.:"i?J'OC:';G 
I,ivGVXLFiJ TH D 'i'IPC F C il V R,::'1Düiii 

AA6~66Aâ666666AA66666 666666666 6~â666 lAll6l6 
AJUUI'SI~EOilGGELL~ll RE DTDPTLCIG 2DLECC 2RR SC 
Di7PVJPiiD'J.'RDTI:.:QJ:,':/DR RL LK.RSGGHSA DDXPliT .?:?1 LI) 

To finish we give a glimpse of what is a session of APL G
0 

X+E. 1 1 
OHOMOSG80 
X 

1+X 
OllOMO:J980 
T+XxX 
Oll0/.11S520 
T 

1+2X+X2 
OH0/.113820 
O+U+-'.i."X.2' 

1 +1+x +6 x2 + i+x3 +X4 
OHOM2S640 
Y+[l_ 2 3 
Ol10M3S280 
y 

2+31 
OllOM3S 5G 0 
YxY 

-5+121 
0!I0N4S40 
A+1 
OH0ML+S340 
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