
UNIVERSITÉ PARIS XI
U. E. R. MATHl:MATIQUE

91405 ORSAY FRANCE

N° 100-7420

APLASM 73

SYMPOSIUM D'ÜRSAY SUR LA MANIPULATION DES

SYMBOLES ET L'UTILISA TI ON D / APL

VOLUME 3

RECHERO-IES SUR APL

I-0

I-1

I-2

I-3

I-4

I-5

II-0

II-1

II-2

II-3

II-4

CONTENTS

VOLUME ONE : THE AUTOMATE PROJECT

P. BRAFFORT Introduction

N.G.DE BRUIJN The AUTOJ.1ATH "l.Jathematics checking project

D. VAN DANEN A description of AUTOl-1ATH and some aspects of its

language theory

I. ZENDLEVEN A verifying program for AUTOMATE

L. S. JUTTING The deveZopment of a text in AUT-QU

G.KIREMITDJIAN LIMA PAL

VOLU!.fE TWO: THE LI!,1A PROJECT

Introduction

LI!,1A A

P.BRAFFORT

D. FELDMANN

W.VERVOORT

P. MERISSERT

APL symhol:· processing in APL program verification

LIMA 0

G. AGUNNI.,R.PINZANI., R.SPRUGN(JLI

programning system

APS: A conversationaZ algorithme

VOLU!.fE THREE: RESEARCH ON APL

III-0 P. BRAFFORT

III-1 P-BRAFFORT

III-2 A.OLLEllGREN

Introduction
..

APL in perspective

Extension to APL data types with a.xiomat.icaUy defined
Vienna 'objects

III-3 J. MICHEL APL GA

LE SYMPOSIUM APLASU 7 3

Les 20 et 21 décembre I9?3, le Département de Mathématiques de l'Université

Paris-Sud (Laboratoire Al Khowarizmi) organisait à Orsay un Symposiwn Inter­

national concacré aux problèmes de la manipulatton des symboles en mathématique

pure et à l'utilisation du système APL.

Plus de cinquante participants venus de huit pays différents furent acceuillis

par G. POITOU et participèrent av.x sessions présidées par M. DE11AZURE, H.HAEGI,

G. MARTIN, J. DELBREIL.

Une introduction générale au projet LIMA et aux problèmes généraux abordés au

cours du Symposiwn est publiée séparement (note ECSTASM N°1).

Nous publions, avec le concours de l'IRIA (*) les communications présentées

pendant ces deux journées en les regroupant en trois volwnes qui correspondent

aux trois pôles d'intérêts pricnipau:c.

Certaines communications n'étaient pas disponibles pour puhlioations,par contre no~

avons ajouté plusieurs textes correspondant à des travaux effectués postérieurement

au Symposiwn et qui permettent de parfaire l'homogénéité de l'ensemble.

P.B, M.D.

(x) Contrat SESORI ?3 021

III - 0

INTRODUCTION AU TROISIEME FASCICULE

par

P. BRAFFORT

Notre intérêt pour APL est lié aux intentions mêr::ie qui ont précédé

à la conception du langage: développer un système formel proche de la no-

tation mathématique et apte à exprimer simplement les algorithmes combina-

toires les plus variées.

Le livre d 1 IVERSON

loppement dont APL/30O

culières.

contient en fait plusieurs possibilités de deve-

puis APLSV ne sont q_ue des réalisations parti-

Dans la période récente les propositions de modifications - mais

surtout d'extension - du langage ont été nonbreuses.

Ce troü,ième fascicule en donne un échantillon q_ui nous semble signifi-

catif mais ne prêtent évidemment pas à l'exhausticité.

Le premier article est une version révisée et augmenté d'un exposé

présenté à Pise à l'occasion du XVI ème meeting de la SEAS (share Européen

Association).

III-0. 2

On s'y propose de situer le problème général àl.'APL et de définir

un cadre théorique pour les extensions

Le second article est plus particulièrement orienté vers le problème

de
des structuxes)données. Il permet d'utiliser une liaison entre les problèmes

typiquement APL et les recherches de sémantique formelle comme celles

développées par l'école de Vienne.

Enfin le troisième article décrit une expérience complé.te de conception

et de simulation d'une extension d I APL
0

III. 1 .O

IIIo1o

APL in perspective

by

Paul BRAFFORT

1. Preliminary remarks

2. From a linguistic point of view

3. Birth of a natation

4. Names, types, structures, orders, etc 0 • 0

5. From APL to NAPLES

References 0

III.1.t

1. Preliminary remarkso

This paper is a revised and expanded version of an invited paper to

the
th

XVI meeting of SEAS (SHARE European Association) held in Pisa

(Italy) 1971 [1].

My intention was, at this tirne, to pin point the peculiarities of APL

viewed as a notational system, from an epistemological point of view.

Recent developments of APL as programming language have shown

convincingly the adequacy of an approach of this kind and even asks urgently

for a more comprehensive and systematic treatment.

We shall proceed as follows:

- we first describe the problem fvom a linguistic point of view with an

emphasis on the triad: notation system/mathematical formalis.rr(programming

language.

- next we show how APL fits in the natural_ history of notation systems.

' consider . belonging
- then we various concepts · to the field of for:œal systems

theory which happan to play some role in the development of APL.

finally we put APL's history in perspective, with respect to the

afore. mentioned considerations and we offer some prognosticfüions of the future.

Many thru1ks are due to K. IVERSON for his criticism of a first dn.ft of

this paper.

111.1.2

2. From a linguistic point of view.

In her well-known Magnum Opus on prûgramming languages [2]

Jean SAMYŒTT finds herself uneasy when dealing with APL.

Indeed, APL is present at two different places in the book: as

"APL 360" in section 6 (on-line systems) of Chapter IV (;J-anguages for

numerical scientific problems), and as "APL" in Chapter X (significant

unimplemented concepts) and she says (p.715) : Il the question has been

raised as to whether this is a language or a notation•.

Assessing APL 36 0 with objectivity is certainly made difficult

by tre merging of the normal seductions of -a very fine conversational system

with the sometimes dazzling novelties of a deliberate systematics for

mathematical notation.

The various aspects which conçurr to make APL' s appeal to a wside

variety of users are more easily sorted out if one goes to the trouble of

a thorough ~inguistic (better say II semiotic 11) investigation.

Since MORRIS, semiotics has beendeveloped along three main axes

syntax, semantics, pragmatics.

- The syntactic pecularities of APL are a consequence of its objective to

be a genùine rational notations system O It is enough here to mention for

the richness of the alphabet

explicit and systematic
the restriction of '1valence" (number of arguments) to 0,1

standard
the prefix notation for monadic objects.

III.t.3

and 2, and

- the absence of function precedence and the left to right association law

for parenthesis read:1bili ty

the indexing convention avoiding typographical difficultes of s~bscripting

and syperscripting.

All these aspects of APL could be - and in·part have been - put into practice

in the teaching of mathematics and in the preparation of text bookas [3].

- The semantic aspects of APL are connected with the need for entities

representing a large sample of mathematical objects. Here we must notice

= the variety of elementary "types" (Boo,lean, integer, character, etc •• some

of them - being implicit.

= the structuring of abjects into arrays: vectors, matrices, etc 0 •• of

finite rank

= the scaling of functional precedence : variables (and constants), functions

(primitive and àefine), and operators (such as / '

- The :eragmatic aspects of APL are just a manifestation of its conception

as an information processing system:

= interactive facility

= "system commands" and "system functioœ"(I. Il, etc •••)

= "shared variables" and the very notion of a "precessor" in API.SV.

This impliet3 that 11pragmatics" here is undestood as the third fundE.mental

component of linguistics, that is "relatranship of ob,jects of the lang11age

to users of the language and notas a lund of "ad hoc" fractial devices •

.And innovatiun in notation was certainly not the least obstacle,

despite evidences for the urgent need of a rat:i-onale, as a.rgue·d in the

following paragraph.

3o Birth of a Notationo

Mathematics started and came to an already high level of sophistication

without an.y special effort on the notation problem. After all mathematical

entities are concepts among other concepts and ordinary language is a natural

tool for de.aling with them 0 The v,ery distinction between "logistics" an.à

"arithmetics" was not clear before the time of PLAT0 and the use of letters a

symbols for the numerals is attested not long ago B.C. But such a notational

system - limited as it is - remains awkward (for example 29342 could be

written or, '){.001:µ~ 1 (3), and one must wait for DIOPHANT0S

(N 300 A0 D0) to find a symbolic notation for variables as well. For him

an equation which, for us, could look li.Re

III.1.5

(x3 + ax:) - (5x2 + 1) = x

should be written, however,

V V x a ÇÇ~ ~ ô e µ ô a Ça

which is not very transparent 0

The current notational system for elementary algebra is rather recent :

using x,y,z for the unknovvn cornes after DESCARTES (1637). At the same

time Il + , X Il are adopted. The "=" symbol cornes from RECORDE (1557)

but NEWTON or others used 11
~

11 instead in 1600 and latero

If one takes the trouble of having a closer look into this evolution

it becomes evident that the general trend is economy of space in writing

formulas and decrease in the number of possible ambigui ties.

It is interesting to notice that algebraicfunctions for which one

tries to find an ade1uate symbol are restricted to monadic and dyadic ones

(and this i€ still the case with BOURBAKI).

But it is still more striking to realize that, sixteen centuries

after DIOPHANTOS, the standard system for algebraic notation is not completely

free from ambiguities [(4)},

However,. at the end of the last century and the beginning of this one,

a true notational expl~sion took place. FREGE invited radical innovations

when introducing his system of the calculus of propositions. For example

III.1.6

our

(N A) 4' B

would be, wi th FREGE

l1.--.--A
L__B

FREGE's inventions are very interesting from a syntactical point

of view: they show the .invention of a bi-dimensional system of notation

almost simultaneously with be -symbolic system itself. Of course a one-dimensiona

system will be preferred for reasons of typographical convenience.

"Graphical" representation will nevertheless find their way is modern

and
algebra (trees, diagrams of maps in category theory) - decisively - in

computer science

The Polish logici:ans introduced later a number of interesting suggestions

(and among them the famous" polish" notation (prefixing) for dya die predicates

and operations). In particular LESNIEWSKI developed an interestjng ideogra-

phic system for his logics, including a systematics for the 16 binary pre-

dicàtes; one has, for example,

9 stands for coimplication : true if and only if its arguments have the

same value, both being true or both false, and so coimply each other.

-0-- Disjunction : true if and only if its arguments are disjunctive, exactly

(i.e., at least and at most) one being true, the other false.

III.1.7

? Con.junction : true if and only if its arguments are conjointly true.

-Ô-Exclusion: true if and only if at most one of its argwnents is true,

excluding the other, which is false Il etco ..

FREGE's and LESNEWKivs systems remained unused, but nobody

objected to the proposals as such. Reductance to innovation came oftem

from the field of applications. One remembersthe hostility of many physicists

to vectoria;l notation. LORENTZ had to argue at length before using it

for decribing MAXWELL's equations

PEANO and hif;l school during the period of 1889 - 1906 made a

decisive effort to set up a complete and rational system of notation, intro-

ducing in partmcular many of the symbols ofmodern logics and set theory.

As BURALI-FORTI says :

11 The logical symbolism presents i tself under two distir.""lct aspects ;

as an abbreviated writing or tachygraphy, and as a powerful instrument for

analyzing ideas, their logical relation and their development. 11 [(5)1

The main purpose ofthese authors is to set up a system which gives us an

econon:y: in wri ting and a securi ty of understanding. One can ci te here PADOAl6)

"Cependant - tandis que l'idéographie algébrique, étant composée de signes,

est arrivée, relativement, en peü. de temps à un si haut degré de perfection

et d'universalité - l'idéographie géométrique, étant composée de mots et en-

travée par les exigences philologiques et par une tradution millénaire, est

III.1.8

restée nationale et souvent ambigué dans une même langue. De sorte que,

lorsqu'on veut construire une idéogTaphie nouvelle, il est préférable d'avoir

recours à des signes, brefs et universels, au lieu de gaspiller son temps à

analyser, débattre et sanctionner la signification des mots; c'est pourquoi

l'idéographie logique a été composée de signes plutôt que de mots".

4 0 Names, types, structures, orders, e te •••

The notational idea in APL is simply to stick to current mathematical

practice as far a coherent one is already at work, and to suggest novelties

only for the sake of rationality.

But granted that a solution has been found for the problem of for~

we are faced with ahuge problem of content.

The modern- axiomatic - usage in mathematics uses structures to define

and study formal objects. The Bmphasis is on cartesian product (or power) and

functional mapping ("application"). This implies use of a basic set and

escalation over it.

In a càlebrated manuscript : ~aµµ•~~s (the s&nd reckoner) ARCHIIvŒDES,

in order to show that very large, but finite aggregates of finite objects

are countable, developed a technique of enumeration which is not new as

far as notation is concerned - because ordinary words are still used - but

III. 1.9

shows a system at work[(7)].

The arithmetic of this time having names for numbers up to A= 108

(a myriad of myriads) and not more, ARCHIIJIEDES proposed to define two new

concepts : "orders" and 11periods 11
•

The first period has got A orderst 1 st order is made of integers from 1 to A

2 nd order is made of integers from A to A
2

A th order is made of integers from

The second period will go the same way from A to B2 and so on till the

A th period which will give the possibility to reach which is a very

large sum indeed.

This is a very neat example of escalation over a basic set: here the

finite set of integers from 1 to A.

The ckallenge of renderin_g ARCHHlEDESi idea in a formal system is not

met by APL, but the concept of an array is a partial answer

while the use of arrays satisfies the need for cartesian

product, mapping are realized through primitive and defined functions. As

a matter of fact function definitioh looks very much like CHURCH's (after

RUSSELL) notion of functional abstraction • Only the syntax differs.

All this boils down to the following concepts

III.1.10

a) Enti tieso

There are only two entities in APL 360: data and functions (this is

well in evidence in[(s)~. It is enlighting to examine to which point they are

similar or dissimilar:

- data and functions can be primitive or defined

primitive and àefined data are respectively the so-called "constants" and

"variables".

Primitive entities are presented (for input and output) as special characters

from the APL character set but primitive functions are always expressed

by ~ symbol only (while an integer will use up to 16 decimal symbols) 0

Defined entities will be named via an identifier which is a word in the

alphamumeric subset of the APL character set.

But the specification which gives such an identifier its meaning comes,

for defined data, from the assignent operator ~ " -1:- " ,and, for defined

functions from a complex arrangement including the entering into definition

mode via the Il Il operator, the special "header syntax" etc •••

data and funëtions are diversely connected to the foùr basic sets:

N = integers < 10
16 in absolute value}

75 Q = { ratinnal number < 7o10 in absolute value}

B = {0,1}

A= {APL accepted character set}

(the numérical values e.re, of' course, implementation de pendant).

III.1.11

On one hand the concept of "valence" establishes a correspondence between

datu.m
data and functions (a can be viewed as an "anadic" function).

On the other hand data sets may be "ezcalated", that is, one may take date

from Np, Qr et. which means vectors if you consider the components as

such, or array of rank n if ~ou write

This way of building compleN objects from simple ones by taking cartesian

products is usual in mathematics. But then one loses. again parallelism

between data and function except for the special case of the primitive func-

tions

which can be viewed as vectors. It is worthwhile to notice that in his

pre-implementation book [(9)], !VERSON used a matri»-like primitive function

V t,.
Q I= =

b) Orders

Another point of view, when considering the relationship between

data and functions cornes from the concept of orde~.

If you consider data as belonging to the lowest level :order o, and

functions to order1, there is a rational tendency to look after entities of

hit:';her order.

111.1.12

Such entities exist indeed in APL 360 but with some peculiarities of their

own

- the concept of "inner product" can be interpreted as the implementation

of a 'brder 2" dyadic primitive function, represented by the symbol Il Il . '

the argument of which are the so-called "dyadic scalar primitive functions"

(which are or course oforder 1) ;

the concept of "outer product" can be interpretàd as the implementation

of a 'brder 2 11 monadic primitive function, represented by the seq_uence of

symbols 11
0.

11
, the argument of which is a dyadic scalar pr,imitive function

- the concept of "reduction" can be interpreted as the implementation of

a "order 211 monadic primitive function, represented by the symbol 11/ 11

the argument of which is a dyadic scalar primitive function.

The only trouble is that 110
0

11 is made of two symbols, and, what is more

regrettable, / has got to put its argument on its left in contradiction

to the regular syntax of APL monadic functions (+/v, when v is a vector

is eq_uivaltnt to

1 = length of v

v(l)

I = origin

c) Extension to arrays

Extension to arrays of scalar functions is straightforward.

111.1. 13

But this is just a case where traditional notation satisfies itself with

insufficient rigour and it could be interesting to go into more details about

it.

If cJ is the symbol used for a primitive "scalar" dyadic function (such

as + , ➔ r , etc 0 • 0), the current practice in mathematics is to use the

same symbol for the funotion (Ex B -+E) than for the function

(En x En-+ En) defined by the well-known canonic correspondence.

But if cJ is in fact a name for a special subset of (Ex E) XE, this is

certainly an abuse of language to use the same name for a subset of

(n n) n E XE XE , even if there is a standard link between the two.

Therefore it should be worthwhile to make

the distinction explicit between the symbols for a pri:rdtive

function ~hen the arguments are scalars or arrays of various ranks 0

This could be done by letting primitive functions be themselves considered

as arrays. Then

X a y , when X and Y are scalar, would become

X cJ [pX]Y when or Y are conformable arrays

of a non-null rank 9

This introduces aga.in the idea of ranking and dimensioning primitive func-

tions, bringing them closer to primitive data.

III.1.14

All these observations indicate the presence, in the conception of APL

objects, of a number of attributes which remain incompletely explicitated

and are not all reachable form the user:

= tll:J.e structural attribute are dimension and rank - but this le™=l aside lists

and trees.

= the "~" attribute remains implicit (boolean, charE.cter, integer,

decimal) but can be reached indirectly (using 1022)0

= for non constants objects a ~ attribute is provided (which covers va-

riables, def:ined functions, , etc ••.) , the

sorti.ri.g of which implies other attributes.

= a new attribute appear with APLSV this is sharing which indicates when

an object is reachable by more than one user (at the same moment)o

So we understand that a variety of for~Bl (or formalizable) concepts is

attached to APL abjects. Some of those concepts are familiar to the user

of mathematical notation, some are not. But :in any case there is a strong

incitation to carry over here the trend toward .systematization and ratiœa-

lization. This must certainly be the main guide for future ~tensions and

implemontation of the language.

111.1.15

5 0 From APL to Naples

* APL is not the last word for ever in notation or language research,

and modifications are already being offered by authors and considered by

implementors, ([10],[11],[13]) •

While it is essential to maintain a reasonable stability, for the

security of users (this implies an emphasis on extensions against modifications

experiments are needed which should open new ways (whence the acronym

New APL Experimental System) o

But such experiments should be conducted in accordance with the

fundamental objective, which were present at the very beginning of the

conception.

- on one hand, to remain close to ordinary mathematical notation (with possibly

some improvement in the coherence of the notation itself) means intrmducing

new types, new structures and further a capacity for defining types and

structures.

The concepts of type, structures etc •.• could be embedded in a more

general notion of type similar to the notion used in mathematical logic

(for example in the typed lanbda-calculus). This would imply a systematisation

of the notion of functional. We have pointed out that APLSV 11operc.tom 11

are functionals, but primitive ones. We could very vrell need in the future

III.1.16

user-defined functionalS

- on the other hand we could question the usefuJness or even the correctness

of an approach which makes users ignorant of the system which supports the

language.

This brings us back to the linguistic aspects of APL. It is now

customary to refer to the traditional semiotic trinity: syntax, semantics,

pragmatics [16].

~ The striking syntactical feature of APL is simplicity : 11 valence 11

restricted to 2, left association and mode dichotomy (execution, definition).

- The semantics is certainly unique by its richness as compared to programr::ing

languages, and even of sta.~dard mathematical formalisms

- Definition methods currently used for programming language semantics could

be significantly improved with APL0

It is a norwzl practice, indeed, to take advantage of an already known

language or form&l system in order to "program" the entities to be a..~alysed.

It is even more fashionable to "bootstrap" the whole process by writing an

interpreter for the language in terms of a smal subset of itself - subset

to be accepted as sufficiently evident. This has been done for APL by

LA.THWELL and MEZEI in [(14) l An.other line makes use of a small

(metalanguage" also supposed to be sufficiently transparent. This is done

III.1.17

for APL by ABRÀMS [(15]o

In each case unanalysed elements remain in the semantics - especially

the interpretation process itself, and the pragmatics of the language is not

even touched.

Therefore it is worthnoting the importance of the 1execute 11 function,

together with other peculiarities which are on the borderline between semantics

and pragmatics. In particular, the "carriage return" signe,l, corresponding to

a special key on the terminal key-board, is to be viewed as a character

among the other "normal" characters. Used in conjunction wi th execute, one

finds here a facility for a complete rationalisation of the whole semiotics

of the system.

A simple example will help here:

It is well knnwn that the family of ACKERMANN functions (the first

members of which are addition, multiplication, exponentiation, tetration,

etc) may oo generated from addition by primitive recursion. Thus, if®

representents the
th

n nember of the family, one has:

Another possibility is to use an algorithmic definition including locps.

Can

Now let us see how we J deals with this problem:

a., in APL 360 (XM6), (V~ + , @A!:--)-x

and @ can be build wi thout loop or recursion by

b. The whole ACKERMANN family is obtained inductively if @ has been

defined as ACKN , one has

Z X(ACKN + 1) Y

[1] z (ACKN)/Y X

(supposing that the reduction oferator is extended to defined functions) 0

c. If the 11execute" operator is available, it is possible to show that

5 ~· (3x (y - 1) p 1 (x/ • , 1x 1 , (3x(y-1) p' px) 1 and proceed inductively

from there as in the preceding case 0 J. BROWN has asked whether it would be

sufficient to define@ in a closed, non recursive form. [12]

The answer is yes : using ~ makes it possible to define not only

(f) , and i1;ductively @ frorn O , but even to define directly x@y

without any locp or recursionô This is a unique example of a non-recureive

definition of a truly ~§ral recursive function.

III.1.19.

A function such as "execute" is certainly of a different kind than

11plus", "drop", or eve.n '~assign". It is not possible te describe its effect

by mean of a mathematical object : functional application or explicit definition

"Execute" obtains his .meaning by reference to the APL interpreter itself

which is - after all - an APL object from a "system" point of view , but

a hidden one.

With APLSV many s;ystem f~tion'!;,_ are also introduced. The very

concepts of snared variables and of auxiliary -processor ririg the (precedently

ignored) entities of the system accessioie to the language user. No doubt we

must proceed L~ tbis direction but here the main problem is to keep this

development in harmony with the first constraint mentioned: compatility with

the spirit of mathematical notation •

.An experiment of this kind is in progress and will be described

elsE?where [17].

111.1.20

REFERENCES.

Soc. of SEAS XVI 1971 p.55 [1] P. BRAFFOR'l'

[2] J. SAMMETT

[3] K. 1VERSON

Programrning languages Prentice Hall 19690

Elementary functions SRA 1969.

L4] K. lVE!EtSON Colloq_ue APL 1RIA 1971 P.12

[5] G. BURALI-FORTI, Logica Matematica, Hoepli, 1919 , p.XIXo

[6 l A. PADOA, Le logiq_ue déductive, Gauthiers-Villars, 1912, p.11

[7] S. DELSEDil'l!E, Archives for history of exact sciences, 6 , 1970, P.345.

[8] So PAKIN, APL 360 Reference manual, SRA, 1968 0

[9] K. IVERSON, A programrning language, 1. Wiley, 1962, p.246-

[10] A. McEWAN and P. W'.!î.TSON, Q.uot. Quad. 2,2 , 1q70, Po11

[11) J. RYAN, Quot. Quad 3, 1971 , p.R

[12) J.A. BROWN, Quot. Quad. 2, 1, 1970, p.4

[13] APL ~ôngress 73 North Rolland 1973. cf. especinlly the papers by

EDWARDS, VASSEUR, etc •••

[14] R.H. LATHWELL, J.E. l'IIEZE1, colloq_ue APL, 1R1A, 7-10 Sept.1q71, p0 1R1.

[15] Ph. ABRAMS, An APL machine, Report no. SLAC-114, Stanford 19700

[16] H. ZEMA.NEK Com. ACN 9 1966 P.1390

[17] P. BRAFFORT and J. MIC:IBL • APL X an experiment in language

extensibildy Note ECSTASM N° 19750

III.2,

b<TENSION TO APL DATATYPES WITH AXIaviATICALLY

DEFINED VIENNA OBJECTS

BY

A, OLLONGREN

UNIVERSITÉ DE lEIDEN

GROUPE DE PRCX3RAfvîv1ATION THÉORIQUE

PREFACE:

The following is intended as a contribution to the symposium APLASM

III,2
-1-

(APL applied to Symbol Manipulation) to be held on December 20 and 21 1973,

in Université de Paris-Sud, Centre d'Orsay, Mathématique, Owing to other

commitments the author is unable to present the paper in persan.

The paper consists of two sections. In the section headed "Abstract data

structures" the abstract set of objects used in the Vienna definition method

is introduced; its properties are defined by means of a system of axioms and

a linear notation is established for the members of the set; it is well-known

that the objects themselves can be represented by labeled, rooted directed trees,

In the second section with the title "APL representation of abjects" the

representation problem of the members of the general class in APL is considered.

The following suggestions for extensions to APL are introduced:

- nomination of selectors and elementary abjects

- specification of composite selectors

specification of µ mapping

- specification of selection.

Using these suggestions the Viennese linear notation for abjects is easily

transcribed into APL. Exrunples are given, As a result means and techniques

for the discussion of semantics of computing processes become available in

APL.

-2-III.2.

ABSTRACT DATA STRUCTURES

Computational processes are concerned with the manipulation of data, be it

scalars (numbers, characters etc.), sequences of scalars (strings), arrays and

so on. It is useful to introduce a general class of data structures, which

contains all of the data needed for dataprocessing. We call the classa class

of abstract data structures, or abjects because their properties are given by

a system of axioms and the representation problem is only considered afterwards.

Axioms for abjects

Let (O , S, o) be a system of abjects, selectors and an operation for which

the following is supposed:

- S is a finite non-empty set

0- con tains a fini te non-empty set [

Let (s*, o, I) be the free monoid generated by S in the usual way with

0 as the group operator and I as the identity element. s* is called the

set of comEosite selectors. Finally let 0 also be a relation

and 0- with some special proporties to be discussed presently.

system (0 ' s, 0) eight axioms are chosen:

Al. se A E O -------------------(closure under selection)

A2. (Ko s) A= K (s(A))----------(composite selection)

A3. I O A = A --------------------(identity operation)

A4. (3 w) (V s) s o w = w----------(existence of null object)

A5, (\1 w)[(Vs) s ow = w => (VA)(3 K)K 0 A= w]

between

For the

-----------------------------(composite selection of null abjects)

A6. (V K,e) [K(A) = e <=> K(B) = e] => A= B

---------7-------------------{equality)

Aî, (v' A, K, e)(.:I B)[K(B) = eA (\/T)[-,dep(K,r) => T(B) = T(A)]]

-----------------------------(existence of constructed abject)

s* X V-

AB. (J is the smallest set including the null abjects and the elementary abjects

such that axioms 1-7 hold.

In above formulas A, B f-(J, e e f, s € S, K,T G s* and w is a null object.

The deEendency relation dep is defined as follows

dep(K,T) = (3 o) [K = (J O TV T = (JO ~

with * 0 E S •

IIT. 2-3-

Discussion

From axioms 1 and 2 it is seen that o can be regarded upon as a relation

between S *x 0- and <J (i.e, a non-empty subset of this Cartesian product) wi th

the following property:

for every (K ,A) e s* x 0- there exists a unique object B such that

(K,A,B) E o , The relation o can be regarded upon as a selection operation:

for every K Es* and A E 0- a unique B is selected, In other words: the

abject A has structure in general and given a composite selector K the

component B of A is selected. We wri te for this operation Ko A, K(A) or

KA • Note that o plays a double role as i t is also the group operator in the

monoid (s*, o , I) •

Theorem 1,

There is exactly one null abject,

Proof: Suppose that w1 1 w2 satisfy axioms 1-5, Axiom 5 states that there is

a composite selector K such that Ko w
1

= w2 ; if K. = I we have an immediate

contradiction, if K 1 I we get a contradiction using axiom 4.

Definitions (s ES as usual)

- The unique null object 1S denoted by n
A = { a 1 (3 s) s o A = n} 1S called the set of atoms

E = {ele 1 n A (\ls)s 0 e = n} is called the set of elementary abjects

- C=O--E is called the set of composite abjects.

For a.composite abject A "in there is at least one selector s such that

s(A) 1 n •

Theorem 2.

If A, BE (J and K é s* such that K(A) = K(B) ~ n then

(\1 ,) [,dep(.,K) => ,(A) = ,(B)] =>A= B

Proof: If . , é s* such that ,(A) = e then ,(B) = e because

(a) if ---, dep(.-,K) then from ,(A) = ,(B) follows ,(B) = e

(b) if dep(,,K) then

(b,) T : Ç. 0 K and from K(A) : K(B) follows that ,(B) : e

or (b2) K = Ç. 0 T and if ~ = I then ,(B) = K(B) = K(A) = ,(A) = e

if E;. j I then K(A) = n which contradicts the assumption.

As a result of this:

if there is no , such that ,(A)= e then there is no , such that ,(B) = e

III. 2 -4-

From axiom 6 we can now conclude the validity of the theorem.

Theorem 3.

The object B which satisfies axiom 7 is unique.

Proof: Suppose that B
1

and B
2

satisfy axiom 7. Then K(B
1

) = K(B
2

) = e

and from (\/,)[-, dep(-r,K) => -r(B
1

) = -r(B
2

)] and theorem 2 we conclude that

B
1

= B
2

•

Definition

µ : Û x s* x E-+ 0- is a total mapping where the value of µ(A,K ,e) is the

(unique) B satisfying axiom 7.

Theorem 4.
For any B é (; - {Q} there exists a finite sequence

i = 1,2, ... ,n > such that B = B n

B. = µ{B.
1

,K· ,e.)
l. l.- l.].

Proof: Choose B = Q. If B = e then B = µ{fl,I,e) and the theorem is proved.
0

If B 4 f then there exists at least one selector s and at most a finite

number of selectors such that s(B) # Q; further there exists at least one

composite selector K and at most a finite number of composite selectors such

that K(B) = e ; both statements are a result of axiom 8. Suppose that

i = 1 ,2, ••• ,n ~ 1 • For 1. # j we have , dep(K. ,K.) • If B
l. J n

is Ki(B) = ei

defined by B. = µ{B.
1

,K. ,e.)
l. l.- l. l.

i = 1,2, ••• ,n > 1 with B = Q, then we can
0

prove with axiom 6 that B = B • This proves the n

Definition

theorem.

For any B éÜ' the characteristic. set associated with B 1.s
I

B = {<K. : e. > l 1 < i < n}
l. l. - -

with as defined in theorem 4. If B = Q then B = {}.

Theorem 5.

A = B <=> A = B

Proof: Trivial with above definition and axiom 6.

Theorem 6.

If <K1 : e 1>,<K2 : e2> E B then -, dep(K
1

,K2) •

Proof: Trivial. The condition î dep(K 1 ,K2
) is called the characteristic

condition.

Theorem 7.
If Z = {<K. : e.>11 < i < n} is a set for which the characteristic condition

1 1 - -

is fulfilled, then there exists BE 0- such that B = Z.

Proof: By induction, too lengthy to reproduce here.

We mak.e now a few remarks on the representation of members of the class of

axiomatically defined data structures. With each object B is associated B

i.e. a set of pairs. If for example B = B
3

where

B. = µ(B.
1

,K· ,e.)
1 1- J. l.

i=1,2,3 wi"th B =,..., K =s K =s os K =s· os
0 a, 1 1' 2 1 2' 3 2 2

then

B = {<s 1 : e 1>,<s 1o s
2

: e2>,<s 2 o s 2 : e
3

>} and B can be represented in its

turn by either three rooted, directed, labeled trees without bifurcations, or

as one rooted, directed, labeled tree, We have in figures

B =

B1
s,

= e,

B2
s2 s,

= e2 or

B3
s2 s2

= e3

in which 0 indicates a root and •
edges carry selectors as labels (each

mutually distinct labels), leaves are

other nodes are labeled.

Theorem 8.

B =

a leaf. The labeling is done as follows:

two outgoing edges of anode carry

labeled wi th elementary objects, no

If the characteristic condition holds for two sets

X= {<K.: e.>11 < i 2_n} and Y= {<K.': e.'>11 2-i 2_m}
1 · 1 - 1 1

and if K e s* then the characteristic condition holds for

Z = {<T : e>l<-r : e> E: X ", dep(K,-r)} U {<-r o K : e>l<-r : e> f. Y}

Proof: straight forward using theorem 6.

Definition (extension µ function).

For any A, B E. O- * and K ES the unique object C for which

C = {<T : e>l1(A) = e ", dep(-r,K)} U {<1 ° K : e>l1(B) = e}

is denoted by µ(A; <K : B>)

Theorem 8 states that there exists an object C with the charad;eristic set

as shown and that it is unique. If B = e then µ(A; <K : e>)

satisfies axiom 7 so that it is justified to use the function name µ in

above definition.

Note that µ(A; <I : B>) =B. Further

µ(A; <K : n>) = A if and only if (\! ,) dep(K,,) =>,(A)= n.

In order to illustrate the use of the extended µ function we can write for

above example

B1 = µ(n; <s1 e,>)

B12= µ(n; <s1 e2>)

B' = µ (B1; <s2 : B12>)
B = 1-1(B' ; <s

2
o s

2
: e3>)

Definition (further extension µ function)

µ(A; <K1 : B
1
>,<K

2
: B

2
>, .•• ,<Kn

= 1-1(A; {<K. : B.>j1 < i < n})
1 1 - -

B >) n

= µ[µ(A; <K1 : B1>); <K
2

: B
2

>, ••• ,<Kn

B1 = {<s1 e >}
1

~,2= {<s, e2>}

B' = {<s, e
1
>,<s

1
o s2 e2>}

B as shown before

For n = 0 µ(A;)= µ(A;{})= A; for n > 1 we have a recursive definition.

For A= n we write µ (•••) instead of µ(n; ..•) .
0

In above example we have

B = µ(rl; <s 1 : e
1
>,<s

1
o s

2
: e

2
> <s

2
o s

2
: e

3
>)

but also

B = l.1 (<s, : e 1>,<s 2 0
: B12>,<s 2 o s

2 : e3>)

with B12 as given ab ove. Note that µ(B; <K : B>) 1S a ligitimate expression;

the value of it is B if and only if K = I or B = n if K = S for

instance the value of it is a new abject C with the property that s(C) = B .

IIT •-1-

APL REPRESENTATION OF OBJECTS

It is obvious from the axioms gi ven ab ove that one must have two sets in

advance if one considers applications: the set of selectors and the set of

elementary objects. It is suggested that individual selectors and elementary

objects are nominated in APL as follows (we give a few exa.~ples)

a'S'

a 'E1'

a' E'LEM' , ' 1 '

Here a is some suitably chosen APL symbol. For the moment we need not

distinguish between selectors and elementary abjects,

Using above "type declaration" we can specify composite selectors. If S1 and

S2 have been nominated and so exist in the system we can specify for instance

K + S1 ° S2

P + S1 ° S2 o S2

Q + S1 ° S2 o a'S3'

and we introduce here the identity selector I by the specification

I + a"

Next we consider the problem of building objects from the nominated selectors

and elementary abjects. If the objects A and B have been built and if K

is a composite selector then we write for the µ mapping µ(A;<K:B>) in

APL

AKB

So that K is considered to be a dyadic operator. Each object A is

characterised by its characteristic set A; it can be nominated as an

elementary object by

a A

The null object could be given a special APL character, but it is suggested

to introduce first a selection specification and afterwards specify the null

object instead.

IIT. 2 -B-

If A is either an elementary abject or a composite abject built by a

sequence of µ mappings, and if K is a composite selector, then K(A) 1.s

again an abject by axiom 2. It is proposed to use the compression operation

in APL and to write

B + K/A

With ax.1.om 3 we have then for any abject A •

B + I/A ~A~ A

However if E 1.s an elementary abject and K is net I, K(A} is the empty

abject, and so we can give it a name (for instance O) in APL by

0 + K/E

Note that a O is then the characteristic set of the empty object (i.e. the

empty set} and that this is not equal to a'' • Since we do not need a special

character for the null abject it is reasonable to write for

A= µ(Q;<K:B>) 1.n APL

A+KB

Finally we need an APL notation for the extended µ mapp1.ng 1.n which the

µ function is given more than three arguments. It is proposed that the

result of the following statements

K
1
+ K 1 ,K2 ,K3

B + B1 ,B2 ,B3

C+AKB

(where either the K's

B's are abjects} is

APPLICATION

are nominated selectors or composite selectors and the

µ(A; <K1 :B1 >, <K2 :B2>, <K3 :B3>).

We consider only binary arithmetic expressions in this section. An expression

E in this class has three components: SOP1(E} and SOP2(E) are variables,

constants (elementary abjects) or themselves binary expressions and SOP(E)

is a binary arithmetic operator (an elementary abject).

III. 2 _
9

_

So for the expression E =a+ b * c ~e have

SOP1 (E) = a

SOP2(E) = b * c

SOP(E) = +

SOP O SOP2(E) = *
SOP1 o SOP2(E) = b

SOP2 ° SOP2(E) = c

and written as a µ function

E = µ
0

(<sop
1

:a>,<sop
1

° sop 2 :b>,<sop
2

o sop
2

:c>,

<s op:+>,<s op os op
2

:H>)

For above expression we can write using the extensions to APL suggested

above

a 1SOP1

a 'SOP1'

a'S0P2'

K1 + SOP1 o SOP2

K2 + SOP2 ° SOP2

K +- SOP o SOP2

E + SOP, SOP1, K1, K2, K (a'+'),(a'A'),(a'B'),(a'C'),(a'*')

We have then the following structural properties of E

SOP/E .-. +

SOP1/E .-. A

E2 + SOP2/E .-. E2 + SOP, SOP1 , SOP2 (a'*'),(a I B'),(a' C')

If E1 and E2 are two binary expressions then

E + SOP, SOP1, SOP2 (a 1+ 1),E1,E2

1s a new binary expression. If E2 is as above and E1 + a'A' then E

as above is retrieved.

ITI.2-10-

A CKNOflLEDGEMENT

The idea of extending APL to accomodate the tree structures of the Vienna

definition method is due to Mr. P. Sipos. Discussions with Mr. Sipos have

helped to cast above suggestions into what is hoped to be a reasonable form.

LITERATURE

A, Ollongren 1974, "Definition of programming languages by interpreting au­

tomata", Acad. Press APIC Series no. 11, to appear.

P. Lucas & K. Walk 1969, "On the formal description of PL/I",

Annual Review in Automatic Progra.mming,

Vol. 6, Part 3, p. 105 - 182.

III.3.1

APL - GA: an irmaediate extension

of APLSV.

J. MICHEL

C.N~R.S. (France) 0

Résumé : l'évolution des systèmes APL conduit naturellement à des

extensions dont l'une, celle des structures de données en "tableaux

de tableaux" a déjà fait l'objet de plusieurs propositions. APL - GA

est une extension de ce type q_ui aborde également d'uatres problèmes

significatifs: types, compilation, etc ••• Un programme APLSV

permettant de simuler APL-GA est produite, et plm,ieurs exemples

d'applications sont analysés.

1. Introd.uction

2. Extensions to arrays of arrays

30 Some basic ideas for APL extensions

4. API.GA: description of the language

5. APL-GA.: Implementation of tLe system

6 0 API,-GA. in representation

III .3. 2

1 • INTRODUCTION. APL has been conceived towards 1960. Du.ring almost

fifteen years many development occured which opened new directions to the

language and sti11 maintained tre orieinal spirit.

Since the appeara.n.ce of Iverson 1 s book, several extensions and modifica-

tions have been proposed which are all directed towards greater ,: compactness,

generality, unifo:rmity and simplicity (see [12]) ; in the first widely used

implementation, APL_360, the main innovation was a uniform treatment of

arrays,in the recently intrcduced APL\SV there is also an explicitatton and
l

systematisation. of some of the "pragmatic" part of the language, via the

concept of shared variables.

It must always be reme ·.bered that APL wàs at the very begining

a notation system urg:ing for a r9.tionalisation of mathematical - especially

algebraic- notation. No spécial application ·was .· foreseen no special imple-

mentation recommanded, not even a parsing strate@Y.

Therefore APL's efficiency as a programming language is already in

itself an achievement.

Yet, the user's opinion is that there is at least two facilities still

missing for APL to be a most powerful and completely universal language

- the possibility to handle data structures ofJ more generàl kind

than arrays, such as trees, files and lists.

III.3.3

better control structures.

In addition, the need is often felt to get faster execution of APL,

which remains a remote prospect with a system completely in;terpreted at

high level as is the present one.

So. a new step forward is needed. But the cqnstraints to 'be obeyed

are very strong: keep the original spirit of the system, avoid prolife-

ration of dialects etc •.•

On the other hand recent advances in programming lunguage developement

may be reinterpreted in the APL way and s1iggest interesting novelties.

This is the case, in particular of many works devoted to

"extensible languages" research: (see [13], [16], [17], [18] , [21] .).

A cormnon feature of most of these tentatives is the explicit definition and

manipulation of widely differing data structures via the notion of t~pe

(called sometimes mode or structure) 0

The possibili ty of going further wi th. APL has been evoked in [20].

A specific proposal will be offèred in [26].

The present paper is an intermed"iary step.

It has been found that the introduction in APL of thè notions of

general arrays (a slight modification of the concept introduced.in [14]

refered as paper jn what follows).

III.3.4

) and of types (in actual fact, a generalisation of this notion which

we will call also "information predicates") answers the first of the above

expressed needs: powerful facilities for data structures manipulation

(with immediate applications to data-base management, symbolic and algebraic

manipulation, •••).

Fu.rthermore the scheme here adopted provides the possïbility of par-

tial compilation of APL programs depending on the amount of information

given by the user, via information predicates, in the prog.ram,

It is probable that compilation of the most often executéd lines of a

program would solve the problem of execution speed (see [15] for reference

to previous tentatives of compilation of APL).

III.3.5

2. EXTENSIONS 'rO ARRAYS OF ARR.US.

2.1. Any forLlal system is faced - at the very begirLQing-with the

problem of data types and structures.

Let us .study the second one.

Iverson 1 s book already contains a distinction of four kinds of

structures: scalars,vectors, matrices and trees.

The possibility of working in algebras whose arguments could be

non trivial data structures is a major motivation of APL, as

K. I\'è;RSON points out, page 2 of his book.:

11 For example, separate and conflicting notations have been developed

for the treatment of sets, logical variables, vectors, matrices, and trees,

all of which may, in the broad universe of discourse of data processing,

occur in a single algori thm. 11

At this stage the general notion of an array is not explicited:

only scalé!l'.'s, matrices and trees are specified 0 Arrays are only suggested

in the book, §1 . 20 (11 Levels of structure 11
) (t1] , p. '39). Particularly

interest ing is the footnote *

11 * Further levels can, of course, be handled by considering a family of

matrices 1M, 2M, ••• ,nM, or families of families,jiM. "

III.3.6

The 1963 presentation of the language [2] and the 1964 joint work

with FALKOFF t'y SASSENGUTH [3] forget about trees. Arrays of rank higher

than 3 are introduced sometime beetween 1964 and 1966 0

The next step is the celebrated "March on Armonk" [4] where

S. FALKOFF submitted to strong APL users pressure admits that 11 related to

the file handling and I/0 ~uestion, is the generalization from arrays of

scalars or single elements to arrays of arrays/ ([4]) p.60)

Two years later we have the first concrete proposal, made by

J. RYAN during the third APL users conference ([5]) p.s);a proposal is

put up by J. BROWN in his thesis [6].

In 1972 a proposal was made by G; MARTIN and discussed informallY at

the APL/SEAS working colililllÎ!.ttee. And finally in APL 73 three papers

by EDWARDS, [7] MURRAY [8] and VASSEUR [9] . Finally cornes the

GANDHOUR and MEZEI paper [14].

2. 2. Before ,going into the various proposals it seems ap:pDopriàte to

comment on the apparent slowness of all this process. And this can be done

only by insisting on some peculiarit i es in vol ved wi th any significant

APL extension.

III.3.7

We restrict ourselves to APL/360 and to eor1stan~ s, that is

ord:i.:1ary (numerical or cl::.aracter) cou.-,,taniB, nnd .primitive fur_ctions. Then we

note the foJ.lowing

a) you can enter scalar or vector eonstants, not arrays of rank > 2 •

b) So you have to use "constructor-s"whichare the primitive functiorrs

p , (outer products also delivers higher rank results). To these functions

are associated inverses which give back the structure itself (here the

monadic p).

c) admissionof arrays as arguments for primitive functions cause_.no

problem for the socalled 11scalar functions". For mixed function extension

is not straightforward 0 •

Now it should be clear, that any extension of data structures raises

the following problems.

a) def;i.ning "constructions" that would bu.ild: the new data

structures from keyboa~d atlmissible constants (i.e. scalarsand matrices) and

the corresponding "inverses" •

scalar
b) extend:lng the meaning of and mixed functions in such a

way that nothing wrong happens w}1en the new structure degenerates to an

11ordinary" array.

From these req_uirement:J follows that a data structure extension implies :ln

III.3.8

faét a cornplete reappraisal of most of tlue language and -'chen necessarily

interact with consideration corning for other. modifications possibly

under consideration; of course you rnay choose to :improve those but then don' t

hope too much for an irnplementation

2. '3. The main published proposalSwhich irnply a signifiçant. extension of

the language.

a) RYA N's proposal : [5]

construction of lists i.s a~hieved by a combination of semicolo~s

and () . .

T T
T+(A) +➔ + T+(A;R) +➔ I~

A A l3

Selection .is achieved by indexing along a path:

T+ (A ; ((B ; C ; D) ; E ; F'))

B -<--+

E +-+

T[2 1 1]

T[2 2]

:Measuremen t cornes for a new primitive

which returns a vector of lists :

2 +-+ p[1] T

(0 ; 3) +-+ p[2] T

(0;((0;0;0);0;0)) +➔ pf !J.] T

..
p

III.3.9

Some others primitives are added, in particular

for catenation .of lists

b) ED~ARD's proposal [7] uses only i;ma.new primitive

C

T
T+cA t which gives

A-

you vectors of anything.

Ordinary APL arrays are but special case(scalar arrays) of general

arrays (having "relative scalars" which could be themselves arrays).

A special type of indexing is then required, where

Z[2] is different of Z[,2]

c) NURRAY's proposal [s]

Three primitivesare offered:

::, and c (conceal and reveal)

for construction and selection

a for.measurement.

d) VASSED"R's proposal [9]

Here .2.2..nstruction of lists is o:ffered through special brackets

({ }) .

Measurement ha:s three primitives

Indexing is ac hieved via another bracketing system (E:3') o

The APL 73 Congress in Copenhaguen was an opportuni ty to discuss

all thase proposals. A special session was devoted to this problem,

chaired by P. BRAFFORT, with an active participation of D. FALKOFF and

K. IVERSON .the APL fathe:rs urged tüe audience to make a complete

examination of GH.ANDOUR z IJIEZEI paper (not available at that moment)

nefore going into new experiments.

2o5o GHANDOUR and I'IEZEI I s propos al is by far the more extensive.

1J
Not less than\new primitive functions and operato:mare proposed. A clear

distinction is offered between the concepts of a function and that of

an operator. We shall retain many of their ideas but first criticize some

aspects of their work.

The first objection one sho.uld make to G « M is that it contains

no clear definition of what really are general arrays. This lack of an

adeq_uate formalisation entails a lot of semantic difficulties, together

with the fact that the G&, M conce·ption of general arrays singularizes

some objects they call "scalars" (which for them have the property that

the enc}ose of a scalar is itself), creating some awkward effocts for

III. 3. 11

instance, if the Ith element of a vector A is some array B, AGI

gives as result B if it is a scalar, and else it gives > B the same

happens in many other situations.

Another defect shows in a series of difficulties in the manipulation of

general arrays due to a lack of means to exami..~e the structure of an

array: it .is difficult to determine if a variable holds an ordinary or a

general array. These difficulties in asserting the nature of objects can

also be found in present APL, and can be traced down to the lack of a notion

of "type 11
• For example, in present APL and APL SV, 1 t' 1

, l O gives a

blank as resu1t and 1 t (l O) , 11
, give::i a zero while they seem to be the

same object. This is due to the hidden notion of number or character type

of an object and to the (never explicitely given) laws ruling the composition

of these types under the primitive functions. In the given example, the

rules used are:

-.a character raveled to a number is a character

a

- and: a number ravaled to a character is)number.

And there ara two different empty objects: ' ' which is a character

and 10 which is a number. We have other laws ruling operations on them,

such as : 1+1+ 'A, is a blank, and 1+1+1 is O which means that

1 +'A' is t t but 1 + jl.S l 0

Similar problems occur in unexpected conversions between reals,

III. '3. 12

integers and booleans, which sometimes cause a workspace to overflow when

a boolean matrix is inadvertently converted to real (which happens after

a division, even by 1 !).

A last flaw we would like to point at in the G and M paper is

the lack of proper examination of the syntactic difficulties arising from

the definitions of functionals: they are an important notion discussed in

G and llI under the name of operato.rs (we prefer to call them functiOlli'lls,

in accordance with common use in analysis and logic).

Sorne syntactic inconsistencies involving functionals are :

I: /+A it is either I: /+ A

label plus-reduction

or I: ! +

reduction along I
th

axis

1. +2 is ambiguous it is either 1. + 2
real number plus integer number

or 1 + 2

integer external product with+ integer

is semantically ambiguous its definition depends on the

meaning of " x 11 -used here, monadic or dyadic, and this cannot be

determined from the context.

Such syntactic problems hamper further rese a-ch it would be useful

to allow user-defined functionals in APL this is impossible in

III.3. 13

Ghandour çllld Mezei's scheme, since all the existing functionals have

different syntaxes, and these are already inconsistent as has been shown.

Introduction of any new operators cannot but increase the number of such

inconsistencies.

3 - Some basic ideas for our APL extension

Here we lista series of concepts basic to describe our proposed extension.

To each object is associated a set of attributes which we describe now.

A. Names

The basic abjects of the lang71age have a value (the::r internal re-

presentation)associated with a name (their external representation). We

divide them in two classes according to their names

1 - Autonymous objects, that is abjects whose name coincide with the

value,. i.e. constants. They are :

-numbers, with syntax C-] integer [. integer] fE [-] integer]

or a sequence of such separated by blanks here square brackets denote

an optional item, and integer a non-empty sequence of digits. It is the

present APL syntax, excepted that if a 11
." is present it must be preceded

and followed by at least one digit (which may be zero). This is to prevent

ambiguities with the functionals external and internal products.

- literals, wich o bey APL syn tax.

IIIo3o14

2 - Heteronymous objects, whose names are identifiers. The rules of

formation of identifiers are :

a) a letter followed by a sequence of letters or digits (in letters we

include the alphabet, the underscored alphabet, and l and 6) .

~) 0 followed by a sequence of letters or digits (eventually empty).

y) [']

ô) A single special character (that is, any character nota letter, or di-

git , or one of () 1 : [l A) •

This is a restriction compared to APL SV ir>. a single respect these

rules exclude the identifier of the external product which is a sequence

0

of two · special characters • In APL-GA it is represented by the

period alone.

The association of names with objects is less rigid than in

APL SV. For instance, the objects with an identifier of classe ô) cannot

be user-defined in APL SV but could be in A-PL-GA.

To enhance such a freedom, we would have liked the possibility of

creating an infinity (or at least a number adding to 256 with the present

number) of new characters. This is alas not possible within the present

implementation (though the alpha fonts had been initially designed to be

multiplied via overstriking with i underscore - overbar diaeresis "and quad

(sec [12])).

So the characters we will use here to represent new abjects are

not always the result of deliberate chaise, but rather of the restrictions

of the present r/o implementation, and so do not represent definitive

options.

As a matter of fact a very slight modification in the interpreter

solvesthis problem.

B. Order

Another feature associated with objects of the language is what we

call 11order 1111
• Its definition is as follows

- Ob-jects which take no argcunents are of order O (i.e. constants, ordinary

variables, niladic functions and information predicates).

- Objects which take arguments of order O are of order 1 (i.e. monadic

and dyadic functions).

- Objects which take arguments of order O and 1, at least one of them

of order 1 , are of order 2 (i.e. functionals).

- The operator axis of Ghandou.r and Nezei which can take a functional as

argument, is of order 3.

This distinction provides a convenient framework for syniactic

III.3.16

analysis: approximately, objects, w:i,th order i have syntactic priority

over ob~ects of order less than i Ideally, this would be not approximately

but exactly true. We can specify here our criticism of G and M by

saying that it is probably the fact that this is not true for functionals

which prohibits the possibility of user-defined functionals.

C - General arrays --------------

To sum up the structure of objects in our language, we can say that

they have a name and a value with the value is associated an order. We now

divide objects in four classes: functions, functionals, types and

general arrays, We will discuss later the nature of functions, functionals

and types. We will now define recursively what general arrays are.

A general array is either

- a bit , that is one of two basic objects we denote O and 1 0

- or an object which we represent as

< n 1 , •• • ' nk / a 1 ' ••• ' aN > where a. E general arrays and
1_

where n. ,k are positive or null natu:ral integers and
1

then N = 1) o

k
N = Il n.

1 1

By this notation we mean that a general array is given by:

(if k=O

- a sequence .of integers n
1

, o •• , nk which we call the "rho" or the di-

mensions of the array k is the rank of the array.

- a list of general arrays a. , in number the product of the dimensions.
1

III.3.17

We did not give other abjects than th~ bit to build general arrays from,

because all the usual objects (characters, real numbers, •••) will be built

as special cases of general arrays built with bits.

This decomposition is not necessary but has two advantages :

- it allows within t·he language access to the bit representation of abjects.

- it allows the language to be defined by the means of a small core and of

a "st.9lldard prelude" (in the termin.ology of [13]) of definition,s within

the language, which makes the language mJ.ch more tractable for semantic ana-

lysis and debugging (see the discussion of this point in [21]), which is

a very desirable feature for an extensible language.

D. Types

What makes possible to build easily general arrays hierarchically

from bits is the notion of 11types 11
, or information predicates An.

information predicate is essentially a predicate describing properties

of a general array. To allow efficient manipulation and use of them, we had

to restrict the expressible properties and the predicates we build as

follows:

- there is the basic predicate "bit" describing an object which is a "bit".

- when we have two predicates and , we cax1 ~uild a predicate

p
1
v p

2
which describes any object which verifies one of the predicates

III.3.18

- when we have a predicate p we can build the predicates

:::ip and if R is a sequence of integers meaning that

the object refers to objects verifying the predicate p (that is, the

object a I s verify p)
i

and in the second case that in addition the object has R as dimensions

For type values (we say type or information predicate indifferently

because our notion seems a natural extension of the current notion of type)

the interaction between variables and constants is quite peculiar: we

foresee two kinds of implementations

- Implementations where the language is completely interpreted; in

these implementations the type values can be attributed to variables and

them manipulated without any restriction.

- Implementations where the language is at least partially compiled there-

from assignnment of a type value to a new variable will be possible only

by system comr11ru1d and can force to recom:pile code using another meaning for

this variable .(~)

(*) This restriction is necessary because it is well known that the efficiency

of a compilation depends largely on the amount of compile-time type checking

which can be done.

III.3.19

In the interval between two redefinitions of a name holding a type value,

this name will be considered as a type constantrand the expression:it was
or atomic type. We then make a difference between such a constant

assigned to; e.g. if INT was assigned the type iG::i~IT, the operator

TNT=16::iB"M--ll give as answer false we will introduce a new operator +

"conforms to" and this time(+IPT)=i 6 ::i7?-IT) will be true. This operator

is useful in type expressions, enabling to consider atomic types as

abbreviations 1"or their deU.nition.

We will corne again to the distinction between atomic and other types

and to their relation with the definition of general arr~ys in paragraph IV)

E - Left-values

The intermediate results of the computation of expressions are carried

in objects wh0se names are not accessible to the user. We call them internal

names; among such names, we distinguish a class possessing what we call

left-values (following the teruinology of r21]). This means that the

expressions they represent can be computed as a set of memory locations

belonging to already existing variables. We call them left-values because they

are exactly the permissible domain for the left-hand side of the assignement

operator (+) •

They are build according to the following rules:

- single names have left values

III. 3. 20

- the result of applicatio11 of a selection operator to a left value is a

left value. We shall see the definition of selection operators in part IV)

They are indexation, compression, and take and drop for some values of the

operands.

These left-valued expressions are· the only instance of reference by name

in APL all other references to objects are by value.

F - Extension mechanisms

The extensibility of APL-GA derives essentially from the concept of

types. The main procedure used to butld an extension is to introduce a new

type of objects and extend part or all of the primitives of the language to

allow interpretation of this new type.

Wi th this purpose in mind, we first name the predicate value which will

be the new type, assigning it to a new variable by the system command used

to this purpose. For example

or, in APL SV style :

in polish style)I8TYPE COMPLEX 2:::;FL0/1..T
vJ!lT

COUPLEX'nISTYPE 2:::;FLOATvINT

After this, we now redefine our language primitives as acting on objects

of the new type and corresponding conversion routines. All this and :nore

is done by using an important prirJ.itive operator which we call a 11cast 11

(following the terminology of [1'3 J) and wri te 11 11
• Its uses are the

III.3.21

follé!iwing :

a) Defini tion of new functions meMings when operanp.s are of the new type: :

permissible form for the function headers in API.r-Gf.\ is, therefore ;

VV3+[T1:]V1 F [T2:]V2

where ~ - items within brackets are optional: when omitted we have the

usual APL header V1, V2, V3 are variable names and F is any

identifier, and T1 and T2 are types.

The meaning is that following the header is the definition of the func-

tion F when acting on arguments of types T1 and T2 respectively.

If we have an ordinary header, that is without type indication for the

arguments, this means that tne function is defined for all possible types.

When we have written several such definitions of the same F, the rule is

that the computer tries each one until it has found one which matches the

argu~ents and then applies it. This allow to extend easily all primitives

to new types.

b) transmission of informations to the compiler.

The only way to s peed up the execution of a piece of text on a given machine

is to increase the amount of compilation which is done on it, and for this

we need to increase the amount of information given to the compiler~ for

instance, in present APL , when interpreti..,ig A+~~•. the main exp. ense in

time is due to calling a routine 11+11 fitted for the general case of A,B

III. 3. 22

arrays, one of which may be of bits ànd the other of reals (the+ subroutine

has more than 200 arguments in IBM's implementation !) when in fact we

wanted to add integer scalars in the same waywhen interpreting +(A=0)/5

we call two such general routines when we wanted to make a very

simple conditional jump depending on a boolean scalar A.

The solution we offer here is to have an "interactive" compiler.

amount ,°,f com.pilation de-pending on the
That would be a compiler able to do a variou~amount of information given

(1<:)
to it.'

In APL-G, we allow additional informations to be given to the compiler

via the operator "cast". The general use is : T: A which 6 ives to

the compiler the information that the object · A conf orins to the- defini tion

of the type T (jµis is close to use a)). If on execution the type does

not mate~ an error message is produced. So, if we want to increase execution

speed of code for A+ B we can write (T:A)+(I:B) and for +(/1=0)/5

we can write +((T:A)=0)/5 if I is the type (10)::>T!?T

(&) This is, perhaps, the fundamental .point in compilation, since compilation is

a translation :rreserving semantics, and the amount of semantic properties

which can be proved on a program depends directly on the amou_nt of infor­

mation predicates given on each part of it (for this, see Floyd [22])).

III.3.23

These informations can also be given for the result of a function

a function header of the type 'ï!T:Z+T1:X F T2:Ymeans that the result

of P when applied to objects of type T1 and T2 will be of type T

This allows the compiler to carry type informations through application of

a function and thus enables the compiler to deduce :informations for a whole

program from :initial assumptions.

A last point we have to make about compilation is that, of course,

a piece of text :involv:ing the execute operator cannot be compiled except if

there is no modification of the type of any variable dur:ing execution of the

execute operator

4 - Description of the language APL-G

We will now give an organised description of the concepts and primitives

of the language. This description will be q_ui te brief for functions and

fùnctionals already present in APL SV or described in G ail.d M and

more extensive when our definition is new or differs singnificantly because

of the use of concepts described above.

In what follows we discuss both implementations with and without

compilation the only difference is some restrictions in the use of types

in the second case. We also refer at several places to "our implementation 11
,

which is a simulation we made in APL SV to test our language and to prove

the feasibility of simple and fast compilers for it.

III.3.24

Our description proceeds· as follows we first introduce the objects of the

language and discuss which of them are primitive , then, after a brief review

we
of the syntactic proble~s arising in our extension, proceed to describe the

primitives i:t order , beginning by data types and then functions and

functionals.

A - Objects_ o±: the_ language.

We first summarize the characteristics of the four categories of objects

of the language introduced above.

1 - Predicates _ or Types ; they refer to properties of general arrays

We have the basic predicate bit , and the following operators acting on types

V dyadic P1 V P2 refers to an object verifying either predicate P1

or predicate p2.

::, monadic refers to an object itself refering to objects

verifying predicate p.

::, dyadic p:::,p where R is an integer vector ; refers to an object

which refers to objects verifying p and has R as dimensions.

As a special convention, when one of the elements of R is this means that

the corresponding dimension is indeterminate.

Bit and all predicates designated by a single name are called atomic,

in opposition to predicates designated by expressions involving::, and v

One can create new ator:iic predicates apart form bit by

III. 3. 25

-in interpreted implementations, assiging a predicate expression to a name,

INTEGER.+1 G :>T1I~T:

-in compiled implementations, by the system function QISTYPE

which cannot be used in definition mode

and invalida tes already compiled code using another meaning for 'I llTEGER'

We note here that we accept recursive definitions for types, for

instance : ':RTREF:' □ISTYPE 2:>.7JT!?EEvBTT to define binary trees with

bits as terminal elements.

We have one more operator on predicates apart form the cast (which

was discussed in part îI) :

monadic. argwnent should be atomic predicate p ~ refers to an object

verifying the definition of p (which may or not have the type p)o

2 - Arrays_ the definition we gave of them in last chapter was, in ------

fact, only an approximation not taking into account precisely how atomic

types different from bit can be attached to arrays. Their precise definition

is array = a bit or a couple (< n
1

, ••• , nk / a
1

,o••, an >,p) where

n.
1

k
,kE:N,n=Il

.i=1
n. , where the

1
a 's

i
are arrays and p the predicate

canonically attache-d to the array. We define recursi vely the predicate cano-

nically attached to an array: - to a bit is attachai BIT

- to an array

such that the set of canonical types of the objects a
n

' • •• ' a > . n

is t1 , •.. ,t,

is. attached the type :, t
1

v ••• V t
n

III.3.26

This does not yet provides for the possibility that an atomic type

different from BI'r be attached to an array. Indeed, this is done with

the operator cast vrritten li : li

The value of p : A A array, p predicate atomic is A with

type p if A conforms to the dëfinition Qf p, otherwise it gives an error

message.

3 - Functions

To summarize what we said in last chapter

- the variances to standard APL are ;

a) the general form of the header is v[[T1:]V1+-][[T2:]V2] T' [[T3:]V3]

(items between brackets optional) which allows several definitions for the

same function. The effect of a specification T1:V1 is exactly as if the

last li ne of the function e:x:ecuted was V1+-T1: î/1

b) the identifier F can be any speciLtl character in addition to the

ordinary names, which allows redefinition of primitive functions for new

types.

4 - Functionals

They are and • We will discuss them later.

III.3.27

B - The primitives.

1 - General discussion From the extension mechanisms we gave, it

can be easily seen that we could build our language by progressive extensions

of a basic language with the only primitives

- bit= {0,1} as data, bit as atomic type

- V '
(not) and "enclose" and 11choosen as opera tors, and the functionals.

But in order to·provide a language as pleasant as APL for the user, we

have to give a lot of primitives in a "standard prelude" (following the ter:ni-

nology of [13]) available to all users.

The exact choice of primitives .is largely a mat ter of fuste, so the

propositions we will put forth are more tentative than what preceded. The

list of primitives we will give was build according to the following ideas

- the standard APL functionaf_tG and IJl ones really look fundamental,

which implies their should be kept as they are. We follow the extension pro-

posed by G and H which allows to apply functiona}t~ to user-defined functions

including functions resulting from the application of functionals to other

functions (this is natural for us since we do not make a rigid distinction

between user-defined and other functions).

- the functions o.f standard APL are the result of a long experience and

of a lot of thought, and so for most of them represent a natural cnoice, but

often we differ form Gand IJI on the definition of their extensionio

general arrays ,

III,.3.28

- the funct ions proposed in G and M are, we think, too nu.merous. We

settle for a more restrictive set of basic functions.

2 - Syntactic problems ------------------

We .exposed in part II) the syntactic problems arising from the defini-

tion of functionals in G and M • We will not try here to solve them in

full generali ty (which is what we in tend to do in another paper) but only

to suppress the most striking inconsistencies

ambigui ty of ~ : we solve it by suppressing the definition of for

dyadic functions, since the desired effect can be obtained with the functional

(scan).

- ambiguity of I: f+A we suppress the axis operator written Il

allowing only the usual APL notation f[TJ+A

- ambi 0 ui ty of 1. +2 the solution is that we prohibi t the constant 1.

and other constants ending in a period: the only justification for this

was to specify that the constant is a real, and to do this it can be

wri-::;ten 1. 0

- another modification we suggest is the following:

In standard APL , the symbols / \ represent both ~ function and a

functional, This introduces extended context dependance in syntactic analysis

and in some cases ambiguities, This laxity in notation furthermore cannot be

extended to other functionals and even prevents definition of new functionals

III.3. 29

so we decided to suppress it.

/ and \ will stand for the functions compre s sion and expansion.

-f and \ will s tand for the functionals reduction and scan.
. ----------

and we will wri te /[1] , \[1] , /[1] ,\[1] for what was written

-f and \ :in present APL. We found th at this simpl ified and speeded up

a lot syntactic ana lysis, and hence execution.

3 - The primitive data types -----------------------
The usual data types are defined by the follow:ing atoruic types

canonically att ached to them:

Character :
ç_ 8JB.TT

Integer . l. 16J BIT .

Rea ls . . E. 64JT?IT

Of course these l engths are depend:ing upon implementation.

As a test of the ease of :introduction 0f new data types :in APL/G ,

in our present implementation we have two new type s :

Complex numbers :

One-v ariable polynomia ls D

Here we make some remarks about the :input and ouput r epresen~ation of

constant s and arrays .

We want first to make the following.po:int about Ghandour's and Iviezei

III.3.30

convention for general arrays, which uses an und.Brscore with this

convention, there how exists 4 different kind of separators which can be

used to represent objects which have a tree structure in APL

- Parentheses and brackets are used in pairs of two and a tree of structure

,/_~
ab c d would be represented by ((AJJ)(CD)) using them.

2 - Quotes can represent a text within a text by doubling them the tree

used as example above can be represented '' 'AB'·' 1 'CD'''

'3 - And, finally, we canuses underscores with the convention of G and M.

the same tree is represented

So we have 3 completely different rules to represent trees with these

different kinds of separators. I think that to simplify this is worth of

study.

We do not propose any definitive solution for input and out~ut of constants,

having not done enough investigation on the subject : we follow·standard APL

or. ad hoc conventions (e.g. [23] for complex numbers) •

4 - Primitive Scalar functions.

These are the functions which are primarily defined for basic scalars

and extended to general arrays by a convention easily described with the

"itemwise" functional (see [G and i::J and definition below).

By "basic" scalars, we mean here an array of atomic type bit, [,L or,

(and we include and E , too, in our implementation).

III.3.31

We note here that we allow manipulation of such objects in APL/GA when

in present APL we can only manipulate objects of type~bit , ~l,'fl. or ::>f_ •

This simplifies writing of new extensions (see example below).

The list of primitive scalar functions is ~

We follow present APL definition for these functions excepted for the

following points:

1 - type of the result of these operators is not presently explicitely

defined in the language, but can be determined by side effects in the present

implementations, and one finds for example that :

- the result of a division or an exponentiation is always real, or the result

of an addition or subtraction is never boolean, etc •••

In our implementation we instead choosed to always give to the result the

lowest possible type on the hierarchy: bit-integer-real-complex
0

For instance,
1+0

is a bit and an integer.

2 - we extend many opera tors to complex numbers and polynomials.

For example is the normand x the unitary number of same argument

as monadic functions on complex numbers Modulo is extended according suggesti<

of [23] for complex numbers and according to euclidean division
f.or polynomials ; the real and imaginary parts oî a complex A are naturally

given by ,1o 1 and 11°2 (see "slice" and 11 choose 11 functions) 0

III.3o32

5 - Other primitive functions and functionals -------------------~ --------------------

Rho written p

monadic : for an array < n
1

, ••• , nk / a
1

, ••• , ~ > gives the

integer vector < k / n
1

, ••• , nk >

dyadic for A integer vector < k / n
1

, ••• , nk > B array

gives an array where is the

list of the N first items of array B (cyclically repeated if there are

not enough of them).

Note that we do not follow the definition of OpB in G and M finding

it inconsistant.

Choose written °

We make first a fèw defini t ions

an index to an array A=< n
1

, ••• , nk / a
1

, ••• , aN > is an array

< k / b
1

, ••• , bK >

A where

where 1 ~ b. ~ n.
1 1

It indexes the element a. of
J

A path for an array A=< n
1

, ••• , ~ / a
1

, ••• , aN > is dàfined recursively.

I t is a '8Ctor p = < -t/m
1 ' • • • ' m.f > where

is an index to an item a.
J

of A

III.3.33

3 - ei ther K == î (and we say P is a path to a.)
J

or

is a path for the array a.
J

We now define A O lJ where A is an integer array and B an array:

- if A=<'!\ .. Y\i /a ... , au> , the result
1 I J<. I r<

z has as dimensions n1 '• · ·' nk-1 •

- each vector of A obtained by fixing the k - 1 first coordinates and

varying the last is a path for B and if we fix the k - 1 first coordinate

of A to
m1 ·' • • •' ~-1

and obtain so a vector V, the element of index

m m. of Z will be the element of B to which V is a path.
Î ' • • • ' k-1

monadic o A is a if A=< /a> and gi ves otherwise an error message.

1

Slice wri tten A [B] or A 1 p. indifferently, where B is a vector of integer !

arrays: we follow the G and M definition.

Itemwise functional: we follow the G and M definition it allows

to define recursively the extension os scalar functions to arrays. If o

is a scalar function, we define its extension nr:xT S as

""flEXT O if argwnents are not scalar, ô otherwise.

□EXT is implemented as a functional of the language accepting scalar

functions headers as arguments. This allows very easy extensions of scalar

functions to new types.

For example we give below a few lLDes of text in APL/GA a definition of

complex numbers and of some primitive functions on them

'ï!ÇJ:.: 7,+{Zl:: X+ QE: y
[1]Z+X+Y V

'ï/ Qf.: z.+2.r.: xx rl.r.: y
[1]Z+,X.xY
[2] Z + (Z [1] - Z [1~]) , Z [2] + Z [::l] V

'i/QP,:Z+I f.:X
[1]Z+O ,X V

III.3.34

and so one • • • After this we have ônly to execute OEXT' +', [JEXT' x'

etc ••• to have a full extension of complex number operators to any array

containing complex numbers.

For the functions and for the functionals

and we take the same straightforward extension to general arrays as

G and M. But we give a meaning different from standard one to the scan

operator acting on ordinary arrays, before extending it to general

arrays. We first noted that for a vector of n elements and a.non-associa-

tive function, calculation of scan takes n(n-1)/2 applications of the func-

tions in contrast to n - 1 for an associative function. If one takes as

definition for ô ~ V where ô is a dyadic function and V a vector

a
1

, •.• , an , the vector

a1

a
1

ô a
2

(a
1
oa

2
) oa

3

III. 3. 35

Then the definition is identical with the present one for associative

functions and takes only n - 1 operations for non-associative functions.

We them ,tried to com:pare the respective merits of these definitions:

it seems that the only useful scans of non-associative functions are, with

the present definitionr,,\ and$\ (t:,iey are the only non-associative scans

whose result can be given any reasonable description).

They give respectively, for bit vectors: 1 at the first 1,0 elsewhere

and 0 at the first 0,1 elsewhere.

With our definition we have the useful scans:

>\ : last 1 of each sequence of 1

<\ : first 1 of each sequence of

and furthermore, th.e present meaning of > \ is not lost and can be

obtained as <\V\ , with less applications of functions whenever n > 5

Identical wi th 11 == 11

As in [G and N] we define a boolean function which tests complete

equality of two arrays.

Iota 11 l 11

Monadic iota is the unique array such that, for any array A, A.::,A o 1 pA

it is defined only for integer vector arguments.

For dyadic iota, E ruid the functional ~ , we take the same

defmition as [G and M] 0

III .3 .36

Ravel: Il Il

'

Monadic if a = < n
1

. , ••• , nk / a1 ' ... ' aN > ·them,

k
/ A is < II n. a1 , ... ' a >

1
1 N

We found that in order, to build character arrays or other

arrays to be used for output.ing tables or other complicated formatted output,

it would be extremely useful to have automatical extension for ravelling of

some arrays. So the following extension fo 11ravel" seems interesting:

1 - A• B is identical with A,[(ppA)rppB]B

2 - A,[I]H : it is authorized that (ppA);;tppB only if 2~(ppA)rppB

Then the array of lowest pp has its p extended by a one in position i,

and eventually another one if needed.

3 - If (ppA) =ppBthen A, [I] R is identical with (StA),[I]TtE

where B=T=(pA)rp.73 excepted at position i
T[I]=(pB)[I]

where ~[IJ=(pA)[I] and

4 ..., If pA and rR differ only at position i we take the usual

APL definition.

Format

For the same reasons as our extension of ravel, we modify the

present APL/SV meaning of format so that °' gives always exactly the

image of the object on the paper, so that the pp of the result never

exceeds two.

Goto We found that the pr:esent control structure of APL is enriched

and that many condi t±onal branchings can .be done faster wi th an extension

III.3.37

of goto to a dyadic meaning:

A-+ B is allowed for B any boolean expression and means

"if B then execute A" • The most interesting characteristic is that A

is not executed if B is false, preventing an error message if execution

is then impossible.

We can easily with this extension write some usual control expressions

Il if B then A else C" [1]A-+H
[2]C-+~B

•while B do A Il -+OLC[1],0pA-+H

Compare with standard APL traduction.

Finally we would like to indicate some modifications we suggest

the definition of execute, [7CR ,, ., and r FX

They are as follows

1) 11Execute 11 accepts a two-dîmensional array as argument, executing

sequentially each line.

2) l' is defined for functions, giving as result the text less the

header.

3) While [1C."9 gives only the header, and for an ordinary variable gives

as result its name (the argument is no more to be put within quotes) 0

4) and CFX is dyadic, needing as left argument a function header,

and as right argument a fur'.ction text less the ·header
0

The role oî these modifications is essentially to make more logical and

III.'.3.38

and uniform the diverse relation existing between tbese funct:ions.

Furtber, the moclifieation of r,p.x is very useful wlrnn ù.ef:ixdr,g different

but very similar versions of a function for different types.

V - Implementation

Our implementation is - presently -

an
simy.lation

APLSV .,..Î to test the feasibili ty of a compiler for our

language. A very efficient co:Il!Piler (that is, taking is account the double

level of interpretation) accepting almost our whole language could thus

be made, along the tollowing principles.

A) Memory allocation.

are
Memory allocation andgarbage collection always, effected through re-

ference counting (cf. [19] , chap. II). TM~ is possible since, due to

the concept of left-values, all data structures, including data refering

to other data, can be described as trees. It allows efficient garbage collec-

tion and keeps duplication of identical data to a minimum (insteed of copying

some data,we increase its reference count by one).

B) Parsing.

Our concept of order and the restrictions we discussed under C) of

Chap. IV allows us to parse a line with a (1 ,1)BRC syntax [24] , with

a small table. This is the main reason why our compiler iS fast and needs a

III.'?. '39

modest amount of memory.

C) APL SV representations.

They are as follows:

memory block s and all auxiliary functions and variables for the corn-

piler are represented by APL SV variables beginnihg by b or ~ this

is the only class of names legal in APL/GA but illegal in our irnplernentation,

Memory blocks are represented by variable bnnn where nnn is an integer.

Reference count iz done by the means of an integer vector tiNAJVIES whose

i
th

element is the reference count of ~i

An APlr-GA general array is represented by an APL SV vector having the

same name, and whose structure is as follows (much like standa~d APL

M- ep.try [25 J).
The first element is the type, encoded (via a symbol table) as a positive

integer the same integer is taken negative if the array is a left-

value.

- The second element is the rank of the array.

- The following elements are the dimensions.

- after this is tlle list of elements. If these are not bits, they are then

thernselves arrays. They are then represented by the index of the mernory

block where they are stored.

D) System and compilations

The present implementation includes

III. '3.40

- a compiler t,CO'fP which can compile a single line of APL test

- a function compiler t,,FCOHP which can compile any APL function and

which uses t,,CO:!P

and a superviser ASP which can accept lines and execute them on the

spot. It is very short and we give it here:

V SP AA;L6
[1 J (1]+6 t 1 ' •

[2] +(O=pLA+(-1+(LA~' ')11)+LA+~)/1
[3] ~QFX((pLA)[2]t'A'),[1] LA+6C0!1P LA
[lt] +Ali/1
[5] CTI!JE
[6] +1

u

Here l::!.P is a routine implementing our proposed extension for ravel

andCTIHE gives a timing indication.

The programs comprising our compiler can be divided in two parts:

- the compiler itself

-·semantic routines implementing primitive operations. Our APL SV represen-

tation allows these semantic routines to be APL functions acting directly

on our APL/GA objects. We will now describe the core of our compiler,

which consists of about 100 lines of APL. The main function is

which accepts a-s input a line of APL!GA and gives us output an equivalent

text in APLjSV. It uses as auxili~ry functions

liSCAN a functio11 of 2 character vector argu.P.1.ents returning us result

the index of tlle first occurence of the first argument in the second.

III.3.41

M!EHN : a function returning the name of a new block of memory (that is,

t,i where i is the first index such that the reference count of t::.i is

zero).

of
6CODE : a function returning the inte:.r,m.l representation i ts argument

: a function returning the name of the semantic routine implementinÉ

the APL/GA function represented by the second argument of MDic(when it

has an adicity,,equal to the first argument of 6ADTC).

~1 AQ AP AC" are other functions discussed later. Ôli , Ll , Ll , Cu)

T

The global variables used are:

bSPEC,bDIG,bCHARS

function t,JNIT

vectors of characters initialised by the

bFTA!3LE : character vector used as a symbol table for the functions

recoynized by the system at a given time.

!:::.COD : dictionary used by AAD.IC to find the name of a semantic routine

implementing some APL/GA primitive function.

AG : Parse table for the (1 - 1) BRC grammar.

In !J.C0!-1P , li'V'es 1 - 15 · accomplish the lexical analysis and the

encoding of cons~ants, and the other lines do the parsing and translation.

The local variable are :

the text, preceded and followed by the character Jl used as a "marker".

S ~ a vector of integers of same length as the text, used to store the results

of lexical analysis after it, all charactè.rs, of T belonging to the same

III. 3.42

word correspond to positions of s containing the same integer, which

is the position in T of the first character of that word •.

N - a vector completing the information of S • N[i] contains an integer

representing information on the nature of the word b . . . t .th eglll.nJ.ng a 1

position of
encoding

T .There is also an of this information as characters,

with the following correspondance.

Integer encoding

0

1

2

3

4

5

6

7

8

9

10

11

12
13

character encoding

C

0

1

)

t

]

[

(

Nature of word

a const-ant

the name of an object of
order o

the name of an abject of
order 1

a mari<er of beginning or

end of line

)

the functional

the functional

the functional

]

[

(

f
or

The lines 1 - 7 of build the vector S. Line 8 builds N but

distinction between abjects of order O or 1 is not yet done. It is

done in bnes 9-11 , by co;lsiüting t:,PT/LRT,F:

Lines 1ê-15 replace constants by their internal representation.

III. 3.43

Parsing then proceeds according to the following sheme

P is a vector used as pUsL.down store, where a word is represented as

the index of its first letter in T. It is initialised to the list of

word of the line and scanned right to left by the variable I • At

each step, an action is taken taking only in account the nature of the words

P[I-1 J, P[I] , • P[I + 1 J

These actions are of the kind: generate a line of text for an

operator acting on one or two operands and substitute in P the

result for the operator and the operands.

The syntax is fully represented by the table , where l\G[I1 ;I2; I

is a letter representing the address of the action to be taken when p[I-1]

is of nature I1, P[I] of nature I2 and P[I+1] of nature I3

Here is a list of all triplets

STATABI.E

000000000000000000001111111111A~~AAAAAA)))))))))))))))ffff ... ""]]]~
11))))) ... J J J] J J [: : +-+O O O O O 1) ... [0 O O O 11 f' -+O O 11)))) •.• 1 J[++1. .. [O 1. 1. 0 O O (
0[1A).[1101A)]+00+001A)][001101A:+O[A10A)0[01A)111)0000110~01011t)~ - . - - - - - - - -
Dfi.KY cTI(Jrnr:KKKKYK CKJU? Y JKKKcT/11(0!! K,TF V J!f A f!HU KKYKKKK K KIŒ.KKKYT? r;G/ŒKGY(:,T Y.KJ

]]JJ]JJJ]]J]J]JJ[[[(((((((: :: :+++++++-++-+++
0 11)))) ...]]]]] ++O 1 .. 0 0 0 11 ... 0 1 •. -+O O O O O 1 •. 0 0 0 1 ..
[0[01~)1101)]+00]011)[0[11t0101~)][011~[01
,IY. AKKKK GKKKKKKKY K!!H JX J!f,,1 G H K 11 l!JI.JKKK ,Tff!! ,_ry_,_r•rrr

A P. l1B C substitutes in p words P[I+AJ toPLI +B]by word

serves to substitute the nature of C i gives the i
th

item of the line.

III.3.44

The meaning of the actions are:

A Axis operator

B +

C choose function

D a dyadic function

E . error .

F end of parsing

G monadic functional acting on djadic function

H itemwise of monadic functions

.J skip back one word

K skip forward one word

M . monadic function .

Q external product

R I or\- functional

u monadic-+

V label

y . dyadic-+ .

AP is a function which c.atenates its argument us a knew line to the

object-program PC

We give here,in addition to the listing of all these functions, the

array !!.COD and some exaunples of translations.

E - Examples and listings.

Here are some examples of output of 6comp

6CO/.JP I P1: Z+(il[t'] ==I+0) / l pl' 1

F1 :6140+bfül P
61 4 1 +-,H T i\ 1 !t 0
A142+ 1 I 1 âIS ~ 0 139
/J.143+- 1 i/'t:,C:J P
A144+6143 bEQ ~142
h 1 1t 5+-61 tt 4 l!. C,'.J . ld 41
614G+'Z'6IS 6145

Notice the trea~ment of axis operator

6COMP'A:+(f[1]+A=7+XE 11 ABCD' ')/C+4 1

A:l!.103+'C'bIS 5 0 102
â104+X bEL 5 1 4 98 99. 100 101
6105+5 0 97 bAD l!.104
b10G+A è!.HL' 6105
'f'AAX 5 0 9ô
'1'.107 1 !::.iW '11AD'
li108+6107 t:.106
6109+ll108 LIClJ t~103
+ll109

We deal easily with deep parenthesing.

ACOUP'(((A+B)x(L+((P+O)+U))))'
ll147+P MID 0
A148+61 1r7 bAD U
Li149~-L bAD 6148
6150+A 611D B
6151+/1150 AMP 11149
h.U1' 11151

Here is an example of treatment ofdyadic, go to

ACOUP'K+L+1➔E~K+-L+2+B~1'
6113+B llNE 5 0 112
➔ (~1H13)/7+[1LC

6120+L êAD ~ 1 3 117 118 119
~121+'~'6IS 6120
ll1?2-<-.J !:.l/1,' L\121
-)-(~ll122)/3+[:Lc

612~+-L 8~D 5 1 6 123 124 125 126 127 128
A130+'K'lIS l\129

III.3.45

We now give the listing of 6 comp

'il P{;+I\C(VfP T;S;Z;l!;P;I;L
[1] pr;+ 0 1 p ' '
[2] S + (~Sv ;t \ S + T = ' ' ' 1

) x 1 + (T+ ' A ' , T, ' /\ ') E MJ P F, C
[3] S+T[P+((T=' 1)A(S';t-1q>S)vS=2)/1pT]='.'
[4] +('A'=T[P[2]])/CT
[5] I\P -1+(P[2]-1)+T
[6] +0
[7] CT:S+P[+\(1pT)EP+(~(ZA-1~ZvS)v(SA(1q>Z)A-1~Z+T[P]EADIG))/P]
[8] ll++/(ACHARS1T[S]) 0 .~ACHARS1'A+A)f.-][(:++'
[9] +(0=pZ+(N[P]=I+1)/P)/F1

III. 3.46

[10] IT1:IT[Z[I]]+1+(pl\FTAPLE)~(' ',(Li' ')tL+t.,O P1Z[I]) 15.SCAll 15.FTABLE
[11] +((pZ)~I+I+1)/IT1
[12] F1:Z+(N[P]=I+0)/1pP
[i3] IT2:+((pZ)<I+I+1)/F2
[14] P[Z[I]]+(YACODE~t,0 Z[I]) AN 1
[15] +IT2
[16] F2:I+ 11 p-1+pP
[17] K:I+I-1
[18] IT:+~A(;[fl[P[I]];N[P[I+1]];ll[P[I+2]]]
[19] A:+(ll[P[I+5]]=2)/3+nic·
[20] I+I+4
[21] +lf
[22] AP 1111 ,(15.0 I+1), '''AAX 1 ,/\O I+3
[23] 0 4 AS P[I+1]
[2lf] +TT
[25] T?:tP(L+Al!ET-1!7),'-<- 111 ,(t-,O I),"'AIS 1 ,AO I+2
[26] -1 2 /\S LAM 1
[27] +K
[2 8] C : t., P (L+ Ml F rnn , ' + 11 1 , (/\ 0 I) , " ' AC H ' , /\ 0 I + 2
[29] -1 3 AS LAN N[P[I]]
[30] +F
[31] D:AP(J,+/1,l!r:TlN), 1 -<-1 ,(AO I),' 1 ,(2 /\ADIC AO I+1),' 1 ,AO I+2
[32] -1 2 AS L AH 1
[33] +r..
[34] E:1+(P[pP]-1)tT
[35] ((0fP[I]-2)p 1 1), 1 ASYl!TAX FRROR'
[36] +0,0pDIAGllOSE
[37] F:+((pPG)[2]~'AIS' ASCAM(-pPG)[2]t,PG)/2~nLc
[38] AP 'AUT 1 ,15.0 I+1
[39] F:+0
[1~0] G:AP "",(L+MJEY!l),'"',(1 /1.ADIC t,0 I+1),"",(2 1~ADIC AO I+2),""
[41] 0 2 AS LAN 2
[42] +IT
[43] l!:/\,P '''',(L+Al!Eflll),'''b.I!f''',(1 AADIC tO .T+2),''''
[~4] 0 2 AS L Al! 2
[45] +IT

[46] J:I+.T+1
[47] +I'J:
[48] lf:t,,P(L~-MJET!N), '+ 1 ,(1 t,,/tl)IC /\0 I+1),' 1 ,/\O I+2
[49] 0-2 àS L All 1
[50] -+IT

III.3.47

[51] Q:/1,P "",(J,+t:,llETl!J),"'tiF:XT"',(2 6.ADIC t,,O I),' 1 ,(2 6.ATl.TC AO I+2),'"'
[52] -1 2 t,,S L till 2
[53] +K
[5 1+] R: t:,p "" • (L~-td!EF!J)," '/\RD'", (2 /\ATJIC AO I+1), ""
[55] -1 1 /\S LAN 2
[5 6] ·+](

[57] U:/\P '+ 1 ,AO I+2
[58] o 2 t:,S P[I]
[59] +IT
[60] V:PG+((1,pZ)pZ),[1]((1-1tpPG),(pPG)[2]fpZ+(A0 I+1),': 1 ,PG[1;])tPG
[61] -1 2 AS P[I]
[6 2] +_!T
[63] X: -1 2 t:,S P[I+1]
[6 4] +]{

[65] Y;Z+/\CONP T[(+/ScC)t4(L+1+ItP)lS]
[66] t:,p '->-(~',(/\0 I+2),')/',(T1+(pZH1J),'+f!T,C'
[67] PG+(((pPG)ro,J,)tPG),[1]((pZ)ro,L+((pPG)rpZ)[2])tZ

t7

u

III.3.48

.And now a listing of the au:xziliary functions used with it.

6ALP+ 1 ABCDZPGHIJKLUllOPQRBTUVWXYZ/J.ABCDEFGllIJKL~JO?CRSTUV~XYZ□~'
/J.DIG,-'-0123 1l-5578<J'
lSPEC+ 1 +-xf*rLIAV~>~=S<~~~pEw?t+1o@oc~nuiT;\/.a~1e4t~!Y~Ià)f\.-][(:++ AV~ 1

6CllARS+ 1 ' 11 ,6DIG,6ALP,ASPEC

àFTABLE+' ~ f ',, 50 2 t 50 1 p6SPEC

V Z+B b.SCAD A
[1] Z+(Af(-1+tp,B)~(,D) 0 .=,A)t1

u

V t.P L ;11
[1] PG+(AtPG),[1](A+(pPG)fO,p,L)[2]+,L

u

V Z+I /J.H A
[1) S+S,(pI)pZ+1+p~
[2 J :l'+T ,I
[3] J7+il,(pI)pA

u

V A i:,S B

[1] P+((I+A[1])tP),B,(I+A[2])+P
u

V Z+AO I
[1] Z+(S=P[I])/T

\]

r; Z...-;.\fië;;/lI
[1] +((p!1illl!IES')~Z+t\N1WE'StO)/i,
[2] b.il Al-JES+iJ.llAUES, 1
[3] -► 5
[4] M,7A/,1ES [z]+1
[5] è,C!:,+!:,.CL\, Z
[6 J Z+' /J. 1 , "9"Z

V Z+I /J.ADIC IrEM;L;K
[1] -►((p!è.8Pi.,7 C)<;:+/J.SPEC,L+1tZ+ITE!f)/0
[2] Z+,!J.COD[I;K;]

u

Here is the dictionnary fo traduction of primitive.

What is output here is 1 32 i'J:!t. COD

CODES
+-x ❖ •rL jAV~>~=~<~Y~pEw?ti10© 0 c~nuiT;\/,a~4a47I!Y~I
66A66AA~6666666â66666 6666666~6 AAA6AâA 66~6666
Pl-!3I",:,'CIA IIR 11 IPED R D E R '.:"i?J'OC:';G
I,ivGVXLFiJ TH D 'i'IPC F C il V R,::'1Düiii

AA6~66Aâ666666AA66666 666666666 6~â666 lAll6l6
AJUUI'SI~EOilGGELL~ll RE DTDPTLCIG 2DLECC 2RR SC
Di7PVJPiiD'J.'RDTI:.:QJ:,':/DR RL LK.RSGGHSA DDXPliT .?:?1 LI)

To finish we give a glimpse of what is a session of APL G
0

X+E. 1 1
OHOMOSG80
X

1+X
OllOMO:J980
T+XxX
Oll0/.11S520
T

1+2X+X2
OH0/.113820
O+U+-'.i."X.2'

1 +1+x +6 x2 + i+x3 +X4
OHOM2S640
Y+[l_ 2 3
Ol10M3S280
y

2+31
OllOM3S 5G 0
YxY

-5+121
0!I0N4S40
A+1
OH0ML+S340

III.3. 50

REFERENCES.

[1] K. IVERSON A programing language J. WTLEY 19620

[2] K. IVERSON Formalism in programming la.nguages. CACN 7 1964 · p. 8)

(Presented at a working conference on JVIechanical la.nguages structures

Princeton N.Jo August 1963).

[3] s. FALKOFF , K. IVERSON, E. SUSSENGTTTH.

A formal description of system '360 IBJVI Sys jo 3 1964, 181.

[4] Proceeding APL users conference at S.U.N.Y. Binghampton 1969.

[5] A summary of the presentations at APL User conference Workshop '3

Q.uotquad '3 î 971

[6 J J. BROWN A generalization 0f APL Ph. DByracuœ University 1971

[7] E. ;EDWARDS G!alneralized arrays (lists) in APL in P. GJERLOV •

H.S. HELJVIS , J. NIELSEN (ed. APL Congress73 p.99

[8] R. MURRAY On tree structure extensions to the APL language id. p.3330

[9]

[11]

[12]

[n]

J. VASSEUR Exten.sion of APL operator to. tre.e like dâta structures

id. 457.

Kj. SMI LLIE APLISP : a simple list precessor in APL quotquad 3 1972

Falkoff and Iverson II the design of APL II IBJVI J. Research· July 1973

Van Vijngaarden and al" report on the algorithmic language Algol 68 11
0

JVIathematische centrum, Amsterdam, 2/19690

[14] Ghandour and Mezei 11general arrays, OJ?erators

J. Research July 1 q730

and functions 11IBJVI

[15]

[16]

Van JVIedel Colloque APL IRTA 1971 p.'3'39.

Garwick, Jan V. 11GPL, a truly general-purpose language" Comm. ACJVI

vol 11 n°9 (9/1968) pJ?.634-38

f 1 7] A survey of extensible languages SIGPLAN notices.

[18] Irons, E.T. "exl)erience with an extensible language 11Comm. ACM .l'fol.13

n°1 (1/1970) PJ?."51-40.

III.3.51

(1Q] Knuth, Donald E. "the art of computer programming", voi.1-3

Addison-Wesley, Massachusssts 19680

(20] P. Braffort . Paper III-1 this issue--

(21] Ben Wegbreit "studies in extensible programming languages" report

AD 71 "1"5°?2 Harvard University, Cambridge, Massachussets.

[22] Floyd. R. Assigning meanings to programs "Froc. Symp. Applo Math,a Vol.19

[23] E.C. Mc Donnel, "complex floor "API,-congress 73 (North-Rolland) p. 229

[24] Aho, currents in the theory of computing.

[25] APL - 360 OS System hannual LY 20-0 6 78-0o

[26] APLX - P. Braffort and J. Michel to ap_Jear 0

	III - 0 Introduction au troisième fascicule par P. BRAFFORT
	III - 1 APL in perspective by Paul BRAFFORT
	1. Preliminary remarks
	2. From a linguistic point of view
	3. Birth of a notation
	4. Names, types, structures, orders, etc...
	5. From APL to Naples

	III - 2 Extension to APL datatypes with axiomatically defined Vienna objects by A. OLLONGREN
	Abstract data structures
	APL Representation of objects
	Acknowledgement

	III - 3 APL-GA : an immédiate extension of APLSV. J. MICHEL C.N.R.S. (France)
	1. Introduction
	2. Extensions to arrays of arrays
	3. Some basic ideas for our APL extension
	4. Description of the language APL-G
	5. Implementation

