N* 100-7420

APLASIT 73

SymPos1uM D'ORSAY SUR LA MANIPULATION DES
SYMBOLES ET L'UTILISATION D'APL

VoLume 3

RECHERCHES SR APL

CONTENTS

VOLUME ONE : THE AUTOMATH PROJECT

I-0 P, BRAFFORT
I-1 N.G.DE BRUIJN

I-2 D, VAN DANEN

I-3 I. ZENDLEVEN

I-4 L.S. JUITING

I-5 G.KIREMITDJIAN

Introduction
The AUTOMATH Mathematics checking project

A description of AUTOMATH and some aspects of its
language theory

A verifying program for AUTOMATH

The development of a text in AUT-QU

LIMA PAL

VOLUME TWO : THE LIMA PROJECT

II-0 P.BRAFFORT
II~1 D. FELDMANN
II-2 W.VERVOORT

I1-3 P, MERISSERT

Introduction
LIMA A
APL symbol® processing in APL program verification

LIMA O

II-4 G. AGUNNI,R.PINZANI, R.,SPRUGNOLI APS : A conversational algorithme

programming system

VOLUME THREE : RESEARCH ON APL

ITI-0 P, BRAFFORT
IIi-1 P-BRAFFORT

III-2 A.OLLENGREN

IIT-3 g, MICHEL

Introduction
APL in perspecf'l.lve

Extenston to APL data types with axiomatically defined
Vienna objects

APL GA

LE SYMPOSIUM APLASM 73

Les 20 et 21 décembre 1973, le Département de Mathématiques de 1'Universtté
Paris-Sud (Laboratoire Al Khowartizmi) organisgit 4 Orsay un Symposium Inter—
national consacré aux problémes de la manipulation des symboles en mathématique

pure et & l'utilisation du systéme APL.

Plus de einquante participants venus de huit pays différents furent acceuillis
par G. POITOU et participérent aux sesstons présidées par M. DEMAZURE, H.HAEGI,
G. MARTIN, J. DELBREIL.

Une introduction générale au projet LIMA et aux problémes généravx abordés au
cours du Symposium est publiée séparement (note ECSTASM N°1).

Nous publions, avec le concours de 1'IRIA (%)

les communications présentées
pendant ces deux journdes en les regroupant en trois volumes qui correspondent

aux trots pdles d'intéréts prienipau.

Certaines communications n'étaient pas disponibles pour publications,par contre nou
avons ajouté plusieurs textes correspondant 4 des travaux effectués postérievurement
au Symposium et qui permettent de parfaire 1'homogénéité de 1'ensemble.

P.B, M.D.

(¥) Contrat SESORI 73 021

JIT - 0

INTRODUCTION AU TROISIEME FASCICULE

par

P, BRAFFORT

Notre intérét pour APL est 1lié aux intentions méme qui ont précéds
a2 la conception du langage : développer un systéme formel proche de la no-
tation mathématique et apte & exprimer simplement les algorithmes combina-

toires les plus variées,

Ie livre 4'IVERSON contient en fait plusieurs possibilités de dZve-
loppement dont APL/300 puis APLSV ne sont que des réalisations parti-
culieres,

Dans la période récente les propositions de modifications - mais

surtout d'extension - du langage ont été nombreuses,

Ce troisieme fascicule en donne un échantillon gqui nous semble signifi-
q

catif mais ne prétent évidemment pas & 1l'exhausticité,

Ie premier article est une version révisée et augmenté d'un exposé
présenté & Pise & l'cccasion du XVI éme meeting de la SEAS (Share Européen

Association),

IT1-0,2

On s'y propose de situer le probléme général dA'APL et de définir
un cadre théorique pour les extensions

Ie second article est plus particuliérement orienté vers le probléme

de
des structuresjdonnées, TI1 permet d'utiliser une liaison entre les problimes

typigquement APIL et les recherches de sémantique formelle comme celles

développées par 1'école de Vienne,

Enfin le troisiéme article décrit une expérience compléte de conception

et de simulation d'une extension A'APL,

3.

4.

5.

ITI.1,

APL, in perspective

by

Paul BRAFFORT

Preliminary remarks

From a linguistic point of view

Birth of a natation

Names, types, structures, orders, etc,..

From APL to NAPIES

References,

I11.1.0

I11.1.1

1. Preliminary remarks,

This paper is a revised and expanded version of an invited paper to
th . . s , . .
the XVI meeting of SEAS (SHARE European A33001at10n) held in Pisa

(1taly) 1971 [4] .

My intention was, at this time, to pinpoint the’peculiarities of APL

viewed as a notational system , from an epistemological point of view,

Recent developrents of APL as programming language have shown

convincingly the adequacy of an approach of this kind and even asks urgently
for a more comprehensive and systematic treatment.

We shall proceed as follows 3
- we first describe the problem foom a linguistic point of fiew with an
emphasis on the trizd : notation system/mathematical formalism/programming
language.
— next we show how APL fits in the natural. history of notation systems,

/4

consider belonging

-~ then we various concepts to the field of formal systems

theory which happen to play some role in the development of APL ,

— finally we ptit APL's history in perspective, with respect to the

afore. mentioned considerations and we offer somé;mognosticationsof the future,
Many thanks are due to K. IVERSON for his criticism of a first draft of

this paper,

I11.1.2

2. From a linguistic point of view,

In her well-known Hagnum Cpus on programming languages [2]

Jean SAMMETT finds herself uneasy when dealing with APL,

Indeed, APL 1is present at two different places in the book : as
"API, 360" in section 6 (on-line systems) of Chapter IV (languages for
numerical scientific problems), and as "APL" in Chapter X (significant
unimplemented concepts) and she says (p.715) : "... the question has been

raised as to whether this is a language or a notation®,

Assessing APL 30 with objectivity is certainly made difficult
by the merging of the normal seductions of .a very fine conversational system
with the sometimes dazzling novelties of a deliberate systematics for

mathematical notation,

The various aspects whichconcurr to make APL's appeal to a wside
variety of users are more ecasily sorted out if one goes to the trouble of

a thorough 4inguistic (better say "semiotic ") investigation,

Since MORRIS, semiotics has been developed aglong three main axes

syntax, semantics, pragmatics,

-~ The syntactic pecularities of APL are a consequence of itsobjective to

be a gentine rational notations system , It is enough here to mention for

I11.1.3

-~ the richness of the alphabet

explicit and systematic
the restriction of "valence" (number of arguments) to 0,1 and 2, and

standard
the prefix notation for monadic objects,

the absence of function precedence and the left to right association law

for parenthesis readability

i

the indexing convention avoiding typographical difficultes of swbscripting

and syperscripting,

All these aspects of APL could be - and in part have been - put into practice

in the teaching of mathematics and in the preparation of text bookas [3].

- The semantic aspects of APL are connected with the need for entities

representing a large sample of mathematical objects , Here we must notice

= the variety of elementary "types" (Boolean, integer, character, etc,. some
of them - being implicit,
= the structuring of objects into arrays : vectors, matrices, etc,.,. of
finite rank

= the scaling of functional precedence : variables (and constants), functions

(primitive and define), and operators (such as / ’ R ,)o

-~ The pragmatic aspects of APL are just a manifestation of its conception
as an information processing system ¢

‘= interactive facility

I1T.1.4

= "system commands" and "system functioms" (I, ®m , etc...)

= "ghared variables" and the very notion of a "precessor" in APLSV,
This implies that "pragmatics" here is dndestood as the third fundemental
component of linguistics, that is "relatranship of objects of the language

to users of the language and not as a lund of "ad hoc" fractial devices.

And innovation in notation was certainly not the least obstacle,
despite evidences for the urgent need of a rationale, as mrgued in the

following paragrarph,

%3, Birth of a Notation,

Mathematics started and came to an already high level of sophistication
without any special effort on the notation problem, After all mathematical
entities are concepts among other concepts and ordinary language is a natural
tool for dealing with them, The very distinction between "logistics" and
Yarithmetics" was not clear before the time of PIATO and the use of letters a
symbols for the numerals is attested not long ago B.C., But such a notational
system — limited as it is — remains awkward (for example 29342 could be
written M ; otpg' or, wf.tpp'(3), and one must wait for DICPHANTOS
(~ 300 AQDQ) to find a symbolic notation for variables as well, For him

an eqguation Which, for us, could look like

ITI. 1.5

(x3 4 8x) - (5x2 +1) =x

should be written, however,

\Y v
X agllnded epda La
which is not very transparent,

The current notational system for elementary algebra is rather recent
using X,y,z for the unknown comes after DESCARTES (1637). At the same
time " 4 , x M are adopted, The " =" symbol comes from RECORDE (1557)

but NEWION or others used "s-" dinstead in 1680 and later,

If one takes the trouble of having a closer look into this evolution
it becomes evident that the general trend is economy of space in writing

formulas anddecrease in the number of possible ambiguities,

It is interesting to notice that algebraicfunctions for which one
tries to find an adeguate symbol are restricted to monadic and dyadic ones

(and this ie still the case with BOURBAKI).

But it is still more striking to realize that, sixteen centuries
after DIOPHANTOS, the standard system for algebraic notation is not completely

free from ambiguities[(4)}

However, at the end of the last century and the beginning of this one,
a true notational explesion took place, FREGE invited radical innovations

when introducing his system of the calculus of propositions, PFor example

I11.1.6

our
(~ A) A B
would be, with FREGE
?_/,____A
.

B

FREGE's inventions are very interesting from a syntactical point

of view : they show the .invention of a bi-dimensional system of notation

almost simultaneously with be symbolic system itself, Of course a one-dimensiona
system will be preferred for reasons of typographical convenience,
"Graphical" representation will nevertheless find their way is modern

and

algebra (trees, diagrams of maps in .category theory) -~ decisively — in

computer science !

The Polish logicimens introduced later a number of interesting suggestions
(and among them the famous" polish" notation (prefixing) for dya dic predicates
and operations). In particular LESNIEWSKI developed an interesting ideogra-
phic system for his logics, including a systematics for the 16 binary pre-

dicates ; one has, for example,

(? stands for coimplication : true if and only if its arguments have the

same value, both being true or both false, and so coimply each other,

~>~ Disjunction : true if and only if its arguments are disjunctive, exactly

(i.e., at least and at most) one being true, the other false,

I11.1.7

§> Conjunction ¢ true if and only if its arguments are conjointly true.
,é>-Exclusion s true if and only if at most one of its arguments is true,

excluding the other, which is false ,,." etco.s

FREGE's and LESNEWKI's systems remained wused, but nobody
objected to the proposals as such, Reductance to innovatioﬁ came often
from the field of applications, One remembersthe hostility of many physicists
+to vectorial mnotation. IORENTZ had to argue at length before using it

for decribing MAXWELL'sS equations !

PEANO and his school during the period of 1889 - 1906 made a
decisive effort to set up a complete and rational system of notation, intro-
ducing in particular many>of the symbols ofmodern logics and set theory,

As BURALI-FORTI says : -

" The logical symbolism presents itself under two distinct aspects ;

as an abbreviated writing or tachygraphy, and as a_powerful instrument for

analyzing ideas, their logical relation and their development,“[(S)l

The main purpose ofthese authors is to set up a system which gives us an

economy in writing and a security of understanding, One can cite here PADOAK6)

"Cependant -~ tandis que l'idéographie algébrique, étant composée de signes,
est arrivée, relativement, en pew. de temps & un si haut degré de perfection
et d'universalité - 1'idéographie géométiique, étant composée de mots et en-

travée par les exigences philologiques et par une tradution millénaire, est

I11.1.8

restée nationale et souvent ambigué dans une méme langue., De sorte que,
lorsqu'on veut construire une idéographie nouvelle, il est préférable d'avoir
recours & des signes, brefs et universels, au lieu de gaspiller son temps &
analyser, débattre et sanctionner la signification des mots j; c'est pourquoi

1'idéographie logique a été composée de signes plutdt que de mots",

4, Names, types, structures, orders, etc,..

The notational idea in APL 4is simply to stick to current mathematical
practice as far a coherent one is already at work, and to suggest novelties

only for the sake of rationality,

But granted that a solution has been found for the problem of form

we are faced with ahuge 7problem of content .

The modern- axiomatic -~ usage in mathematics uses structures to define
and study formal objects, The semphasis is on cartesian product (or power) and
functional mapping ("application"),'This implies use of a basic set and

escalation over it,

In a cdlebrated manuscript : ¢app'ins (the ssnd reckoner) ARCHIMEDES,
in order to show that very large, but finite aggregates of finite objects
are countable, developed a technique of enumeration which is not new as

far as notation is concerned - because ordinary words are still used - but

I1T.1.9

shows a system at work[(7)].

The arithmetic of this time having names for numbers up to A = 108

(a myriad of myriads) and not more, ARCHIMEDES propcsed to define two new

concepts : "orders" and "periods",

The first period has got p orders¢ 1 st order is made of integers from 1 to A
2 nd order is made of integers from A to A2
A th order is made of integers from

&Y Ao

The second period will go the same way from A to B2 and so on till the
A th period which will give the possibility to reach BB which is a very

large sum indeed,

This is a very neat example of escalation over a basic set : here the

finite set of integers from 1 to A ,

The challenge of rendering ARCHIMEDESiidea in a formal system is not
met by APL, but the concept of an array is a partial answer
while the use of arrays satisfies the need for cartesian
product, mapping are realized through primitive and defined functions, As

a matter of fact function definitioh looks very much like CHURCH's (after

RUSSELL) notion of functional abstraction , Only the syntax differs,

All this boils down to the following concepts :

I17.1.10

a) Entities,

There are only two entities in APL 360 : data and functions (this is
well in evidence in[(8)). It is enlighting to examine to which point they are
similar or dissimilar s

— data and functions can be primitive or defined

primitive and defined data are respectively the so-called "constants" and
"variables",

Primitive entifies are presented (for input and output) as special characters
from the APL character set but primitive functions are always expressed
“by one symbol only (while an integer will use up to 16 decimal symbols)°
Defined entities will be named via an identifier which is a word in the
alphamumeric subset of the APL character set,

But the specification which gives such an identifier its meaning comes,

for defined data, from the assignent operator : " e " Jand, for defined

functions from a complex arrangement including the entering into definition .

mode via the " " operator, the special ‘"header syntax" etc,..

- data and funftions are diversely connected to the four basic sets :

N = { integers < 1016 in absolute value}

Q= { rational number < 7°1O75 in absolute value}
B = {0,1}

A = {APL accepted character set}

(the numérical values are, of course, implementation dependant),

IIT.1.11

On one hand the concept of "valence" establishes a correspondence between

datum
data and functions (a can be viewed as an "anadic" function),

On the other hand data sets may be "e=mcalated", that is, one may take date
from NP ’ Qr et., which means vectors if you consider the components as

such, or array of rank n if you write

p=D

1

X X LK 2R 4 .
P2 X P3 X Rn

This way of building complem objects from simple ones by taking cartesian
products is usual in mathematics, But then one loses. again parallelism
between data and function except for the special case of the primitive func-

tions

$. 1,

-

which can be viewed as vectors, It is worthwhile to notice that in his
pre-implementation book [(9)], IVERSON used a matrixlike primitive function
VoA
Q £=
b) Orders

Another point of view, when considering the relationship between

data and functions comes from the concept of order,

If you consider data as belonging to the lowest level :order 0, and

functions to orderq, there is a rational tendency to look after entities of

higher order.

ITI.t.12

Such entities exist indeed in APL 360 but with some peculiarities of their
own ¢

- the concept of "inner product" can be interpreted as the implementation
of a 'order 2" dyadic primitive function, represented by the symbol " "

the argument of which are the so-called "dyadic scalar primitive functions"
(which are or course oforder 1) ;

- the concept of "outer product"‘can be interpretdd as the implementation

of a 'rder 2" monadic primitive function, represented by the sequence. of

symbols "o " , the argument of which is a dyadic scalar primitive function ;

- the concept of "reduction™ can be interpreted as the implementation of
a"order 2" monadic primitive function, represented by the symbol /"

the argument of which is a dyadic scalar primitive function,

The only trouble is that "o, " is made of two symbols, and, what is more
regrettable, / has got to put its argument on its left in contradiction
to the regular syntax of APL monadic. functions (+/v, when Vv 1is a vector

is equivalént to

=
i

length of v

% v(I)

1 = origin

c) Extension to arrays

Extension to arrays of scalar functions is straightforward,

I11.1.13

But this is just a case where traditional notation satisfies itself with
insufficient rigour and it could be interesting to go into more details about
it,

If ¢ is the symbol used for a primitive "scalar" dyadic function (such
as + , 471, etc,..), the current practice in mathematics is to use the
same symbol for the function (§ x B - E) than for the function

(B" x B" - E) defined by the well-known canonic correspondence,

But if ¢ is in fact a name for a special subset of (E x E) x E , this is
certainly an abuse of language t0 use the same name for a subset of

(B8 x EY) x B® , even if there is a standard link between the two,

Therefore it should be worthwhile to make
the distinction explicit between the symbols for a primitive

function when the arguments are scalars or arrays of various ranks,

This could be done by letting primitive functions be fhemselves considered
as arrays, Then
X ¢ Y s When X and Y are scalar, would become
X o [gX]Y when or Y are conformable arrays
of a non-null rank,
This introduces again the idea of ranking and dimensioning primitive func-

tions, bringing them closer to primitive data.

IIT.1.14

All these observations indicate the presehce, in the conception of APL
objects, of a number of attribubtes which remain incompletely explicitated

and are not all reachable form the user

= the structural atiribute are dimension and rank - but this leae aside 1lists

and trees,

= the "type" attribute remains implicit (boolean, charescter, integer,

decimal) but can be reached indirectly (using 1022)o

= for non_constants objects a pame attribute is provided (which covers va-

riables, defined functions, , etc,..), the

sorting of which implies other attributes,

= a new attribute appear with APLSV : this is sharing which indicates when

an object is reachable by more than one user (at the same moment)°

So we understand that a variety of formal (or formalizable) concepts is
attached to APIL objects , Some of those concepts are familiar to the user
of mathematical notation, some are not., But in any case there is a strong
incitation to carry over here the trend toward .systematization and ratiome-
lization, This must certainly be the main guide for future etensions and

implementation of the language.

I1T,1.15

5., From APL to Naples

* APL is not the last word for ever in.notation or language research,
and modifications are already being offered by authors and considered by

implementors. ([10],[11],[13]) .

While it is essential to maintain a reasonable stmbility, for the
security of users (this implies an emphasis on extensions against modifications
experiments are needed which should open new ways (whence the acronym 3

New APL Experimental System),

But such experiments should be conducted in accordance with the
fundamental objective. which were present at the very beginning of the

conception,

— on one hand, to remain close to ordinary mathematical notation (with possibly
some improvement in the coherence of the notation itself) means intraducing

new types, new structures and further a capacity for defining types and

structures,

The concepts of type, structures etc,.. could be embedded in a more
general noticn of type similar to the notion used in mathematical logic
(for example in the typed lanbda—calculus), This would imply a systematisation
of the notion of functional , We have pointed out that APISV "operstors"

are functionals, but primitive ones, We could very well need in the future

I11.1.16

user—-defined functionals

- on the other hand we could guestion the usefulness or even the correctness
of an approach which makes users ignorant of the system which supports the

language,

This brings us back to the linguistic aspects of APL , It is now
customary to refer to the traditional semiotic trinity : syntax, sementics,

pragmatics [16].

£ The striking syntactical feature of APL is simplicity : " valence"

restricted to 2 , left association and mode dichotomy (execution, definition).

~ The semantics is certainly unique by its richness as compared to programzing

languages, and even of standard mathematical formalisms

— Definition methods currently used for programming language semantics could

be significantly improved with APIL,

It is a normel practice, indeed, tc take advantage of an already known
language or formel system in order to "program" the entities to be analysed,
It is even more fashionable to "bootstrap" the whole process by writing an
interpreter for the language in terms of a smal subset of itself - subset
to be accepted as sufficiently evident, This has been done for APL by
IATHWELL and MEZEI in [(14)] Another line makes use of a small

(metalanguage" also supposed to be sufficiently transparent, This is done

ITT.1.17

for APL by ABRAMS [(15)),

In each case unanalysed elements remain in the semantics — especially
the interpretation precess itself, and the pragmatics of the language is not

even ‘touched,

Therefore it is worthnoting the importance of the 'sxecute" function,
together with other peculiarities which are on the borderline between semantics
and pragmatics, In particular, the "carriage return" signel, corresponding to
a speciel key on the terminal key-board, is to be viewed as a character
among the other "normal" characters, Used in conjunction with execute, one
finds here a facility for a complete rationalisation of the whole semiotics

of the system,
A simple example will help here @

It is well known that the family of ACKERMANN functions (the first
members of which are addition, multiplication, exponentiation, tetration,
etc) may be generated from addition by primitive recursion, Thus, if (i)

t
representents the n h nember of the family, one has :
@y = @7 - 1) E)y

Another possibility is to use an elgorithmic definition including locps,

can
Now let us see hOW"We./ deals with this problem

TIT.1,18

a. in APL 30 (X6), @<—>+ y Qex @)«—»*

and (3) can be build without loop or recursion by x@y <& */y £ x

b. The whole ACKERMANN family is obtained inductively : if (:) has been

defined as ACKN , one has
v z x(aCKN +1) Y

(1] 7z (AcEW)/Y X 4 (1)

(supposing that the reduction orerator is extended to defined functions)°

¢, If the "execute" operator is available, it is possible to show that
5 6-(3x (y - 1) p'(x/' , 'x%, (BX(yh1)p'pX)' and proceed inductively
from there as in the preceding case, J, BROWN has asked whether it would be

sufficient to define (i) in a closed, non recursive form, [12]

The answer is yes : using ¢ makes it possible to define not only

©) , and inductively (1) from , but even to define directly x(R)¥

without any locp or recursiong This is a unique example of a non-recursive

definition of a truly general recursive function.

I11.1.19.

A function such as "execute" is cextainly of a different kind than
*plus", "drop", or even Massign", It is not possible te describe its effect
by mean of a mathematical objsct : functional application or explicit definition
"Execute" obtains his meaning by reference to the APL interpreter itself
which is - after all - an APL object from a "system" point of view , but

a hidden one,

With APLSV many system functions are also introduced, The very

concepts of shared variables and of auxiliary processor ring the (precedently

ignored) entities of the system accessible to the language user, No doubt we
must proceed in this direction but here the main problem is to keep this
development in harmony with the first constraint mentioned : compatility with

the spirit of mathematical notation,

An experiment of this kind is in progress and will be described

elsewhere [17].

I11,1.20

REFERENCES,

[1] P. BRAFFORT Soc, of SEAS XVI 1971 p.55
[2] J. SAMMETT Programming languages Prentice Hall 1969,
[3] X. IVERSON Elementary functions SRA 1969.
Ll4] X, IVERSON Collogue APL IRIA 197t D.12
[5] C. BURALI-FCRTI, logica Matematica, Hoepli, 1919 , p.X1X,
[6] A_PADOA, Ile logique déductive, Gauthiers-Villars, 1912, p.11
[7] . DELSEDIME, Archives for history of exact sciences, 6 , 1970, p.345,
[8] . PAKIN, APL 30 Reference manual, SRA, 1968,
[0] XK. IVERSON, A programming languasge, I. Wiley, 1962, p.246.
[10] A. McEWAN and P, WATSON, Quot. Quad, 2,2 , 1970, p.11
[11] J. RYAN, Quot, Quad 3 , 1971 , D.R

[12] J.A. BROWN, Quot. Quad. 2, 1, 1970, Dp.4

[13] APL ZXongress 73 North Holland 1973, cf. especially the papers by
EDWARDS, VASSEUR, etc...
[14] R.H, ILATHWELL, J,E, MEZEI, colloque APL, IRIA, 7-10 Sept.1971, p.181.

[15] Ph. ABRAMS, An APL machine, Report no, SIAC-114, Stanford 1970,
[16] H. ZEMANEK Com, ACHM 9 1966 P.139,

[17] P, BRAFFORT and J, MICHEL ., APL X : an experiment in language

extensibildy Note ECSTASM N° 1975,

111.2,

Extension TO APL DATATYPES WITH AXIOMATICALLY
DEFINED VIENNA OBJECTS

BY

A, OLLONGREN

UNIVERSITE DE LEIDEN
GROUPE DE PROGRAMMATION THEORIQUE

IIr,?2

PREFACE

The following is intended as a contribution to the symposium APLASM
(APL applied to Symbol Manipulation) to be held on December 20 and 21 1973,
in Université de Paris-Sud, Centre d'Orsay, Mathématique. Owing to other

commitments the suthor is unable to present the paper in person.

The paper consists of two sections. In the section headed "Abstract data
structures" the abstract set of objects used in the Vienna definition method

is introduced; its properties are defined by means of & system of axioms and

a linear notsation is established for the members of the set; it is well-known
that the objects themselves can be represented by labeled, rooted directed trees.
In the second section with the title " APL representation of objects' the
representation problem of the members of the general class in APL is considered.

The following suggestions for extensions to APL are introduced:

- nomination of selectors and elementary objects
- specification of composite selectors
- specification of u mapping

- specification of selection.

Using these suggestions the Viennese linear notation for objects is easily
transcribed into APL . Examples are given., As a result means and techniques
for the discussion of semantics of computing processes become available in
APL ,

ABSTRACT DATA STRUCTURES

Computational processes are concerned with the manipulation of data, be it
scalars (numbers, characters etc.), sequences of scalars (strings), arrays and
so on. It is useful to introduce a general class of data structures, which
contains all of the data needed for dataprocessing. We call the class a class

of abstract data structures, or objects because their properties are given by

a system of axioms and the representation problem is only considered afterwards.

Axioms for objects

Let (0, S,o) bve a system of objects, selectors and an operation for which

the following is supposed:

- 8 1is a finite non-empty set

- O contains a finite non-empty set €

Let (S*; o, I) be the free monoid generated by S 1in the usual way with

o as the group operator and I as the identity element. s* is:called the

set of composite selectors. Finally let o 'also be a relation between s®* x O

and O with some special proporties to be discussed presently. For the

system (67, S, o) eight axioms are chosen:

Al. so A e O {closure under selection)
A2, (kos8) A =« (s(A))rmmmmmmmen (composite selection)
A3. IoA =4 (identity operation)
A, (Fw)(Vs) sow = pemmeammean (existence of null object)

A5. (Vo)[(Vs) sew=w= (VAT koA =y

{composite selection of null objects)
A6, (Vx,e)[k(A) = e <=> k(B) =e] => A =B

y (equality)

(V A, «, e)(3 B)[k(ﬁ) = en (V 1)[dep(k,t) => 1(B) = 1(4)]]

(existence of constructed object)

|3>
-3

Ib
o

0 is the smallest set including the null objects and the elementary objects
such that axioms 1-T hold.

In above formulas A, B 667, eef,s €8, k,Te s* and w is a null object.
The dependency relation dep is defined as follows
dep(x,t) = (4 o)[n =00 TVTI=OCOo @]

with o€ 8™ .

ITT.2-3~

Digcussion

From axioms 1 and 2 it is seen that o can be regarded upon as & relation
between S*X o and ¢ (i.e. a non-empty subset of this Cartesian product) with
the following property:

for every (x,A) e s® x 0 there exists a unique object B such that

(¢,A,B) € o . The relation o can be regarded upon as a selection operation:

for every «k e s* ana Ae0 @ unique B 1is selected. In other words: the
object A has structure in genersal and given a composite selector « the
component B of A is selected. We write for this operation ko A, x(A) or
kA . Note that o plays a double role as it is also the group operator in the

monoid (S*, o, I) .

Theorem 1.

There is exactly one null object.

Proof: Suppose that w, # Wy satisfy axioms 1-5. Axiom 5 states that there is

a composite selector « such that xow, =w, 3 if k = I we have an immediate

1 2
contradiction, if k # I we get a contradiction using axiom k,

Definitions (s € 5 as usual)

- The unique null object is denoted by Q

{al(3 s)s oA = Q} is called the set of atoms

{ele # 9 & (V’s)so‘e = Q} is called the set of elementary objects

]

NS
1

0"~ € is called the set of composite objects.

For a.composite object A # Q there is at least one selector s such that
s(A) # 0 .

Theorem 2.
If A,Be(and « e 5* such that «(A) = «(B) # @ then
(V ©)[—dep(t,x) => ©(4) = ©(B)] => A =B

Proof: .If Te S° such that t(A) = e then t(B) = e because
(a) if — dep(t,x) then from 1(A) =1(B) follows <(B) = e
(b) if dep(T,x) then
(b;) 1 =E0k and from xk(A) = «(B) follows that t(B) =e
Eotr and if £ = I then 7(B) = «(B) = x(A) = t(A) = e ;
if £ # 1 then «k(A) = which contradicts the assumption.
As a result of this:

if there is no T such that +t(A) = e then there is no Tt such that 1(B) = e

or (b2) K

TIT.2 =h-

From axiom 6 we can now conclude the validity of the theorem.

Theorem 3,

The object B which satisfies axiom T is unique.

Proof: Suppose that B1 and B2 satisfy axiom T. Then K(BT) = K(Bg) = e
and from (V/T)['ﬂ dep(t,k) => T(B1) = T(Bz)] and theorem 2 we conclude that
B1 = 32 .

Definition

T 0 x s* x & » 0 is a total mapping where the value of u(A,k,e) is the

(unique) B satisfying axiom T.

Theorem L.
For any Be€ ¢ . {Q} +there exists a finite sequence Bi = u(Bi—T’Ki’ei)

i=1,2,...,n > 1 such that Bn =B,

Proof: Choose B =Q . If B =e then B= u(Q,I,e) and the theorem is proved.
If B¢ { then there exists at least one selector s and at most a finite
number of selectors such that s(B) # Q ; further there exists at least one
composite selector «k and at most a finite number of composite selectors such
that «k(B) = e ; both statements are a result of axiom 8. Suppose that

Ki(B) = e i=1,2,...,n>1 ., For i#j we have — dep(Ki,Kj) . If B is
defined by B; = u(B._1,Ki,ei) i=1,2,...,n>1 with B =@ , then ve can

1
prove with axiom 6 that Bn = B , This proves the theorem,

Definition

For any B 6:0; the characteristic set associated with B 1is

B = <K. : e.> < i <
B = {<x; i e, |1 <i <n}

with K;,€; as defined in theorem 4, If B =Q then B = {}.

Theorem 5.

A=B<=>A=B
Proof: Trivial with above definition and axiom 6.

Theorem 6,

If <Ky 1 e>,<k, i e,>€ B then — dep(K1,K2) .

Proof: Trivial. The condition — dep(K1,K) is called the characteristic

2
condition.

IIr. 27"

Theorem T.
Irf 7= {<Ki : ei>|1 <i <n} is a set for which the characteristic condition
is fulfilled, then there exists B € 0 such that B = 2 .

Proof: By induction, too lengthy to reproduce here.

We make now a few remarks on the representation of members of the class of
axiomatically defined data structures. With each object B 1is associated B,

i.e. a set of pairs. If for example B = B, where

3
B, = u(Bi_1,Ki,ei) i=1,2,3 with B =Q, k; =5,, K, = 5,055, Ky = 8,05,
then
B={<s, :e >,<8,0 8_ ! e,>,48,,0 8 e>} and B can be represented in its

15 81797840 8y P €78, 0 8yt €4
turn by either three rooted, directed, labeled trees without bifurcations, or

as one rooted, directed, labeled tree. We have in figures

B = B =
— S‘]
B1=O—-—-——--—-—Oe1
S S
B2 = o 2 ! ‘e2 or
s s
R. = ¢ 2 2 *e e e
3 3 P 3

in which o 1indicates a root and e« a leaf. The labeling is done as follcws:
edges carry selectors as labels (each two outgoing edges of a node carry
mutually distinct labels), leaves are labeled with elementary objects, no

other nodes are labeled.

Theorem 8.

If the characteristic condition holds for two sets

X = {<Ki :_ei>]1 <i<n} and Y= {<Ki' : ei‘>|1 < i <m}
and if k € S* then the characteristic condition holds for

7 = {{T.: e>l<r :e>€ X A —dep(k,t)}U {<1 0k : e>|<1 1 e> ¢ Y}
Proof: straight forward using theorem 6.

Definition (extension u function).

For any A, BeO and xe S the unique object C for which
C={<t : e>|1(A) = e a — deplr,k)}U {10k : e>|T(B) = e}

is denoted by u(A; <k : B>)

TIr.9-6=

Theorem 8 states that there exists an object C with the charaseristic set
as shown and that it is unique. If B = e then u(A; <k : e>)

satisfies axiom 7 so that it is justified to use the functiom neme u in
above definition.

Note that u(A; <I : B>) = B , Further

p(A; <k : @>) = A if and only if (V 1) dep(x,t) => 1(A) = Q .

In order to i1llustrate the use of the extended u function we can write for

above example

B, = u(9; <, e1>) EJ = {<s1 : e1>}
B, = u(Q; <5, e2>) Eﬁ2= {<s1 : e2>}
1 = . . 1= . o :
B u(B1, <s, i B12>) E. {<s1 P e>,<s, 08, e2>}
B = u(B'; <850 8, e3>) B as shown before

Definition (further extension u function)

u(A; <k 3 Bu2a<k, 1 B,k Bn>)

u(A; {<x; - Bi>[1 < i <mn))

i

u[p(A; <K, B1>); <K, Be>,...,<Kn : Bn>]

~For n=0 u{A;) = u(A3{}) = A 5 for n > 1 we have a recursive definition.

For A

1 we write uo(...) instead of w(8;...) .

In above example we have

B = u(9; <8, 1 €,>,95,0 5, I €,> <850 8, ! e3>)

but also

B=u, (<, : e >, ¢ B12>,<520.82 : e3>)

with B12 as given above. Note that u(B; <k : B>) is a ligitimate expression;

the value of it is B if and only if k=1 or B =0 3 if x = s for

instance the value of it is a new object C with the property that s(C) =B .

11T, 2.

APL REPRESENTATION OF OBJECTS

It is obvious from the axioms given above that one must have two sets in
advance if one considers applications: the set of selectors and the set of

elementary objects. It is suggested that individual selectors and elementary

objects are nominated in APL as follows (we give a few examples)
a'S!
a'E1!

a'ELEM' 11!

Here o 1is some suitably chosen APL symbol. For the moment we need not

distinguish between selectors and elementary objects.

Using above "type declaration' we can specify composite selectors. If St and

52 have been nominated and so exist in the system we can specify for instance

K« 51 o 52
P+« 81 0o 52 o 52
Q@ « S1 o 52 o a'S3!

and we introduce here the identity selector I by the specification

I<a'!

Next we consider the problem of bulilding objects from the nominated selectors
and elementary objects. If the objects 4 and B have been built and if X
is a composite selector then we write for the u mapping u(4;<K5>) in

APL

A KB

So that K 1is considered to be a dyadic operator. Each object 4 is
characterised by its characteristic set A ; it can be nominated as an

elementary object by
o A .

The null object could be given a special APL character, but it is suggested
to introduce first a selection specification and afterwards specify the null

object instead.

III.Q'B'

If A is either an elementary object or a composite object built by a
sequence of u mappings, and if X is a composite selector, then KXK(4) is
again an object by axiom 2. It is proposed to use the compression operation

in APL and to write
B «+ K/A

With axiom 3 we have then for any object 4 .
B« I/A—A«A

However if E is an elementary object and X is not I , X(4) 1is the empty

object, and so we can give it a name (for instance 0) in APL by
0 « K/E

Note that a0 is then the characteristic set of the empty object (i.e. the
empty set) and that this is not equal to a'' . Since we do not need a special
character for the null object it is reasonable to write for

A = u(9;<X:B>) in APL
A<« KB

Finally we need an APL notation for the extended u mapping in which the
¢ function is given more than three arguments. It is proposed that the

result of the following statements

K« K1,K2 K3
B « B1,B2,B3
C«AKB

(where either the K's are nominated selectors or composite selectors and the

B's are objects) is u(A;<K1:B1>,<X2:B2>,<K3:B3>).
APPLICATION

We consider only binary arithmetic expressions in this section. An expression
E in this class has three components: SOP1(E) and SOP2(E) are variables,
constants (elementary objects) or themselves binary expressions and SOP(E)

is a binary arithmetic operator (an elementary object),

ITr.2

So for the expression E£ = a +b % ¢ we have

a. SOP(E) = + SOP1 o SOP2(E)
bxc SOPo SOP2(E) = % SOP2 o SOP2(E)

SOP1(E)
S0P2(E)

]
o'

i}
(e}

and written as a u function
E = uo(<sop1:a>,<sop1o $0p,ib>,<s0p, e 5 0P, ic>,

<§ O Pi+>,<SO P oS op2:x>)

For above expression we can write using the extensions to APL suggested

above

a'SOP!

a'SOP1!

a'50P2"

K1 < SOP1 o SOP2

K2 < 50P2 ° SOP2

K « SOP o SOp2

E « SOP, SOP1, K1, K2, XK (a'+'),(a'A"),(a'B") ,(a'C'),(a'x")

We have then the following structural properties of FE

SOP/E « +
SOP1V[E ++ A

E2 « SOP2/E <+ E2 « SOP, SOP1, SOP2 (a'x')(a'B')(a'C')
If E1 and FE2 are two binary expressions then
E « S0P, S0P1, SOP2 (a'+'),E1,E2

is a new binary expression. If E2 is as asbove and E1 <« a'A' then E

as above is retrieved.

-9

Irr,2-10-

ACKNOWLEDGEMENT

The idea of extending APL to accomodate the tree structures of the Vienna
definition method is due to Mr. P. Sipos. Discussions with Mr. Sipos have

helped to cast gbove suggestions into what is hoped to be a reasonable form.
LITERATURE

A, Ollongren 1974, "Definition of programming languages by interpreting au-

tomata', Acad. Press APIC Series no. 11, to appear.

P, Lucas & K. Walk 1969, "On the formal description of PL/I",
Annual Review in Automatic Programming,
Vol. 6, Part 3, p. 105 -~ 182,

I1I.3,1

API, - GA: an immediate extension

of APISV,

J. MICHEL

¢.N.R.S. (France),

Résumé : 1'évolution deg systémes APL conduit naturellement-é des
extensions dont l'une, celle des structures de données en "tableaux
de tableaux" a déji fait 1'objet de plusieurs propositions, APL - GA
est une extension de ce tyre qui aborde également d'uatres probleémes

significatifs : types, compilation, etc,,. Un programme APLSV
permettant de simuler API~G-A est produite, et plusieurs exemples

d'applications sont analysés,

1., Introduction

2., EBExtensions to arrays of arrays

3, Some basic ideas for APL extensions
4. API-GA: description of the language
5. API-G: TImplementation of the system
6., API-GA in representation

Bibliogravhie.

II1.3.2

1. INTRODUCTION, APIL, has been conceived towards 1960, During almost

fifteen years many development occured which opened new directions to the

language and still maintained tleoriginsl spirit,

Since the appearance of Iverson®s book, several extersions and modifica-

tions have been preposed which are all directed towards greater ,s compactness,
generality, uniformity and simplicity (see [12]) ; in the first widely used
implementation, APLN\ 360, the main innovation was a uniform treatment of
arrays;in the recently introduced APINSV there is also an explicitation and
systematisation of some of the "pragmatic" part of the language, via the

concept of shared variables,

It .must always be reme -"bered that APL was at the very begining

a notation system urging for a Trationalisation of mathematical - especially

algebraic~ notation, No spécial application was . foreseenno special imple—

mentation recommanded, not even a parsing strategy.

Therefore APL's efficiency as a programming language is already in

itself an achievement,

Yet, the user's opinion is that there is at least two facilities still
missing for APL to be a most powerful and completely universal language @

- the possibility to handle data structures oﬁ?more'generalfkind

than arrays, such as trees, files and lists,

I111.3.3
- better control structures,
In addition, the need is often felt to get faster execution of APL,
which remains a remote prospect with a system completely inderpreted at

high level as is the present one,

Se a new step forward is needed, But the constraints to be obeyed
are very strong: keep the original spirit of the system, avoid prolife-

ration of dialects etc,.,

On the other hand recent advances in programming language developement

may be reinterpreted in the APL way and suggest interesting novelties,

This is the case, in particular of many works devoted to
"extensible languages" research : (see [13], [16], [17], [18] , [21] .).
A common feature of most of these tentatives is the explicit definition and
manipulation of widely differing data structures via the notion of type

(called sometimes mode or structurg)°

The possibility of going further with APL has been evoked in [20],

A specific proposal will be offered in[26],

The present paper is'an intermediary step.

Tt has heen found that the introduction in APL of the notions of

general arrays (a slight modification of the concept introduced.in [14]

refered as G% M paper in what follows).

I11.3.4

) and of types (in actual fact, a generalisation of this notion which
we will call also "information predicates") answers the first of the above
expressed needs : powerful facilities for data structures manipulation
(With immediate applications to data—base management, symbolic and algebraic

manipulation,,,.)_

Furthermore the scheme here adopted provides the possibility of par-
tial compilation of APL vprogranms depending on the amount of information
given by the user, via information predicates, in the program,

It is probable that compilation of the most often executéd lines of a
program would solve the problem of execution speed (see [15] for reference

to previous tentatives of compilation of APL).

II1.3.5

2. EXTENSIONS TO ARRAYS OF ARRAYS,

2.1. Any formal system is faced - at the very beginning-with the
problem of data types and structures,

Iet us study the second one,

Iverson's book already contains a distinction of four kinds of

structures : scalars,vectors, matrices and trees,

The possibility of working in algebras whose arguments could be
non trivial data structures is a major motivation of APL , as
K, IVERSON points out, page 2 of hisvbook.g
n For example, sepafate and conflicting notations have been developed
for the treatment of sets, logical variables, vectors, matrices, and trees,
all of which may, in the broad universe of discourse of data processing,

occur in a single algorithm, "

At this stage the general notion of an array is not explicited :
only scalars, matrices and trees are specified, Arrays are only suggested
in the book, §1.20 ("Levels of structure") ([1] ,p.39). Particularly

interesting is the footnote *,

" x Further levels can, of course, be handled by considering a family of

matrices 1M, 2M,“,,nM, or familles of families,jlw."

I11.3.6

The 1963 presentation of the language [2] and the 1964 joint work
with FALKOFF & SASSENGUTH [3] forget about trees, Arrays of rank higher

then 3 are introduced sometime beetween 1964 and 1966,

The next step is the celebrated "March on Armonk" [4] where

S. FAIKOFF submitted to strong APL wusers pressure admits that" related to
the file handling and I/O question, is the generalization from arrays of

scalars or single elements to arrays of arrays.' ([4]) p.60)

Two years later we have the first concrete proposal, made by
J. RYAN during the third APL users conference ([5]) P.8);a proposal is

put upby J, BROWN in his thesis [6].

In 1972 a proposal was made by G; MARTIN and discussed informally at
the APL/SEASworking commfittee, And finally in APL 73 three papers
by EDWARDS, [7] 1MURRAY [8] and VASSEUR [9] . Finally comes the

GANDHOUR and MEZEI paper [14].

2.2, Before .going into the various proposals it seems apppopriate to
comment on the apparent slowness of all this process, And this can be done
only by insisting on some peculiarities involved with any significant

APL extension,

IT1.3.7

We restrict ourselves %o APL/30 and to constants,that is
ordinary {numerical or character) constants, end primitive functions, Then we
note the following :

a) you can enter scalar or vector eonstants, not arrays of rank > 2 ,

b) S you have to use "constructors"whichare the primitive functions
p , (outer products also delivers higher rank results), To these functions

are associated inverses which give back the structure itself (here the

monadic p),

c) admissionof arrays as arguments for primitive functions cause.no
problem for the socalled "scalar functions", For mixed function extension

is not straightforward, .

Now it should be clear, that any extension of data structures raises
the following problems,
a) defining "constructions" that would build the new data
structures from keyboard admissible constants (i.e. scdlarSand matrices) and
the corresponding "inverses®

. scalar .
b) extending the meaning of “and mixed functions in such a

way that nothing wrong happens when the new structure degenerates to an

"ordinary" array,

From these requirements follows that a data structure extension implies in

I111,.3.8

fact a complete reappraisal of moat of the language and then necessarily
interact with consideration coming for other. modifications possibly
under considerationjof course you may choose to improwe those but then don't

hope too much for an implementation !

2.%. .The main published proposalswhich imply a significant extension of
the language,

a) RYA N's proposal : [5]

construction of lists is achieved by a combination of semicolonS

and)

T<(A) <>

PR

T<«(A:R) <> 7(\
A

Selection _is achieved by indexing along a path @

T<(A3;((B3;C3D)EF))
B <> 7l2 1 1]

E <+ TL2 2]

Measurement comes for a new primitive

which returns avector of lists :
2 = pL11 T
(033) <> pl2] T

(0;((0;03;0);03;0)) «> plul T

111.3.9

Some others primitives are added, in particular

for catenation .of lists

b) EDWARD's proposal [7] uses only gng new primitive :

TecA <« which gives

I e 3

you vectors of anything,

Ordinary APL arrays are but special case(soalar arrays) of general

arrays (having "relative scalars" which could be themselves arrays).
A special type of indexing is then required, where

AN is different of 20,21

c) MURRAY's 7proposal [8]
Three primitivesare offered :

and < (conceal and reveal)
for construction and selection

o for .measurement,

d) VASSEUR's proposal [9]

Here construction of lists is offered through special brackets

b

I11.%.10

Measurement has three primitives : uw H

Tndexing is achieved via another bracketing system (£3)o

The APL.75 Congress in Copenhaguen was an opportunity to discuss
all these proposals, A special session was devoted to this problem,
chaired by P, BRAFFORT, with an active parficipation of D. FALKOFF and
K. IVERSON.%he API, fathers urged tie audience to make a complete
examination of GHANDOUR % MEZEL paper (not available at that moment)

Pefore going into new experiments,

2,5. GHANDOUR and MEZEI's proposal is by far the more extensive,
15

Not 1less than\neW'primitive functions and operatom are proposed, A clear
distinction is offered between the concepts of a function and that of
an operator, We shall retain many of their ideas but first criticize some

aspects of their work,

The first objection one should make to ¢ & M is that it contains
no clear definition of what really are general arrays, This lack of an
adegquate formalisation entails a lot of semantic difficulties, together
with the fact that the G& M conception of general arrays singularizes
some objects they call "scalars" (which for them have the property that

the enclose of a scalar is itself), creating some awkward effects ; for

IIT.%.1%1

instance, if the Ith element of a vector A is some array B, Ael
gives as result B if it is a scalar, and else it gives > B ; the same

happens in many other situations,

Another defect shows in a series of difficulties in the manipulation of
general arrays due to a lack of means to examine the structure of an

array : it is difficult to determine if a variable holds an ordinary or a
general array. These difficulties in asserting the nature of objects can

also be found in present APL, and can be traced down to the lack of a notion
of "type", For example, in present APL and APL SV,14'',10 gives a
blank as result and 14(10):", gives a zero while they seem to be the

same object, This is due to the hidden notion of number or character type

of an object and to the (never explicitely given) laws ruling the composition
of these types under the primitive functions, In the given example, the

rules used are

—.a character raveled to a number is a character

a

- and : a number raveled to a character ianumber,

And there are two different empty objects 3 "' which is a character

and 10 which is a number, We have other laws ruling operations on them,
such as 1 4141¢'4' is a blank, and {4141 is 0 which means that

144 ds v but q44s 10 L.,

Similar problems occur in unexpected conversions between reals,

I11.%.12

integers and booleans, which sometimes cause a workspace to overflow when
a boolean matrix is inadvertently converted to real (Which happrens after

a division, even by 1?).

A last flaw we would like to point at in the ¢ and M paper is
the lack of proper examination of the syntactic difficulfies arising from
the definitions of functionals : they are an important notion discussed in
G and M under the name of operators (we prefer to call them functionals,

in accordance with common use in analysis and 1ogic),

Some syntactic inconsistencies involving functionals are :

I:/+A is ambiguous : it is either T /+ A

label plus-reduction

or I:/ + A

reduction along Ith axis

1.+2 is ambiguous : it is either 1. + 2
real number plus integer number

or 1 . + 2

integer external product with+ integer

3Wx R is semantically ambiguous : its definition depends on the
meaning of " x " -used here, monadic or dyadic, and this cannot be

‘determined from the context,

Such syntactic problems hamper further research : it would be useful

to allow user-defined functionals in APL : this is impossible in

I11.3.13

Ghandour aznd Mezei's scheme, since all the existing functionals have
different syntaxes, and these are already inconsistent as has been shown,

Introduction of any new operators cannot but increase the number of such

inconsistencies,

3 - Some basic ideas for our APL extension

Here we list a series of concepts basic to describe our proposed extension,

To each object is associated a set of attributes which we describe now.

The basic objects of the language have a value (their internal re-
presentation)associated with a name (their external representation). We

divide them in two classes according to their names

1 - Autonymougs objects, that is objects whose name coincide with the
value, i.e. constants. They are :

-numbers, with syntax : [] integer [. integer] [E [T] integer]

or a sequence of such separated by blanks ; here square brackets denote

an opticnal item, and integer a non—-empty sequence of digits, It is the
present APL syntax, excepted that if a ", " is present it must be preceded
and Tollowed by at least one digit (which may be zero). This is to prevent

ambiguities with the functionals external and internal products.

~ literals, wich obey APL syntax,

I11.3.14

2 - Heteronymous objects, whose names are identifiers. The rules of

formation of identifiers are

a) a letter followed by a sequence of letters or digits (in letters we

include the alphabet, the wnderscorad aiphabet, and A& and A&),

ﬁ) 1 followed by a sequence of letters or digits (eventually empty).
y) 0
6) A single special character (that is, any character not a letter, or di-

git, or one of ()':[Ta).

This is a restriction compared to APL SV in a single respéct : these
rules exclude the identifier of the external product wnich is a sequence
of two ~apecial characters ° . In APIL-GA it is represented by the

period alone,

The association of names with objects is less rigid than 4n
APL S8V, For instance, the objects with an identifier of classe 6) cannot

be user—-defined in APL SV but could be in APL-GA.

To enhance such a freedom, we would have liked the possibility of
creating an infinity (or at least a number adding to 256 with the present
number) of new characters, This is alas not possible within the present
implementation (though the alpha fonts had been initially designed to be

multiplied via overstriking with $ underscore - overbar diaeresis "and guad

(sec [12])).

I11.%.15

So the characters we will use here to represent new objects are
not always the result of deliberate choise, but rather of the restrictions
of the present I/O implementation, and so do not represent definitive
options,

As g matter of fact a very slight modification in the interpreter

solvesthis problen,

o o e e

Another feature associated with objects of the language is what we
call "order"", Its definition is as follows :
- Objects which take no arguments are of order O (i,e. constants, ordinary

variables, niladic functions and information predicates),

—~ Objects which take arguments of order O are of order 1 (i.e. monadic

and dyadic functions).

~ Objects which take arguments of order 0 and 1, at least one of them

of order 1, are of order 2 (i.e, functionals).

— The operator axis of Ghandour and Mezei which can take a functional as

argument, is of ordsr 3,

This distinction provides a convenient framework for syntactic

I11.3.16

analysis : approximately, obJects, with order i have syntactic priority

over objects of order less than i , Ideally, this would be not approximately

but exactly true, We can specify here our criticism of G and M by

saying that it is probably the fact that this is not true for functionals

which prohibits the possibility of user-defined functionals,

G -~ General arrays

To sum up the structure of objects in our language, we can say that
they have a name and a value ; with the value is assoclated an order, We now
divide objects in four classes : functions, functionals, types and
general arrays., We will discuss later the nature of functions, functionals

and types. We will now define recursively what general arrays are,

A general array is either :
- a bit , that is one of two basic objects we denote (O and 1
- or an object which we represent as
<ny geees Ty / By seees By > where ai‘E general arrays and
4 k
where ni,k are positive or null natural intsgers and N =11 ni (if k=20
1

then N = 1)0

By this notation we mean that a generdal array is given by :

- a sequence of integers nd yosey nk which we call the "rho" or the di-

mensions of the array ; k is the rank of the array.

- a list of general arrays a; s in number the product of the dimensions,

I1T.3.17

We did not give other objects than the bit to build general arrays from,
because all the usual objects (characters, real numbers, ,,,) will be built

as special cases of general arrays built with bits,

Thiskdecomposition is not necessary but has two advantages :
—~ it allows within fhe language access to the bit representation of objects,
- it allows the language to be defined by the means of a small core and of
a "standard prelude® (in the terminology of [13]) of definitions within
the language, which makes the language much more tractable for semantic ana-
lysis and debugging (see the discussion of this point in [21]), which dis

a very desirable feature for an exfensible language.

——— e ot

What makes possible to build easily general arrays hierarchically
from bits is the notion of "types", or information predicates An
information predicate is essentially a predicate describing properties
of a general array, To allow efficient manipulation and use of them, we had
to restrict the expressible properties and the predicates we build as
follows :

— there is the basic predicate "bit" describing an object which is a "bit",
-~ when we have two predicates p1 and p2 , We can puild a predicate
p,Y D which describes any object which verifies one of the. predicates

1 2

P add p.

*)

I11.3.18.

~ when we have a predicate p we can build the predicates :
op and B> p if R is a sequence of integers meaning that
the object refers to objects verifying the predicate p (that is, the

object is of the form < n, ,..., nk/a

1 Sevey aN > where ai‘s verify p)

1
and in the second case that in addition the object has R as dimensions
(i.eo R=n1 gese nk)\o

For type values (We say type or information predicate indifferently
because our notion seems a natural extension of the current notion of type)

the interaction between variables and constants is quite peculiar : we

foresee two kinds of implementations s

~ Implementations where the language is completely interpreted ; in
these implementations the type values can be attributed to variables and

them manipulated without any restriction,

— Implementations where the language is at least partially compiled ; there-

from assignnment of a type value t0 a new variable will be possible only
by system command and can force to recompile code using another meaning for

this variable (¥

This restriction is necessary because it is well known that the efficiency
of a compilation depends largely on the amount of compile~time type checking

which can be done,

IT1.3.19

Tn the interval between two redefinitions of a name holding a type value,

this name will be considered as a type constantrand the expression it was
or atomic type. We then make a difference between such a constant
16>RBIT

assigned to j; e.g. if INT was assigned the type , the operator
[NszjSDRIWill give as answer false ; we will introduce a new operator <

"conforms to" and this time(+INZW RIT) will be true, This operator

=186>

is useful in type expressions, enabling to consider atomic types as

abbreviations for their detinition,

We will come again to the distinction between atomic and other types

and to their relation with the definition of general arrays in paragraph IV)

B~ Left-values

The intermediate results of the computation of expressions are carried
in objects whose names are not accessible to the user, We call them internal
names ; among such names, we distinguish a class possessing what we call
left-values (following the terminoclogy of [21]). This means that the
expressions they represent can be computed as a set of memory locations
belonging t0 already existing variables, We call them left-values because they

are exactly the permissible domain for the left-hand side of the assignement

operator (<+) .

They are build according to the following rules 3

- single names have left values

I11.3. 20

~ the result of application of a selection operator to a left value is a
left value. We shall see the definition of selection operators in part IV) 5
They are indexation, compression, and take and drop for some values of the

operands,

These left-valued expressions are the only instance of reference by name

in APL ; all other references to objects are by value,

F ~ Bxtension mechanisms

The extensibility of API~GA derives essentially from the concept of
types, The main procedure used to build an extension is to introduce a new
type of objects and extend part or all of the primitives of the language to

allow interpretation of thisnew type.

With this purpose in mind, we first name thée predicate value which will
be the new type, assigning it to a new variable by the system command used
to this purpose, For example ¢ in polish style YTSTYPE COMPLEX 2oFLOAT

vIinT
or, in APL SV style : COMPLEX'IISTYPE 2>FLOATVINT

After this, we nowxedefineour language primitives as acting on objects
of the new type and corresponding conversion routines, All this and more

is done by using an important primitive operator which we call a "cast"

(following the terminology of [13]) and write " : " , Its uses are the

I11.3.21

follawing
a) Definition of new funetions meanings when operangs are of the new type ¢

permissible form for the function headers in API-GA is, therefore ;

VV3«[L71:3Vv1 F [T2:1V2

where s — items within brackets are optional : when omitted we have the
usual APL header ; vi,V2,V3 are variable names and ® 1is any

identifier, and T1 and T2 are types.

The meaning is that following the header is the definition of the func-~
tion P when acting on arguments of types 741 and T2 respectively,
If we have an ordinary header, that is without type indication for the
arguments, this means that tne function is defined for all possible types,
When we have written several such definitions of the same F y, the rule is
that the computer fries each one until it has found one which matches the
arguments and then applies it., This allow to exteﬁd easily all primitives

to new types,

b) transmission of informations to the compiler.

The only way to s peed up the execution of a piece of text on a given machine
is to increase the amount of compilation which is done on it, and for this
we need to increase the amount of information given to the compiler s for
instance, in present APL , when interpreting A+2, the main exp.ense in

time is due to calling a routine "+4" fitted for the general case of A,B

111.3.22

arrays, one of which may be of bits and the other of reals (the + subroutine

has more than 200 arguments in IBM's implementation 1) when in fact we

wanted to add integer scalars ; in the same way when interpreting ,(4=0)/5
we call two such general routines when we wanted to make a very

simple conditional jump depending on a boolean scalar A ,

The solution we offer here is to have an '"interactive" compiler,

amount of compilation depending on the
That would be a compiler able to do a variousjamount of information given

to :‘L‘c.()k>

In API-G , we allow additional informations to be given to the compiler
via the operator "cast'", The general use is : T: A which gives to
the compiler the information that the object 4 conforms to the definition
of the type T (ghis is close to use a)). If on execution the type does
not matﬁh an error message is produced, So, if we want to increase execution
speed of code for A + B we can write (T:A)+(I:B) and for >(4=0)/5

we can write ~((T:4)=0)/5 if I is the type (v0)>TnT

@3 This is, perhaps, the fundamental point in compilation, since compilation is
a translation peserving semantics, and the amount of semantic properties
which can be proved on a program depends directly on the amount of infor-

mation predicates given on each part of it (for this, see Floyd [22]))e

I11.3.23
These informations can also be given for the result of a function :
a function header of the type VI7:Z2<«T1:X F T2:Ymeans that the fesult
of F when applied to objects of type 71 and T2 will be of type T
This allows the compiler to carry type informations through application of
a function and thus enables the compiler to deduce informations for a whole

program from initial assumptions,

A last point we have to make about compilation is that, of course,
a piece of text involiving the execute operator cannot be compiled except if
there is no modification of the type of any variable during execution of the

execute operator

4 — Description of the language APL-G

We will now give an organised description of the concepts and primitives
of the language. This description will be quite prief for functions and
finctionals already present in APL SV or described in G and M and
more extensive when our definition is new or differs singnificantly because

of the use of concepts described above,

In what follows we discuss both implementatiohs with and Without
compilation ; the only difference isvsome restrictions in the use of types
in the second case, We also refer at several places to "our implementation®,
which is a simulation we made in APL SV +to test our language and to prove

the feasibility of simple and fast compilers for it.

II1.3.24

Our description proceeds as follows : we first introduce the objects of the

language and discuss which of them are primitive , then, after a brief review
. .o) . we)

of the syntactic problems arising in our extensio®, proceed to describe the

primitives i order , beginning by data types and then functions and

functionals,

A - Objects of the language.

We- first summarize the characteristics of the four categories of objects

of the language introduced above,

1 — Predicates or Types ; - they refer to properties of general arrays

We have the basic predicate bit , and the following operators acting on types

v dyadic P1vP2 refers to an object verifying either predicate pi

or predicate p2.
> monadic 2P refers to an object itself refering to objects
verifying predicate P .
dyadic Bop where R is an integer vector j; refers to an object
which refers to objects verifying p and has R as dimensions.

As a special convention, when one of the elements of p is this means that

the corresponding dimengion is indeterminate.

Bit and all predicates designated by a single name are called atonmic,
in opposition to predicates designated by expressions involvingD and Vv

One can create new atomic predicates apart form bit by
y

I11.3.25

—~in interpreted implementations, assiging a predicate expression to a name,

e.8. ¢ TNTEGER«<16>BIT

~in compiled implementations, by the system function NTSTYPE ,e . &, 3
VTNTEGERYTSTYPE 16orrm Waich cannot be used in definition mode

and invalidates already compiled code using another meaning for 'YIFNTEGER!

We note here that we accept recursive definitions for types, for
instance ¢ YBTRER'[JISTYPE 2>RTREEVBIT to define binary trees with
bits as terminal elements,

We have one more operator on predicates apart form the cast (Which

“was discussed in part TI) :
monadie, argument should be atomic predicate p 3 refers to an object

verifying the definition of P (which may or not have the type p)°

2 — Arrays: ; the definition we gave of them in last chapter was, in

fact, only an approximation not taking into account precisely how atomic
types different from bit can be attached to arrays, Their precise definition
is : array = a bit or a couple (< noseees D / B, seees 8 >,p) where

k

n:.L s K EXN ,n =1 ni s, where the ai's are arréys and p the predicate
i=1 '

cancnically attached to the array., We define recursively the predicate cano-
nically attached to an array : - to a bit is attached BIT
-~ to an array < n1 Seoes nk / 31 teeey @ D

such that the set of cancnical types of the objects By reees a is t1 -

I11.3.2%

is attached the type 3‘t1 V ees v tn o

This does not yet provides for the possibility that an atomic type
different from BIT be attached to an array. Indeed, this is done with

the operator cast written " ¢ "

The value of p : A A array, p predicate atomic is A with
type p if A conforms to the d&finition of p, otherwise it gives an error

message ,

% — Functions

To summarize what we said in last chapter :

— the variances to standard APL are :

a) the general form of the header is VEEZW.:]V1+]£[]P2:]V2] P I[73:7V3]
(items between brackets optional) which allows several definitions for the
same function, The effect of a specification T1:71 is exactly as if the

last line of the function sexecuted was Vi<T1:V1

b) the identifier P can be any speciazl character in addition to the

ordinary names, which allows redefinition of primitive functions for new

types,

4 - Functionals

They are . #X% and B | We will discuss them later,

I11.3.27

B - The primitives.

1 - General discussion , From the extension mechanisms we gave, it

can be easily seen that we could build our language by progressive extensions
of a basic language with the only primitives
- bit = {0,1} as data, Dit as atomic type
- v , - (not) and "enclose" and "choose™ as operators, and the functionals,
But in order torprovide a language as pleasant as APL for the wuser, we
have to give a lot of primitives in a "standard prelude" (following the termi-
nology of [13]) available to all users,

The exact choice of primitives is largely a matter of taste, so the
propositions we will put forth are more tentative than what preceded. The
list of primitives we will give was build according to the following ideas :
— the standard APL functionai?fﬁ- and M ones really look fundamental,
which implies their should be kept as they are. We follow the extension pro-
posed by G and M which allows to apply functionals to user-defined fﬁnctions
including functions resulting from the application of functionals to other
functions (this is natural for us since we do not make a rigid distinction
between user-defined and other functions),
- the functions of standard APL are the result of a long experience and
of a lot of thought, and so for most of them represent a natural choice, but
often we diffef form G and M on the definition of their extension

general arrays,

I11.3.28

- the functions proposed in ¢ and M are, we think, too numerous, We

settle for a more restrictive set of basic functions,

2 = Syntactic problems

We exposed in part IT) the syntactic problems arising from the defini~
tion of functionals in ¢ and M . We will not try here to solve them in
full generality (which is whét we intend to do in another paper) but only
to suppress the most striking inconsistencies 3

- ambiguity of 2 : we solve it by suppressing the definition of ¥ for

dyadic functions, since the desired effect can be obtained with the functional

by

(scemn).

- ambiguity of T:4+4 : we suppress the axis operator writtem " ¢ "
allowing only the usual APL notation f[I]+A
- ambijuity of 1.+2 ¢ the solution is that we prohibit the constant 1.
and other constants ending in a period : the only justification for this
was to specify that the constant is a real, and to do this it can be
wristten 1.0,
~ another modification we suggest is the following

In standard APL , the symbols / \ represent both g function and a
functional, This introduces extended context dependance in syntactic analysis

and in some cases ambiguities, This laxity in notation furthermore cannot be

extended to other functionals and even prevents definition of new functionals

I11.3. 29

so we decided to suppress it,

/ and - \ will stand for the functions compression and expansion,

and X will stand for the functionals reduction and scan,

and we will write /L0211 , \[11 , #01] ,x[1] for what was written
and X in present APL , We found that this simplified and speeded up

a lot syntactic analysis, and hence execution,

3 — The primitive data types

The usual data types are defined by the following atomic types

canonically attached to them ¢

Character :

c 8>RIT
Integer : I 16>BIT
Reals : E BLUDSRIT

Of course these lengths are depending upon implementation,

As a test of the ease of introductiop vf new data types in APL/G
in our present implementation we have two new types :

25F

» Complex numbers cP

One-variable polynomials :

I'y

@=r

Here we make some remarks about the input and ouput representation of

constants and arrays.

We want first to make the following.point about Ghandour's and lNezei

I1I1.3.30

convention for general arrays, which uses an underscore : with this
convention, there how exists 4 different kind of separators which can be
used to represent objects which nhave a tree structure in APL :

1 — Parentheses and brackets are used in pairs of two and a tree of structure

a5 <a would be represented by ((ABY(CD)) using themn,

2 - Quotes can represent a text within a text by doubling them ; the tree
used as example above can be represented vrigprarropr .

% - And, finally, we can uses underscores with the convention of (¢ and M .
the same tree is represented AB_7TD .

30 we have 3 completely different rules 1o represent trees with these
different kinds of separators, I think that to simplify this is worth of
study.

We do not propose any definitive solution for input and output of constants,
having not done enough investigation on the subject : we follow standard APL

or ad hoc conventions (e.g. [23] for complex numbers) .

4 - Primitive Scalar functions.

These are the functions which are primarily defined for basic scalars
and extended to general arrays by a convention easily described with the
"itemwise" functional (see [¢ and 5] and definition below).

By "basic" scalars, we mean here an array of atomic type bit, ¢, T or,

(and we include cp and p , t0oo, in our implementation).

I111.3.31

We note here that we allow menipulation of such objects in APL/GA when
in present APL we can only manipulate objects of typesbit , aT 20 or »F .

This simplifies writing of new extensions (see example below)_

The list of primitive scalar functions is ¢
+-x2%@] [| ~AVAN<S=2>2! ?

We follow present APL definition for these functions excepted for the
following points

1 - type of the result of these operators is not presently explicitely
defined in the language, but can be determined by side effects in the present
implementations, and one finds for example that 3

~ the result of a division or an exponentiation is always real, or the result
of an addition or subtraction is never boolean, etc ...

In our implementation we instead choosed to always give to the result the
lowest possible type on the hierarchy : bit-integer-real-complex,

For instance, 140 is a bit and 2%*2 an integer,

2 — we extend many operators to complex numbers and polynomials,
For example | is the norm and x the uwnitary number of same argument

as monadic functions on complex numbers Hodulo is extended according suggesti

1

of [23] for cdmplex numbers and according to euclidean division
for polynomials ; the real and imaginary parts of a complex A are naturally

given by Aol and A2 (see "slice" and "choose" functions),

I11.3,32

5 - Other primitive functions and functionals

Rho written p

ot oo

monadic : for an array < n1 Teees nk / a1 geeny aN > gives the

integer vector <k / Dy reees By >

dyadic : for ApB , A integer vector < k / n1 peeey My > , B array

/ a

gives an array < N yeesy 1

1 k 1esey &_ > Where a1 sevey aN is the

1 N

1ist of the N first items of array B (cyclically repeated if there are

not enough of them).

Note that we do not follow the definition of OpB in G and M finding

it inconsistant,

Choose written ©

We make first a fow definitions

— an index 10 an array A = < 1, jeee, nk / 8, sevey aN > dis an array

1 1

<k / b1 seces bK > where 1 (bi < n:,L . It indexes the element aj of

A . where

j =D+ (bk:_1—1)(nk + (bk?2—1)(nk?1 + eee (b1— 1)n2))-;..) .

A path for an array A = < n1 Seees nk / a1 Yoess aN > 1is défined recursively,
It is awctor P =< «?,/m1 yeens mg > where

1 - 2>k

2 - My geees m is an index 1o an item aj of A

IT1.3.33

%3 - either K =1 (and we say P is a path to aj) OF M. geees B,

is a path for the array aj .

We now define Ae°B where A is an integer array and B an array

- if A=< w /o, B> the result Z has as dimensions n1 oo Iy o e

-~ each vector of A obtained by fixing the k - 1 first coordinates and
varying the last is a path for B ; and if we fix the k.- { first coordinate
\

of 4, %o m1',..., m 1 and obtain so a vector V , the element of index

mﬁ geeay mk_1 of Z will be the element of B to which V is a path,

monadic , 4 is a if A=</8> gpd gives otherwise an error message.

Slice written grp] or A4R indifferently, where B is a vector of integer |

arrays : we follow the ¢ and M definition.

Itemwise functional : we follow the G and M definition ; it allows

to define recursively the extension os scalar functions to arrays, I 8
is a scalar function, we define its extension nrxr § as :

“nExr § 1f arguments are not scalar, & otherwise.

nexT is implemented as a functional of the language accepting scalar
functions headers as arguments. This allows very easy extensions of scalar
functions to new types,
Por example we give below a few lines of text in APL/GA : a definition of

complex numbers and of some primitive functions on them :

111.3.74

VCP:Z+«LP:XxCDP:Y
(112« ,X.xY
[212«(z2013-2Cu]),202]+21 3] ¥

VCpP:Z<~x [I:X
[11Z2<«0,X v

and so one ,,, After this we have only to execute [EXT'+',[IEXT'x! ,
etec ... to have a full extension of complex number operators to any array

containing complex numbers,

For the functions /N OR and for the functionals A3
and . we take the same straightforward extension to general arrays as
G and M ., But we give a meaning different from standard one t0o the scan
operator actingon ordinary arrays, before extending it to genéral
arrays, We first noted that for a vector of n elements and a .non-associa-
tive function, calculation of scan takes n(n~1)/2 applications of the func-

tions in contrast to n - 1 for an associative function, If one takes as

definition for &% V whers & is a dyadic function and V a vector

A, 9eeey & , the vector :
3 n

%

a1 6 a2
(a16a2)6a3

®ec es 0000090000

((-(ara,)..)oa,

111.3.35

Then the definition is didentical with the present one for associative
functions and takes only n - 1 operations for non-associative functions,
We them tried to compare the respective merifts of these definitions

it seems that the only useful scans of non-associative functions are, with
the present definition,>\ and.s\ (they are the only non-associative scans
whose result can be given any reasonable description).

They give respectively, for bit vectors : 1 at the first 1,0 elsewhere
and O at the first 0,1 elsewhere.

With our definition we have the useful scans 3

>X : last { of each sequence of 1
<y : first 1 of each seguence of 1
and furthermore, the present meaning of >\ 1is not lost and can be

obtained as <Xvk , with less applications of functions whenever n > 5 !

Identical with "

As in [G and M] we define a boolean function which tests complete

equality of two arrays,

Io-ta 1 1 n

Monadic iota is the unique array such that, for any array A, AzAde1pA
it is defined only for integer veétor arguments,

¥or dyadic iota, ¢ and the functional B , we take the same

definition as [¢ and M],

I11.3.36

. e

Monadic if 8 = <N, see.s nk/ B, seees > them,

arrays to be used for outputing tables or other complicated formatted output,
it would be extremely useful to have automatical extension for ravelling of

some arrays, S0 the following extension fo "ravel" seems interesting 3

1 - 458 is identical with ALCppA)TppBRIB

2- A, LI1B : it is authorized that (ppA)=zppp Only if 2>(ppA)ppB
Then the array of lowest pp has its p extended by a one in position 1 ,

and eveniually another one if needed,

3~ If (ppA)=ppBthen A,[71R is identical with (S4+24),[T]T+R

where S=T=(pA)[pB excepted at position i where SLT1=(pA)(I] and
TLIl=(pB)LTI]

4 - 1If oA and PR differ only at position i we take the usual

APL definition.

For the same reasons as our extension of ravel, we modify the
present API/SV meaning of format so that ¥ gives always exactly the

image of the object on the paper, so that the pp of the result never

exceeds two.

Goto We found that the present control structure of APL is enriched

.

and that many conditional branchings can be done faster with an extension

I11.3.37

of goto to a dyadic meaning ¢

A-> B ‘is allowed for B any boolean expression and means :

"if B then execute A" . The most interesting characteristic is that A

is not executed if B 1is false, preventing an error message if execution

is then impossible,

We can easily with this extension write some usual control expressions 3

" if B then A else C [174-7
[21C+~B
®while B do A " +~0LCL1],004~RB

Compare with standard APL traduction.

Finally we would like t0 indicate some modifications we suggest
the definition of execute, iCR ,s. and CFX ,
They are as follows :

1) "Bxecute" accepts a two-dimensional array as argument, executing
sequentially each line,

2) ¥ is defined for functions, giving as result the text less the
header,

3) While ['CR gives only the header, and for an ordinary variable gives
as result its name {the argument is no more to be put within quotes),

4) ang [FXis dyadic, needing as left argument a function header,
and as right argument a function text less the header,

The role of these modifications is essentially to make more logical and

tion

111,3.38
and uniform the diverse relation existing between these functiocns,

Further, the modifjcation of ['FPX is very useful when defining different

but very similar versions of a function for different types,

V - Implementation
Our implementation is - presently -

simylation
JE to test the feasibility of a compiler for cur

an APLSV
language . A very efficient compiler (that is, taking is account the double

level of interpretation) accepting almost our whole language could thus

be made, along the iollowing principles,

A) Memory allocation.
are
Memory allocation and garbage collection always, effected through re-
ference counting (cf, [19] , chap, II). This is possible since, due to
the concept of left-values, all data structures, including data refering
to other data, can be described as trees, It allows efficient garbage collec-
and keeps duplication of identical datd to a minimum (insteed of copying

some data,we increase its reference count by one),

B) Parsing,
Our concept of order and the restrictions we discussed under C) of
Chap. IV allows us to parse a line with a (1,1)BRC syntax [24] , with

a small table, This is the main reason why our compiler iS5 fast and necds a

I11.3%.%9

modest amount of memory.

C) APL SV representations.,

They are as follows @

memory block s and all auxiliary functions and variables for the com-
piler are represented by APL SV variables beginnihg by A or A : this
is the only class of names legal in APL/GA but illegal in our implementation,
'Memory blocks are represented by variable Annn where nnn is an integer,
Reference count ic done by the means of an integer vector ANAMES whose

ith element is the reference count of Al

An API~GA general array is represented by an APL SV vector having the
same name, and whose structure is as follows (much like standard APpI,

M- entry [25]).

— The first element is the type, encoded (via a symbol table) as a positive
integer . the same integer is taken negative if the array is a left-
value,

~ The second element is the rank of the array.

~ The following elements are the dimensions,

- after this is the 1list of elements, If these are not bits, they are then
themselves arrays, They are then represented by the index of the memory

block where they are stored,

D) sSystem and compilations

The present inmplementation includes

111.3%.40

- a compiler AcoMpP Wwhich can compile a single line of APL test
- a function compiler apppyp Which can compile any APL function and
which uses ACOMP

— and a superviser ASp Which can accept lines and execute them on the

spot, It is very short and we give it here :

V SP AAN;LA
L1] M«64rt’
[2] (O0=pLA«(1+ (LAz2" Y1) ¢na<My/1
£31] lIFX((oLAYL2T4AY), 011 LA<ACOMP LA
[ul >AN/A
[5] CTIME
[6] >1

Here AP is a routine implementing our proposed extension for ravel

and ¢TTME gives a timing indication,

The programs comprising our compiler can be divided in two parts
— the compiler itself
—-gemantic rcutines implementing primitive operations, Qur APL SV represen-
tation allows these semantic routines to be APL functions acting directly
on our APL/GA objects, We will now describe the core of our compiler,
which consists of about 100 lines of APL., The main function is
which accepts as input a line of APL{GA and gives us output an equivalent

text in APL{SV , It uses as auxiliary functions :

sscAy b @ function of 2 character vector arguments returning us result

the index of the first occurence of the first argument in the second.

I11.3.41

ANEWH t a function returning the name of a new block of memory (that is,

Al where i dis the first index such that the reference count of AL is

zero).

of
ACODE :+ a function returning the intermml representation its argument
AADTC : a function returning the name of the semantic routine implementing

the APL/GA function represented by the second argument of AAJlIC(When it

has an adicity~ equal to the first argument of AADIC).

AN, AO,AP,AS aTe other functions discussed later,
The global variables used are :
ASPEC, ADIG, ACHARS :-vectors of characters initialised by the
function ATHIT .
AFTABLE ¢ character vector used as a symbol table for the functions

recoynized by the system at a given time,

ACOD : dictionary used by AADIC to find +the name of a semantic routine
implementing some APL/GA primitive function,

AG : Parse table for the (1 - 1) BRC grammar.

In ACOMP , lives 1 - 15 " accomplish the lexical analysis and the
encoding of constants, and the other lines do the parsing and translation,

The local varisble are :

T ~ the text, preceded and followed by the character A used as a "marker',

S -4 a vector of integers of same length as the text, used to store the results

of lexical analysis : after it, all charactérs, of ‘T belonging to the same

II1.3.42

word correspond to positions of s containing the same integer, which
is the position in T of the first character of that word,,
N ~ a vector completing the informationof § . N[i] contains an integer
.th
representing information on the nature of the word beginiing at i
encoding

position of T .There is also an of this information as characters,

with the following correspondance,

Integer encoding character encoding Nature of word
0 c a constant
the name of an object of
1 0 order 0
2 1 the name of an object of
. order 1
3 A a mar¥er of beginning or

end of line

4))
5 p the functional y or \
6 . the functional .
7 - the functional ’
8]]
9 L L

10 ((

i1 : :

12 < «

13 -> >

The lines 1 - 7 of build the vector § . Line 8 builds N but

distinction between objects of order 0 or 1 is not yet done, It is

done in lines 9-11 , by coasulting AFTARLE

Lines 12-15 replace constants by their internal representation,

I11.3.43

Parsing then proceeds according to the following sheme :

P is a vector used as pushdown store, where a word is represented as
the index of its first letter in T ., It is initialised to the list of
word of the line and scanned right to left by the variable I . At
each step, an action is taken taking only in account the nature of the words
PLI-11,P(I], - PLI+1] .
These actions are of the kind : generate a line of text for an
operator acting on one or two operands , and substitute in P the

result for the operator and the operands,

The syntax is fully represented by the table AG ! where AGLIT1:;I237

is a letter representing the address of the action to be taken when p[r-11]

is of nature T1,P[I]1 of nature T2 and PLT+11 of nature Is
Here is a list of all triplets

STATABIE

000000000000000000001111111111AAMAAAAAAY) D)) DIIIDDI D)D) AALE. . “"1117

11))))).71733110 ¢ :«»000001). 0000114 »0011)))). 11[«»1, r01 1. ooog
001A).01101A)1«00001A)70001101A: +orA10A)0r01A)111)0000110«01011r)
DﬂFFJFAFFYYFKFFFFPPVTFFFJ“F”FVTFVJ”AUPUVFVVFFFFF CVKEKYRGCAKKGY CTER

113371373131 IIFIICCLCCCCCCLe 2 2 s eottetorrmas
011)))).711331«>01 00011, 01 " 400000170001

[0[01A)11o1)]+oo]o11)[0[11@01019)][011¢E01
JYAXKVKGKKEKKVRYKMOTXTJHAGHRM B JEKETMRJE. M

A B.AS C substitutes in P words PLI+A1 " toP{I+B3by worda O and

Al serves to substitute the nature of o . &7 i gives the i}

item of the line,

111.3.44
The meaning of the actions are :

A : Axis operator

C : choose function

D : a dyadic function

E ¢ error

F : end of parsing

G : monadic functional acting on dyadic function
H : itemwise of monadic functions
J ¢ skip back one word

K : skip forward one word

M ¢ monadic function

0 : external product

R 7(or = functional

U : monadic -

V : label

Y : dyadic =

AP is a function which catenates its argument us a knew line to the
object-program PC |
Ve give herefn' addition to the listing of all these functions, the

array B0COD and some examples of translations,

B - Bxamples and listings.

Here are some examples of output of Acomp

BCONPTPL: 5« (i P]=I«0)/1pl"

FL:ATU40<«ARII P

ALLI+ATT A140

ALL2«'T'ATS 5 0 139

ALL3<TFYACT P

AlLL<ALIL3 APG A1u42

ALUS<ALYY ACH Alu1

ALUG<TZ'ATS A14S

Notice the treatment of axis operator

ACOMPFA:+(%[1]+A:7+X6"ABCD")/C+4'
A:AL03+'C'A75 5 0 102
ALGU<«X AL 5 1 4 98 99.100 101
A105+5 0 S7 44D Al0ou
A1Q06+A ANE A105
YATAAX S5 O 96
YA1OQ7YARD'AAD?
A108B8+«A107 4106
A109«A108 ACH 5103
+>A109

We deal easily with deep parenthesing,

ACOHPY(((A+B)x(L+((P+0)+U))))?
ALLT7<P AAD O
A1u8+«A1hT7 AAD U
ALy S<~L AAD A14S
A150«4 LAD B
A151+A150 AMP A149
AUT Al151

Here is an example of treatment of dyadic. go to

ACOEP K<L+ 1> wE<«L+2B#1"
Al13«3 ANWE 5 0 112
>(~A113)/7+11L¢C
A120<«L AAD 5 1 3 117 118 119
BL21<"ITATS A120
AL22«3 ANL A121
»(~6122)/3+00Cc
A129«L BAD 5 1 6 123 124 125 126 127 128
AL30<'"J'ATS A12S

I11.3.45

111.3.46

We now give the listing of A comp

YV PG<ACOMP T3S3Z303P3T3L

£11] PG« 0 1 p'!

[2] Se(~5va\S«T=1111)x1+(T«
Es] SeILP+((T="' 'IA(S2 165)
4 (A=l pr211) /0T

[5] AP Ta13(P[2]-1)4T

[s1] +0 .
[7) CT:5«PL+\(1pT)eP«(~(Z2A"10¢2Vv5)V(SA(1¢Z)A-1¢Z+T[P]€ADIG))/P]

[81] H<+/(ACHARS1TLS])o . 2ACHARS VY A+A) £, "I (24!

[9] +(0=pZ«(p[PI=1<«1)/P)/F1

[10] I7T1: n[zEI]]+1+(pAPTARLE)>(' Yo (DY '")AL«AO0 P1ZLI1) ASCAN AFTARLE
[11]1 ((p2)=2I<«I+1)/I71

[12] F1:2«(N[P1=I«0)/1pP

[13] I72:((p2)<I«I+1)/F2

[1u] PLZLI]1<(FACODE2AO Z[I]) AN 1

[15] -~IT2

[16] F2:I«''p 1+pP

[177 K:TI<I-1

(18] ITT:»eAGLULPLIN]sNIPLT+1]]3I PLT+2]]]

[19] A:»(NW[PLI+511=22)/3+]LC

[20] I<«I+u

[21] M

[22]1 AP '"'0'V_(AQD TI+1),'"''AAX ',A0 I+3

[231 o0 4 AS P[I+1]

[20] =17

[251 B:AP(L<ANEWR), "< 1Y (A0 I),'''AIS ', A0 T+2

[26] 71 2 AS L AN 1

{271 -=x

[28] C:AP(L«ANEWD),'«'"'t (A0 I),""'ACHE ',A0 I+2

£291 71 3 AS L AV pLPLT]]

(301 7

£31] D:iAP(L<ANENE)Y, "<, (A0 T),' ',(2 AADIC AO T+1),' ', A0 T+2

[32] 71 2 AS L AV 1

[33) ~»r

[34] F:14(PLoP]l-1)4T

[351 ((OTPLI1-2)p' '),'"ASYNTAX FRROR'

{361 -0,0pDIAGIIOSE A

[37] F:»((pPGY[2]='ATS"Y ASCAN(-pPG)[214,PG)/2+1LC

[381 AP 'AUT ',00 I+1

[39] #:~»0

L40) G:AP "' V' (L<ANEFN), "' "', (1 AADIC AO T+1),'''',(2 AADIC AO I+2),'''!
(411 0 2 AS L AF 2

fu2l =17

[u3] HeAP VU0 (L«ANEWN), Y YATH "V (1 AADIC AO T+2),''1?

[¥u] 0 2 AS L AN 2

[us] -IT

< -

[u46]
[u7]
fus]
fu9]
[50]
[51]
rs2]
[53]
[s4]
[s55]
fs6]
[57]
(58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]

Ay

111.%.47

J:T«T+1
>IT
MiAP(L<ANEWEY,'<«', (1 AADIC AO T+1),' ',A0 T+2
0.2 AS L Al 1
>IT
QAP "YUV (LANEHNY P VVARXTY Y0, (2 AADTIC A0 T), " ', (2 AADIC AO I+2),t'*!
T1 2 AS L AN 2
+F
RyAP v00 0 (L«ANEVH), VY YARDY VY (2 AADTC AO T+1),''t?
T1 1 AS L AN 2
>}
Uit AP "', AD T+2
0 2 AS PLI]
>TT
ViPGe((1,02)02),011((1-240PG),(pPGY[21102« (A0 T+1),':*,PGL1:1)4PC
1 2 AS PLI]
->T7
X: "1 2 AS PLI+1]
+K
YiZ<ACOMP TL(+/SeL)Y+A(L<+14T4P)1 51
AP ' (~' (A0 T+2),)7, (v1+(pZ)T 1), "+
PG<(((pPG)IT0,I)4PG),[11((pZ)T0,L«((pPG)TpZ)[21)42

%

-

1T1.3.48

And now a listing of the auxiliary functions used with it.

Ve AIRIT

MAALP<'AB
ADIG+'" 0

C i -'/ - . AL LDBADC L LGS Ll T D L Vi AL b
4
B

2345£789"

ACHARS<*' "' ,ADIG,bMALF,85PEC
BIAHES«10

AFTABLE< ¢ 2 ',, 50 2 4 50 1 pASPEC

Y Z<«B ASCAL A

[13 Ze(nf (T 141p,B8)0(,B)e.=,4)11

\v)
Vv AP LA

[1] PG+(A+PG),[1](A+(pPG)FO,p,L)[2]+,L
v

V Z<«I AW A
(1] 5«5,(pI)pl<i+pT
2] P«l,I
3] A<, (pI)pA

VA LS B
[13] P+((I+A[1])+P),B,(I+A[2])+P

\v4

V 2«40 T
(11 Z«(5=PLI)/T
)

Vooawaliglilil

[1] ((p AHAHES)2 Z«ARANES10) /1t
{21 BIANES<AIANES , 1
[3] =5
Lu] AZANES[Z2])+«1
[51] ACA+ACA, 2
Le] Z<«'AN' 72
Ay}
V 2<«I MADIC IDEM3LE
[11 +((pASPEC)Y<E«ASPECVL«142<ITEIE) /0
£2] I+, ACODLI ;i3]

I111.3.49

Here is the dictionnary fo traduction of primitive,
What is output here is 1 32 ®A COD
CODES

t-xsx[] |Javeszagcav~pew?++10®cconuiT\/,cbdsidTIver
GAABADANLALLALGAMDLND ABAAAAAAD DALLAAD BAANDAA

PlUSTECIA R H IPED R D £ E TPT0OCIG
LAGVILID TH D TIPC F C K V RIIDUIH

AAGAABADODAGEALAAAALADN ANBOAALAL DAALAA
ASHDPSITNEOHGCGELLNI RE DIYDPTLCIGC EDLECC
DRPV/PHFITRETEQETDR RL LERSGGHSA DDEPLT

To finish we give a glimpse of what is a session of APL G,

QHOMO5980
T<XxX
0HO0L15520
T

142X+X2
CHOM15820
Oel«ixy

1+4X+6X24+4X3+XY
0HO02M25640
Y«2 2 3
0/0/M35280
Y

2+31
CHOM355060
YxY

-5+12
CHOMUSHO
A<l
QHOMUS340

I11.3.50

REFERENCES,

[1] X. IVERSON A programing language J. WTLEY 1962,

[2] K, IVERSON Formalism in programming languages, CACM 7 1964 p.&

(Presented at a working conference on Mechanical languages structures

Princeton N.J. August 1963).

[3] S.FALKOFF, K. IVERSON, E., SUSSENGUTH,
A formal description of system 360 IBM Sys Jo 3 1964, 181,

[4] pProceeding APL users conference at §,U.N.Y. Bitghampton 1969.

[5] A summary of the presentations at APL User conference Workshop3
Quotquad 3 1971

[6] J. BROWN A generalization of APL Ph. DSyracuse University 1971

[7] E. EDWARDS Generalized arrays (lists) in APL in P, GJERLOV .
H.S, HEIMS , J., NIELSEN (ed. APL Congressi3 p.99

[8] R. MURRAY Ontree structure extensions to the APL language id, p.333.

[9] J. VASSEUR Exten.sion of APL operator to.tree like dita structures
id, 457.

[11] K/SHILLIE APLISP : a simple list precessor in APL quotquad 3 1972
[12] Falkoff and Iverson " the design of APL " IBM J, Research’ July 1973

[13] Van Wijngaarden and al"™ report on the algorithmic language Algol 68".
Mathematische centrum, Amsterdam, 2/19690

[14] Ghandour and Mezei "general arrays, operators and functions "“IBM

J. Research july 1973,
[15] vVan Medel Collogue APL IRTA 1971 p.%3%9.

D6] Garwick, Jan V, "GPL, a truly general-purpose language" Comm, ACM
vol 11 n°9 (9/19%8) pp.634-38

[17] A survey of extensible languages SIGPLAN notices.

[18] Irons, RE.T. "experience with an extensible language "Comm, ACM Fol,13

not (1/1970) pp.31-40.

111.3.51

[10] Knuth, Donald E, " the art of computer programming", vol.1-3 ,
Addison-Wesley, Massachusssts 1968,

[20] P. Braffort Paper III-1 this issue.

[21] Ben Wegbreit "studies in extensible programming languages" report

AD 71 5332 Harvard University, Cambridge, Massachussets,
[22] Floyd. R. Assigning meanings to programs "Proc, Symp. Appl. Mathg Vol,19
[23] E.C. Mc Donnel, "complex floor "API~congress T3 (Borth-Holland) p.229

[24] Aho, currents in the theory of computing.

[25] APL - 360 0S sSystem lannual LY 20-0 678-0.

[26] APLX - P, Braffort and J. Michel +to appear.

	III - 0 Introduction au troisième fascicule par P. BRAFFORT
	III - 1 APL in perspective by Paul BRAFFORT
	1. Preliminary remarks
	2. From a linguistic point of view
	3. Birth of a notation
	4. Names, types, structures, orders, etc...
	5. From APL to Naples

	III - 2 Extension to APL datatypes with axiomatically defined Vienna objects by A. OLLONGREN
	Abstract data structures
	APL Representation of objects
	Acknowledgement

	III - 3 APL-GA : an immédiate extension of APLSV. J. MICHEL C.N.R.S. (France)
	1. Introduction
	2. Extensions to arrays of arrays
	3. Some basic ideas for our APL extension
	4. Description of the language APL-G
	5. Implementation

