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PREFACE 

The aim of this work is to present recent developments in the theory of 

the Riemann zeta-function. Apart from the renowned classic of E.C. Titchmarsh (8], 

there seems to exist only the book of H.M. Edwards (1] devoted solely to the tapie 

of the Riemann zeta-function. Despite the undisputable merits of these works, many 

recent developments in zeta-function theory make it desirable to have a text which 

oontains a systematic account of recent developments in the theory. The general 

high quality of Titchmarsh 1s book makes it unnecessary to repeat most of the mate

rial presented there, and my purpose in writing this text was more to continue 

where Titchmarsh 1s work stopped, than to provide a complete and systematic account 

of the whole theory of the Riemann zeta-function. However efforts have been made 

to make the text as self-contained as possible while keeping its length moderate, 

so that it does not seem absolutely necessary for the reader to know Titchmarsh's 

book in detail, although a standard knowledge of complex analysis and basic 

zeta-function theory is required. In this way it seems that the text will be of 

interest also to those who are not experts in the field, but do wish to get acquab

ted with recent developments of the subject. 

The great abundance and depth of the existing material naturally set a 

limitation to the size and scope of this text; hence the title "Tapies in recent 

zeta-function theory", since the work does not pretend to cover all 'important 

aspects of modern zeta-function theory. A word will be said now about what is and 

what is not included in this text. As in Titchmarsh 1s book [81, no prime number 

theory istouched, although this tapie is intimately connected with the zeta-fun

ction. The material concerning prime n~mbers (see for instance the standard work 

of K. Prachar (1], which does not contain many new results which appeared sub

aequ~ntly) is so vast that it certainly cannot be adequately covered today within 

a single volume together with the zeta-function, and one certainly feels that it 

ought to be treated separately. Another important tapie closely related to the 

zeta-function which is also omitted both by Titchmarsh [s] and here is the theory 
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of L-functions and related more general Dirichlet series. A great richness of ma-

terial also exista here, but there is another important reason which makes the 

Riemann zeta-function worth being treated separately and gives it a unique posi

tion among all L-functions. Namely the absence of the analogue of Atkinson 1 s 
ft' 

formula (see Chapter 11) for ~ 1~(1/2+it)l 2dt for L-functions makes a number 
0 

of very important new results impossible to obtain at present for L-functions. 

It has become fashionable during the last 10-15 years to treat the Riemann zeta

function and L-functions often together (especially in zero-density estimates), 

but recent results on 4(s) make it doubtful whether such a unified approach is 

worthwhile. 

A word must be said now about two very famous classical conjectures of 

zeta-function theory which are also not discussed systematically in this text. 

As the reader has probably guessed, the conjectures in question are Lindelof's 

( ~(1/2+it) << (tlE) and Riemann 1s (all non-trivial zeros of the zeta-function 

have real parts equal to 1/2). An extensive discussion of these conjectures and 

their consequences has been given in Chapters 13 and 14 of E.C. Titchmarsh [a], 

which represent one of the high points of his book. As is well-known, both of 

these conjectures (Riemann's implies Lindelof 1s) are even today neither proved 

nor disproved. Despite some important new results (like N. Levinson 1s paper (11 

that more than a third of zeros of C(s) lie on the line Res= 1/2) and impre

ssive numerical evidence (R. Brent (1] stated that the first 75 000 001 zeros of 

4(s) are simple and on the critical line), the Riemann hypothesis is in some ways 

as remote as ever - witness the fàct that one cannot prove yet the estimate 

"' 
) \t(1/2+i t)l kdt << T 1+t for any k > 4, and this estimate would follow already 
0 

from the Lindelôf hypothesis. Another interesting conjecture has been made fairly 

recently by H.L. Montgome~y [3] (see D.A. Goldston (1] for some applications), 

and bears the name "the pair correlation conjecture". However I have found it 

preferable to deal in general only with unconditional results, leaving aside 

conjectures like Lindelôf's or Riemann's of which personally I disbelieve the 

latter one. 
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The choice of topics which are covered in a work such as this one must 

be highly selective, and at the end in some sense personal. It is to be regretted 

that all important recent results in zeta-function theory could not find their 

place here: some because of the length of the proofs (like the aforementioned 

resul t of N. Levinson [1]) and s0me for various other reasons. For example I have 

felt that the proof of the best known zero-free region (see A. Walfisz [3]), 

namely d ~ 1 - Clog- 2/ 3 1 tl(loglog jtl )- 1/ 3 , does not necessarily deserve to be 

given here. The result is not so new really, and besides its proof cornes only 

from a more careful application of I.M. Vinogradov 1 s classical method of the 

estimation of exponential sums than was done earliero Some important results not 

fully treated in the text are mentioned with due references in Notes at the end 

of each chapter (except the first, which is of an introductory nature). These 

Notes also contain historical discussion, elucidation of certain details in proofs, 

etc. 

After this apologyabout the tapies that have been omitted it seems a:ppro

priate to diseuse briefly the material that has been given in the text. It might 

be said that the general systematic approach is of the "Voronoi-Atkinson" type, 

since it turns out that the formulas of Vorono! (Chapter 3) and Atkinson (Chapter 

11) play a prominent role in recent zeta-function theory. Problems are often 

reduced to an estimation of a finite exponennal sum which often may be treated 

either directly by (variants of) van der Corput 1 s method or by Voronoï 1s summation 

formula, and the quality of the final result depends on our capability to esti

mate the exponential sums in question. Pure zeta-function theory begins with 

Chapter 4, which presents various approximate functional equations. The first 

chapter contains loosely connected analytic results and formulas which are often 

used in the sequel, while Chapter 2 contains a rather extensive treatment of 

exponential sums and integralso Van der Corput 1s theory of exponent pairs (in a 

simplified form) is fully explained, and is used later on several occasions. 

Chapter 3 is devoted to Voronoï 1s summation formula and related problems. 

This topic requires the knowledge of .the theory of Bessel functions, and all the 

facts about Bessel functions that are used in this text may be found in G.N. 

Watson 1 s standard treatise [1] on the subject. 
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Various approximate functional equations are discussed in Chapter 4,which 

contains the author 1s hitherto µnpublished material on the approximate functional 

equation for 4k(s). Also given there is the approximate functional equation 

based on the so-called "reflection principle", which is very useful in zero-density 

estima tes. 

Chapter 5 presents a proof of the fourth power moment for the zeta-functio:n, 

Although the sharpest known result due to D.R. Heath-Brown (31 is not given,the 

difficult classical asymptotic formula of A.E. Ingham (1] is proved in a relati

vely simple way, using an approach due to K. Ramachandra [3],[5]. 
'l'+G 

The estima tes for ~ 14(i. +i t) \ 2dt, G = o (T) are discussed in Ohapter 6, 
'l'-G 

and these estimates form the basis of many results of later chapters. The proof 

of the important Theorem 6.2, originally given by Heath-Brown [1] with the aid 

of Atkinson 1s formula, is based here on the use of Voronoî 1s formula. Order esti

mates for t(s) in the critioal strip are also given, including G. Kolesnik's 

estimate [6) that 4(1/2 + it) << t35/ 216+e.. 

One of the parts of this work which shows best how much zeta-function 

theory has advanced since the daya of Titohmarsh 1s clasaic [a] is Chapter 7, which 

deala with estimates for power moments of the zeta-function higher than the 

fourth. Based mainly on author 1s paper (2), this ohapter gives among other things 

"' 
the importa.nt estima te ) 1 ~(1/2+1 t) j 12

dt << T
2log 17 T of D.R. Heath-Brown [1]. In 

0 ' 

apite of many recent results in this area of research one feels that still much 

more oan be done in the future. 

Chapter 8 is concerned with estimates of V - Vn' the difference of 0n+1 0 l 

ordinates of consecutive zeros of the zeta-funotion on the critical line. The 

author's result u+&. 
V 1 - V << Y , \i = 0. 1559458 ••• t1n+ on n is presented as the limit 

of a certain method based on the use of the theory of exponent pairs. This chapter 

is virtually independent of other chapters, except Chapter 2. 

Zero-density estimates are treated in Chapter 9. All the best-known 

results for N(d,T) (except when dis very close to 1/2 or to 1) are given, and 

the importance of power moments for the estimation of N(d,T) is streased. The 

modern flexible me~hods which use the Halâsz-Montgomery inequality have proved 
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very effective in the range d > 3/4, and variants of this approach are extensi-

vely discussed. 

Chapter 10 is the analogue of Chapter 12 of Titchmarsh [a], and is devoted 

to divisor problems. I have shared Titchmarsh 1s viewpoint that divisor problems 

should be included in a work on the zeta-function of Riemann, and recent inves

tigations of M. Jutila (4],(5],[6] certainly confirm the validity of this viewpoint. 

It is now evident that a direct connection between ~(x) and 4(1/2 + it) exista, 

an analogy also suggested by Atkinson 1s formula. Thus it turns out that divisor 

problems are an important and intrinsic part of zeta-function theory. Besides 

achieving an almost overall improvement of results given in Chapter 12 of Titch

marsh [a) (some hitherto unpublished material is included) the chapter contains 

a discussion of the circle problem. I have tried to give a unified approach to 

the three classical problems of analytic number theory, namely the circle problem, 

the ordinary divisor problem, and the problem of the order of 4(1/2 + it). The 

existence of a truncated Voronoi-type formula in all three of these problems (for 

the zeta-function this is Theorem 6.2 really) makes all three problems very simi

lar as they can be reduced to the estimation of analogous exponential sums. Fur

ther evidence for this viewpoint is contained in Chapter 11, where power moments 

for E(x) are derived, which are the exact analogues of the corresponding esti

mates for ~(x) and P(x) in Chapter 10. 

The last chapter is Chapter 11,which is centered around the single deepest 

result of this text - Atkinson 1s formula for E(T) - and some of its applications. 

It is to be regretted that this beautiful formula has been neglected for a very 

long time, until Heath-Brown [2) made the first important application to the 

mean square of E(t) and in (1] to the jwelfth power moment eatmmate. Several app

lications of Atkinson 1s formula are considered in Chapter 11, and it is certain 

that the possibilities of Atkinson 1 s formula are far from being exhausted. 

Finally I wish to.thank all number-theorists who have read (parts of) 

the manuscript and made valuable remarks, especially D.R. Heath-Brown, M.N. 

Huxley, M. Jutila and H.-E. Richert. 

Belgrade, November 1982. Katedra Matematike RGF-a 

Universiteta u Beogradu,Djusina 7 
11000 Beograd, Jugoslavija 
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NOTATION 

Owing to the nature of this text no absolute consistency in notation could have 

been attained. Notation commonly used throughout the text is explained here, while 

specific notation introduced in the proof of a theorem or lemma is given at the 

proper place in the body of the text. 

lk,m,n: 
J 

s,z,w 

natural numbers (positive integers). 

complex variables (Res and Im s denote the real and imaginary part 

of s respecti vely; common notation d = Res and t = Im s ) . 

Res F(s) a denotes the residue of the function F(s) at the points= 
S=S 

s • 
0 

0 

r (z) ' 

expz : 

e (z) : 

Riemann 1s zeta-function defined by 

otherwise by analytic continuation. 

((s) 

the gamma-function is defined by r(z) = 

otherwise by analytic continuation. 

z 
= e • 

2"fiz = e 

for Re s > 1 and 

-
) tz- 1e-tdt for Rez > O, 

0 

t,x,y, real variables. 
00 

l Euler 1s constant, defined by o = - ) e - xl o gx • dx = 0 • 5 7 7 21 5 7 • • • • 
0 

'X,(s) : the function defined by 4(s) = J(s)4(1-s), so that by the functional 

equation for the zeta-function 1,(s) = (2"1")8 /(2r(s)cos(,rs/2)). 

A,c,c 1, ... : absolute positive constants (not necessarily the same at each 

occurrence in a proof). 

(xl : 

Ltf(n) 
n<X 

~ 1f(n) 
n<X 

the greatest integer not exceeding the real number x. 

a sum taken over all natural numbers not exceeding x; the empty sum 

is defined to be zero. 

the same as above, only I denotes that when xis an integer one 

should take the last term in the sum as if(x) and notas f(x). 

the number of ways n can be written·as a product of k > 2 fixed 

factors; d2 (n) = d(n) is the number of divisors of n. 

r(n) : the number of ways n can be written as a sum of two integer squares. -the Mobius function, defined by 1/~(s) = L, }'t(n)n-s (Res > 1). 
n=1 



Res x8 tk(s)s- 1 

s=1 
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for k:;:: 3,LJ_
2

(x) = ~(x) in Chapter 10. 

~ 1 d (n) - xlogx - (21-1) - 1/ 4 (but see Chapter 10 for a modified 
n<X 

d f .. t' ' e 1n1 1on 1 • 

P(x) = Z 'r (n) - !Ir x - 1 (but see Chapter 10 for a modified defini tion). 
n<X 

/\(n) the von Ii/Iangoldt function defined by i\.(n) = logp if n = pm (p prime) 

and zero otherwise. 

J (z),K (z),Y (z) : notation for the Bessel functions of index p defined in Chapter3. 
p p p 

"' 
E(T) = ) \!(1/2 + it)l

2
dt - Tlog(T/2,r) - T(2f-1). 

0 

N(&, T) denotes the number of zeros of r(s) (r.,,r real) for 

which /3 ~ 6 ~ O, -T < )' .:::: T. 

ar s inh z s == log ( z + ✓ z 2 + 1 ) • 

(p' q) • an exponent pair ( a certain pair of real numbers for which 

0 _::: p _::: 1/2::; q.:::: 1; precise definition and properties are given in 

Chapter 2). 

1'(x) x - (.x] - 1/2 (but only in Chapter 3 "f'(z) = r• (z)/r(z), while in Notes 

of Chapter 9 "t'(x) = LA(n)). 
n<X 

f (x) ,-v g(x) as x ➔ x
0 

s means lim f(x)/Q(x) = 1. 
X--')I X (} 

0 

f(x) = O(g(x)) s means jf(x) \ :5 Cg(x) for x> x and some absolute constant C > O. 
- 0 

Here f(x) is a complex function of a real variable and g(x) is a 

positive function for x > x. 
- 0 

f (x) << g(x) a means the same as f (x) _= 0 (g(x)). 

f(x) X g(x) , means that both f(x) << g(x) and g(x) << f(x) hold. 

(a,b) 1 means the interval a< x < b. 

(a,b] : means the interval a.::::x:5b. 

~) f s an arbitrarily small positive number, not necessarily the same at each 

occurrence in the proof of a theorem or lemma. 

Cr[a,b] a the class of functione ha"Ving a continuous r-th derivative in [a,b] • 



f ( x) = 0 ( g (X) ) : 

f(x) = 2 (g(x)) 
+ 

means that for each E "> 0 there exista x such that 
0 

8 

jf(x)I < ~g(x) 

fmr x ·~ x, where g(x) is a positive function for x > x. 
- 0 - 0 

means that there exista a sui table constant C > 0 such that 

f (x) > Cg(x) hmlds for a sequence x = x wi th lim x = ro • 
n n 

n ➔oo 

f(x) = S?_(g(x)) : means that there exista a suitable constant C > ü such that 

f (x) < "'!'Cg(x) holds for a sequence x = x wi th lim x = oo • 
n n n-=,ro 

f(x) = .2+(g(x)) 1 means that both f(x) =2+(g(x)) and f(x) =Si?_Gg(x)) holds. 

f(x) = 5"2(g(x)) : means that lf(x)\ =S?+(g(x)). 

c(e) 1 for real Q defined by << '1/J(e)+E. for any f .:> O and '1.1 > T (~.). 
- 0 
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CHAPTER 10 

I N T R O D U C T O R Y RESULTS 

§1. Introduction 

This chapter contains prelim{inary results which will be repeatedly used 
... ,,•' 

in later chapters. Most of the material consists of well-known analytic facts which 

are given here as a reference for the sake of completeness of the exposition. This 

seems preferable to quoting these results from the literature each time the need 

for such a result arises at a specific place in the body of the text. The material 

presented in this chapter is only loosely connected, and the choice for its inclu

sion is solely motivated by needs of later chapters. For this reason detailed proofs 

are not given, and sometimes only a reference to a standard text is offered, where 

proofs and a more detailed account may be found. It is clear that the criteria for 

deciding what is well-known and what is not are highly personal, so that it may 

ocour to the reader that some additional material should have been included here, 

while some could have been omitted. 

As in the whole text, standard notation is being used, albeit absolute 

consistency in notation can hardly be ever achieved. Whenever possible the notation 

of E.C. Titchmarsh 1s book [s] on the zeta-function is used, and although it is not 

absolutely necessary it will help the reader if he is familiar with the contents 

of Titchmarsh 1s book. One of the results whiC-h certainly belongs here in Chapter 1 

is Voronoi 1s summation formula, but due toits complexity and importance this 

formula will be treated separately in Chapter 3. As Chapter 2 is devoted to expo

nential sums and integrals, it may be justly said that pure zeta-function theory 

begins with Chapter 4. 

§2. Mellin transfprms 

Let f(x)x~-
1 

belong to 1(0,oo) and let f(x) have bounded variation in every 

finite x-interval. Then 

is defined as the Mellin 

lin 1s inversion formula 

00 

= ~x
8

-
1
f(x)dx, s = d + it 

0 

transform of f(X). From (1.1) 

(d, t real) 

we can recover f(x) by Mel-



(1.2) 
1 
2 (f(x+O) + f(x-0)) 

iti'fl 

) F(s)x- 8 ds. 

.l-iT 
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In the case when f(x) is continuous (1.2) can be·obtained without difficulty 

from (1.1), while in the general case it seems more suitable to write (1.1) as a 

Fourier transform by a change of variable and thento appeal to résulta from the theo

ry of Fourier transforma and integrals. A detailed account of (1.1) and (1.2) is to 

be found in E.C. Titchmarsh's book [7] on Fourier integrals. Relations (1.1) and (1.2) 

are inverse to one another. Namely if 

( 1, 3) f(x) = (2'ri)- 1 5 .. F(s)x- 8 ds, 

,-i.oo 

where F(6 + iu) belongs to 1(-co , oo) and is of bounded variation in the neighbor-

hood of the pointu= t and (1.3) holds, then 
a 

lim S f(x)xt+it- 1dx, 
a➔oo ~,a 

and in most applications (1.4) will reduce to (1.1). 

An analogue of the well-known Parseval 1s identity for Fourier integrals holds 

also for Mellin transforma; i.e. if f and Fare connected by (1.1), then 

oO d> 

(1.5) ( 2"') -
1 s 1 F ( 6 + i t) l 2 

dt - S 2( ) 2d-1 f X X dx. 
-oo 0 

As is the case with (1.2), this identity may be derived from -Parseval•s 

identity for Fourier transforma, or one may argue directly by writing 
~-tioo oP 6+iao 

(2'ri)- 1 5 F (s )F(sTds • 5 f (x) ( (22'i)- 1 5 F (s )x~-it- 1 ds) dx • 

~-iao o ~-ioo 

OO fl+iDO 

5 f(x):x:
2
d-

1 
( (2,ri)-

1-5 F(s):x:- 8 ds)dx 
o d-ïoo 

oO 

= 5 f2(x)x2A-1dx, 

0 

where (1.1) and (1.2) were used under the· assumption that fis continuous. Setting 

s • d + it we obtain (1.5). 

Formulas analogous tô (1.5) hold also for two or more functions. As an 

example, suppose that F(s) and G(s) are Mellin transforma of two continuous functions 

f(x) and g(x) respectively. Then 
J+ioo 

(1.6) (2"i)- 1 5 F(s)G(1-s)ds • 

l-ïoo 

d-f-ioo oo 

(2'!i)- 1 j G(1-s) () f(x)x 8
-

1dx)da = 

.b 



~tioo 

f(x)dx 5 G(1-s)x
8

-
1
ds = 

oO 

5 
12 

f(x)g(x)dx. 

l-ioo 0 

Finally it may be mentioned that inversion of the gamma-integral (see §6) 
.0 

r(s) = s e-xx 8
-

1dx, (Res> 0) 
0 

gives by (1.2) the useful relation 
· C.-+-ioo 

e -:x: = ( 2'Jr i) - 1 s r ( s) X -s ds • (c,x > 0) 

§3. Inversion formulas for Dirichlet series 
,:,0 

We shall consider Dirichlet series of the form A(s) = l:;ann- 8 which 
n=1 

have a fini te abscissa of absolu te convergence, and we shall set f (:x:) = L}an. General 
n<x: 

theory of Dirichlet series will not be discussed here, since our main interest lies 

in inversion formulas, which represent formulas expressing f(x) (or some similar 

function involving the a 1s) by series and integrals containing A(s). Sometimes n 

these formulas go under the name of "Perron 1s formula", although this name is most 

often used for one particular formula of this sort, namely 
G+iOO 

(1.8) (2.,n)- 1 5 A(s )xss - 1 ds, 
c-iao 

where c > 0 is such a number that A(s) is absolutély convergent for Res = c. Here 

1 
means that if xis an integer then z=1n cames instead of an into the sum. One 

obtains (1.8) easily from 

ctioO 

1 

0 O<Y<i 

(1.9) (2:Ki)-1 ) Y8 s- 1ds "" 1/2 y = 1 
' 

(c > o) 

c..-ioo 
1 y> 1 

since in view of absolute convergence of A(s) one may integrate term by term the 

right-hand side of (1.8) to ôbtain using (1.9) 
C+iOO 

(2,11)- 1 5 .A(s)x8 s - 1ds , 

c-,oo 

c,tioo z an ( 2!1f i) -1 5 ( x/ n) s s -1 ds 
n=1 C-ioO 

To see that (1.9) holds one may evaluate the integral direotly by the 

residue theorem, or defining f(x) = 0 for O < x < 1,f(1) = 1/2, f(x) = 1 for x ·:;, 1 

one has the Mellin transform 



F(s) = 
s -1 , .. 

X S 

1 

-1 
= -s 
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(Res< 0) 

and (1.9) follows from (1.2) on re;Îlacing :x: by Y and s by -s. Ir,stead of (1.8) it 

is often desirable to have a trur.cated form of the inversion formula, namely a 

formula where the inte 5Tal is over a fini te segment whose length may be sui tably 

chosen. Such a formula may be obtained by considering the iritegTal in (1.8) and 

replacing it by an integral over a suitable finite contour plus an errer term. 

Of ~•an Various hypotheses on A(s) make then a more explici t evaluation LJ possible. 
n<X 

We quote now a standard result of this type, whose details of proof may be found in 

K. Prachar (11 : .. 
Let A(s) = ~ -s 

~an 
n=1 n 

converge absolutely for d = Res:> 1 and let \anl < ccl1(n\ 

where for x large d>(x) is a monotonically increasing function. Let further 

00 ' ~ tanln- << (6 - 1)_., 
n=1 

as 6 ➔ 1+0 for some o(. > o. If w = u + iv (u,v real) is arbitrary, b,T > o, 

u + b > 1, then 

. 1 -w 
an = n 

n<X 

&ti'I" 

(2"1)- 1 5 A(s + w)x8 s- 1
ds + a(xbT-1(u+b-1)-") 

• -i'I' 

and the estimate is uniform in x,T,b,u provided that band u are bounded. 

Another inversion formula for Dirichlet series is 

) ~ -w k-1 /, ( 1. 11 ~ ann log (.x n1 
n<.X 

(:!l!i)- 1 (k-1)! <~•oo A(s + w)x 8 s-kds, (c > 0) 

c-iOO 

+ 

where k > 2 is a fixeâ integer, w is an arbitrary complex number and c + Rew 

exceeds the abscissa of absolute convergence of A(s). This formulais obtained if 

one integrates term by term the right-hand side of (1.11) with the use of 

CTiOO 

~ 
,, 

ü <Y< 1 v, 

(1.12) (2,ti)- 1 s -k 
(c > 1 \ \ Y s ds = .., I 

1 k-1 1 (k-1)!log Y, y :, 
c-ioo 

where k :!_ 2 is a fixed integer. To see that (1.12) holds one may start from 



oO 

( -sx k-1 -k( ) j e x dx = s k-1 ! , Re s 

0 

and make the change -x of varialile e = u to obtain 

(1.13) 

,t 

1 ( s-1 k-1 k-1 
) u (-1) log u•du (k-1)! 
0 

The inversion formula 

C~ioO 

-1 ( -s -k 
(2,ri) J u s ds 

(1.2) gives then 

= 1 f~~i;~\ogk-1u, 

ü, 

so that (1.12) follows with Y= u- 1 

= 
-k 

s 

14 

Ü<U<.1 

u > 1 

Finally we present an inversion formula for a weighted sum which differs 

from the one appearing in (1.11). We suppose that q > 0 is a fixed real number and 

that A(s) converges absolutely for Res= C > 0. Then 

i:;+i.:,,o 

(1.14) 
1 z ·a (x-n)q (2,ri)- 1 J r s As s+q 

r(q+1) = r s+q+1 x ds, n n<X 
C-ioo 

and in case when q = û (1.1.4) reduces to (1.8) in view of r(s+1) = sr(s). One may 

obtain (1.14) by termwise integration of the right-hand side with the aid of 

) 
-s ~ ( ) -1 u T"(s d 

2,ri. r(s+q+1 s = f(u) = 

1 
(c '> o) 

C-ioO o, u > 1 

when one replaces u by n/x. To see .that (1.15) holds start from (1.29), namely 

to obtain 

( 1. 16) F(s) 

~ 

~ xa- 1(1-x)b- 1dx = 

0 

B (a, b) ra r b 
r a+b+1 1 

(Re a> O,Reb :> o) 

r +1 r s 
r q+ 1 )r q+s+ 1 

which shows that r(s);Kq+s+1) is the Mellin transform of f(x), and consequently 

(1.15) follows from the inversion formula (1.2). 
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§4. Partial su.mmation formulas 

Partial summation is a standard elementary technique for transforming sums 

into more manageable sums or integTals, and some of these useful formulas are recor

ded here as a reference. 

Let ça \"" be a sequence of complex numbers and tb )- a sequence of real l: n 11 .. ~ n ,.u 

numbers. If t
1 
~ b

2
:::, ••• :> 0 and M :::> 1 is an inté1ger, then 

l Li ab 1 
M<:n<N n n 

< b max 
1\i<n<I'J 

while if O,::: b 1 ,::: b
2

,::: ••• , then 

(1.18) l La b 1 
M<n<N n n 

These simple inequalities show that monotonie sequances may be removed 

from sums, and they are both proved analogously. To obtain (1.17) we define 

An = ~ am. Then 
M<lll<n 

\ Li (A - A _ 1 )b 1 
M<n<N n n n 

< 

To transform sums into integrals it is often convenient to write a sum as 

a Stieltjes integTal and then to integTate by parts. For example if la 1-is a n~., 
sequence of real numbers, g(x) €. C 

1 
[ Â1 ,xl, À1 < .tl.2 ,::: • • • is a sequ:aace of real 

numbers tending to infinity, then 
li, 

) A(t)g 1 (t)dt, 

Â◄ 

where 

A(t) 

Namely we can write 
x+O 

) g ( t) dA ( t) , 

'l,·O 

since A(t) has jumps of weight an fort= ').n and otherwise it is a cor,stant fun

ction. An integration by parts yields immedialtely (1.19), since 



(1.21) 

>t+O 

g(t)A(t) 1 
l"-o 

Similarly we can obtain 

6 f(n) 
X<11<Y 

y 

\ f(t)dt - "\'(Y)f(Y) + 
X 

"'l'(X)f(X) + 

16 

~ 'f(t)f' (t)dt, 
X 

where f(x) f C 
1 [x, Y1 and "f'( t) · = t - (t 1 - 1/2. This is a special case of 

the so-called Euler-Maclaurin surnmation formula, and essentially only a variant of 

(1.19). The general Euler-Maclaurin formulais (for simplicity we shall assume here 

that a and b are integers) 

L; f(k) 
a<k<b 

.t, n B 

) f ( t) dt + ~ (f(a)+f (b)) + 6i (~:) ! (f (
2
m-

1 
)(b )-f (

2
m-

1
) (a)) 

o.. 

+ ~ p2n+1(t)f(2n+1)(t)dt, (n ~ o) 
o. 

Here f (x) E. c2
n+ 

1 
[ a, b] , Bm is the m-th Bernoulli number and Pm is the m-th 

periodic Bernoullm. function defined by Pm (x) = Bm (x - [x 1), whEre Bm (x) is the 

Bernoulli polynomial defined by 
oO 

6Bm(x)zm/m!, 
m=ü 

( \ z\ < 2~) 

so that Bm = Bm(o), B1(x) = x - 1/2, B2 (x) = x
2 

- x + 1/6, etc. A proof of (1.22) 

may be obtained as follows, by the Stieltjes integral representation and integration 

by parts we have 

:z f(k) 
a<k<b 

. I f(t)d([tl) " 
~-o 

.f+O 

) f(t)d( [t1 ~t+1/2) = 

.&- .&-.4 .&+O s f ( t ) dt - ) f ( t) dP 1 ( t) ~ f(t)dt + !<r(a)+f~)) + ~ P~(t)f'(t)dt, 
q.. ~-o ~ ~ 

which is (1.21) for a= (x1 + 1,b = [Yl. From the defining property of Bernoulli 

polynornials (see T.M. Apos·tol (11, Ch. 12) B~+ 1 (x) = (n+1)Bn(x), so that one may 

take SPn(x)dx = (n+1)-
1
Pn+1(x), and repeated integration by parts of 

.t, 

) P1 (t)ft (t)dt 
o. 

leads to (1.22), since for any integer r we have P (r) = B (o\ = B 
m' m' m 



17 
§5. The Poisson surnmatiun formula 

'l1here exist several variants of this useful formula. 1;~'e shall need the 

followir.1;:;· version; let a, b be integers anèt let f (x) be a function of a real variable 

with bounded first derivative on [a,b]. Then 

(1.23) Lt 1f(n) 
a<n<b 

~ f(x)dx 
o.. 

+ 

00 l, 

2 L ~f(x)cos2,rnx.dx. 
Yl= 1 o.. 

Here as usual J:./ means that ;f(a) ar;.d ~f(b) are to be taken instead 

of f(a) and f(b) respectively. 'ro derive (1.23) we use (1.21) in the form 

L f(n) ~ f(x)dx + 
a<.n<b .... 

"' 
~ ""l'(x) f 1 (x) dx, 
o.. 

and thus we have to show that 

( 1. 24) 

( 1 • 25) 

~ "l'(x) f 1 (x) dx 

- ,e.. 

2 Z ~f(x)cos2,rnx·dx. 
n=1 ,,.. 

This is achieved by using the I!'ourier series expansion 

oO 

-1 ~ -1 
-Jf L.__;n sin21f"nx, 

n=1 

which is valid if xis not an integer. The series in (1.25) is equal to zero if x 

is an integer, and moreover by partial summation it is seen that its partial sums are 

uniformly bcunded for any real x. Tnerefore using (1.25) in (1.24) and integrating 

by parts we obtain the right-hand side of (1.24) since sin2,m.a = sin2,mb = C. 

A more ~: etailed account of Poisson I s summation formula may be fou11d for 

instance in Chapter 10 of lYl.N. Huxley' s book (fl, where a good bou11d for the tails 

of the series in (1.23) is given. 

§6. The gamma-function 

Several standard properties of the gamrna-function will be stated now 

(some were already used in §3). Their proofs may be found in standard books in 

analysis, and therefore no particular references will be given. 

For Res :,- v the gamma-function is defined as 

( 1. 26) r(s) = 
( -x s-1 J e x dx, 
0 

and for other values of s by analytic continuat Lon. r (s) is ar1. analytic function 
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of sin the whole plane, except for points s s 0,-1,-2, ••• ,-n, ••• which are poles 

of the first order with residues (-1)n/n! (n = ü,1,2, ••• ). The gamma-function 

satisfies the functional equation 

r(s + 1) sr'(s) 

and the useful relations 

(1. 29) 

Another common property is 

B(a,b) = 

,\ 

S a-1 ( )b-1 X 1 - X dx = 
• 

~a)r(b~. 
a + b 

We shall also make use of the relation 
00 

r'(1) = ~e-~ogx•dx = - ! = -0.5772157 ••• 
0 

by which the Euler constant O is defined 0 

(Re a> O,Re b > o) 

Finally from the theory of the afy,~ptotic approximations of the gamma

function we shall need the so-called Stirling 1 s formula in the form 

which is valid for b constant and [args l =::: ,r- $ ( ~ > 0), if s = 0 and neighbor-

hoods of po1es of r(s+b) are excluded. Also we have 

(1.32) = 

valid for o1 .::: d .::: c0 , and the 0-constant depending on c1 , o
2

; and for , > ü 

fixed, \ args \ < !:Ir - S , \s \ ::::_ S we have 

/ / 1
-2 

r'(s)r(s) = logs - 1 (2s) + O(\s ). 

§7. An exponential integral 

Very often we shall smoothen integrals by introducing a certain expo

nential weight which simplifies subsequent estimations. The integral that is needed 

is 
(/10 

~ exp(At - Bt
2

)dt = (~t/B) 1
/

2
exp(A

2
/4B), (Re B > 0) 

-o0 

which in fact represents an analytic function of A and B provided that Re B > o. By 

analytic continuation it is sufficient to p:tove (1.34) for B real and positive, when 
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the change of variable t = A/(2B) + :xB-1/ 2 gives 

~ s exp (At - Bt
2

) dt 

oO 

B-1/ 2exp(A2/4B) 5 2 
e-x dx = 

-o0 --
§8. The Halasz~Montgomery inequalities 

The inequalities in question are certain general inequalities for vectors 

in inner-product spaces which have found many applications reoently in analytic 

number theory. Their connection with large sieve ;iinequalities is very close, and 

the whole subject is extensively treated by H.L. Montgomery (21, [51,(<;], where de

tailed references are given. To formulate the inequali ties, suppose that ~ , 'fi, ... , 
'eR are arbitrary vectors in an inner product vector space over c, where (a,b) will 

2 
be the notation for the inner product and l\a 1\ .. (a,a). Then 

(1.35) 

(1.36) 

Both of these inequalities are derived by judicious use of the Cauchy,. 

Schwarz inequality for vector spaces. To see this observe that from (a,b) = (b,a) 

one has 

for any soalars c. Thus r 

(1.37) 

If we take cr= exp(-iarg(t,~)), then lcr\ = 1 and 

so that (1.35) follows at once from (1.37). For (1.36) we use the elementary 

inequality 

to obtain 



so that combining 

If a == 

numbers, then the 

(1.39) 

(1.37) and (1. 38) we have 

(D 00 

f an\n==1 and b -= tbn\n=1 

s;tandard inner product of 

(a, b) • 
oO 

L,a b. 
1 n n 

n= 

20 

(1.36) if we take C = (~, ~). r 

are two (vector) sequences of complex 

a and bis defined as 
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C H A P T E R 2 

EXPONENTI.AL J.NTEGR.ALS AND EXPONENT PAIR S 

§1. Exponential integrals 

The topic of this chapter involves one of the very important and diffi

cult parts of analytic nu.m.ber theDry. Exponential integrals and exponential sums 

ocour in a large number of problems whose solutions ultimately depend on asymp

totic formulas or good 0-bounds for these integrals or sums. A deep method for 

dealing with exponential sums and integrals has been founded by J.G. van der 

Corput Dl, ~1 in the 1920 1s. This is the so-called "saddle point method" 

or the "method of the stationary phase", which bas much adTanced analytic number 

theory and brought on remarkable improvements in many classical problems such as 

divisor problems, circle problem, order of the zeta-function in the critioal strip 

etc. This method is systematized here in the theory of (one-dimensional) exponent 

pai~s whioh will be presented here in a simplified form, due mostly to E. Phillips 

D1• Albeit the theory of exponent pairs is, in general, superseded by two-dimensi

onal and multi-dimensional methods, this theory is nevertheless fairly simple to 

use in practioe. Furthermore the best existing multi-dimensional theory of exponen

tial integrals and sums, due to G. Kolesnik in his series of papers [1], [2}, [3], [5] 

and [61, is both very difficult and has not produced so far dramatic improvements 

over results obtainable by the classical theory of expopent pairs. Therefore we 

shall restrict ourselves to the classical theory of exponent paira, devpting this 

section to the estimation of certain exponential integrals. The main results will 

be stated as theorems, while other res.ults will be given as lemmas. We begin with 

Lem.ma Z1. Let F(x) be a real differentiable function such that F'(x) 

is monotonie and F 1 (x) :=:_ m > 0 or F 1 (x) ~ -i-m < 0 for a~ x ~ b. Then 

~ 

(2.1) 1 ~ eiF(x) dx I -1 
< 4m • 

o.. Rr ..e-

Proof of Lemma 2.1. Since the conjugate of ) eiF (x) dx is ~ -iF(x) d e x, 

"- o.. 

this means that in most problems involving exponential sums and integrals we may 
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suppose that F
1
(:x:) > o. Now eiF(x) • cosF(x) + isinF(x), and by the second mean 

value theorem for reàL integrals 

Ir 

f(b)~ g(x)dx, 
C 

(2.2) 

where c is some number 

.t-

satisfying a< c < b. Writing 
~ 

~ cosF(x) .dx = \ (F 1 (x))- 1
d(sinF(x)) 

Q.. (1... 

and using (2.2) it is seen that 

.(',-

15 cosF(:x:) •dx l S 2.;;' 
Il,. 

if f(x) ~ O, f' (x);:: O}X·E (a,b] 

since (F'(:x:))-
1 

is monotonie in (a,b1 because (1/F1 (x)) 1 = -F"(:x:)/(F 1 (x))
2 

and 

F"(:x:) is of constant sign since F 1 (:x:) is monotonie in [a,b]. The same bound holds 

also for the integral with sinF(:x:), hence (2.1). Using (2.2) and the same argument 

it is also seen that 
,e.. l ) G(:x:) eiF (:x:) dx l s 4Gm-1 , 

0,.. 

where Fis as in Lemma 2.1, and G(x) is a positive,monotonic function for a S x Sb 

such that lG(x)\ S G. 

Lemma 2.2. Let F{x) be a twice differentiable function in [a,bl such that 

F"(x) ~ m > 0 or F"(x) S -m < o. Then 
,e.. 

(2.4) \) eiF(:x:) dx I ::; Bm-1/ 2• 
0-. 

Proof of Lemma 2.2. Assume. that F" (x) > O, so that F 1 (x) is monotonically 

increasing and has at most one zero c, i.e. F 1 (c) = 0 with a< c < b. Write 
t,, 

+ ) + ) • r 1 + r 2 + r
3

, 
~ C-M. C+..,_ 

say, where u> 0 will be suitably determined. Trivially tr2 1 s 2u, and for u < c - a 
c.. 

and a S x Sc - u we have lF' (x) 1 • 1) F"(t)dt I:::. um, so that Lemma 2.1. gives 

X 



24 
l I 1 l !: 4 (um)- 1 and a similar estima te holds for I

3 
if u < b - c. If u ~ c - a or 

u > b - c, or if F' has no zero in [a,b], the analysis is similar, and in all 

cases leads to 
-t-

-1/2 l) eiF (x) dx \ !: 8 (um)- 1 
+ 2u = 8m 

A.. 

if we ta.ke -1/2 u = 2m • Analogously to (2.3) one has 

if F satisfies the hypothesis of Lemma 2.2, and G(x) is a positive,monotonic fun

ction for a ,s x !: b such that\G(x)\!: G. 

Lem.mas 2.1 and 2.2 are very general, but they have the shortcoming 

that the estima.tes given for exponential int•grals are only upper bounds which do 

not e:xplicitly depend on the length of the interval of integration. We present 

now a''saddle point" theorem, which shows that the main contribution to the exponen

tial integral comes from its saddle point (i.e. the point where the first deriva

tive F 1 (x) in eiF(x) va.nishes), provided that certain conditions are satisfied. 

This is 

THEOREM 2.1. Suppose that f(x) is a real-valued function such that 

f (x) é c4 (_a, b], f" (x) < O for xe: [a, b l and 

m
2 

X lf"(x)l, lf( 3) (x) \ << m
3

, l f( 4) (x) l«m
4

, 

.e,.. 

) e(f(x))dx = 

If f" (x) > 0 in [ a, b] and the other hypotheses hold, then the same 

result is obtained with e(f(c) + 1/8) in place of e(f(c) - 1/s). 

Proof of Theorem 2. 1. The cases f" < 0 and f" > O are analogous, so 

only the former is considered. Write 

~ e ( f ( x) ) dx = (2.7) 
c-..c.. c.+""" 

) e ( f ( x) ) dx + ) 
-,.._ 

e,. 

e ( f ( x) ) dx + ~ e ( f ( x) ) dx = I 1 + I 2 + I '5 , 
C.+-'4 

say, where we suppose that u satisfies u !: min(c - a,b - c) and will be suitably 
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determined later. By Lemma 2.1 
c.-4 

= 1/ 1) f"(t)dt 1 
(.. 

and similarly the same bound holds also for r
3

. 

Since f'(c) = 0 we use Taylor 1s formula to obtain with some 9 for which 

(2.8) 

ê f x
2 

x3 (7i) x4 (4) 
I 2 = J e(f(x+c))dx"' J e(f(c) + 21f 11 (c) + tft' · (c) + 

41
r (c+9x))dx • 

.... 
= e(f(c))) e(-½x

2
f"{c) + ~~:3f( 3)(c))•(1 + o(\xl 4m

4
))dx = 

-M. 

.... 
• e(f(c))) e(-½x

2
f 11 (c) + ~x3f( 3)(c))dx + O(u5m

4
). 

Abbreviating F • ~if( 3)(c), the last integral in (208) becomes 

- ~ 
~ e(-½x2f"(c))exp(Fx 3)dx • 2) e1rif"(c)x

2 
(1 + 

_,.,, 0 

'Ç'~3 2r L x2 , )dx, 
1 r • r= 

since the integrals involving odd powers of r vanish identically. Making the change 

of variable 2 ~lf"(c)lx ~yin the integrals appearing on the right-hand side of 

(2.9) we obtain 

(,rif" ( c) 1)-1/2 ~l>~<Jl~ -iy y -1/2dy + 

0 

Applying Cauchy 1s integral theorem to the function exp(-iz 2
) and the 

t f th . 1 f d . . 1 / 2 t t th . . d d . t 1 / 2 sec or o e circ e o ra ius x , cen er a e or1g1n an en po1n s z
1 

= x , 

z
2 

• e(-1/8)x 1
/

2
, we obtain 

>C. 

( -iy -1/2 
) e y dy = 
0 

'00 

if we use ~ exp(-z 2)dz = ~;/
2• Therefore the first term in (2.10) is 

0 

and the remaining terms are by (2.2) 
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00 2 :;a 3 2r 
~ F r -3r-1/2r 2)3r-1/2 ( )-1 ~ ~ ( )-1 ( ;, ) 
~ ( 2r) ! m~~ , m2 u • um2 ~ ~ << um?, exp eu., m~ 

for some absolute c > O. Therefore we obtain 

,El, 

(2.11) ~ e(f(x))dx = e(f(c)-1/8) (f''(c)\-
1/ 2 + O(u-1m;1) +O(u5m

4
) + 

and choosing u = (m
2
m

4
)- 1

/ 6 • (m
3

)- 1
/ 3 the error t erms above are of the same 

order of magnitude. This proves then (2.6) if u < min(c - a,b - c). If this con

dition is not satisfied suppose first that b - u < c !: b. Proceeding as above it 

is seen that there is an extra error term 
..... 

r
4 

= e(f{c))S e(~x
2

f 11 (c) + ~x3f( 3)(c))dx = 
.&- C, 

~ 

\ 1 2 
e(f(c)) Je(~ f"(c))dx + 

e-, 

to be dealt with, where as before F = ~f( 3)(c). By (2.3) we have uniformly in r 
.... 
\ 1 2 3r 3r-1 -1 J e ( ~ f" ( c) ) x dx << u m2 , 

J.-c... 

while Lemma 2.1 and Lemma 2.2 yield 

A< 

) e(~x
2

f 11 (c) )dx << min( If' (b) \ -
1

,m; 1/ 2), 

&-- ' 

1 2 
since for F(x) == 2f 11(c)x and a< x < b - -

(F' (x) [ = x(f"(c)! ~ (b - c)m2 ::or> \f' (b) 1, 

because by the mean value theorem for some c < ;< b we have 

f 1 (b) f' (b) - f' (c) = (b - c)f"(~) << (b - c)m2 • 

Therefore (2.13) and (2.14) give for 14 in (2.12) 

cO ~ r 
r

4 
<< min( [f' (b) l- 1,m; 1/ 2) + L (um2)- 1 (Fu,) << 

r=1 r. 
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and (2.6) follows again with u = m31/ 3• Similarly O(min(lf' (a)l- 1,m; 1/ 2 )) appears 

in (2.6) if c - u < a, and (2.6) follows in all cases. 

Theorem 2.1 is sharp when m2 (i.e. the order off") is sufficiently 

large, and eno11gh additional information about f( 3) and f( 4) is known. On the 

weaker assumption that m2 ~ f" (x), f (3) (x) << m
3 

for a ,=:: x !: b, we can obtain 

by the method of proof of Theorem 2.1 
k 

(2o15) ~ e(f(x))dx = e(f(c)-1/8) [f"(c)l-
1
/

2 
+ O(m;4/ 5m;/5) + 

.... 

where f' (c) = 0 and f" < O, and if f" > 0 then e(f(c)-1/8) is to be replaced by 

e(f(c)+1/s). The proof of (2.15) (where no information about f( 4 ) is needed) is 

easier than the proof of (2.6), since for (2.15) only the first three terms in 

Taylor 1s formula for r
2 

are taken, while for (2.6) we needed the first four terms 

in Taylor 1s formula. 

Next we shall formulate and prove another result which is similar 

to Theorem 2.1. The main difference will be that instead of f(x) we consider f(z), 

where z is a complex variable lying in a suitable domain, and suppose that f(z) is 

real when z is real and lies in [a,b]. The main term will turn out to be essentia

lly the same one as in (2.6), but the error terms will be different and in certain 

applications sharper than those in (2.6). The result is 

THEOREM 2.2. Let f(z), 'e(z) be two functions of the complex variable 

z and [a,b] a real interval such that 

i) for a,=:: x !: b the function f(x) is real and f"(x) > O; 

ii) for a certain positive differentiable function jl(x), defined on 

a< x !: b, f(z) and 'f (z) are analytic for a,=:: x ,=:: b,lz - x 1 < ,r--(x); 

iii) there exist positive functions F(x),cp(x) defined on ~,b] such that 

for a ,::: x !:: b, l z - x l !:: y (x) we have 

-1 1 2 1 
'e(z) <<<p(x), -f• (z) << F(x)y (x), lf"(z)l- << y (x)F- (x), 

and the <<-constants are absolute. 

Let k be any real number, and if f' (x) + k has a zero in [a,b] denote 

it by x
0

• Let the values of f(x), ~(x) etc. at a,x
0

,b be characterized by the 
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suffixes a,o and b respectively. Then 

,t,. 

~ 'f (X) e ( f (X) + kx) dx = 

J, 

o( ~ cp(x)exp(-c }k\_r(x)-CF(x))(dx+ \d.r(x) 1)) 
...ci.. 

If f' (x) + k has no zero for a~ x ~ b, then the terms involving x 
0 

are to be omitted. 

Proof of Theorem 2.2. We shall consider only the more difficult case 

when f 1 {xJ + k has a zero in (a, b1, and we shall denote Â(x) = c<.r,(x) for a sui table 

O < ô(< 1/2 to be determined later. As in the proof of Theorem 2.1 we shall split 

the integral on the left-hand side of (2.16) into several integrals. By Cauchy 1s 

integral theorem we can replace the path of"integration by the contour joining the 

points a,a ~ ~(1+i),x
0 

- À (1+i),x + À (1+i),b + 1 (1+i),b. Denoting the corres-
o O O "'b 

ponding integrals by I 1, ••• ,r
5 

respectively, we take r 1,r
3 

and r
5 

along straight 

lines, and I 2 and r4 are to be taken along the loci of the points x .±. Â(x)(1+i) 

respecti..-ely. 

Therefore for z = x + (1+i)y, -1(x) ~y~ ').(x), a~ x ~ b we have 

f(z) + kz = f(x) + kx + (1+i)y(f 1 (x) + k) + iy
2
f 11(x) + 9(y), 

where by Taylor 1s formula 
oO 

Q(x) << F(x)L lz•xlnlf(n)(x)IF- 1(x)/nt << F(x)IYl3~ 3(x), 
n=3 

since by iii) and Cauchy 1s formula for derivatives of analytic functions 

which gives 

(2.18) 

1 2 Hence by taking ot sufficiently small we obtain l 9 (y) ( < 2!" f" (x), 

Re(2~i(f(z) + kz)) < -2!Jty(f 1 (x) + k) 2 
- "Jry f" (x), 

Â.e.. 

I 1 << JtPaexp(-2,rylf!+kl- ,ry
2

r;)dy << <Pa(\f~ + kl + f;
112)-1, 

0 

and a similar bound holds for r
5 

with the suffixa replaced by b. By the same 

argument 
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ll,o. 

(2.19) r 2 << ~ q>(x)exp(-2mÂ(x) \f'(x)+k!-.1t?.
2

(x)f"(x))(dx + [dl(x)I). 
,o.. 

Now if lk 1 :S 2jf' (x)I, then by iii) 

',:\,(x) \f 1 (x)+k \ << Â(x) \f' (x) l << F(x), kJ(x) << f' (xij<(x) << F(x), 

while for \kl> 2 \f' (x)\ 

Â(x)\f'(x)+kl :!. ).(x)(lk\- \f'(x)l) ::>':.> lk\)t(x), 

and since ). 2 (x)f"(x) >> F(x) by iii), it is seen that in any event 

-2~:\(x)lf' (x) + k! - !7î)?(x)f"(x) < -C[kjjt(x) - CF(x). 

This gives 
.lc.q, 

I 2 << S cp(x) exp (-c \k \f(x) - CF(x)) ( dx + j df(x) l), 

and a cor:œsronding bound for r4. 

From (2.18) and (2.20) it is seen that it remains yet to show 

and then the proof will be finished. To accomplish this write 
) 0t1.+ï) 

I~ = ( t(x +y)e(f(x +y)+ kx + ky)dy • 
✓ ) 0 0 0 

-)r 0 t-t+i) 

= 

say, where we choose 

The integrals r
31 

and r
33 

are estimated analogously and yield the 

error term in (2.21), while the main term in (2.21) will come from r
32

• By (2.17) 

and the change of variable ,ry
2

f 11 

0 
= x we have 

~ 2f" 
(2.23) r

33 
<< ~ 

0
) e-ey O dy << 

2 
-1iV f 11 

-x ).. ( )-1 o e dx << 'Y, vf" e • 
0 0 

V 

Hence 

v2f" "" Î,2f"(1 + F-1/3)-2 .::»- F (1 + F1/3)-2 
0 0 0 0 0 0 

by iii), and also 

(vf")- 1 "' v(i'f")- 1 << #.. F- 1 (1 + F "13). o o J -o o o· 



Therefore for F > 1 o-

while for F < 1 
0 

so that in any case 

I33 << q)o.foF~2/3exp(-CF~/3), 

30 

The estimation of r
32 

bears resemblance to the estimation of r 2 in (2.8). 

In both cases Taylor 1s formulais used and the fact that the first derivative 

vanishes at a certain point ("saddle point"). In 1
32 

we write 

1 2 1 (3) ~ ~f(r) r 
e(f(x +y)+k(x +y)) = e(f +f 1y+ -2f"y + ~6 Y-+~ a / + o o o o o o 

4 
r. r= 

kx 
0 

+ ky). 

Now by hypothesis f 1 (x
0

) + k = f~ + k = O, and using f(r)(x) << .,-r(x)F(x) 

iu 2 and e = 1 + iu + O(u) (u real), we see that the left-hand·side of (2.25) 

is equal to 

Next by a change of variable y= (1+i)Y we have 

'\f{~+l) 'V' 2 

) 
2 -2,ry f" 

2k i:Jry f;'d ~ y2k o( 1 . )2k+1dv (î")-k-1/2 p•k-1/2 2k+1 
Y e y = e +i ~- << T << .'l 

. ' 0 0 I 0 
•V(Hi) -V 

for k> 0 a fixed integer, so that the contribution of the error terms in (2.26) 

to 1
32 

will be (since the'integrals with odd powers vanish) 

(2.27) << <PofoF~3/2. 

(2.28) 

As regards the terms that remain in (2.26) we have (in view of ~
0

• << <PJ-1) 
0 0 

( 2,.s.. -2 + Oy'+'i.t )+ 
o✓ o 

Arguing as before it is seen that we "at!e left with 

oQ)(A♦l/ ?Tiy2f11 

= 'f e 0 dy + 
0 

-oo (4+i) 



.. :u 

1r(H') 

since by (1o34) anù y• (1+i)Y 

J"J 
(1+i) (JT/2'1f") 1/ 2 = 

0 
-G1(1-!-i) 

and where as in (2.23) 

',)0(.~..-i) 2 
( !rriy f" 
J e 

0
dy << 

-3/2 
M. F • 

JO 0 

This completes the proof of (2.16) in case f' (x) + k vanishes in [a,b]. 

In the other case we take the contour of integration as a,a ±. Âa(1+i),b ±. \(1+i),b 

depending- on whether f' (x)+k~ O or ::: 0 in [a, bj, and then there is no term ccrres

ponding te r
3

• Âlso similatly as in Theorem 2o1,if all the hypotheses of Theorem 

2.2 hold but f 11 (x) < 0 in [a, b], then the main term in (2.16) is 

Theorem 2.1 is essentially the same as Theorem 2.2 with f(x) instead 

of f(x) + k, ~(x) a 1 and different hypotheses on f which lead to different error 

terms. 

We end this section by presenting a lemma which involves double 

exponential integTals with no saddle point. This is 

Lemma 2.3. Let f(z) and g(z) be two functions of the complex variable 

z such that 

i) f(x) is real for a::: x::: b; 

ii) f (z) and g(z) are analytic for lz - x \ !: ,.f for some ,J > O and some 

x E; [a, b 1 
iii) g(z) << G, \f' (z)\ ~- M for \z - x l::: J, . 

1 
Let O < U < 2 (b - a). Then for some absolute A> 0 

u ,&.« 

u-1 ) ( ) g(x)e(f(x) )dx)du << Ge-ArM(b - a + y-) + GM-2u-1• 

0 4'. .. -1> 

Proof of Lemma 2. 7i. By iii) and continuity f' (x) is of the same sign, 

say positive, in ra, b1,. Let C (u) denote the contour of segments joining the points 
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a + u, a + u + i.J...f , b - u + irf..J'-, b - u, where O < d. < 1/2 is a number which will be 

specified in a moment. By iii) and Cauchy 1s formula for derivatives of analytic 

funotions we have f(n)(z) << Mf1-n for n:!_ 2, and hence by Taylor's formula 

for z • x + iyE-C(u) 

and so 

if o(. 

f (z) = f (x) + iyf 1 (x) + 9 (x,y); 9 (x,y) << Z \z-xl n [f(n) (x) 1 /n1 << My}-1, 
n=2 

Im f (x + iy) ::,,;:> My, (x + iy € C(u)) 

is ohosen sufficiently small, sinoe \Yj .!: d..f for z é C(u). 

By Cauchy 1s integral theorem 
l) t--,14. 

u-1) ) g(x) e (f (x) )dxdu = 

0 -o.,u, .. 

u 

u- 1J () g(z)e(f(z))dz)du. 

ei c(u) 

In view of (2.30) the integral over the horizontal side of C(u) is 

lr--«4-1 d, .)'-

j g(z)e(f(z))dz << (b - a)Ge-.A./M 
... -t ... +id-J,i-

uniformly in u, with some absolute A> o. For the vertical side joining a+ u and 

a + u + i~.r, we have 

.. uv.,-;1 

) 
(Hi~ 

\) A♦A<+Îi-.)t d.Jt-

lu -1) ( ) g(z)e(f(z))dz)du) = l u-1 
) ( 

0 0,.,\-M- 0 

g(z)e(f (z) )dz)dy 1 , 

if we write z = x + iy =a+ u + iy,dz = idy, 0,:::: y.!: ~,r. and invert the order 

of integration • .A.n application of Cauchy's integral theorem to the rectangle with 

verticee a+ iy,a + id.JI- ,a+ U + iclJ',- ,a + U + iy 3ives in view of iii) and 

0,:, ,A+ V +-id 

) g(z)e(f(z))dz << G( ) e-AMv dv + Ue -AJM) << G(M- 1 e-.AMy + Ue-.A.IM), 

O.+.ê) ~ 

and therefore the left-hand side of (2.32) is 
d.,r 

<< u- 1 )G(M- 1e-AMy + Ue-A.f-M)dy << GM .. 2u- 1 + ~e-1/M. 

0 

A similar estimate can be obtained for the vertical side joining b-u+ioC.f 
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and b - u, and the case f 1 (x) < 0 is dealt with analogously by taking the contour 

in the lower half-plane. This proves (2~29). 

§2. Exponential sums 

By exponential sums we shall mean here sums of the type I, e (f(n)), 
a<n<b 

where f(x) is real for a _s x _s band fis (s11ffi~iently many times) differentiable. 

We begin with a result which transforme an exponentia+ sum into a sum of exponential 
. ,: 

integrals, which are easier to estimate in view of the results of the preceding 

section. This is 

Lemma 2.4. Let,f(x) be a real function for a .s x ,Sb such that 

f(x) €C
2

(a,b") and f"(x) <0 in [a,b) and let f'(b) = oe.,f1 (a) = I'.>. Then for 

0 < 1 < 1 · arbi trary we have 

L e(f(n)) 
a<n<i> 

- m:)dx + O(log(/3-«+ 2)). 

Proof of Lemma 2.4. By the Euler-Maclaurin summation formula (1.21) 

k k 

(2.34) Li e(f(n)) • S e(f(x))dx + 2,ri) V(x)f 1 (x)e(f(x))d:x: + 0(1), 
a<n<b .o.. .o. 

where 'V( (:x:) = x - [x1 - 1/2·. Wi thout loss of generali ty we ma.y suppose 

1 - 1 < oC .s i (so that m ~ 0), for if k is an integer such that '1 - 1 < o<. • k .!: , , 

then (2.33) becomes with h(:x:) • f(x) - kx 
I, 

L e(f(n)) • ~ e(h(n)) 
a<ns, a<n~ 

"" . L 
1 

~ e (h(x) - (m-k)x)dx + 
o( -J<Jn-k< 13 +i ..o. 

+ O(log(~' - ~• + 2)), 

where °'' =d-- k, ~• =13- k, so that (2.35) implies (2.33), and m - k:! 0 by the 

ohoice of k. Using the Fourier expansion (1.25) for y(x) it is seen that the 

second integral in (2.34) is equal to 

oP ,G, 

-2iI, ~ m-1sin2nmx•e(f(x))f 1 (x)dx • 
m•1 ..._ 

q0 Ir 

I, m -
1 

) ( e ( -mx )- e ( m.x) ) e ( f ( x) ) f ' ( x) dx • 
m=1 ,o. 



By hypothesis f' (x) is monotonically decreasing for a .:S x .::: b, ar.d so is 

thenalso f' (x)/(f' (x)+m). An application of (2.2) to the second integral above 

shows that it is << /J/(~+m) uniformly in rn, se that the whole sum is 

<< << 
"'Ç"' -1 
L,._;ffi + 
m,:::r., 

Similarly it is seen that 
,e,. 

L -1 ) f' (xî m f' (x)-md(e(f(x)-mx)) << 
III>()+,, °'-

<< 1 

It remains yet to estimate 

~ 

<< 1 + log (13+2) • 

z -1c )-1 m m-13 13 << 
n~,1~+'j 

+ log(~+2). 

L, (2rim)-
1 ~ f;(~)~md(e(~x)-mx)) = 

1~<~, A. 

f' (x)e(f(x)-mx)dx = 

,6- .e, 

(~iJ1 L; m-1 ) d(e(f(x)-mx)) + 
1~<13+" ~ 

L fe(f(x)-mx)dx = 
1<m<1Hj) 

- q.. 

Rr 

+ L, Ç e(f(x)-mx)dx. 
1.::tn<fl.s+ ~ ... 

Taking into account the first integral on the right-hand side of (2.34) we 

finally obtain 

L e(f(n)) 
a<l'.lS, 

.e 

L ~ e (f (x)-mx) dx + 0 (log(/3 + 2)), 
O<tn<I)+~ CL 

which by the discussion made concerriing (2.~5) proves (2.33). 

Lemma 2.5 • .Let f(x) be a real differentiable function of x for a_::: x _::: b 

such that f 1 (x) is monotonie and lf'(x)\ _::: ~ < 1. Then 

.e. 

~ e(f(x))dx + 0(1); (2.36) L e(f(n)) 
a<l'.l<b 

Proof of Lemma 2.5. Taking ~ = 1 - 8 in Lemma 2 •. ,1 it is seen that the 

sum on the right-hand side of (2.37i) reô.uces to the term m == O, or it is empty 
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in case fi (x) ~ '1 or f 1 (x) <-;-,,, when 

k 

S e(f(x))dx << 1 
A. 

by Lemma 2.1, and (2.36) follows. 

Lemma 2.6. Let f(x) be a real function for a!: x !: band let H > o. Then 

Proof of Lemma 2.6. We may suppose that a and b are integers and 

2 < H < b - a, since t:ritially Lt e (f (n)) << b - a and b - a << (b - a)H-
1
/

2 

a<n<b 

for H < 2, while for H> b - a the left-hand side of (2.37) is trivially majorized 

by H. Also we may suppose that His an integer, since the right-hand side of (2.37) 

remains unchanged in magnitude if His re~ced by the integer nearest toit. The-

refore the proof reduces to showing that 
H-1 / 

L e (f(n)) << (b - a)H-
1
/

2 
+ ) (b - a)H-

1 Li I L, e (f (n+h)-f (n)) ,r 2' 
a<n<b ) h=1 a<n<b-h ( 

where His an integer~ 2, a< b are integers and H < b - a. 

Observe that 

H L e(f(n)) 
a<n<b 

= 
b-m 
L e(f(m+n)), 

n=a-m+1 

and define f(k) = 0 if k is an integer such that k !: a or k ::> b. Then writing 

S = L e(f(n)) and inverting the order of summation in (2.39) we obtain 
a<n<b 

b-1 H 
HS I: ~ e(f(m+n)), 

n=a+1-H m=1 

so that n takes at most b - a+ H !: 2(b - a) values. Applying the Cauchy-Schwarz 

inequality we have 
b-1 H 

2 
< 2(b - a) L I Ie(f(m+n))I • 

n•a+1-H m=1 

Squaring out the modulus in (2.41) we obtain 

b- 1 H 2 b 1 

Z ILe(f(m+n))l ,!: 2(b-a)H + 21 i: LJ e(f(n+s)-f(n+r)) 1 · 
1<r-<s<H n=a+1-H m=1 n=a+1-H - -



36 
In the last su.m above for a fixed k,h such that 1 .!:: h .!:: H - 1, 

a< k .!:: b - h we have f(n+s) - f(n+r) = f(k+h) - f(k) exactly H - h times: for 

r = 1,2, ••• ,H-h,s=r+h,n=k-r, and so the modulus of the double sum in (2.42) does 

not exceed 

and thus (2.38) follows easily from (2.40)-(2.43). 

Finally we need a lemma which transforms an exponential sum into another 

exponential sum (plus error terras), and this new exponential sum is in many cases 

easier to e stimate. This is 

Lemma 2.7. Suppose that f(x) ~ c4(a,b],f 1 (x) is monotonically decreasing 

in [a,b],f'(b) =..(,f 1 (a) =A.If xy is defined by f'(xv) = Y, (o<< V.!:: 13 and Vis 

an integer) and 

then 

Proof of Lemma 2.7. We use Lemma 2.4, noting that by the mean value 

theorem 

BY Lemma 2.2 the limita of summation coming from Lemma 2.4 may be re

placed by ~+ 1 and ~ - 1 wi th an errer << m;
1
/ 2

• An application of Theorem 2. 1 

gives then 
~ 

L 5 e(f(x)-)lx)dx·= e(-1/8) I,, lf 11(xv)l- 1/ 2e(f(x.,,)- vx 1 ) + 
o<+1< Y<f3-1 4.. ct+1<Y</3-1 

( ) 1/3 In view of 2.45 the first 0-term above is o((b - a)m
3 

), and the 

second is O(log(~-°'+ 2)) = O(log((b - a)m2 + 2), which ends the proof of (2.44), 

since again by Lemma 2.2 the limits of summation (~+ 1, 13- 1) may be changed to 
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-1/2 << m2 • It may be remarked that if we use (2.15) instead of 

(2.6) (with the appropriate hypotheses on f,of course) then we obtain (2.44) with 

the error term o((b-a)m;/ 3) replaced by o((b-a)m~/ 5m;/ 5). Also if f' is monoto

nically increasing in [a,b) and the other hypotheses of Lemma 2.1 are the same, 

but f' (a) = cx,f' (b) = ~, then (2.44) remains true with e(-1/8) replaced by e(1/8). 

§3. The theory of exponent pairs 

We have now atour disposal two results, namely Lemrna 2.6 and 

Lemma 2.7, which enable us to transforma given exponential sum into other expo

nential sums plus some (usually manageable)error terms. Lemma 2.6 requires praeti

cally no conditions on f, while Lemma 2.7 is much more restrictive and contains 

error· terms. However the conditions imposed on the derivatives off in Lemma 2.7 

allow us for a large class of functions f (which occur in many important appli

cations) to combine Lemma 2.6 and Lemma 2.7 successfully several times and to 

obtain good upper bounds for the modulus of 

s Lt e(f(n)), ( B ~ 1, 0 < h ;::: B) 
B<n<B+h 

provided that f satisfied certain conditions. The results of §2 suggest that the 

estimation of the exponential sum S certainly depends on the number of summands, 

which is;::: B, and on the size of the first derivative off. Therefore we shall 

suppose that 

A << jf 1 (x) 1 << A, (A> 1/2) 

when B;::: x;::: 2B, and seek an upper bound for ~SI of the form 

The pair of non-negative real numbers (p,q) will be called an 

exponent pair if (2.47),(2.48) hold and 

(2.49) 0;::: p < 1/2;::: q < 1. 

Two remarks may be immediately made here: firstly that (p,q) = (0,1) 

is trivially an exponent pair, and secondly that exponent pairs obviously forma 

convex set. This is to be understood in the following sense: if (p 1,q 1) and (p
2

,q
2

) 

are arbitrary exponent pairs and O;::: t ;:::iis arbitrary, then 
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s = 

which implies that 

is also an exponent pair. The above definition of exponent pairs is too general, 

and to obtain exponent pairs of practical value (via Lemma 2.7) we shall suppose 

that besides (2.47) f(x) € cr(_B,2B1'for some r:::, 5, and moreover that the 

~erivatives off for B .s x 5 2B satisfy 

1-r 
AB << 

1-r 
<< AB ' (r = 1,2, ••• ) 

wherethe <<-constants in (2.52) depend on r alone. 

We may consider only the case f 1 (x) > 0 for B 5 x < 2B, since other

wise we may consider S instead of S with the effect that fis replaced by -f and 

the sign of f 1 is thus changed. To obtain the first non-trivial exponent pair we 

apply Lemma 2.4 to S, estimating each integral as << m;
1/ 2 << (A/B)- 1/ 2 by 

Lemma 2.2 0 This yields 

(2.53) S << (13 - t1.)A•
1
/

2
B 

1
/

2 
+ A-

1
/

2
B 

1
/

2 
+ log(2 + A) << (AB) 1/ 2, 

since /J- ~ = f 1 (a) - f 1 (b) << A and A~ 1. Therefore it follows that (p,q) • 

(1/2,1/2) is an exponent ·pair, where (2.52) was used with r = 1 and r = 2 only. 

Thus we have so far (0,1),(1/2,1/2) as exponent pairs, plus exponent pairs: which 

may be formed from these two and convexity (in the sense of (2.51)). Denote this 

set of exponent pairs by E1• New exponent pairs which do not belong to E1 may be 

obtained by using exponent pairs from E1, convexity and the following 

Lemina 2.8. If (p,q) ia an e:xponent pair, then sois also 

(k, 1) = (p/ (2p+2), 1/2 + q/ (2p+2)). 

Proof of Lemma 2.8_. First note that O 5 k 5 1/2 ::: 1 5 1, since 

0 5p51/2<q51 by hypothesis. An application of Lemma 2.6 gives 

H-1 

(2.54) s2 
<< B

2
H-

1 
+ H

2 + BH-
1.L, 1 L e(f(n+j)-f(n))\, 

j.-==1 B<p_§+h-j 

where H > 0 will be suitably chosen. For a fixed j write 

(2.55) g(n) = f(n+j) - f(n), 

and note that g(r)(x) f (r)( ') f(r)() .f(r+1)( ('\•) = X+J - X = J X+ ~J , 
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so that by (2.52) for F ~ x SB~ h - j 

<< · 'n -r ( 1 ·., \ J Al; • , r = , ,. , ••• J 

rr:ay suppose that A > B 
1
/

2
, since for A ~ B 

1
/

2 
"-tve use the fact 

that q..:: 1/2 and (1/2, 1/2) is an exponer,t pair to obtain 

1/2 1/2 1/2 1/2+q/(2p+2)B-q/(2p+2) ---:< A (1+p-2q)/( 2P+ 2 )Bl << AkBl, 
S << A B << A B . ._ 

where (k,1) is as in the formulation of the lemrra. 

B
1/ 2 

1· 8 neea'ed 1·n the case when for some c > 0 we have The condition A> -

' · ~/A ogo th~t by f,2.56'1 J < c~ ' -

Lemma 2.2 

1 "'Ç' 1 ) \ -1 -1/2 "')' .-1/2 
BF- ~ ~ g ( n) << BH A B . LJ J 

j<cB/ A n J<cB/ A 

<< 

since A> B
1
/ 2 • For the remaining j 1 s in (2e54) we use the already exinting (p,q) 

and (2.56) to obtain 

LJ e (f(n+j )-f (n)) << (jAB-
1 

)pBq. 
B<n,SB+h-j 

Hence by (2.54) 

and the choice HP+1 = B1+p-qA-p finally reduces (2.57) to 

<< 

Since O 5 p ~ 1/2 ~ q ~ 1 we have 

(1 + p + q)/(1 + p) = 1 + q/(p + 1) :=:, 4/3 :::_ 

2(1 - q/(1 + p)) = 2(1 + p - q)/(1 + p), 

so that in view of A, 1/2 the second term in (2.58) dces net exceed the first 

and Lemma 2.,8 follows. 

Now we denote by E2 the set of exponent pairs obtainable from E1, con

vexi ty and repeated application of Lemma ? .8, which always p:::-odu.ces a new expcn:mt 

pair from a given (p,q)o The proof of Lemma ~1 .8 shows that for the construction of 

E
2 

we needed (2. 52) with r ~ 3. 1'he set E2 does not exhaust our p8ssi bil i ties for 

constructing expaent pairs, and for what follows it will be useful to ncte that for 

(p,q) ( E2 we have 
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(2.59) p + 2q ~ 3/2. 

This is trivial if (p,q)~ E1, and moreover convexity obviously preserves 

(2 0 59). With k = p/(2p + 2), 1 = 1/2 + q/(2p + 2) it is hcwever readily checked 

that k + 21 ~ 3/2 since q ~ 1/2. 

Finally the last possibility for constructing exponent pairs is furnished 

by 

Lemma 2.9. If (p,q) iS an exponent pair for which (2.59) holds, then 

(k,1) : (q - 1/2,p + 1/2) is also an exponent pair. 

Proof of Lem.ma 2.9. The condition O;::: k;::: 1/2;::: 1;::: 1 is trivial in view 

of (2.49). We shall apply Lemma 2.7 with a= B,b = B + 
-1 h, m

2 
= AB , 

-2 m
3 

= AB , 

- ') 2 and we that f"(x) < o; the case m4 = AB - so that m
3 

= m2m
4 

holds, may suppose 

f"(x)>O is discussed at the end of Lemma 2.7 and will lead to the same final 

estimate. We have then 

(2.60) If" (x,,) 1-1/
2e (f ()(11)-vx._.) + 0 (A-

1
/

2
B 

1
/

2
) + 0 (log(A+2)) + 

+ O((AB) 1/ 3), 

and the main task is to estimate 

(2.61) L; lf"(x 11)l- 1
/

2
e(g(-v)),g(v) = f(x~) - 'lx...,. 

..l < )1.::: r., 

If we set f 1 (x) = y and denote its inverse function by x = h(y), then 

g(y) = f(h(y)) - yh(y) • which gives 

gl (y) = f 1 (h(y))h' (y) - h(y) - yh 1 (y) = fi (x)h 1 (y) - h(y) - yh' (y) = -h(y), 

g"(y) = -h' (y) = - 1/f"(x) = -Yf"(h(y)) 

if one us es f 1 (h (y)) = y, and 

g( 3) (y) = f( 3) (h(y)) (f" (h(y)) )- 3 , 

and in general g(r) (y) is found from g"(y)f"(h(y)) = -1 by applying Leibnü-. 's 

rule for the r-th derivative of a product. We have h(y) X Band therefore 

and by induction it may be seen that the upper bound in (2.62) holds also for r~ 4. 

Removing f" by partial summation it further follows that s1 in (2.61) is of the 

same type as s, only A and B are interchanged. Hence 



41 

<< 

(2.64) 
k 1 

S << AB + 

and the proof will be finished if it can be shown that (AB) 
1
/ 3 _::: AkB1

. Since 1 > 1/2 

this is / / (1-3k)/(31-1) obvious if k:::. 1 3. If k < 1 3, ther. for B ~ A we have 

For B < A(1- 3k)/( 3i- 1) we have 2k + 1 ~ 1 from p + 2q:::, 3/2, which 

gives 

ending the proof of Lemma 2o9, where (2.52) was needed for r,::: 3 and the upper 

buund of (2.52) for r = 4. 

In view of the preceding discussion we formalize now the concept of 

exponent pairs even more by introducing E, the sét of exponent pairs,as the set 

obtainable from E2, convexity and Lemma 2.9 applied a finite number of times. ~early 

sixty years of research have not been able to produce any other exponent pairs,i.e. 

any besides those of E, where fis a real-valued function satisfying conditions 

(similar to) (2.47) and (2.52). Though in the formulation of Lemma 2.8 and Lemma 

2.9 it was tacitly assumed that (p,q) belongs to E 1 and E
2 

respectively, this is 

not necessarily true, as the proof of these lemmas clearly shows. It seems appro

priate now to introduce three processes which will be denoted by A,B,C(t) (the 

letters A and B have no relation to (2.48) in this context), and which correspond 

to Lemma 2.8, Lemma 2.9 and convexity respectively. Therefore if (p,q) and (p1,q 1) 
are exponent pairs, let 

following 

A(p,q) = (p/(2p+2),1/2 + q/(2p+2)), 

B(p,q) = (q - 1/2,p + 1/2), 

c(t)(p,q)(p 1,q 1) = (pt+ p 1 (1-t),qt + q1(1-t)). (o.::: t.::: 1) 

Now we can reinterpret the theory of expOY1ent pairs and state the 

Proposition. Let E denote the set of pairs of real numbers (p,q) such 

that O:;: p:;: 1/2.::: q !:: 1 and (p,q) is obtained by a fini te number of applications 

of the processes A,B and C(t) defined above to (0,1), which is to be considered as 
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an element of E. Then E is the set of exponent pairs in the sense that (2.48) holds, 

provided that (2.52) holds with r:::, 4. 

We end this chapter by giving several of the most commonly used exponent 

pairs: (1/2,1/2) = B(o,1),(1/6,2/3) = A(1/2,1/2),(2/7,4/7) = BA(1/6,2/3),(4/1a,11/1a)= 

BA(2/7,4/7),(11/'50,16/30) = BA
2

(1/6,2/3),(13/40,22/40) ""BA
2

(2/7,4/7),(97/251,132/251) 

= BA 3 ( 1 3 / 40 , 2 2/ 40) , ( 13 / 31 , 1 6/ 31 ) = BAB( 11/30 , 1 6 / 30) , ( 5 / 24 , 15 / 2 4) = C ( 1 / 4) ( 1 / 6, 2/ 3) 

(4/1a,11/1a), (4/11,6/11) = c(12/33)(1/2 9 1/2)(2/7,4/7). 

It may be remarked that in actual problems where the theory of exponent 

pairs is applied it often seems unclear how to choose(p,q) in an optimal way,i.e. to 

minimize a certain function F(p,q). In the case of the general F this problem is 

difficult and to this day unsolved, but for F(x,y) = x + y it has been solved by 

R.A. Rankin [1], who showed that if d. = 0.329021350 ••• , then (p,q)=(0(/2+e_, 1/2+oc/2+t) 

is an exponent pair for which (up toi) p + q is minimal for all (p,q) belonging 

to E. Graphically the exponent pairs just discussed may be arranged in a table as 

follows: 

p 0 1/2 1/6 2/7 4/18 11/30 13/40 13/31 4/11 5/24 97/251 #2 +~ 

q 1 1/2 2/3 4/7 11/18 16/30 22/40 16/31 6/11 15/24 132/257 1/2+J./2+E. 

NOTES 

The results preSEnted in this chapter have their counterparts in Chapter 

4 and Chapter 5 of Titchmarsh [a1, but the material given here is more extensive 

and the results sharper. In particular, Titchmarsh does not present the theory of 

exponent pairs, but stops at what is essentially Lemma 2.8 applied several times 

to the exponent pair (1/2,1/2); this is Titchmarsh 1 s lfheore1n5.13. 

The theory of exponent pairs,exponential sums and integrals has been 

founded by J oG. van der Corput [11, [21 in the 1920 1 s as one of the deepest theories 

of analytic number theory ever made. Van der Corput [21 contains the estimate 

~(x) << x33/
1
00+î (where ~(x) is the error term in the clasical diviser problem 

for which the reader is referred to Chapter 10), which was a very important impro

vement of the previous expon,3t 1/:Z,, due to G.F. Voronoi [11. The exponent 1/3 

appeared also in the circle problem (i.e. determining g such that 



see also Chapter 10 for a more extensive discussion of the circle problem), and 

until van der Corput's results appeared many competent mathematicians believed that 

the exponent 1/3 was the natural limit of the existing methods,if not nearly the 

true order of magnitude. Van der Corput 1s research opened a path in analytic number 

theory which leads to good bounds in many important problems, and forms the basis 

for more advanced methods. 

The original form of van der Corput 1s theory was rather complicated, and 

his definition of exponent pairs involves a condition comparable to (2.52)1 (p,q) 

is an exponent pair if (2.49) holds and if, corresponding to every. s > o, there 

exist: two numbers rand c depending only on s (r;;:: 4 is an integer and O < c < 1/2) 

such that 

lJ e(f(n)) <i< zpaq 
a<n<h 

holds with the <<-constant depending only on s and u, where u ::> 0,1 ~a< b < au, 

y> o, z • ya-s ::> 1, f(n) is any real function with differentiable coefficients 

in the interval a::: n::: b (a,b integers) of the firat r orders and for a::: n =::b, 

0 ::: j ,:s r-1 

(2.66) jf(j+ 1\n) - (-1)jys(s+1) ••• (s+j-1)n-s-j l < cys(s+1) ••• (s+j-1)j-s-j. 

It may be noted that z is effectively fJ(a), so that (2.65) is in fact 

the same as (2.48), and the only difference is between (2.52) and (2.66) which 

express the same type of inequalities for derivatives off, only (2.52) is simpler 

to verify and thus the definition of the exponent pair made in the text is more 

practical, though in most common applications (e.g. the divisor problem,the order 

of C(1/2+it) etc.) the function fis easily seen to satisfy both definitions of 

exponent pairs. 

Lemmas 2.1,2,2,2.4 and 2.5 ar·e to be found also in Chapter 5 of Titchmarsh 

[s1, and also a variant of Lemma 2.6 is given by Titchmarsh [a] as well as the 

proof of (2.15). Lemma 2.4, and its Corollary Lemma 2.5, may be viewed as a con

sequence of the Poisson summation formula (1.23). 

Gréat simplifications in van der Corput 1s theDry were introduced by 

E. Phillips (11, whose proofs of Lemma 2.8 and Lemma 2.9 are essentially given here, 

and the theory of exponent pairs was brought to a readily applicable form in 



the Proposition at the end of the chapter, where several commonly used exponent 

pairs were constructed. 
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Theorem 2.1 is also due to E. Phillips 0], while Theorem 2.2 is due to 

F.V. Atkinson [3] and will be used in Chapter 4 and Chapter 6 for transformations 

of certain Dirichlet polynomials (finite Dirichlet series) via the Voronoi summa

tion formula (see Chapter 3) and finally Theorem 2.2 will be used in Chapter 11 

for the derivation of Atkinson's formula L31 for E(T). 

Lemma 2.3,concerning integrals with no saddle points,is due to M. Jutila 

[61. This result will serve as a useful device in Chapter 6 for the truncation 

of series when Voronoi 1s summation formulais applied. 

The main step in the proof of Lemma 2.6 is the inequality (2.38), due 

originally to H. Weyl. This inequality is of a general nature and rests on a 

judicious use of the Cauchy-Schwarz inequality. In fact the sum appearing on the 

left-hand side of (2.43) is a double exponential sum (since H - h can be removed 

by partial summation), so that Lemma 2.6 in fact transforma an (ordinary) expo

nential sum into a double exponential sum with the flexibility that H may be 

chosen suitably to minimize the estimates. Thus ip (2.43) one may see the genesis 

of two- and multi-dimensional methods in the estimation of exponential sums. The 

method of two-dimensional sums was developed in the 19J0 1s by E.C. Titchmarsh (,1], 

(2°1, [3], [61 where he obtained several improvementlil of exponents in the classical 

problems such as the order of ~(1/2+it) and the circle problem. One of bis early 

resul ts, which may be regarded as the tw-o-dimensi.onal analogue of Lemma 2.1, is 

aB follows: Let D be a finite region bounded by 0(1) continuous monotonie arcs 

which is included in the square \x\ ~ R, lY l !: R for some R :!. 2. Let further 

f (x,y) > O,f (x,y) < O (or f < O,f > 0) and f (x,y) > b > O throughout D. 
XX yy XX yy Xy -

Then 

~\ e(f(x,y))dxdy << b-
1

(1ogR + llogbl). 
D 

Later refinements of two-dimensional methods were effected by many 

mathematicians, including S .-H. Min [ 1J,H.-E. Richert l11 and W. Haneke [1 J. The 

best methods at present are those of G. Kolesnik L11 - [6], as alreaà.y mentioned 

in §1. These advanced techniques,which do not seem to have appeared in book form 
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yet, are very ccmplicated and are based on works of previous authors, so that 

anyore who wants to get acquainted vd th therr. must know some of the theory already. 

An attempt to create the thecry of n-dimcnsional exponent pairs has been made 

by B.R. Srinivasan [11, [2], [7il. As is the case wi U1 the theory f.)f exponent pai.rs 

which is presented here, Srinivasan's theory is readily applicable too,but in each 

specific problem the more advanced met~oda of the aforementioned papers of G. 

Kolesnik will lead to a bethr resul t: wi tness the recent improvement of 105/ 407 "' 

0.257985 ••• in the problem of non-isomorphic abelian groups (Srinivasan (3]) to 

97/381 = 0.254::>93... by G. Kolesnik [i}. As mentioned at the beginning of this 

chapter,all existing multi-dimensional methods do not improve very muet. the results 

obtainable by the method of exponent pairs. A discussion of the results obtainable 

by the methcd of expoBent pairs was made by R.A. Rankin [1~,where he showed that 

the best exponent (up to ~) that this method (at present) allows in the divisor 

problem is 0.3290213568 ••• ,while the best known exponent (due to G. Kolesnik [6]) 

is 35/108 • o.32407407407 •••• This is one of the reasons why our discussion of 

exponential sums was limi ted to the method of exponent pairs, which thoug·h not 

optimal is sufficiently good for many applications. 



Aleksandar Ivié 

TOPICS IN RECENT ZET.A.-FUNCTION THEORî 

CHAPTER 

T H E VORONOI SUMMATION 

§10 Introduction 

§2. The truncated Voronoï formula 

§3. The weighted Voronoî formula 

§4. Other formulas of the Voronoï type 

FORMULA 



47 
C li A P T E R 3 

T H E V U R O M U I :-; U T-1 M A 'I' I O N F (i R r..· TT L A 

§1. Introduction 

At the beginning of this century G.F. Vororwï [11 prc,ved two remarkable 

formulas concerning the error t erm in the di visor problem. Be si.des gi vin,,;- an expli

ci t expression for the error term 6(x), Voronui deri ved a general summation for~:iula 

for sums involving the divisor function d(n). The formulas of Voronoï express fi

nite arithmetical swns by infinite series containing the Bessel functions, and they 

are 

(3.1) /l(x) = LJ1d(n) - x(logx + 2( - 1) - 1/4 = 
nc:::x 

= -

00 

-1 1/2~ ( , -1/2 , r.::::;) 1r • ...r.::-:: 
2fJt' x ~d nJn (K1 (4'11 v nx + 2y 1 (41/' v n.x)), 

n=1 

and 
Ir 

= ) (logx + 21)f(x)dx + 

et. 

00 & 

L d ( n) 5 f ( x) oC ( nx) dx, 
n=1 ~ 

where 

(3.3) ol(x) = 4K
0

(4ffx1/ 2) - 2~Y
0

(~~x1/ 2). 

2 
Here O <. a < b < oo, f (x) ( C [a, bl, L.J' means that if a or b are integers 

then ~f(a) or ~f(b) is to be counted instead of f(a) and f(b) respectively in 

(3.2). The series in (3.1) and (3.2) are boundedly convergent when x or a and b lie 

in a fixed closed subinterval of (O,oo). The functions K
0

,K
1

,Y
0

,Y
1 

are the fami

liar Be~sel functions with power series expansions 

(3.5) 

wher~ 
00 

* Z (-1)m(z/2)2m/(m!)2, 
ma:O 



f 2 2m+1 1 1 
• LJ z 

1 1 1 (log~/2) - -2"f(m + 1) - r'f(m + 2)), 
m m+ • maO 

~ (z/ 2)2m+1 
.. 1r-

1 L., (-1)m - -1 ( 1) 1 (2loE{z/2)- "f'(m + 1) 
0 

m. m+ . ma 
- 1'(m + 2)), 

where y is Euler I s constant and in this chapter only 

(3.8) "o/(z) .. r'(z)/r(z). 
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From r(1+z) = zr(z) and "'1'(1) = - r (see (1.30)) it is seen that for 

n 2'.: 2 we have 

-y(n) = 1 + 1/2 + ••• + 1/(n-1) - K. 

The above functions are usually called the molified Bessel functions, 

arising from 

~ 1 k ~\P+2k 
J (z) = L.i - z ~' 

p k•O k!r p+k+1 
I (z) = e(-p/4)J (iz) p p 

z 2 p+2k 

k!r p+k+1 ' 

where the parameter pis a fixed real number. In fact for any integer none may 

define 

and then from (3.9) deduce (3.4)-(3.7) and also 

d d -d (:xK1(x)) = -xK (x), -:-(xY 1(x)) = xY (x). x o ax o 

The practical value of the formulas ("i.1) and (3.2) lies in the fact tLat 

the Bessel functions appearing in them admit sharp asymptotic approximatior:s invol

ving elementary functions, which are valid for lz\ large and (argzl <!Ji'. Definini 

for p ~ 0 real and m ;!_ 0 an integer 

r +m+1 2 
(p,m) • m!r p-m-t1 .. 

we have for lz \ large and I arg-z \ < :1i 
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,r ~ ( ) m 1 .., ) ( )-2m-1 l + cos(z - ~p - -
4

)L.., -1 \p,,m+1 2z. , 
2 m=ü 

The symbol r.J means here that in (3.12)-(3.14) equality holds if in the 

sums over m we stop at any finite term and multiply it by 1 + O(\zl- 1
), With the 

above formulas we obtain from (3.3) 

(3.15) ol(nx) s -2
1
/

2x-1
/ 4n-1/ 4)sin(4,r\/'ni--:t"/4) - (32'r)-1 (nx)-1/

2cos(431\/ruê-:,rj4)I+ 

+ O(n-5/4x-5/4)i • 

which is sufficiently sharp for most applications of the summation formula (3.2). 

§2. The truncated Voronoï formula 

There are no simple proofs of (3.1) and (3.2), where delicate questions 

of convergence are involved. The most difficult case in (3.1) is when xis an in

teger, but in most applications the distinction whether xis an integer or not is 

not important, since à(n) << n' for any E-;;,, o. In practice it is useful, to have 

a truncated form of (3.1), and Chapter 12 of Titchmarsh 1s book (a] 

proof of 

contains a 

which ir1 view of (3.12) and (3.13) may be replaced by the simpler expression 

li.are Nia a. (sufficiently large) pa.re.meter which ma.y be suitably chosen; the 

choice N • x 1/ 3 implias immecliatoly ~(x) << x 
1
/ 3+\ while letting N -.a, m in 

(3.16) we ubtain (3.1) in a weaker form with the error term O(x') present, The 
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provf of O. 16), at.; prt::scri ted by 'l'i tchmarsh (o], etar t.s from Porrvll I s j nvers:i on 

f,n:mnla (1.10) which ~ives 
e;+i'II 

b 1
d(n) ... (3:>ti)-1 5 t 2 (s)x 6 f,t\1s + ü(xc'l 1 (c-1f 2) + O(x 1+~•- 1), 

.n<X 

where c = 1 + 1/logx, T
2/(4,r2:x) = N + 1/2, and N is an integer. Here N is the same 

parameter which appears in (3. 16) and (3. 17), since in those formulas i t is irre

levant whether N is an integer or not if N << xA for some fixed A> o, which we 

hencefaT't~ assume. 'l'he c::>ntour in the abcve integral is replaced by the contour 

joining the points c ±. iT, -a ±. iT (a > 0). Allowing for the :poles a t s = 0 and s = 1, 

we obtain by the residue theorem 

00 

(3.18) /\ -1 ~ ( 2 ( ) s-1 e -1 & ) 2a ?. a 1 + t 1 ~(x) = (2:ni) L..,d(n) J 1--,s n x s ds + û(x + O(T x- · )+o(x T- ), 
na 1 _ a.- i't" 

where the functional equation (4.3) was used, and (
2 (1-s) was replaced by the 

absolutely convergent series which may be integTated term by term, so that (3.18) 

follows on estimating the integrals over the ho.rizontal segnents. Using Leimna 2.1 

and the asymptotic formula (4.4) for '1.(s) it is seen that the contribution of 

L ir. (3.18) is cor.tained in the error terms, and writing 
n>l\ 

.Af-i'Î" 

) X 2(s)ns-1xss-1ds 

-4-;'f' 

we obtai1;, after estimating the integrals in the bracket above either trivially or 

by Leroma 2.1, 
iao 

( -1 ~ ( ) -1 s 2s 2s-? 2 / 2 ) ( ) s -1 -= 2!!îi) ~d n n 2 ,r -sin 'fs 2.r (1-s nx s ds + 
n:9-~ -ioo 

where a ... t, 1 << N <.< xA, and where the expression (4. ~) for 'X (s) was used. 

The abc.rve transformations of Ll(x) were n"'cescary, since the change of variable 

s • 1 - w in (3.19) shows that (3.16) follows from 

. 2 , -1 
- (!Tr 11) 
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or by wri ting 2,rvnx • X we have to show 

To see that (3, 20) holùa note that 

(2 < J < 5/2) 

are respective Mellin transforma in the sense of (1.1) and (1.3), and thus by (1.3) 

At-r.o 

a-1 () -1 () ( ,-1 ( 2s-3r(!.)r(.!- )f !:!, ) -s 
2:x. Y 1 X + X K1 X • 2,ri) J 2 2 1 \ cos 2 + 1 X ds • 

Replacing X by 2X we obtain 

;\♦(-

~:x.-1Y1 (2x) + X-
1
K1 (2X) = (2.1ri)-1 

) cos 2ftw/2•r(w)r(w-1)X-2wdw, 
,t•loo 

and finally multiplication by x2proves (3.20} and therefore (3.16) toc. A simil&r 

formula may be derived by this method for ..ô._k(x), the error term in the asymptotic 

for~ula for LJdk(n) (see Chapter 10), and for k > 2 fixed one obtains 

sum 

n<:x: 

<< x(k-1)/2k\ I: dk(n)n-(k+1)/2ke(k(xn) 1/k)\ + x' + x(k-1+t)/kN-1/! 
n<N 

§3. '11he weig-hted Voronoi formula 

An effective way to prove both (3.1) and (3.2) is to consider the weighted 

q-1 
X ~ . q 1 

D _1(x) = fi:' LJ (1 - n/x) - d(n), 
q 1 ,q; n<X 

(q ?: 1) 

and find an a.sympt.otic expansion of this sum (q is a fixed number, not necessarily 

an integer) in terms of aome 11generalized Bessel functions". 'l1hir.i line of approach 
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has been succo.:.i;.;l'ully wrnd by :JE:veral uutft(lrs, und we ;;;ho.l l L1 lluw here th(' 1nrk 

of A.L. D1x.0n ar,d 't.'.L. l"errar (11. By the inversion f,Jrrn1ilu (1.14; Wt> hüvc 

l) 1 (x) q-

2-t,oO 

( 2!7ri) -
1 

) 

2-i..o 

s+o-1 ~ !1'21~)x • r s ' 
l. 1 0 -r.:-:7 s 

' r\ti+q; . ' 

which is the st~rting point for the evaluatiun of D 1 (x). For q > 2 and 
q-

ü < c < min(1/2,q/2-1) it is seer: by Stirling 1s fori:n.üa (1.32) that the lir,e of 

intet:,rrutL:m in the above integral may be replaced b;y the line It.e s "" -c, ar:d hence 

by the residue theorem 
•C, ♦ ,oo 

( ,_. ·· )-1 5 r,2( )xs+q-
1
ri(s). 

= :dt:i. 1., s r C , os s+q; 

• (-i 00 

since the integrand has & simple pole at s = 0 and a double pole at s = 1 • .As in the 

proof of (3.16) we use now the functional equation for the zeta-function and replace 

( 2 (1-s) by the abs,.üutely convergent series which may be integrated termwise to give· 

since by Stirling 1s formula the integrand on the left-hand side above is absolutely 

convergent. For n and x fixed the second integral above is equal to minus 2~i times 

the sum of residues at its double pales s = 2m+1 (m = 0,1,2, ••• ). To calculate these 

residues observe that cosz is an even function of z and for z = s - (2m+1) 

= 
2 / ( : , ,_? 2 sin ~ z 2 = 1 + u ( 1) )~ 

,1 

while the linear part of the expansion of 

!hl 
- gfsj 

at s • 2m+ 1 is equal by '.i'aylor I s formula to 

f(f' ,;d\l a ___ ..;i./ 

g f g s•2m+1 
.. 
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where 

'"° 2 ~ (z/2) 4m t\4(z) • -:;r~
0
_ r( 2rn+1)r( 2m+1+q)(21og(z/2) - "'f(2m+1) -"\1'(2m+1+q)) 

m= 

is the "generalized Bessel function". To see that this terminology is justified, note 

that from (3.6) and (3.7) it follows that 
00

· 4m 
K1 (2z) + ;r1 (2z) '"' z~ (2m) l (2m+1) 1 (2logz - "f'{2m+1) - "'f'(2m+2)), 

so that a comparison with (3.27) shows that 

(3.28) 

Therefore the main effort must be directed towards showing that (3.26) 

holds not only for q > 2, but for q ~ 1, since for q • 1 (3.26) reduces to (3.1) in 

view of (3.28), provingVoronoï 1s formula (3.1) for ~(x).•hen xis not an integer. 

T.he defini tion of 1
4 

as an integral shows that 

for Re q > o, -1 < c < 1, Re q + 2c > 2. Using .a technique siiailar to the one used 

in the proof of (;.16) it is seen that the integral in (3.29) may be asymptotically 

evaluated to yield, for -~/2 < argz < 3~/2. 

Hence by the asymptotic formulas (3.12) and (3.13) 

(3.31) ?.
4

(4JrVnx) ... (nx)-q/ 2- 1/ 4 [ A
4
ein(4,rv'nx - ,r/4- ,rq/2) + B

4
e- 4:irv'ni J + 

+ O((nx)-q/ 2-5/ 4) + O((nx)- 2), 

where A and B are uniformly bounded. Therefore the series' in (3. 26) converges q q 
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al1sulutuly f,H' Hcq --,,,, 3/2, and thi::; f,uhbliahP.s the validity of (3.2G) in the rarJg1--:: 

q ·.• -z,/2. 'ro investigtd;e (3. 26) fvr q _:::: 3/2 0ne needn t,,; know the tehuvLnir of the 

partial sums of the series in (,.2c). Letting 

L, (x-n)d(r.) 
n<X 

we obtain for a,b > O, f(x)~ c2 [a,b1 

L f (n)d(n) 
a<n<b 

= 

.. 
) f(t)dD

0
(t) = 

et. 

Ir 

~(2r + logt)f(t)dt, .. 
and integrating twice by parts we obtain 

L, f(n)d(n) 
a<n<b 

b _,, b 

""(r
0

(t)f(t) - r 1(t)f 1 (t))' +Sr 1(t)f"(t)dt + )(2(+logt)f(t)a.t 
a A. cr. 

From (3.26) and (3.31) it is seen that r 1(x) << x3/ 4, while trivially one 

has r 0 (x) << x 1
/

2
• To establish the convergence of (3.26) for 1 ~ q,::: 3/2 we 

use (3.32) with f(t) = Àq(i~yrt) and note that from the series expansion (3.27) we 

obtain for integral q 

(3.33) 

which is analogous to (3.11). By some calculations it follows that 

and using again r
0 

(x) << x 1/ 2, r 1 (x.) << x3/ 4 i t is seen from (3.32) that the series 

in (3. 26) cor.verges for q > 1, and moreover when x is not an integer the convergence 

is unifo!m for x lying in an.y closed interval free of integers for q > 1/2. A more 

careful analysis, based on investigation of the function f(t) = 'l1 (4.1Tl/xt)-J1 (411"Jmt), 

m = (x1, settles the case q :: 1, x is an ir .. teger. The àetails ma.y be found in the 

work rJf Dixon and l'errar (11, 

first 

J.i'inally i t rermüns to dioouss the pr::iof of the sumrnation formula (3,2). Note 

that using (3.1) and 

L, f(n)d(n) .,. 
a<n<b 

(3,11) one 
,t. 

) f(:x:)dD(x) 
0-

obtains formally 
.& .. S (logx + 2f)f()'.)dx 

... 

l.r 

+ ) f (X) d.6_ (X) ,. 
,. 
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~(logx + 2f)f(x)dx + 
(1,.. 

oo k 

L, d (n) ~ f (x)o(.(nx) dx, 
n=1 o.. 
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i.e. one obtains formally (3.2) from (3.1) by differentiatirig /:J(x) term by term, 

but this. procedure is hard to justify. A rigorous proof may be based on (3.26) and 

the summation formula (3.32), when we substitute 

.., 
• 2:nt2 L d ( n) '\ ( 411'Vrrt) • 

n-1 

Since f"(t) is bounded and the series for r 1(t) is absolutely and uni

fDrmly c0nvergent the order of summation and integration may be inverted, and the 

first integral in (3.32) becomes 
00 t, 

2'1" L, d(n) ) t
2

~ (41tVnt)f 11 (t) dt. 
na1 o. 

Integrating twice by parts and using (3.33) we have 

Il 

)t
2
~(-Mr\,'nt)f"(t)at - (t2l2 (4~vntjr 1 (t) - t~(4~v'nt)r(t){ + 

.& 

+ ~ '\ (47r\h'rt)f ( t) dt. 
o. 

From (3.4),(3.5) and (3.27) it is seen that 

and using (3.26) with q = 1 and q a 2 we have (in view of (3.1) and (~.24)) 

oO -
r

0
(t) • -½a-(t) + 2'1'tLd(n)l 1 (41î'Vhl),r 1 (t) • 2!1tt2Ld(n)Â

2
(.1,r\jnt), 

n-1 n=1 

where we set d(t) • 0 if t is not an integer. Therefore if we multiply (3.34) by 

2~d(n) and sum over n we obtain (3.2) from (3.32). 

§4. Other formulas of the Voronor type 

There ex.iota a. la.rge litera.ture concerning variuus ge:nera.lizaHons of 

Voronoi 1e formulas (3.1) and (3.2) to other arit~metical functions, whoce gonera

ting functions satisfy functional equatione simil,ar to the functional equation for 

the zeta-function of Riemam1. This posf;libili ty of generalizati.ons is one of the mos t 
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important aspeou of the research ini ti.ated by Voronor, but eipoe our mâin purpoae is 

the investigation concerning the zeta-funotion, we shall mention only one result 

explicitly whiéh is similar to Voronoî 1s formulas. This concerna the classical 

lattice-point problem known as the circle problem, which ia similar to the divisor 

problem (see Chapter 10) and consiste of,. estimating the function 

P(x) • R(x) - ,rx - 1 • 'Z;'r(n) • ff'x - 1, 
n<x. 

where r(n) is the number of ways n may be written as a sum of two integer squares. 

In 1916 G.H. Hardy f,1 proved the asymptoti•c expansion 

q q-1 q/ oO q/ c,.,6) b L' cx-n) 4-
1
r(n) - rf ~1) - ~r + ,r

1
•qx 

2
~n-

2
r(n)J (2:n\fiîx) 

1 ·\qJn!:X q 1 -~ q; n•1 q 

for q ~ 1 (here !J' meana that only for q = 1 and n = x one should take r(n)/2 
. 1 

instead of r(n)). From Hardy s formula one may derive a summation formula for 

L 1
f(n)r(n) analogous to (3.2). The expression on the right-hand side of (3.36) 

a<n<b --
is simpler than the corresponding one in (3.26), and (3.36) may be deduced more 

simply than (3.i6), since the generating series of r(n) has a simple pole at s = 1, 

while ( 2 (s) (which is the generating function of d(n)) has a second order pole 

at s • 1. 

NOTES 

G.F. Voronoi proved by a complicated method· the formulas (3.1) and (3.2) in 

(11, and a little later in (21 he suoceeded in generalizing his method to certain 

other functions which a.re the number of representations of n by certain positive

definite quadratic forma. The methods introduced by Voronoï were deep and inspired 

much subsequent research, of which one example was mentioned in §4. Modern develop

ments of this theory may be found in the works of K. Chandrasekharan and R. Nara

eimhan (11, [?J, B.C. Berndt [11, (21, (3), (1] and J .L. Hafner (21. 

The notation used in this chapter differs a little from the n~tion used 

in other chaptere in two instances, but this will cause hopefully no confusion. :Pir.:. 

stly the error term ~(x) • ~ 2(x) is defined aomewhat differantly than in Chapter 

10, and secondly following traditional notation we have defined in (3.8) 
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"f(z.) • r' (z)/r(z.), while in the rest of this text w0 use "\f(x) "" x - (Y1 - 1/2; 

tlle fur:ction "l'(x) (see J~oter:., in C}rnpter 9) iG also used ua "f(x) .,. I,;\ (ri) in 
n<:x: 

prime r;urnber theory. 

When p is an integer in (3.9) r(p+k+1) ia undefiued when p + k + 1 is 

a non-poéitive integer, b*t for integer values of p it is clear that one should 

deîine 

and similarly for I (z) when pis. an integer. 
p 

There is a possibility of obtaining an explicit expression for ~(x) which 

is completely different from (3.1). Namely starting from the elementary expression 

= 2L 2 
- [Vx] 

and defining ,6(x) as ir. (3.1), a simple calculation gives at once 

-2 L "f(x/n) 

n~yx 

( 
+ o(x ), "'r(x) = x - Lx1 - 1/2. 

This is a useful formula, but for most purposes (3.1) and the flexible 

(3.17) are better. 

All the facts used here about the :Bessel functions may be found in the 

standard work of G.1:-J. Watson (11. Curiously enough, Watson mentions Voronoï I s for

mula only once on p. 200, where he v,,ri tes rather disparaginely' : "A- navel applica

tion of these asymptotic expansions has been discovered in recent years1 they are of 

some importimce in the analyt:i.c theory of the di vis ors of numbers". In view ofmany 

importru,t applications of (3 .1) and (3. 2) und all the : ·re.search Vuronoî 1 s work has 

inspired, this remark seems a little unjust - Voronoï 1s formulas àeserve more than 

a caeual mention. 

Titchmarl:ih 1s proof of (3.16) is giver. in Chapter 12 of [e] and some àetails 

of the proof are for this reas0n suppressed here. However his remark on p. 268, 

whiçh ll'!no1-mts te sHying that (3.20) hrulds, iB ratlwr casuul. The reference to 

(7. > .s) and (7 .:) .11) in },io book t? J on Fourier ir,tegralt: do.es no t fH~E:m adequ&te, 

acd it is deairuble to have u more uetailed account of (3.20). To sea tl1at (3.21) 
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and (3 .22) hold, note that f (x) "" xa- 1 (ü < a < 1) and F (x) • ~r(a)x -acosmi./2 
0 

are coaine trunsforms,i.e. .0 

F
0

(x) • V2T,i" ) f(t)cosxt-dt. 

0 

By the definition of J (x) 
p 

" 
)(1-y 2)P-1/ 2cosxy•dy ~ (-1)nx2

n ê(1- 2)p-1/2 2nd 
· L (2n)1 J Y Y Y = 

n .. o O 
0 

where we used (1.29) and r(n+1/2) -n 1/2 = 2 ~ ( 2n-1) ! ! . Thus 

f(x) = 

0 ' 
X> 1 

are also cosine transforma. Analogously to (1.6) one obtains - ~ ~ 

)Fc(x)G/x)dx = ~ f(x)g(x)dx, )F
0

(x)g(x)dx = 

0 0 t 

for two pairs f(x),F {x) and g(x),G (x) of cosine trat,sforms, which gives 
C C 

• 
(3.37) ~ () 

a-p-1 
J XX ClX= p 

0 

r(a)cosna/2 r(p+1/2)r(1/2-a/2) 
2p-1 v;r r(p+1/2). 2r(p-a/2+1) = 

2a-p- 1r(a/2) 
r(p-a/2+1) ' 

where we uaed (1.28). Taking a = s to pe complex in (3 .37) i t is seen that (3. 31) 

holds for O < d < p + 3/2 in view of (3 .14), and we have the Mellin transforma 

-p 2 r(s 2) s-p-1 f 
X Jp(x), r(p-s/2+1 • 

Finally using the relations 

J (x)co1,rp - J (x) / 
Y (x) .. p - o K ( ) '1'i. pJti 2 ( T ( ) 

P L innp ' P x "" 7 •· p \ x 

one obtains (3.21) and (3.22) easily from (3.~8). 

+ iY (x)) p 
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fü>t.h thfJ r:re,,oi' (,-f. (:-.1) i~nd (~.1f) utilize the familinr functi.imal <·qua-

-ti,_,r; for Hii: 7fl Ln-ftu,cti.on, wl.ticb bùlvnt;s to ülr~mt::•n-!.:;iry zet&-functit,n tlieory and ü1 

:.;upposed tu be k1r:,v.i, t0 tne rcé,,ùor. Il,lwevor for the sak<,i of completeI;ess a proof of 

th~ functional e1untiun will be presented in §1 of Chapter 4. 

The me thod of cor1siciering the weizh.; e,l ,Ji vis,)r aum D 1 ( x) is due to 
q-

Dixon and F'erro.r [1'}, while their paper [21 contains an intere::,tint{ investigation of 

a reciprr,,ci ty relation connected with the Voronû5: formula, which is motivated by the 

reciprocity relation for Fourier transforma. The exposition presented in §3 concerning 

the proof vf (3.1) and (3.2) follows Di:x-on a:no. J?errar [11, where additional details 

(like the proof of (3.30), ana especially the proof of (3.1) when xis an integer) 

msy be found. The main idea in the proof of Dixon and Ferrer is to prove (3.26) f6r 

some q (specificdly for q > 3/2), and then to feed back (3.26) to itself again 

(ir,. a certc:1in sense) via the sumrnation formula (3.32) to obtail1 (3.26)' for values of q 

less than 3/2 also. The crucial point in their proof of (3.2) is the fact that the 

expression for r
1

(t) allows one to invert the order of summation anô. integration -

the rest is simply inte.::,rr&.tion by parts. The paper of Dixon and F~rrar [1~ gi ves 

also an analysis of (3 .2) when a = O and b = oo, in which case there are some addi

tio.nal difîicul ties. A proof of (3 .2) when a • O, b • oo has been given recently by 

D. Hejh&l (:(~ who used a two-dimerwional Poiss0n summation formula. 

A nice generalization of the truncated forr::r:.lla (:i; .17) for ~(x) to the 

~' X. ,error term in the asymptotic formula for '-- f (n) (x - n) , X:::_ ü has been made by 
n<X 

II.-1!:. Richsrt (21. Here f (n) is an ari thmetical fur;c~:n; generated by a Dirichlet 

series which sati$fies a certain type of fur,ctiorial equation involvir,g gamma factors, 

which is simih.r tü the ordinary functiona.l equ&tion for the Riemann zeta-function. 

Applications of Richert 18 results to the circle problern will be discussed in Chapter 

10. 
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Aleksandar Ivid 

'l'OPICS IN RECENT ZETA-FUNCTION THEORY 

CHAPTER 4 

THE APPROXIMATE FUNCTIONAL EQUATIONS 

§1. The classical functional equation 

§2. Approximate functional equations for C(s) and t2(s) 

§3. The approximate fu.nctional equation for higher powers 

§4. The reflection principle 
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CHAPTER 4 

THE APPROXIMATE FUNCTIONAL EQUATIONS 

§1. The classical functional equation 

The classical functional equation for the Riemann zeta-function is 

(4 .1) = ~-<1-s)/ 2r((1-s)/2)Ç{1-s), 

and was originally discovered and proved by B. Riemann in his epoch-making memoir [1]. 

Using (1.28) one may write {4.1) as 

{4.2) 

or simply as 

{4.3) Ç{s) = x(s)Ç{1 - s), x(s) = (2n) 8 /(2r(s)cosns/2). 

The functional equation holds for all complex s, and represents one of the funda

mental tools of zeta-function theory. Following traditional notation which originated 

wi th Riemann we shall write s = a + it, a and t real, and so using ( 1. 32) i t follows 

immediately that 

(4.4) x(s) = 
-1 + 0(t )), t > t , 

- 0 

which is for most purposes a sufficiently sharp approximation. Though there exist many 

well-known ways in which (4.1) or one of its equivalents may be proved, a proof of the 

functional equation will be given now for the sake of completeness of the exposition. 

The proof has the advantage of being almost elementary, and starts from the identity 

or 

( 1 
-n n 

e-x2 >TI ( 1 
k:1 

+ e 
-k 

-x2 ) = 

Therefore by logarithmic differentiation we obtain, for x > 0, 

-k -k -n n -x2. -x -n -x2 
r -2 e e 2 e 

-k = -n' k:1 1 -x 
1 -x2 - e 

1 -x2 
+ e - e 

n 2-k 1 -n 
1 r x2 

(x > 0) -k = -. 
k:1 X -n X x2 

+ 1 x2 e - 1 e e - 1 
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Letting n -, 0) we obtain the identity 

oO -k 
(4. 5) L 2 1 1 (x > o) 

-k = ' k=1 
X X 1 x2 + 1 

e -e 

which is the starting point for our proof of the functional equation. Consider now 

for O < 6 < 1 

o0 00 

r(s)Li 2-k2ks I, (-1 )nn-s 
k=1 n=1 

s-1 
= r(s) 2 (2

1
-s - 1)~(s) 

1 - 2s-1 
= r(s)~(s). 

Here (4.5) was used, the elementary representation 

(0 < 6 < 1) 

and the fact that the order of summation and integration may be inverted by absolute 

convergence. Change of variable lf2'Jry = x gives now for O < d < 1 

00 

(4.6) F(s) = i(s)r(s)(2~)-s/ 2 = ) f(x)x 8
-

1dx, 
C) 

where 

(4.7) 

If we now use the fact that f(x) is self-reciprocal with respect to sine 

transforma, i.e. 'QO 

(4.8) f(t) = (2j,JT) 1/ 2 ) f(x)sinxt•dx, 
1) 

then the proof of (4.2) easily follows from (4.6), which shows that F(s) is the 

Mellin transform of f(x). Namely with (4.6) we have 
oO ·..o 00 

F(s) = ) f(x)xs- 1dx = (2/,r) 
1
/ 2) f(y) () x8

-
1
sinxy•dy)dx = 

0 0 0 

"° 
(2/.Jr) 1/

2r(s)siMs/2·) f(y)y- 8 dy = (2/:,r) 1/ 2r(s)F(1-s)sin3fs/2 ""' F(s), 

0 

and the last equali ty also holds by analytic continuation outside the strip O < d < 1. 

Using the first identity in (1.28) we obtain finally from (4.9) 
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which is exactly (4.2). 

§2. Approximate functional eguations for ~(s) and t 2 (s) 

There exists a large number of the so-called "approximate functional 

equa tions" for 
k · k t (s), which express t (s) by one or more finite sums whose 

lengths depend on ltl. In this section we shall examine the simplest cases when 

k • 1 and k • 2. The classical results on this subject are due to G. H. Hardy 

and J .E. Littlewood (2 ], (:5], A.E. Ingham (11 and E.C. Titchmarsh (5]. These are 

~(s) - LJn-s + ics)Lns-1 + o(x-6) + o(t 1/2-dy4-1), 
n<X n9 

which is valid for O < d < 1; 211'xy • t; x,y, t > C > 0 and 

(4.11) C2 (s) = Ld(n)n-s + -X,2 (s)_L,d(n)n 8
-

1 + O(x1/ 2-dlogt), 
n<:x ns, 

2 2 whioh is valid for O <Ô < 1; 4~ xy = t; x,y,t > C > o. Because of symmetry a cor-

responding result holds also if t < 0 with t replaced by (tl in the error terms and 

in 2!Xxy • t for (4.10). The approximate functional equations (4.10) and (4.11) 

possess a symmetric property ifs= 1/2 + it. Namely from (4.3) it is seen that 

'j..(1/2 + it) • :t-1
(1/2 - it), so that C(1/2 + it)X-

1
/

2
(1/2 + it) is real, and the

refore (.-1.10) and (4.11) with x •y• (t/2:Jr) 
1
/ 2 and x •y• t/2.r respectively 

yield 

(4.12) l:(1/2+it)]-
1
/

2
c1/2+it) 

2Re{;i(1/2 + it) ), d(n)n- 1
/

2+it} + O(logt), 
n-<51/'2!lr 

since lX(1/2 + it)\ = 1. 

= 

The proof of the well-known relation (4.10) may be carried out via the 

Poisson summation formula (1.23), but rather than to ào this here we shall present 

now a proof of the more difficult (4.11) by using the Voronoï summation formula. 

(in fact it will be technically simpler in (4.15) to use (3.1) instead of ().2)), 
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which may be in a certain sense considered as a two-dimensional Poisson summation 

formula. The proof of (4.11) will be given now for o ~ 1/2, x '2;. y> t', and rather 

than to try to adapt the proof to cover the range O < d < 1/2, in §3 

the classical method of Hardy an.d Littlewood (3) will be presented in conjuction 

with the approximate functional aquation for rk(s), which enables one to obtain 

a complete and different proof of (4.11). 

With D(x) = L,d(n) = x(logx + 2(- 1) +~(x),J > 1, we have 
n9 

o,O 

t' 2 (s) • Ld(n)n-s + S x- 8 dD(x) 
n<N tvto 

formula 

As discussed in §2 of Chapter 3, a trivial consequence of the Voronoi 

(3.17) is the order estimate 6(x) << x1
/ 3+~. Thus an integration by 

parts gives 

(4.14) t 2 (s) = 2:d(n)n- 8 + (s-1)- 1
N

1- 8 (1ogN + 2~) + (s-1)- 2
N

1-s + O(N'-+1/3-i) + 
n<N 

00 

+ s S x- 8
-

1,6.(x)dx. 
N 

The integral in (4.14) is therefore seen to be absolutely convergent for 

6> 1/3 (a.nd using Theorem 10.5 it is seen that the integral in question is actually 

absolutely convergent in a wider semi-plane d > 1/4), so that (4.14) furnishes a.n 

a.nalytic continuation of t.2(s) for o > 1/3. Our choice for N will be N • t 0
,., where 

c :> 0 is fixed but sufficiently large. We use (3.1) a.nd split the series involving 

d(n) at (1+r)y, where xy = (t/2~) 2• Integration by parts gives 

N cc ) -s < 1/2-l = J logu + 2( u du + 0 x logt) + 
x 

"' L d"(n) ~ (4K (41rv'n~)-2'r"Y (41rv'nü) )u -s du + 
ns(1+ t)y X. 0 0 

N 

s Li d (n)) (-2:n-\u/n) 1/ 2 
(K1 (41ry'im)+ 1Y1 (4,ryrûi)) )u -s- 1 du. 

rt>(1+ f..)y )( 

Noting that 
N 

(( ) -s ( )-1 1-sc ) ( )-2 1-s J logu + 2J u du= s-1 x logx + 2~ + s-1 x 
J 
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( ) -1 1-s( ) ( )-2 1-s - s-1 N logN + 2r - s-1 N , 

it follows on comparing (4.14) and (4.15) that the only difficulty lies in the 

estimation of the sums appearing on the right-hand sides of (4.15). Using (3.12) 

and (3.13) it is seen that the seco~d sum on the right-hand side of (4.15) is 

equal to c1s times 

N N 

(4.16) L, d(n))n- 3/ 4 )ü8-3/ 4sin(4'JT~-3,r/4)du + o()n- 7/ 4u-~- 7/ 4du)I .. 
rt> ( 1 + t) y ! . ,,_ x 

N 

,±.(2i)- 1 ~ d(n)n- 3/ 4 ) u-d- 3/ 4exp(-itlogu+4:,ryr;i";3'1l'/4)du + O(x-ô- 3/ 4y- 3/ 4logt), 
:ri;;»(1+ E)y ,c. 

-1 1/2-ô and the error term above is << t x logt. The integTals are of the form 

N 

)u_ 6_3/ 4e(F(u))du, F(u) = - ~logu ±. 2VnÜ, 
,,_ 

so that F ia monotonie and jF 1 (u) 1 :;:,t.:> (n/x) 
1
/ 2 for x .::: u !:: N in view of n > (1+ t)y. 

Using (2.3) it is then seen that the total contribution of the sum with n,(1+r)y is 

1/2-o "'Ç' () -3/4 -1/2 -d-1/4 << x logt + t L..i d n n n x << 
rt>(1+e)y 

1/2-0 -1/4 -&-1/4 1/2-ô x logt + ty x logt << x · logt, 

since t << x if x ~ y and xy = ( t/2'Jr)2 • Setting for brevi ty T = t/'ZJf and using 

again (3.12) and (3.13) it is seen that the first sum on the right-hand side of 

(4. 15) is equal to 
N 

-2 1/ 2 L d(n)n- 1/ 4 )u-t- 1
/ 4exp(-itlogu)sin(4'Jl"\/rnÏ-,r/4)du + 

n.:::( 1 + f) Y X 

N 

- -1/2 -1 ~ ( ) -1/ 4 ( -6-1/ .1 . r:::: / 1/ 4 1/ 11-l +2 i d n n Ju e(-Tlogu+2ynu;1 8)du + O(y x · logt), 
n!:; 1+E)y 1C. 

and clearly y 1
/ 4x1

/ 4- 6 << x1
/ 2-a. The integral with e(-Tlogu-2~+1/8) is as 

in the previous case estimated by (2.3), the total contribution of these integrals 
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being now 

Therefore we are left with 

f (u) = -Tlogu + 2 ~ - 1/s. n 

Thus we have 

( ) -1 ( / ) 1/2 f" ( ) T -2 1 1/2 -3/2 f ri u = -Tu + n . u , n u -= u - r u , 

2 -1 implying f" (u) '::> 0 for u < u = 4T n • But for u ~ (1-f)u
0 

we see that 
n - o 

f~(u) ~ (n/u) 
1/ 2, and so using (2.3) 

<< 
1/2-û A 1/2-l. << t y logt << x logt, 

if i ~ 0 is a sufficiently small fixed number. For the integrals in the remaining 

sum 

-~-1/ .1. u e(f (u))du 
n 

we shall use Theorem 2.2 with a= x, b = (1-f)u, ~(u) - u•l-
1
/ 4, f(u) = f (u), o n 

le = O, F = ,r = t, and the conditions of the theorem are readily checked. .A.11 the 

error terms in Theorem 2.2 are easily seen to contribute a total<< x 1
/

2-'logt, 

except the error term o(A.... (lf' + kl+ f" 1
/

2
)-

1
), which will be discussed now. 't'a a a 

Observe that for a given n we have 

Theref ore ma king the subs ti tu tion 

( ) 
2 -1 f 1 X = 0 if n = T X 

n 

n = (Y1 + m, \m \ =: E.y 

' ( ( -1 ft(x) • f' x) - fy' x) ~ \mit n n 

by the mean value theorem, so that 

• y and y is an integer. 

we have 



(4.18) 

-1/2 xt for 

2 -2 for t x << jml 

2 -2 
1ml .:::T x 

max((n/x)- 1
/

2 ,x/t) for /ml> E.y/2. 
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In view of T2x- 2 << 1 the first estimate in (4.18) can hold for at most 

0(1) values of m, and the total contribution of the error term 

(4.19) 

1/2-l 
+ X logt, 

and where in the second sum in (4.19) we used the trivial d(n) << n~. Here the 

1/2+€ -d 1/2 .... d . 1+2€. error term t x does not exceed x logt if x> t , but it has been 

kindly pointed out tome by M. Jutila that by a more elaborate consideration of 

the error ferm <P ( jf 1 + k\ + f" 
1/ 2)- 1 in Atkinson 1s Theorem 2.2 one can obtain a a a 

that thB contribution of the sums in (4.19) is indeed-« x1/ 2• 6logt for the whole 

range :x: ::::-.> t. 

Finally it remains to deal with the main terms, i.e. the eaidle point 

terms conng from Theorem 2.2 and then to use (4.4). The only root of ft (u) • O 
n 

2 -1 2 -1 for a fixed n is x = T n , and x> x precisely if n .:5 y• T x • Now 
0 0 

f" (x ) n o 

f (x ) n o 

so tha t we have 

1 -:5 2 
= if n' 

-2- 1/ 2
1-

1d(n)n- 114'f(x )f"(x )- 1/ 2exp(2'1'if (x ) + !Jtï/4) =-o n o n o 
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-2- 1/2i- 1 d(n)n- 11 4(T2n- 1 )-d- 1 /42 1 /2T3/2n- 1 exp(2itlog(2or/t)+itlogn+2it+~i/2)exp(-~i/2► 

l -1 -2, 
+ O(d(n)n t ). 

Therefore 

+ O(t- 2'-~ d(n)n~- 1) + O(x1/ 2- 6logt) 
ng.y 

X,2 (s) 2,d(n)n 6
-

1 + 0 (x 1/ 2-dlogt), 
ns 

+ 

and in view of (4.17) this means that we have proved the approximate functional 

equation (4.11). 

§~.The approximate functional eguation for higher powers 

We pass now to the analogues of (4.10? and (4.11) for tk(s), where k ~ 3 

is a fixed integer. The approach that will be used is that of R. Wiebeli tz [.f}, and 

is based on Hardy and Littlewood's proof [3] of the approximate functional equation 

for ï:'2 (s), so that this method yields an alternative proof of (4.11) for O <l, < 1; 

2 2 4~ xy • t; x,y,t :> C > o, but it seemed interesting to treat the important case 

k • 2 by Vorono!'s formula also. The proof will use a certain 11Tauberiati 1 argument 

(essentially reoovering Ldk(n)u-s from the weighted sum L,.dk(n)n- 8 (1ogx/n)k- 1
) 

n<X n_sx 

and estimates for power moments of the zeta-function, which will be extensively 

discussed in later ohapters (and which do not depend on results of this section). 

New estimates for power moments of the zeta-function on the critical line lead to 

overall improvements of Wiebelitz 1s results, but as k grows the order of the error 

terme in the approximate funotional equation becomes rather large, which is to 

be only expected, and thus for practical reasons the detailed analysis is carried 

out only for k.::; 12. 

For simplicity of writing we shall use the notation 

X(s"' =--vk(s), logT "' x• 1 2 + it 1 I"' - X 1 2 + it 
-k2'' (1/2 + i t~ 

• ?l(1/2+ it ' 



and furthermore as in the proof of (4.11~ we shall suppose that t-::> O. By (4.1) 

we have 

so that fors= 1/2 + it the above equation shows that T, as defined by (A.20), is 

real and moreover using (1.33) we have 

_ -X' t 1~2 + it~ -X: 1 2 + it ; -log2'i + logt 

and this gi ves 

(4.22) 

,o<.t<.t, 
Further we suppose xy = (t/2~)k and define 

R (s) 
X 

1+V-J V - s) log x, 

where a. k is the coefficient of (s - 1)j in the Laurent expansion of ~k(s) at s = 1 
J, 

and 

r. 
J ,m 

Therefore in general we have 

k R (s) + ~- (s)R (1-s) 
X I""' y 

while for k • 3 we may write for some absolute D 

(4.,24) R (s) 
X 

X 1-s 1 2 
• -(-log x + 3Vlogx + D) 1 - s 2 J 

( 
1-i -2 

+ 0 X t logt). 

We shall now give a proof of the approximate functional equation for 

~k(s) 12 ~ for 3 !: k :s , though it has been already remarked that the method may be 

used both when k • 2 and when k:;,. 12, but in the latter case the error terms tend 

to be large and then the improvements of WLbeli tz I s resul ts (see Notes) are small. 

The improvements for ·3 :S k 5 12 are however substantial, owing to a large extent 

to new power moments for the zeta-function on the critical line. The functional 

equation that will be proved is 
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where xy = (t/2,r)k; .. x,y,t ~ 1 and .Ll.ic(x,y) may be conSidered as the error term 

which depends on k,x and y. We shall prove that c.u,i~ormL~ in d 

1/2 .. dt13/48+t 
<< X ' 

(4 27) J\ ( ) t i{ 1/2-d . ( 1/2 1/2) t-2 ( ) 1/2 1/2-d t-1! 1/2- dt~1k-52Y216} • uk x,y << X min X ,Y + x+y X + X 

for 5 .:5 k,::: 12, where ~ • (31k - 52)/(27k - 108). 

In case k = 3 or k • 4 one may obtain special results from (4.25) and 

(4.26) analogous to (4.12) and (4.13). These are 

(4.29) (4(1/2 + it)l 4 • 2Re{i 2(1/2 + it) J 
2
d
4

(n)n- 1/ 2+it} + O(t 13/4B+E), 

n.:5(1/2$) 

which followa with s • 1/2 + it, x •y• (t/2,r)k/ 2, as the terillil with R and R 
X y 

are by (4.23) absorbed into the 0-terms of (4.28) and (4.29) respectively. 

Now we begin the proof of (4.25) by remarking that:' for technical reasons 

(as was done also by Hardy-Littlewood and Wiebel~tz) the condition xy • (t/2!1r)k ie 

replaoed by xy = T (see (4.20)). The error that is made in this processs is then 

<K x1/ 2-dmin(x 1/ 2,y 1/ 2)te- 2, which is negligible in (4.26) and present in (4.27). 

We shall begin the proof of the general (4.25), but at a suitable point we shall 

diatinguish the cases k •3, k = 4 and k> 4. For~/2 .:5 d :5 3/2 we follow Wiebelitz 

(1) and introduce 

ao that for Re u.:5 1/2 and also for Reu < min(d, 1) the function ct>1 (u) is seen to be 

regular and moreover uniformly in s for Re u= 1/2 we have 

q.>(u) <K 

In the course of the proof we shall need the power moment estima.tes 



T+G 
71 

S lt(1/2 + it)\kdt << GT(k-4)c+', G::::, T2/ 3, k ~ 4, 
T-0 

where t(1/2 + it) < tc+E (so that in Tiew of Corollary 6.1 one may take c • 2fg) 
and '1" 

~ 1,(1/2 + it)jkdt <.< T1+(k- 4)/S+r, 4 < k .!::: 12. 

0 

The estimate (4.32) is a trivial consequence of a result of H. Iwaniec 

[2}(see §6 of Chapter 6), while (4.33) is contained in Theorem 7.2. 

The first step in the proof is to use the inversion formula (1.11) to 

obtain z..,.;oo 

I • (2,rlY 1 
) s, k ( ) w -k 1 ~ ( ) -s k-1 / 

~ s+w x w dw = (k- 1)! L_,dk n n log x n = Sx. 
n<x: 

2-100 

The line of integration is 11.oved to Re w = - ~ , where O < ~ < 3/ 4, 

~ - 1 < 0 , 0 -/-J , 0 -j. J - 1/2. There are pales of the integrand at w .,. O and 

w • 1 - s with respective residues 

and 

k-1 (l"k( ) )(.m) 
= '°"' 1... E! (l )k-1-m 

Fx L.J ml (k-1-m)I ogx 
m=O • 

Hence by the residue theorem 

-y+ioo 

J • (2m.)• 1 ( ~k(s+w)xw•-kdw = I - F - Q • S - F - Q. 
0 j ~ X X X X X 

-i-i.ao 

Setting s + w = z, substituting x by T/y and using the functional 

equation (4.3) we obtain 

.l-r+i-oo 

JO • X(s)(2:ni)"
1 ~ tk(1-z)y 8 ""<•··)-kdz + 

l•t - ioo 

i•"(+ivo 

+ (2'7i) " 1 ~ l:k(1-z )4,(z)y••• (z•s) •kdz • X(s )J 
1 

+ J 
2

, 

l·J•ioo 

say. For 6 < ~ we have by (1.11) 
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~•'llkLM~ 

io the notation already introduced in evaluating the integral I. For J ::> y we 

must take into account the pole z = O, where the integrand has a residue 

Q 
y 

so that altogether 

== 

r-m-1 log X 

(r-m-1) 1 ' 

where éy • 0 if 6 < 't 

The line of integration in J 2 is moved to Rez = 1/ 4, and for d < '( the 

pole z • 0 of the integrand is passed. In calculating the residue note that 

X(O) = X1 (0) = ••• • X(k- 1)(0) = O, since in X(u) and its first k-1 derivatives 

the factor sin(~u/2) comes in. This leads to 

,.,~+ioo 

(4.37) J 2 • (2'ri)- 1 5 Ck(1-z)cl>(z)(z-•)-ky•••dz • (1 - 'y)X(s)Q._y • 
,,,,._,eo 

J • ( 1 .. t.,) X ( s ) Q • 
y ~- y 

Inserting the expressions (4.36) and (4.37) in (4.35) we obtain 

Àt this stage of the proof a Tauberian argument comes into play. The under-

( ) llh -Yh lying idea is that 4.38 remains true if x and y are rep:hced by xe and xe 

respectively, where O < h < 1 and 1/ is an integer for which )/ .!: k-1, and moreover 

h will be suitably chosen later. Now we shall sum (4.38) with weight (-1)v (kv 1) 

for O.!: v .!: k-1 to recover the approximate functional equation by means of the 

elementary identity 

(4.39) 

and the estimate 

z 
e -

- { 0 

m1 

p<m 
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To distinguish better the sums which will arise in this process we intro-

duce left indexes to obtain then from (4.38) 

k• 1 v k ... 1 
""' (-1) ( v ) ( F •· S + O + X ( s) S - X ( s) ,, Qy + v Jy) . • 0, 
Li_Q V X V :X \/~ V y • 
V• 

or abbreviating, 

F - S + Qx + X(s)S - X(a)Q + J • O. 
X X y X y 

Each term in (4.41) will be evaluated now separately. We have 

where we have set k-1 

.A. (x) 
m 

""' ( v (k-1 )k-1-m • L,,; •1) y )(logx + ~h • 
v•O 

Using (4.39) it follows that 

k-1 k-1 
.A.m(x) =) (k-!•m)hrlogk-1-m-rxL (-1)" (k;1)vr = hk-1(k-1)1 

fr;;() Y•O 

when m • 0 and A (x) • 0 when m > o, so that we have 
m 

and this is exactly what is needed for the approximate functional equation that 

will eventually follow on dividing (4.41) by hk- 1 with a suitably chosen h. Con

sider next 

(4.43) 

- L + 
1 

say • .A.nalogously to the evaluation of F it follows on using (4.39) again 
X 

(4.44) 

and we estimate Z trivially (using dk(n) << n' ) as 
2 

L, 
2 



k-1 

1 ~(k-1)( )k-1 -o ~ () ,:!: ...,.(_k_-1 .... )-,-~ v vh x L dk n << 
"v=O (k-1)h 

x<n<x:e 

k-1 - ~ 'i ( h X t 1 
E.( k-1 -.} 

<< t ,h X 

Estimating analogously S we obtain 
y 

. k 1-•) 
+ h X • 
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(4.46) -X(s)Sy = hk-'l;ç''\s) zdk(n)n 8
-

1 + O(hk- 1t~x 1/ 2-\- 1/ 2 ) + O(hkt~x
1
/ 2 ... •\ 1/ 2). 

USf 

where 

Next we have 

1-s k-1 J{ 

X k ~ (-1) (k+~;1)! 
(k-1) l (1-s) ,JJ-=0 .fl (1-s) 

k 

~ 
y•r+1 

k-1 

= L (-1t (k'v1)evh(1-s) (vh + logx)J-Jt-1 • 
V =0 

Using (4.39) and (4.40) with m; kit follows 

If we set " = ! -.t--1-m, change the order of summation and collect the 

constants we obtain 
k-1 1< 

Q ,.. 
X 

1-s( 1 )-1 k-1 '\"' ",ç'a " r1 )1-v-r " ( k 1+E.-o) 
X -s h L ~ .~k.'ov, -s log x + 0 h x 

, JI .JJ 
V =0 f"'ll♦-1 

The same argument applies to Q and yields 
y 

k-1 ( ) ~ = -h Ry 1-s 

Therefore we are left with the evaluation of 

Observing that ~ (z) has a double zero at z = s and that 
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has a zero of order k-1 at z - s, we can move the line of integration in J to y 

Rez• 1/2 to obtain with w • u + iv (u,v real) 

•/z.•l-iOO k-1 

(2m.)-1 ( (k(1-w)</,(w) (w-s )-kys-w (L J -y j m-=0 

••• dw + 

say. Here ~ ( ~ 1) is the number appearing in (4.27), and t' < G _::: t 2/ 3 is a para

meter that will be suitably chosen. We distingu.ish now the cases 3::: k _::: 4 and 

k> 4, and treat first the latter case. For j 1 we use (4.31) in the form 

<< 

k-1 

and majorize the sum Li in (4.49) by O(hk- 1 1s•wlk-
1

), which follows when we 
m•O 

combine (4.39) and (4.40). Therefore we have 

t.+@ 

j1 << hk-1yd-1/2tk(1/2-~)-1G ) lt(1/2 + iv)J kdv << 

-i,-G 
t+i:1.11 

hk-1x1/2-dGt -1 s 11:(1/2+iv) j kdv « hk-1x 1/2-•Gt (k-4)c+,-1/3, 

-é -t 1.,3 

where (4.32) was 

k-1 
rization for ) 

~ 

used. To estimate j 2 we use 

a.a above to obtain 

.,-1,. k/2-k~ '+'(w) << t and the same majo .. 

over the intervals [-2t'\ ... 2t], [-2t,t/2],[t/2,t - o],[t + G,2tJ ,[2t,2t~1 respec

tively. Uaing (4.33) it follows a~ once that 

. t(k-4)/a+e 
J22 << ' 

ap.d the othet'integrals are integrated by parts and then estimated. For example for 



-t:-G, j 2~ we have with 

H (v) • - ) \1'.(1/2 + ix) 1 kdx 
'V 

-c-<'> 

j23 "" H(v) (t-v)-1 1 
t:./1 

-t-G 

.. ~ H(v) (t-v)-
2

dv << ~,,_ 

t(k-4)/8-K. + G-1t1+(k-4)/8+~ -1 1+(k-4)/8+" << G t , 
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since G < t2/3 - ' and the same bound similarly holds for j 24• Using again (4.33) 

we have 

t /3( (k-4)/8+ t) 
<< ' 

and BO 

. l( k .. 1 1/2•<> (k-4)c-1/3 
j 1 + J 2 << t h x Gt 

k•1 1/2-o -1 1+(k-4)/8 
+h X G t + 

We choose now Gin such a way that the first two terms on the right

h~nd side of (4.53) are equal. Thus with c • 35/216 we let 

G • 

This choice of G obviously satisfies the condition tE < G .!: t 2
/ 3 , and 

then we obtain 

(4.54) 

if as in (4.27) we take 

(4.55) /3• (31k - 52)/(27k - 108) > 1. 

Integration by parts and (4.33) give 

oO 

1/2-ô51 / \k •k j
3 

<< x ~(1 2 + iv) v dv 1/2-~t~(4-7k+e)/8 
<< X ' 

lt~ 
k-1 

where we ~sed <f>(w) << tk/ 2-kô and L << 1 for the sum appearing in (4.49), 
m=O 

since -hm(s-w) 
e 

(4.56) we obtain 

= e-hm~- 1/ 2) << 1. Finally combining all the estimates (4.41) 
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hk-1(hk(s) - LJdk(n)n-s -";(k(s)Ldk(n)n 8
-

1 + Rx(s) +;x.k(s)R (1 ... s)) << 
nsx nsr y 

Choosing h = t-12,, where ~ is already defined by (4.55), it is seen that the 

last two terll8 in (4.57) are equal, and the approximate functional equation follows 

from (4.57) on dividing by hk- 1, if we recall that the error made by replacing the 

/ 
k . 1/2-6 . ( 1/2 1/2) tE •2 condition xy = (t 2~) by xy = T is <i<. x min x ,Y • 

This settles the case k:> 4, and we have still to consider the cases k • 3 

and k • 4. The only changes in the proof will be in the estimation of the integrals 

j 1,j 2 ,j
3 

appearing in (4.49), where sharper estimates than those used for the ge

neral case k:> 4 are available. 

For k • 3 we choose G = 2t
1
/ 2 in (4.49) to obtain with the third moment 

estimate (6.75) 
t+l.i:"'2.-

j 1 << h2x1/2-l>t-1/2) ll:'(1/2 + iv)l3dv << h2x1/2-c\1/8+\ 

t-2t"'1. 

For j
23 

we use (6.75) again to obtain 
t-'2.t"'1. 

O(t"4J 

j
23 

<< h
2x1

/
2

-i ~ lt(1/2 + iv)\ 3 (t-v)- 1
dv << 

-t12. 

O{.t"'•) i - '2.->-t"'t. 

h2x
1
/ 2-~L 5 1((1/2 + iv)\ 3(t-v)- 1dv << 

n=1 -t-2(,,.+◄>e'i. 

t-l'ltt""L-

5 1rc1/2 + iv)! 3dv <i<. 

h2x1/2-ltt•1/2Ln-1(t1/2 + t5/8) << h2x1/2-dt1/8+t. 
n•1 

'l' 

At last using Str(1/2+it)l 3dt << T1+f we obtain 
0 

j1 + j2 + j3 << t~x1/2-~ (h2t1/8 + t-2~). 

Thus for k •3 we obtain (4.57) where the right-hand aide will be 

t l(h3( )1/2 1/2-i h2 1/2-6t1/8 1/2-it-2~) << X + y X + X + X • 
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Now we set I':,= 11/8, h = t -/',. Then from x + y << t~ we infer that 

h3 ( ) 1/2 1/2-t. h2 1/2-Jt1/8 
X+y X << X , 

and dividing (4.57) by h2 we obtain the desired approximate functional equation 

It remains to consider yet the case k • 4, where the estimation is iden-

tical with the general case up to (4.51), only now for H(v) we shall use 

rr 

~\~(1/2 + it)\ 4dt 
0 

which is a result of D.R. Heath-Brown [31 (see Notes of Chapter 5). Therefore for 

j
23 

in (4.51) with k • 4 we have 
~-G 

j2
3 

<< t~(1 + s (t - v - G + t 7/ 8 )(t - v)- 2dv) << 

which means that we have saved a factor t
1
/ 8 from the general estimate used in 

(4.51). We have then 

. . t f (h3 1/2-6Gt4/3 h3 1/2-l.G-1 t7 /8) J1 + J2 << X + X << 

for G. t 29/ 48 < t 2/ 3• Since j
3 

<< x1/ 2-it~(t,oo3) we obtain (4.57) where the 

right•hand side will be 

<K t, (h4 (x + y) 1/2x 1/2-i 

The resul t given by (4.26) follows for~- 2, h • t -1> on di viding (4.57) 

by h3, eince 

§4. The reflection principle 

The approximate functional equations discussed in §2 and §3 have a sym

metric property if x = y, especially when o = 1/2, which allows one to obtain useful 

expressions like (4.12),(4.13),(4.28) and (4.29). However, when one Qeeks estimates 

for averages of powers of moduli of the zeta-function in the critical strip, it 

turns out that the approximate functional equations of the type just considered 

have two shortcomings. Firstly the lengths of the sums over n depend ont, and 
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secondly the error terms for k ~ 3 and d • 1/2 already are not small (i.e. they 

are not << tt). We shall proceed now to deriTe another type of approximate fun• 

ctional equation, which though lacking symmetry is in many problems concerning 

average& of the zeta-function quite adequate. The idea, which permeates the whole 

theory since the pioneering days of Riemann, is to use the functional equation 

in the form tk(w) = ;t.k(w)î:k(1-w) for some w with Re w< O, to split the 

oO 

series tk(1-w) = Ldk(n)nw- 1 at some suitable M and estimate the terms with 
n=1 

n> M trivially. This approach is very flexible, and the error terms that will 

arise will be small. The starting point is the Mellin integral (1.7) where we set 

x • r1, s • w/h and suppose Y,h> o. In view of r(z+1) = zr(z) we obtain by moving 

the line of integration 't+i..O 

~ Y-wr(1 + w/h)w- 1dw. 
1-,-0 

00 

Replacing now Y by n/Y and using Lt dk(n)n-z • tk(z) (Rez> 1) i t fol
n•1 

lows when 6 ~ 0 and k~ 1 is an integer that 

2,+ioo 
oo h 
~ -(n/Y) d ( ) -s L-Je k n n = 
n•1 

(2'1i)- 1 ) rk(s + w}Y'r(1 + w/h)w-1dw. 
1-,oo 

Now we suppose s • o + it, 0:;: d:;: 1, h2:;: t::: T, h = log 2T,1 <<Y<< Tc 

for some fixed c > O, and we move the line of integration in (4.60) to Re(s+w) • -1/2. 

Using Sti:rling 1s formula (1.32) it is seen that the residue coming from the pole 

w • 1 - sis o(1), while the residue at the pole w = 0 is 4k(s). Using the 

functional equation (4.3) we have then 

oo / h 
(4.61) Ldk(n)e-(n Y) n- 8 

• (k(s) + o(1) + I 1 + r
2

, 
n•1 

say, where for some 1 << M << Tc 

(2.31'i)-1 5 tk(s+w)~dk(n)nw+s- 1ywr(1 + w/h)w- 1dw, 
Re('>+"')=-.,,z. n~ 
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In I 2 we move the line of integration to Re(s + w) • -h/2, noting that 

the integrand is regular for -h/2,:: Re(s + w) ~ -1/2, and aiming to choose Min 

such a way that I 2 == o(1) as T➔ oo. With w • u + iv (u,v real) we obtain using 

Strrling 1s formula 
oO 

I2 <i< c,x<-½+ iv + it)lkLdk(n)n·
1-h/2y-h/21r(1/2 -t-+ !v}\àv << 

J ·rt>M _ _, 

IJ' oO 

(MY)wh/2logkT )(t + v)k(1+h)/2dv ( -v/h 
+ .) e dv << 

0 ,r 

if 

The flexibility of this method is best seen in various possibilities for 

the estimation of I 1 in (4.62). The line of integration in I 1 may be 11.0ved to 

Re(s + w) • ci, 0 < °' < 1 fixed and oC.. /. d, so that the sum appearing in (4.62) will 

be 11ref:J_ected", hence the name "reflection principle". Letting $ • 1 if c(> d 
"' 

and \ • 0 if cl< d we obtain by the residue theorem 
"' 

The terme with n> 2Y in (4.61) are trivially o(1), and the part of the 

integral in (4.65) with lv\ = \Imwl :::, h 2 is also o(1) by Stirling 1s formula, so 

that combining (4.61)-(4.65) we have 

- (2"1.)-1 ) 

~(-,+w):o< 

llM~l ~,ta 

Therefore we have obtained the desired type of the (unsymmetrical) appro

ximate functional equation, where the lengtmof the sums do not depend ont, but 

on T, and where the error term is o(1). Ju1other useful variant followe from (4.66) 

with k • 1,ol•1/2 when we replace Y by 2Y and subtract the resulting expressions, or 
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proceed directly and obserlve that there is now no pole at W3 0 because of the 

zero w = O of (2Y)w - Yw. We obtain then 

o0 h h 
~( -(n/2Y) -(n/Y) ) -s 
~ e - e n 
n::1 

;._ .... 

<< 1 + y1/2-& j 1In .. 1/2+it+ivldv, 

-.a." n41 

which will be very useful later in Chapter 9 for zero-density estimates. In (4.67) 

we have O !: o < 1 , 
C -1 2 n 2 !: t .!: T, 1 << Y << T , M :;:: 3TY , h "' log T. 

NOTES 

~.Riemann's classical memoir 01, his only work from analytic number 

theory, is extensively discussed by H.M. Edwards 01. 
For many different and instructive proofa of the functional equation 

(4.1) the reader should consult Chapter 2 of Titchmarsh (a]. The proof of the 

functional equation presented in §1 is due to J. van de Lune 01. 
One ma.y prove (4.8) with f(x) given by (4.7) as follows. Substituting 

oO 

i x ~- 1u in the identity sinx = xQ(1 - x2/(,;(2-k2)) one obtains by logarithmic 
k• 

differentiation 

1 1 1 
(u /- 2nJri) 

which 

equation. 

= - - 2 + u 

With f(x) defined by (4.7) we have then 
oO 

~ f (x)sinxt•dx • 
0 0 

oO 

( -1/2( -1 
- 21Tj ) x sinxt • dx + 

- .1 V2Jf + 
4 

gives then 

0 

f-. t • 1 ,r,:;;; 1 ,~(--
1 

-- -( i~!lt)-1 + 1/2) = ~ 2 2 - 4v2~ + 2v2~ ·'2irt v~ .. 
k=1 2'rk + t eycJi - 1 

- V1r/2r(t), 

(4.8) and completes our discussion of the functional 

As was also the case with Chapter 3, none of the results of this chap

ter are e:xplicitly formulated as theorems. This was done on purpose to emphasize 

the flexibility of the approach, especially in our discussion of the reflection 
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principle. Also some of the results, like (4.1),(4.10) and (4.11) should be already 

known to the reader. 

There is a proof given by Titchmarsh [8] of (4.10) by what amounts to the 

use of a variant of Poisson 1s .summation formula (Lemma 2.4), only the error term 

O(x-dlogt) instead of O(x- 6
) is obtained. There is also a proof of (4.10) in full 

strength given by Titchmarsh [sl by a contour integration method, while (4.11) is 

stated at the end of Chapter 4 with the error term o((x+y) 1/ 2-~logt) without proof. 

It has been kindly pointed out tome by M. Jutila that this error term must be 

incorrect, since f(x) • Zd(n)n-s is discè>ntinuous at integers with jumps d(x)x- 8
, 

n<:x 

accordingly the error term should be at least O (x- 0 ). But if x is small and d is 

near unity, then (x + y) 1/ 2-~logt is much smaller than x- 6
• The correct error term 

in (4.11), which is O(x1/ 2-dlogt) is obtained by Titchmarsh [5]. His method of proof 

there is an extension of the proof used by Hardy and Littlewood [3J in the proof of 

the approximate functional equation (4.10) for 4(s). The first step is to obtain an 

exact formula for t2 (s), valid for d > -114. This is 

~ -s -s ~ 2s-s 
2 

1-s • L.Jd(n)n - x L.Jd(n) + 2x 
n,:sx n<x: (s-1) 

s 1-sc ) + s- 1x 2~ + logx + 

and then using the asymptotic expansions for the Bessel funotions K1,Y1 (see Chapter 

3) one is led to the estimation of certain exponential integrals which eventually 

yield (4.11). 

The derivation of the approximate functional equation (4.11) for C2 (a) in 

§2 is navel and illustrates well the power of the Voronor summation formula. Howe

ver the possibility of such an approach has been mentioned by M. Jutila [6], whose 

idea to exploit the Voronoï summation formulais used here. In the proof of (4.11) 

it may be assumed without loss of generality that x:;: y, for on dividing by ;t:,2 (s) 

1 ... 2d) ( X t and then changing s into 1 • s, one obtains the corresponding result 

with x and y interchanged. 

Note that the definition of ~(x) given in §2 slightly differs from the one 

made in (3.1), but this can cause no confusion since the two expressions differ 
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only by O(x~), which is absorbed in (4.15) in the error term O(x 1/ 2- 6logt). 

To investigate more precisely the absolute convergence of the integral in 

(4.14)we proceed as follows. By Theorem 10.5 and the Cauchy-Schwarz inequality for 

integrals we have 
~ ~ ~ 

\ 5 x-s-1~(x)dx \ ~ ( 5 x •26-2dx) 1/2 () L~/ (x)dx) 1/2 << (M-1-26M?/2) 1/2 << M-E 

M I'( M 

for d > 1/4. Taking M = N,2N,2 2N, 0 •• etc. and adding up the estimates it is seen that 

the integral in (4.14) is absolutely convergent for d :> 1/4. 

To see how the error term o(x 1/ 2-dlogt) appears in (4.15) we use (~.1) in 
N 

evaluating ) u-sdà(u). Writing 
X 

- LI 
n<(1+ E-)y 

+ 

the first sum in view of (3.1) and (3.11) gives the first sum with K and Y on the 
0 0 

right-hand aide 
N 

of (4.15). Integration by parts gives 
~ N 

= ( LJ ... )u_ 8
, + s I d(n))(-2~(u/n) 1/ 2

(K 1 ( ••• ))du, 
~(1+~)y >' n">(1+E)y X 

su-8 d( L ... ) 
'K. ~(1+t.)y 

while (3.16) gives 

The error ter11Bin the approximate functional equation for ~~(s) in §3 

are due to the author, and this result has not appeared in print before. The method 

of proof is based on R. Wiebelitz 01, who was guided by the work of Hardy and 

Littlewood (3]. Estimates (6.7~) and (6.75) are used in the proof, as is also 

Heath-Brown 1 s fourth power moment estimate !)]. The proofs of these results fall 

beyond the scope of this text, and the results of §3 are among the few ones whose 

proof is not self-contained. For comparison we present now Wiebelitz 1s approximate 

functional equation for (k(s), so that improvements obtained in §3 may be seen. 

Wiebelitz uses the estimate t(1/2+it) << te+~, c = 15/92 (due to s.-H. 

Min (,11), which was the best result available at the time of his writing, and 

supposes k ~ 3 is a fixed integer, xy = ( lt \j2,nk; x,y '.:>".> 1, -1/2 < ô .:5 3/2. Then 

(4.25) holds uniformly in d with 



1/2-dmi ( 1/2 1/2) \ t ,-2 + x n x ,Y , 

where /3• 3/2 for k = 3 and P.i • ·23k/(15k + 32) for k>_ 4. The terme of R and R X . y 

in (4.25) for j ~13+')1 may be incorporated in the above error terms, which was done 

by Wiebelitz. Though Wiebelitz proves· his result for -1/2 5 ô 5 3/2 (curioualy, it 

seems to be his only paper in number theory), the result is really of interest for 

0 5 d 5 1 (and especially for d ~ 1/2) in view of the functional equation (4. 1). 

When estimating L2 in (4.45) Wiebeli tz uses the asymptotic formula for 

L,dk(n), which will be extensively discussed in Chapter 10. This enabled him to 
n<X 

have hk• 1x- 6logk- 1 \t\, while in (4.45) we had hk- 1x-l tl, but introduces the error 

term ~(x) in the general divisor problem, which ultimately affects Wiebelitz•s 

estimate for ~(x,y), as given above. Using the trivial estima.te 

LJ dk(n) -« b~(1 + b - a) 
&<n<b 

in (4.45) we managed to dispose of the error term ~(x), and as the estima.tes for 

'-power moments of the zeta-function that were used involve the factor t, we would 

gain nothing by following Wiebelitz in the use of ~(x) in (4.45). Estima.tes given 

in §3 for ~(x,y) are olearly superior to the corresponding ones given by Wiebelitz. 

Conoerning (4.30) observe that by Taylor 1s formula 

Tu-sX(u) = X(s) + (u-s)Tu-s(X' (s) + X(s)logT) + 2~(X"(s)Tu-s + ••• ){u.-sl·+···) 

and sinoe by (4.20) we have 

X' (1/2 + it) + x(1/2 + it)logT - o, 

i t is seen that q> 1 (u) is regul:ar for Re u • 1/2, when the double zeros u • s "' ! + it 

of the numerator and denominator cancel each other, and the other ranges for u 

are easy. This discussion also shows why the definition of Tin (4.20), which may 

have looked a little mysterious, is a natural one to make. 

To see that (4.31) holds observe that for Reu= 1/2 we have \X(u)\. 1, 

eo that by (4.4) 

1 X(s) \ 

This proves the first estima.te in (4.31), and for the second one note that 
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2 

if {s-u \ :;: t, then Reu ~ t, and since we have - 2 (log1(s)) 
ds 

85 
-1 

<< t , we may write 

and use Taylor 1s formula and (4.20) with u • 1/2 + iv, v real. This gives 

1 - if ~~Ts-u = 1 - exp (-k(s-u)f (1/2+i t)+klog;t:(&+i t)-klogX(1/2+iv)) ... 

1 S~ ~I l 2 -1 
- exp (-k(s-u)l'~ (1/2+i t) - -y(1/2+ivh + 0 ( ls-u I t ) ) = 

1 - exp(k(o + it - iv - 1/2)
2
o(t-

1
)) << ls - ul

2
t-

1
, 

and then (4.31) follows. 

To prove (4.39) one may start from 

(1 )m (m) (m) (m2)x2 + ••• + cmm)xm + X • Q + 1 X + 

and differentiate, taking eventually x • -1. In the first step we have 

and the proof is finished if .I' = 1 by taking x = -1. If ~ /. 1 , then the above equa

tion is m.ultiplied by x and differentiated aga.in and the process is repeated suffi

ciently many times. Finally for~• m we obtain 

m -.J )) 
Lt(-1) (;)v = m!, 

y.U 

since we arrive at an expression whose left side is m! plus a_polynomial in x + 1, 

and ta.king x • -1 we have the above identity. 

In (4.35) one uses Tu-sX(u) • X(s) + q>(u), which is the main reason why 

c:p(u) was introduced by (4.30). 

The discussion of the reflection principle in §4 is based mostly on M. 

Jutila (21. This simple and powerful method was used in a similar form before 

Jutila 1s work by M.N. Huxley 1)1 and K. Ramachandra [11. A general principle in 

analytic number theory is to express a sum (or series) by a contour integral in 

the complex plane, and to attain flexibility by moving the contour of integration 
(!~i~. 

and applying the residue theorem. When coupled with the use of the functioria11,(4 0 1), 

this idea leads to the reflection principle. 
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c·H APTE R ·5 

THE FOUR'l'H POWER MùMEl'TT 

§1. Introduction 

"' 
Estimates of integTals of the type ) (~(1/2+i t)l kdt play a prominent 

0 

role in many parts of the zeta-function theory, and applications of these estimates 

to zero-density theorems will be given in Chapter 9. The important case when k • 2 

is one of the main topics of this text, and will be extensively treated in Chapter 

11. A detailed account of Atkinson's formula for E(T) and some of its applications 

will be presented there, while power moment estimates for k> 4 will.be treated in 

Chapter 7. This chapter is devoted to the case k • 4, and we shall prove the followinJ 

THEOREM 5.1. 
"I" 

S 1~(1/2 + it)l 4dt ... (23f)- 1
Tlog 4T + O(Tlog 3T). 

0 

This is a classical result of zeta-function theory, proved first by 

A.E. Ingham (1] by a difficul t method, and the asymptotic forr:iula (5.1) remained te..; 

best known mean value estimate of the zeta-function for a very long time, though for ., 
the somewhat easier problem of estimating ) e -h l4(1/2+i t) l 4dt ( , 4 O+) a sharp 

0 

a.symptotic formula ha-s been obtained by F.V. Atkinsop. (21. Recently D.R. Heath-Brow::. 

(31 improved substantially (5.1) by showing tha.t 

rr 

~ \~(1/2 + it)l 4dt = 

0 

where c
0 

• (2,f)-
1

, and the other ck 1s. are computable constants. As is to be expecteè 

the proof of (5.2) is long and difficult and will not be given here, but the proof 

of the classical result (5.1) may be given now in a relatively simple way by com

bining the reflection principle of Chapter 4 with the mean value theorem for Diri

chlet polyr,omi~ls. The mean value theorem for Dirichlet polynomials is.a very use

ful resul t, which has two forr,1s, discrete and integral. The intee;-ral varü.n t of the 

theorem may be formulated as 



TH~0REM 5.2. Let a 1, ••• ,aN be arbitrary complex numbers. Then 

"' 
S 

'
LJa,nitl2dt 
n<N i. 

0 

and the ubove formula remains also valid if N • OJ , provided that t"e series on the 

right-hand side of (5.3) conver~e. 

In §2 a proof of Theorem 5.2 and its discrete variant, Theorem 5.3, will be 

given, while in •]3 a proof of (5 .1) is presented. 

§2. The mean value theorem for Dirichlet polynomials 

We begin now the proof of Theorem 5.2. Squaring anà. integrating it is seen 

that the left-hand side of (5.3) equals 

so that (5.3) is a consequence of 

(5.5) 

applied once directly and once with a replaced by iT a m 
m m 

To obtain (5.5) we shall first prove 

\L a a 

\ L 2 (5. 6) m n 
< 'Jf I an 1 ' m/:-n m - n 

which is known in literature as Hilbert 1s inequality, and then deduce (5.5) from 

(5.6). In (5.6) the a 1s are arbitrary cornplex numbers, and m,n ~nover the same 

(possibly infinite) subset of the integers, subject only to the cor.dition m / n. 

To see that (5.6) h•;lds let 

E • 
a a 

rn n 
m - n• 

Then obviuusly E • -E, which means that E is purely imaginary, honce E/i is 

real. Recalling tiia t for in teg·er k we have 

(5. 7) 

~ 

) e(il:x)dx 

0 

- 1 

ù 

k .. ü 

' 



it follows that 

From (5.8) it follows that (5.6) holds if E/i =: O, and if E/i < 0 then tl1e 

resul t follows if we repeat the above reasoning wi th ( L,an e (-nx) l 2 in place of 

\Lane(nx)l 2 • The proof actually shows that we obtain 

00 

if lqn1n-1 is any sequence of integers such that qm f qn if m f n. Moreover one 

has also 

which follows from 

if one uses the Cauchy-Schwarz inequality, (5.8) and (5.9), since 

1 ç ~ Ï: ame(q,,.x) L, bnefqnx)dxdyl
2 

!: 
• • 

~~IL, ane(q,,x) l2dxdy, ~~IL, bnefqnx}j2dxdy < 
• • 0 • . 

For simplicity of writing let now L • logn and n 

so that Q is purely imaginary and as in the proof of (5.6) it will be sufficicnt 

te assume that G/i::: o. From 
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~

1 

~ l"'5' 12 1 "5' 2 )" ~ - e U1 -L )y) - 1 .. L,ane (Lr..x) dxdy = 2 LJ \an 1 + a a ~n,...,..._.....__dy 
0 

m 1 m n 2,ri (L - L ) 
o • !Il n 

we obtain then 

where the range of summation 1:: n:: Nin (5.5) has been divided into intervals 

0 

it 
e (0 t t ~ Re) 

we have for lk - li;:: 2 in (5.11) 

where 

e((L -L )y) m n 
L - L dy 

m n 
<< 

(L - L )-
2 << m n 

Here we used the Cauchy-Schwarz inequality and 

1 \ ( -1) ( 1-k 1 Lm - Ln ::. log N2 - log N2 ) • log2-(k - 1 - 1) ::, 4(k - 1) , 

since k - 1 "> 2, and the case 1 - k > 2 is analogous. Using again the Cauchy-Schwar2 

inequality we have 
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< ( /, S (k-1)- 2) 
1/ 2 (;, S (k-1)- 2 ) 

1/ 2 << Ln la 12
, 

k7'i k .kfl. l n<N n 

converges, so that the contribution of ~ 
lk-11 >2 

to (5.11) is 

of the desired order of magnitude. The terms in (5 .1.1) for which I k-1I ;:::1 may be 

written as 

" ) L 
o (m,n)E.Ikxr 1 

m/.n 

a a m n 
e((L -L )y) m n 

L - L dy 
m n 

" • Mj( 6 
o · (m,n),rkx.1 1 

m,'n 

a•a• 
m n ) 

ML -ML dy, 
m n 

( ) 6-k where a' = a e L y, M • N2 , and it will be sufficient to majorize the last sum. 
"' m nr 

The reason for introducing Mis that if lk - l\,::: 1, then for m> n and (m,n)dkxr 1 

rML] - rMI.,] > M(L - L ) - 2 • :Mlog(1 + m-nn) - 2 > 
l:m l.!n - m n 

since m - n~ 1, 0,::: (m - n)/n::: 3 and log(1 + x) ~ x/3 for O::: x,::: 3. Therefore 

we have for \k - 1 \ ,::: 1 

(5. 13) L a•a• I 1a. a 1 mn mn) 
= M (MI.. ] [HL J + 0 (M ( ) 2 , 

(m n)€I xI m - • n (m n),I xr m-n 
' k 1 ' k l 

mtn ~n 

1/2 and the o-term above is easily seen to be<< (sks1) • The other term on the 

right-hand side of (5.13) is estimated by (5.10) with 4m = [MLml' and the resulting 

estimate is multiplied by M to yield also << (sks 1) 1
/

2• Using once·again the 

Cauchy-Schwarz inequality and !k - 1 \,::: 1 we obtain (5.5) and consequently (5.3). 
·-1 . 

If U • oo the reasoning is the same, only we define I. = (2J ,2JJ this time. 
J 

We pass now to the _discrete form of the mean value theorem for· Dirichlet 

polynotnials, which turns out tü be more useful in certain applications than the 

intesral fürm of the the~)rem. This may be furrnulated as 

THEüREM 5.~. Let 1::: t 1 < ••• < tR ~ T be real numbers such that 

\tr - t
8 

\ ~ 1 for r f' a < R ar.d let a 1 , ••• , at: be arbi trary complf:,x numbers. Then 
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<< (T L la 12 
+ 

n<N n 

Pro0f of Theorem 2•~· 
1 . 

If O,::: x,::: 1 and f(x)tC [u, 11 ,then an inteL-ratior 7 

by part& shows that 

hence 

(5 .15) 

(5 .16) 

• 
f(x) • ~ f(t)dt + 

0 

J( 

~ tfl (t) dt + 

0 

Ir (1/2) \ < ~ ( lf(x)I + ! Ir 1 (x) 1 )dx, 
0 

t 

) (t-1)f 1 (t)dt, 

IC 

Taking f(x) = F(x - 1/2 + t) we have from (5.15) r 

-t,t1/i,.. 

~ IF(t)ldt 

-t,.t◄/1,. 

+ ! ) IF' (t)I dt, 

-tti/1,. i,--111, 

Now we use (5. 16) wi th F. ( t) = ( L, a n -i t) 2 • By the Spacing candi tion 
n<l'î n 

imposed on the t 1s it is seen that the intervals (t -1/2,t +1/2) (r < R) are 
r r r -

disjoint, hence the left-hand side of (5.14) is 
,r '[1 

(5.17) «: ~ IF(t) 1 dt + ! )lF'(t)\dt. 
0 • 

The first integTal in (5.17) is estimated directly by Theorem 5.2 and 

makes a contribution << TL la \2 + 
n<.N n 

L \a \ 2n. For the other intefr&l in (5.17) 
-11· n n-...-1 

note that 

F' (t) "'Ç"' -i t~ -it 
• -2La n -~a logn•n , 

n<N n n<N n 

hence by the Cauchy-Schwarz inequality and Theorem 5.2 we obtain 
ir '1' 'I' 

(5.18) ! ) \F' (t)(dt,::: ( ~ ILannitl
2

dt) 
1
/

2
() /Lianlogn•nitl 2dt) 

1
/

2 
<< 

0 0 n<H n<.H 
- 0 -
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This completes the proof of Theorem 5.3, but it may be remarked that in the 

case N = oo the above proof gi ves 

o0 

"'Ç" 2 2 
+ ~nlanl log (n+1), 

n=1 

provided that the series on the right-hand side converge. 

iT 
Another remark is that from \a 1 = \an °1, T an arbitrary, fixed real n n o 

'T' 

number, it follows that Theorem 5.2 remains valid if ) 
0 

is replaced by ,and 

similarly in Theorem 5.3 we may suppose that < tR < T + T. 
- 0 

§~Proof of the fourth power moment estmmate 

As an application of Theorem 5.2 we shall present now a proof of Theorem 5.1 

by using a variant of the reflection principle, which was discussed in Chapter 4. 

With w • u + iv, s = d + it, u and v real, 0 < d < f, T/2 !:: t :ST, we obtain from 

on applying the residue theorem 

~ ( ) -n/T -s L-idne n 
n=1 

(~i)- 1 ) (.2(s + w)r(w)Twdw = 
U=2 

00 

(5.20) 42 (s) + O(T-c) + (2'1i.)- 1 ) 1.2 (s + w)L d(n)nw+s- 1r(w)Twdw = 
u•-~/4 n-1 

t2 (s) + O(T-c) + (2.11'i)-1 ) 1,2 (s + w)Iid(n)nw+s- 1r(w)Tw -
U=-~/4 n>T 

Here we used the functional equation (.,1.3) and Stirling 1s formula (1.~2) 

to obtain the error term O(T-c) (here c-:,, 0 is arbitrary, but fixed) which majo

rizes the residue of t 2 (s+w)r(w)Tw at the double pole w • 1 - s. Now we set 

s • 1/2 + it and use again Stirling's formula together with 

to deduce from (5.20) 
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IC(1/2 + it)l
2 

• _6Jk(s) + O(T-c) 
k=1 

for any fixed c > o, where Jk • Jk(s), and fors• 1/2 + it 

J 2 = J 1 = ;((1/2 + it)Ld(n)n- 1/ 2+i\ 
n<T 

J '5 • 'X-1 (1/2 + i t) L d (n) e -n/Tn- 1/ 2-i t, 
n>T 

J
4 

= 1--1 (1/2 + it)L, d(n)(e-n/T - 1)n- 1/ 2-it, 
n<T 
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J5 • -(2:ri)-1-- 1 (1/2+it) s 12<1/2+i t+w)L d(n)nw- 1/ 2+i tr(w)Twdw, 

/ 
2 n>T 

u=-3 4, \v\<log T 

J = -(2n)- 1%-1(1/2+it) 5 J..,2 (1/2+it+w)Ld(n)nw- 1/ 2+itr(w)Twdw. 
6 / 2 n<T u=1 4, IVI <log T -

Theorem 5.1 will follow thenfrom 
'fi 

(5.22) 5 }C(1/2 + it)/ 4dt = (4,r-2)-
1
Tlog 4T + O(Tlog 3T), 

rr/2. 

when one replaces T by T/2,T/2
2

, ••• etc. and adds all the results. Observe that 

trivially Jk << T
1/ 2logT for each k. Therefore aquaring and integrating (5.21) 

we have "' '1" 'I' 

) l~(1/2 + i t) l 4dt = 2 ) / J 1 1
2

dt + ) (J~ + J~)dt + 

<fla.. 
'f'/J. 1'12. 

6 Cfl 6 
.,, 

+ 0 (~ ~ \Jk \
2
dt) + O(L,,~(J1 + J2)Jkdtj) + 0 (1), 

k•3 ff'/2. k•3 'l'/i 

and the main contribution in (5.22) will come from the first integral on the 

right-hand aide of (5.23). To see this note that from the Dirichlet series 

represeE.tations 
00 

L,d 2 (n)n-s = /:4 (s)/C(2s), 
n=1 

QO 

2, J<(n)n - 2s = 1/C(2s) 
n•1 

which are valid for Res> 1 and Res> 1/2 respecti vely, one obtains by an easy 

convolution argument 

_.-2 7, = J• xlog' x 2 + 0 (xlog x), 



and hence by partial summation 

( ) 1+a "i c a x log·x + a ~ -1, 

a"' -1. 

Now we shall apply Theorem 5.2 and (5.25), obtaining first 
If' 
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2) IJ1/ 2dt = î 1.L,d
2

(n)~-
1 

+ o(Ld 2 (n)) • (4'r 2)-
1
Tlog 4T + O(Tlog 3T), 

1'/2. n<T n<T 

since l1(1/2.±,it)l • 1~ Therefore (5.26) does contribute the main term in (5.22), 

and in fact the main idea of the proof is to apply Theorem 5.2 to the remaining 

integrals in (5.23) using (5.25) 
rfl 

with a t -1. Thus we have 

) 1 J3 \2dt << 
'T'li. 

TLJ d2(n)e-2n/Tn-1 
?PT 

- 1'Ç'd 2 ( ) T- 2~d 2 (n)n 2 Tl "iT T L.J n n + LJ << og , 
n<T n<T 

-x where we used e - 1 !:: x for x ?:_ O, 
'l'i 

) \J5\2dt << T5/22,d2(n)n-5/2 + 
,..,,, rt>T 

'I\ s \J 6 \2dt << T 1/2 ,L d2 (n)n-1/2 + T-1/2LJd2 (n)n 1/2 << Tlog3T. 
'f't-i. n<T n<T 

Next we wri te "' ,t/z.+-i'l' 

( 5 • 27) i 5 J ~dt = ) J ~ ( s) ds 
'fil. .fJi.+,'1'/2, 

and consider the last integral as an integral of the complex variables. To avoid 

(5.25) with a= -1 we replace by the residue theorem the segment of integration 

in (5.27) by segments joining the points 1/2 + iT/2,1/4 + iT/2,1/4 + iT,1/2 + iT. 

Using 't(s) ";:::< T1/ 2-d it is seen that the integrals over horizontal segments 

2 are<< Tlog T, while 
T 

J~(s)ds <<·T- 1
/

2 S \ Ld(n)n- 1/ 4+it\ 2dt << Tlog 3T 
-r12. n<T 

''s'• 
.f/'t+i'l'l2, 

on using Theorem 5.2 and (5.25). The same procedure may be applied to the integral 

2 of J 
2 

to yield 

(5.28) 



The remaining integrals in (5.23) are written as 
,., 1 ,._ ,T 

i ) (J 1(s) + J 2 (s))Jk(s)ds, (k • 3,4,5,6) 
4/i+,î/2. 
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and are treated similarly. In integrals with J 1 (s) the segment Q/2+iT/2,1/2+iT1 

is being replaced by the segment (3/8+iT/2, 3/8+iTJ wi th an error << Tlog 3T, while 

in integrals containing J 2 (s) it is replaced by the segment [5/8+iT/2,5/8+iT] 

with an error << Tlog 3T also. Applying the Cauchy-Schwarz inequality, Theorem 5.2 

and collecting all the estimates we obtain then as asserted 

rr 

(5.29) ~ lt(1/2 + it)I 4dt = 
2 -1 4 3 (4~ ) Tlog T + 0 (Tlog T), 

'r'/2. 

so that (5.1) follows from (5.29) on replacing T by T/2,T/2
2

, ••• etc. and adding 

all the results. 

NO TES 

!fi 

Various mean value estimates for ) lt(d + it)\kdt are discussed in Chapter 7 
1 

of Titchmarsh [s], but (5.1) is not proved there, only the weaker formula 

'î' 

) !4(1/2 + it)\ 4dt = (1 + o(1))(2~)-
1
Tlog 4T. 

0 

This follows from investigation of the integrals 
,r, 

I(T) = ) 1,(6 + it)l 2kdt, J(b) 
00 

= ~[4(6 + it)l 2ke-,tdt, 

0 0 

where k > 1 is a fixed integer, T ➔ oo and \ ➔ O+, 1/2 .!:: d < 1 is fixed. A simple 

D Tauberian argument shows that
1
for C > o, I(T) rv CTlog T is equivalent with 

J(b) r-v c~•\1og~- 1)D (D > o), and Ti.tchmarsh then deduces (5.30) from 

oO 

)\L(1/2 + it)l 4e-&tdt = (1 + o(1))(2.r.2)- 1~- 1 (logl- 1) 4, b ➔ O+. 
0 

As mentioned in §1, a sharper result has been obtained by F.V. Atkinson [2], 
who proved 

00 

(5.31) )lt(1/2 + it)l 4e-Hdt 
0 
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( 2)-1 where .A. "" 2!71' 
0 

and the other constants are computable. A method is also 

indioated in Atkinson's paper by which the exponent 13/14 may be reduced to 8/9. 

However (5.31) does not seem to imply (5.1), but only the weaker (5.30). Similarly 

i t ma.y be mentioned that one has (Theorem 7 .15 (A) of Titchmarsh [8]), as ~ ➔ O+, 

00 N 

~ t(1/2 + it)\ 2
e_

2,tdt = X - log(4,r~) 
2sinS 

+ L,cn~n + D( ~N+1), 
n=O D 

for any fixed integer N> 1, but this sharp result does not •••m to imply anything 
- 'I" 

like .A.tkinson 1s formula for ) [t(1/2 + it)\ 2dt, which will be extensively dis
o 

ouased in Chapter 11. 

Heath-Brown 1s proof of (5.2) in (3] is based on several ideas. The first 

is the use of an approxiinate funotional equation which 11.ay be written as 

Here k ~ 1 is a fixed integer, c > 1 is a constant depending on k, 

T :St!:: 2T, 

(5.33) K(x,t) ~ ( ) u -2v) -1 LJd- u,v z t z dz, 
V 

where «(u,v) is a constant and U an integer depending on k, while L, 
V 

denotes 

summation for max(1,u/3) !:: v !:: U. 

This result may be compared with (4.25), the approxima.te functional equa

tion for ~k(s) of Chapter 4. The main terms in (5.32) are much more complicated 

than the main terma in (4.25), but in contrast with (4.26) and (4.27) the error 

term O(T. 2) given here by Heath-Brown is very sharp. This enabled him to integrate 

(~2) with k = 2 termwise, but there were difficultie• which arose from the 

dependence of K(x,t) ont. A further feature of the proof of (5.2) is the use of 
l('fl 

an exponential averaging technique, which permits one 

5''?' 

to evaluate ~\C(1/2+it)\ 4dt 
2'f1 

using the weighted integral S w(t)l~(1/2+it)j 4dt, where the function w(t) is pre-
"' 

cisely defined in §3 of Heath-Brown [3]. The proof in its last stage requires an 

asymptotic formula for the divisor sum 



D(x,r) • ~d(n)d(n+r) = m(x,r) + E(x,r), 
n<x: 
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where r may be increasing with x. Here m(x,r) is the main term of the form 

m(x,r) 
2 . 

= L, c.(r)xloix, 
j-0 J 

and the exponent 7/8 in (5.2) is mostly limited by the mean value estimate 

2X 
S E2 (x,r)dx << x5/ 2

+E., 

X 
which holds uniformly in r for r ::=: x3/4~ 

The proof of Theorem 5.2 is based on K. Ramachandra [5], and the cru

cial estimate (5.5) is a special case of a more general inequality due to H.L. 

Montgomery and R. C. Vaughan ms-suppose tbat R ~ 2 and )
1 

, 1
2

, •. •, )R are distinct 

real numbera such that O < ~n = m~n(Ân - Àm(. If a1,a 2, ••• ,aR are arbitrary 
mrn 

coaplex numbers, then 

(5.34) 

This inequality is closely connected with large sieve type inequalities 

for which the reader may consult the expoaitory paper of H.L. Montgomery (51• 

In presenting the proof of Theorem 5.1 we have followed the work of 

K.Ramachandra (31. Ramachandra's method doea not •••m to extend to give anything 

■harper than (5.1), yet it is incomparably simpler than the method used by A.E. 

Ingham [11 in proving (5.1). 

For other mean value theurems for Dirichlet polynomials the reader 

may consult H.L. Montgomery (21, Chapters 6 and 7. 

In estimating the first sum on the right-hand side of (5.13) by 

(5.10) we tak:e am= a~ for merk and zero otherwise, bn .. a~ for n(:I 1 and zero 

otherwiae. Then the sum in question is 
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u asserted. 

Concerning the convolution argument that lead• to (5.24), observe that 

from the Dirichlet series representation (or directly) one has 

hen.ce 

Here we used 

~ 2 2 2.J f(n)n- • 1/ i,(2) • 6sr"" , 
n•1 

and the weak U;y11lptotio formula 
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C H A P T E R 6 

M E A N V A L U E E S T I M A T E S 0 H O R T I N T B R V A L S 

§1. Introduction 

The proof of the fourth power moment estimate (5.1) depended on an 

approximate functional equation for C2 (s) (see (4.66)), and even Heath-Brown 1s 
. approxima te. 

proof c~1 of the much stronger result (5.2) also depended on another,'functional 

equation, namely (5.32) and (5.3,). Thus the natural line of approach in estimating 

If! 

) \4(J+it)~dt (o :!. 1/2,k> 4) would be to use an approximate functional equation 
0 

for tk(s) and then to integrate it termwise. However to this day no satisfactory 

result based on this idea has been obtained, and in this chapter we focus our 
'l'+G 

attention on integrals of the type ~ \((6+i t) ! 2dt, where 1/2 ~ 6 < 1 is fixed. The 
'l'-G 

interval of integration is "short" in the sense that we shall always suppose 

G • o (T) as T ➔ oo, and the purpose of estimating this type of integrals will be 
'T' 

seen in Chapter 7, where they will be used for estimates of )IC(o+it)/kdt (k > t). 
0 

This idea was first used by DoR. Heath-Brown [1] in hie proof of the twel.fth power 

moment estimate (7.15). His proof of the crucial estimate (this is essentially 
'{' 

our Theorem 6.2) depended on the deep formula of F. V. Atkinson (31 for ~lt(1/2+i t )1 .2à· 
0 

which will be discussed in Chapter 11. The proof of Theorem 6.2 that will be given 

here is new and dispenses completely with Atkinson 1s formula. Besides the appro

ximate functional equation for C2 (s) it uses Vorono! 1s sumnration formula and 

~tkinson 1 s saddle point result (Theorem 2.2). This line of attack on power moments 

for the zeta-function is motivated by M. Jutilats paper(61, and it shows that 

power moment estimate■ for the zeta-function for k> 4 may be made independent of 

~tkinson 1s formula (3). 

§2. An auxiliary estimate 

To facilitate subsequent es;imates we shall start with a technical lemma 

which ia a straightforward generalization of a lemma due to Heath-Brown (1]. Its 
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significance lies in the fact that it estimates the moduli of the zeta-function by 

an integral of nearly the same function. This is 

Lemma 6.1. Let k~ 1 be a fixed integer and T/2.::: t s21'. Then for 

1/2 ,::: d < 1 fixed we have uniformly in t 

(6.1) 

and 

1 CC.+ it) i k <><: 1 + logT )'<fi Il'.'(, - 1;(J.ogT) + i t + iv) 1 k e - Jvl dv, 

-~"'I' 

1((1/2 + it)lk << logT(1 

Proof of Lemma 6.1. Let first 1/2.::: d < 1 be fixed, c = 1/logT, 

s 1 = d + c + it. From (1.7) we obtain by termwise integration 

Hioo 

(2n)- 1 5 Ck(s 1 + w)r(w)dw = 
-t- icao 

00 

~ ( ) -n -s 1 

L..Jdk n e n 
n-1 

<< 1. 

Moving the line of integration in (6.3) to Rew= -c we encounter poles 

at w • 1 - s (of order k) and w • 0 with residues 0(1) (in view of (1.32)) and 

Ck(s•) respectively. Since s • 0 is a simple pole of r(s) then also in view of (1.32) 

we have then for any real v 

r(+c + iv) << 

so that (6.3) yields for T/3 ;St ;S 3T 

00 

-lvl( l)-1 e c + 1v , 

JPk 5 / l k • lvl 1 (6.5) ._, (s 1 ) << 1 + C(d + it + iv) e (c + lvl)- dv. 

To obtain (6.1) from (6.5) we only haTe to note that c- 1 
• logT and that 

for any fixed A> 0 
:j:00 

5 IC(d + ) 1 
k - IV 1 ( ) -1 it + iv e c + \vl dv << 

*~ ... rri i2 '-rp 
~ 

and finally we have to replace d by d - c in (6.5). 

-A. 
<< T ' 

Now we suppose that d • 1/2 and note that by the functional equation 

j4(1/2 - C + it) 1 << 14(1/2 + C + it)IT
0 

<< !4(1/2 + C + it)\' 

so that (6.5) remains true if d • 1/2, s 1 • 1/2 - c + it. On the other hand by the 
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reaidue theorem we have fors a 1/2 + it 

( 6.6) Ck(s) • (2Jri)-
15 Ck(s + z)r(z)dz, 

D 

where o is the rectangle with vertices 2 ±c ± ilog T. Using Stirling's formula 

(1.32) it is seen that the integrals over the horizontal aides if o are o(1), 

and using (6.5) with 6 • 1/2, s' = 1/2 ±C ±i(t+u), \u\ S log
2
T, we obtain 

oO 

+ ~ 1!(1/2+it+iu+iv)lk(c+lvl)- 1e- \v~v)(c+ lu\)- 1du. 
--oo 

To estimate the above expression first note that trivially 

~'Lrr 

S e• \u~c + \ul )""1du 

-~""r 

-1 
<< C • logT, 

and in the remaining integral we make the substitution v • x - u and invert the 

order of integration. This gives 

40 CIO 

(6.8) (k(1/2+i t) << logT +) lC(1/2+i t+ix) \ k() e - [u I- lx-u 1 ( o+ lu\ )- 1 ( c+ \x-u 1 )- 1 du)dx, 

-- -oo 

and the proof of (6.2) will be finished if we oan show 

oO 

5 -\u\- \x-ul ( e o + 
-oo 

This is obvious when x • O, and as the cases x> 0 and x < 0 are treated 

analogously, we shall consider x> 0 only. Write 

~ 0 

) •• lui - IX•ul (o+ lui )-\o+ 1x-u\ )- 1 du • ) + 
-oo -CIO 

say. Then 
~ C 

( -x( )-1 ( -1 •x ( -2 Je o+v c+x+v) dv 4:::: e (je dv 
0 O 

>C lC/2. 

• I 
1 

I2 • ~ -xc )-1( -1 e c+u c+x-u) du << -x) -2 e (c+u) du << 
0 0 

sinoe C + U = C + X - U for u • x/2, and finally 

<< 
-x .. 1 

8 C , 

-x -1 e 0 



00 00 

( -2u+x )-1 ( )-1 1 -x f {( )-2 ( )-22 J e ( c+u c+u-x du .5 ~ J c+u + c+u-x j du 
~ ~ 

S3• The mean square when d is in the critical strip 

We cènsider now the integral 

'!'+(; 

) /4(0 + it)/
2
dt, G • o(T), 1/2 < d < 1, 

<:t- ~ 

<< 
-1 -x 

C e 
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where dis fixed, leaving aside the most important case d • 1/2 for the next section. 

We need the following lemma, whose proof is typical of several proofs in the 

sequel and uses the e:xponential integral (1.34) to "shorten" exponential sums under 

consideration. 

(6.10) 

since 

Lemma 6.2. For N < N1 :;: 2N << TA, A> 0 fixed, logT < G:;: T, we. h-av~ 

NGlogT + G L 
-1 r<NG logT 

Proof of Lemma 6.2. 

~5 exp(-t 2G-2)dt 

-i. 6 '"<1 'I' 

max 

N<n<N"<N1 -r 

1 Z exp(iT log(1 + r/n)) l • 
N<n<N" 

-C << T 

<< 

for any fixed C ::> o, and N is bounded by a fixed power of T. Because of symmetry 

we may suppose that m :> n in the last sum in (6.11) and use (1.,34) to obtain 
,;10 

L (m/n)-iT J exp(-it(logm/n)-t2G- 2)dt 
N<n<m.:5N I - CIO 

(6.12) 
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1/2 ')' . 1 2 2 / 
'.'.JT G _ L.J exp(-1.T(logm/n))exp(- 4G log m n) = 

N<n<m<N' . 

..., 1/2G L ~ 1 2 2 / 
J• L exp(-iTlog(1+r/n))exp(--

4 
G log (1+r n)) + o(1), 

r<NG-1 logT N<n<N 1 -r 

since writing m 
-1 = n + r we see that for r > NG logT 

12 2 22 2 1 2 
exp(- 4 G log m/n) ~ exp(-G r /16N ) ~ exp(- 1610g T) 

for T sufficiently large and any fixed C > o, because log(1+x) ~ x/2 for O ~ x !: 1. 

The lemma now follows easily from (6.11),(6.12) and partial summation; if the sums 

on the right-hand side of (6.10) are empty they shall be of course counted as zero. 

We proceed now with the main result of this section, whose proof 

will follow easily from Lemma 6.1 with the use of the approximate functional 

equation. 

THEOREM 6.1. Let (p,q) be an exponent pair and 1/2 < ~ < 1 fixed. Then 

for T(p+q+ 1- 2<))/2 (p+ 1 ) (logT) (2+p)/(p+ 1) !: G !: T, 1 + q - p ~ 2~, we have ~"-~"~ ;.,. G 
c:-

T+G 

~ \~(6 + it)l 
2

dt << G. 
T-C. 

Proof of Theorem 6.1. From the approximate functional equation (4.10) 

we have with x •y= (t/2!1r)1/ 2 

(6.14) CU,+i t) << 1 + 1 z ncl-i t 1 + T 1/2-i \ z nd-1-i t I, 
nS;(T/2.Jr) 1/2 n~(T/2!rr) 1/2 

where the error made by replacing (t/2,r)
1
/ 2 by (T/2,r) 

1
/ 2 in the range of summation 

is clearly 0(1) if T - G S; t _°S; T +Gand G _°S; T( 1+~)/ 2• For the less interesting 

range T( 1+,)/ 2 < G !: T the theorem follows from the approximate functional equa

tion (4.66) (where the lengths of the sums involved do not depend ont) and the 

mean value theorem (5.2) for Dirichlet polynomials. The intervals of summation in 

(6.14) are split into O(logT) subintervals of the form (N,2N], N = [{T/2.1r)1/ 2]2-j, 

j • 1,2, ••• , and thus by partial summation (equation (1.17)) 
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'l't() 

) /~(~+it)j
2

dt << G + 
11-G, 

since d > 1/2, N << T 1/ 2 • For N < Ti we use again the mean Talue theorem for 

Dirichlet polynomials, and for N> T1 we use Lemma 6.2, which·leads to the esti

mation of the exponential sum 

(6.16) s ... Z:, exp(iTlog(1 + r/n)) 
N<n<N'' 

L exp(if (n)), 
N<n<N' 

where for r,T fixed f(x) = Tlog(1 + r/x), N :5 x :5 2N. The condition N << T
1
/ 2 

ensures that f 1 (x) :;:,i;. 1 for N :5 x :5 2N, and in the same range we have also 

f (k) (x) ~ TrN-k- 1, k 1 2 
, ~ - ' , ... , 

so that we may use the theory of exponent pairs, as presented in §3 of Chapter 2, 

to estimate s. We obtain 

(6.17) S << max jf 1 (x)jpNq << TP~Nq- 2p 
N<x:<2N 

for any exponent pair (p,q). Therefore combining (6.14)-(6.17) and Lemma 6.2, we 

i 1/2 obtain in view of T < N << T , 1 + q - p 2:, 26, 

'r'+G 

(6.18) ) l!'(J+ i t) 12dt << G + GT f( 1- 2') logT + G L L TprpNq• 2p• 2~ 
'l'-O N r;::NG-logT 

G + 

<< G + G L Tp (NG-\ogT) 1+pNq-2p- 26 

N 

-p p 1+q-p-26 1+p logT •maxG T N log T << G, 
N 

<< 

G-._ T(p+q+1-2d)/2(p+1)(logT)(2+p)/41+p), for - proving Theorem 6.1. 

<< 

From the approximate functional equation one obtains the well-known 

relation (see also Titchmarsh (s], Chapter 7) 
'T' 

) l((i + it)\
2

dt = (t(u) + o(1))T, (1/2 <d< 1) 
0 

which shows that the bound in (6.1~) is of the expected order of magnitude, and 

a sharper asymptotic formula than the one above is given by (7.99). 

Following the proof of Theorem 6.1 in case when d z 1/2 we arrive at 
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'l'+C:» S lC(1/2+it)l 2dt << GlogT, T(p+q)/2 (p+1)(1ogT) (p+2)/(p+1).::: G,:::: T, 

'r-G 

but in the next section we shall obtain an estimate which improves (6.19). 

§4. The mean square when o ~ 1/2 

The theorem which will be stated and proved in this section is one 

of the fundamental results of this text,sinceit serves as a basis for the derivation 

of higher power moments of the zeta-function and provides a technically simple way 

of estimating '( 1/2 + iT). The resul t is due to D.R. Heath-Brown (J1, who used the 

averaging integral (1.34) and the deep formula of F.v. Atkinson (31. As mentioned 

in §1, the proof that will be presented here is new and self-contained in the 

sense that it does not in any way depend on Atkinson's result, but is based on the 

approximate functional equation for ~2 (s) and Voronoï 1s formula, as suggested by 

M. Jutila's work (61. 

where 

(6.21) 

(6.22) 

"" 1/2-1: THEOREM 6.20 For T ::: G:;: T uniformly in G 

I< 

1rc1/2+it)I 2dt << GlogT + GI(TK)- 1
/ 4 (lS(K)\+ K-1) [S(x)ldx)e-G

2
K/T, 

K D 

S ( x) = S ( x, K, T) = L ( -1 ) n d ( n) exp (if ( T, n) ) , 
K<n<K+x 

and summation is over K = 2k such that T1/ 3 :;: K.::: N, where for~ :::o-O fixed 

N = B2/(T/2'lr - B), B = T(2:lfG)-\og( 1+s)/ 2T. 

( , ) -2 1+ S Proof of Theorem 6.2. From 6.23 we have K << TG log T, and the 

interesting range for K is K?: T
1
/ 3, since the trivial bound S(x) << KlogT gives 

I{ ') 

+ K-15 \S(x)(dx)e-GLK/T << I 
j 

z << logT, 
j 
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and thus it is seen that the relevant range for Gis G~ T1/ 3lol'l', since 

T1/ 3 S K <<TG- 2log 1+$T. Another remark is that in vie• of the exponential factor 

exp(-G 2K/T) the proof that will be given actually shows that uniformly for 

/ 
~ 1/2-~ . 

T 2 S ?" !: T and T !: G :;E T we obta1.n 

!7"·+(?, 

(6.24) ) lt(1/2+it)l 2dt << GlogT + GL (TK)- 114(\s(K)\ + 
K 

~-G 

where S(x) = S(x,K,!T") is given by (6.21), T1
/ 3 !: K = 2k !: N, and N is given by 

(6.23). This form of the mean value estimate will be particularly useful for higher 

power moment estimates in Chapter 7. 

Since ar sinhx = (1 + o(1))x as x--")O, it is seen that (6.20) will follow 

readily by partial summation from 
'r'-t6 s \[:'(1/2 + i t) l 2dt << Glog'r + 
'I"-6 

+ e\ L,(-1)nd(n)n-
1
/ 2 (1/4+T/2~n)-

1
/ 4exp(-(Garsinh(('1m/2T)

1
/ 2))

2
)exp(if(T,n))l, 

n<N 

and so we set out to prove (6.25). To facilitate the notation we introduce the 

abbreviations 
'T'+~ 

(6.26) T 1 = T/(2,r), L = log-T, I = 5 lt(1/2 + it)l 2dt. 
'l'-G 

The first step is similar to the one made in the proof of Theorem 6.1, 

and consista in majorizing I by a "short" e:xponential sum (of length << TL/G). We 

start from the approximate functional equation (4.13), which gives 
GL GL 

(6.27) I << ~ ll:(1/2+i t+iT) 1
2

exp(-t
2

G-
2

)dt << GL + ) (s1 + s1 )exp(-t
2

G-
2

)dt, 

-~ -~ 
where 

q(x) = xlog(2Jrn/x) + x + 'JT'/4, 

if we utilize the asymptotic formula (A.4). For -GL !: t !: GL we have by Taylor 1s 

formula 



109 

(6.30) 

so that from (6.27)-(6.30) we obtain 

where 
(>L 

1
1 

= ~ L d(ri).n-1/ 2+iq(T)exp(it(logn/T 1 )-it 2/(2T)-t 2G-2)dt + 
-c,1. n<!I', 

-
+ O (G4L5T- 3/ 2) = L, d(n)n - 1

/ 2+iq (T) S exp(i:t (logn/T' )-i t 2 / (2T)-t 2
G-

2)dt + O(GL), 
n<t'' -c:io 

since and 
:t6L. 

above is evaluated using 

<< T-c for any fixed c :> o. The last inteçal 

(1.34), which gives with Y ~-(2iT)• 1 + G-2 

(6.33) 

The presence of the negative ex.ponential factor in (6.33) will make the 

contribution of many summands negligible. To see this let n • [T11 - m and 

-1 (1+ s)/2 suppose m::::, T1 G L , where S > 0 is arbitrary small, but fixed. For these 

m we haTe 

for any fixed c1,c 2 :> o, we have 

(6.34) I << GL + Gis!, 

where Sis the "short" exponential sum 

(6.35) s = y ( ) -1/2-iT G
2

( / 2 L...J , dnn exp(- 4 lognT 1 ) ). 

T ' • T ' G -1 L ( 1 + <ii) / 2 <n<!I' ' 

From now on the idea of the proof is to apply Voronoï 1 s summation formula 

(3.2) to Sin (~35), obtaining eventually (6.25). Since the summation formula (3.2) 
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involves an infi.ni te series whose tails are not easy to estima te, we shall use 

Lemma 2.3, and instead of (6.-55) it will be more sui table to consider the avera-

ged sum 0 

(6.36) S' = u-1
Js(u)du,s(u) 
0 

~ ) -1/2-iT G
2

( / 2 
= _ ~ d(nn exp(2-tin-Tlogn'l") ). 
,... "',,.,-11 c-tt\J/.2, ....,,, 1 -, - , .:, ~ -+U<n-...J. -u 

2'1'in The factor e = e(n) = 1 that is introduced here does not affect the 

value of the sum, but is inserted to regulate the distribution of saddle points 

of exponential integrals which arise after Vorcncï's formulais applied. We 

shall choose 

(6.37) 

and then trivially S - S1 << UT-1/ 2
+t.. Now we apply (3.2) to S(u) in (6.36), setting 

for convenience of notation M1 AT' - T1a•11(1+S)/ 2,M2 = T' = T/(2~). Then (3.2) 

gives l'Yl~-u. 

S -1/2-iT ( G
2 

2 (6.38) S(u) = (logx+2r)x exp 2~ix - 4 (logx/T') )dx + 0(1) + 
M.+"" 

+ 
-1/2-iT G

2 
2 x exp(2n)( - T(logx/T') )ol(nx)dx, 

where o(.(x) is defined by (3.3). We recall the asymptotic formula (3.15), which 

we write here again as 

(6.39) oC.(nx) = -2
1
/

2x-
1
/ 4n- 1

/ 41sin(4,r\;fni-,r/4) - (32:n-)-\nx)-
1
/

2cos(4:rr\!Înx-~4)1 + 

+ o(n-5/4x-5/4), 

noting first that the contribution of the 0-term above to the sum in (6.38) is 

certainly << 1. The first integral in (6.38) is estimated by (2.5) as 

<< L, 

and therefore its contribution to S 1 in (6.36) is again <<Land so << GL in (6.3,1). 

To treat the terms containing sines and cosines in (6.39) let N be defined by 

(6.23) and write the series in (6.38) as 
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where ~i-M. 

R1 = -2 1/ 2 L d(n)n- 1/ 4 5 x- 3/ 4-iT}sin(4Jrynx -17/4) 
~( 1+ ~) N M

4
,,AA- / 

Mt.-,1,1., 

R2 = -2 1/ 2 Li d(n)n- 1/ 4 ~ 
It>(1+f)N M~-r.v. 

... , 

where in (6.42) ••• stands for the same terms as in (6.41). The sum R2 will be 

estimated as<< L, and this can be at once seen for terms coming from cos(4~v'nx-~). 

Namely using (2.5) wi th f(z) = z - T' logz ±. 2 'l/ni we have 

since for M1 _s x _s M2 and n :> (1+E)N we have \f 1 (x)\ ::;,,i;> (n/x) 1/ 2, and therefore 

the cosine terme in (6.42) contribute a total of 

To estimate the contribution of sine terras in (6.42) we shall make use 

of S 1 , as defined by (6.36). By the properties of the function o<.(nx) we may 

integrate termwise, and we are left with the estimation of 

l) M1•A.1. 

(6.43) J d(n)n-
1
/ 4 ju-1) ) x- 3/ 4-iTexp(2lTix- ~\logx/T• )2 +4,ri viii)èl,alii/' 

?t> cr➔- E) N <> M1+-;I(. 

which will be carried out with the use of Lemma 2.3, where we take 

~/4 G
2 

2 f(z) = z ±. 2'l/ni - T1 logz, g(z) ""z-, exp(- 4 (logz/T 1 ) ), 

a• M1,b • M2, G = M;3/ 4,_r X M1, M = (n/M1)
1
/ 2• This is the only point in the 

proof where the parameter U = G1/ 2 is needed, and we can easily verify that the 

hypotheses of Lemma 2.3 are fulfilled. Taking into account that TG-21 1+S X N 

we therefore obtain that the expression given by (6.43) is 
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<< << 

We have therefore terminated the estimation of R2 in (6.42) and now we 

turn to R1 in (6.41). First we observe that the contribution of terms with 

cos(4~ ... 'Jl"/4) is trivially 

/111 

<< L d(n)n-3/4 s x-5/4dx << N1/4LT-1/4 << L. 
n.::;( 1 + i) N 1'½

1 

Since U is needed not anymore in (6.41) we replace the limits of integration 

in (6.41) by M1 and M2 respectively, making an error which is 

<< 

<< 1. 

Thus we have yet to consider 

where M7. 

r: = ) x- 3/ 4exp(-~\1ogx/T 1 )
2

)exp(2nx - iTlogx .±. 1(4,ry'nx - <Jr/4))dx, 

""" 
which means that in I+ the+ sign is to be taken in exp(2nx - ••• ), while in I-n n 

the minus sign is to be taken. 

± 
To estimate In we shall apply Theorem 2.2 with a• M

1
,b = M

2
, k • 1, 

f (z) ~ 1/2 -3/4 G
2 

2 3/4 = fn(z) = -T'logz .:t.. 2(nz) , Y,(z) = z exp(- 4 (1ogz/T') ), <t>(x) ""x- , 

F(x) = T, ,r(x) = T. The conditions of Theorem 2.2 are readily verified, e.g. 

-2 1+ri l ± 
1
-1 N << TG log T implies fn(z)" 2 ) -1 ) << f (x F (x. The saddle points are the 

roots of the equation f±(x)' =-1, which is 
n 

(6.47) 

and these roots must lie in [M1,M2J for the main terms in Theorem 2.2 to exist. 

Of the two roots of the equation (6.47) only 
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need be considered, since the other root always exceeds M2, and x
0 

corresponds to 

the integral I+. Trivially x < M2 = T' • T/(2~), and x > M1 holds for n < n, n o- o- - o 

where 

hence 

Solving for n we obtain 
0 

n 
0 

where N is given by (6.23). 

The error terms arising from I+ and I after ~heorem 2.2 is applied are 
n n 

-1:i.c) 

treated analogously, and thus only·,error terms coming from I+ will be considered 
n 

(no main terms come from 1-). Alternatively, one can estimate the sum with I- by 
n n 

applying (2.3). To calculate the main terms coming from the saddle points of r+ 
n 

note that 

r;(z) • T'z-2 _ -r11/2z-3/2 = z-3/2(T'z-1/2 _ -½n1/2), 

and in view of (n/x ) 1
/

2 
0 

f"(x) n o 

• T1/x -1 it follows that 
0 

-3/2(T' -1/2 1 1/2) 
= xo xo - ? ' 

since rationalizing the right-ha.nd side of (6.48) we obtain 

Hence 

and likewise 

T 1 x- 1 
0 

which gives 

log(T 1/x
0

) = 2log((n/4T') 
1
/ 2+(1 + n/4T 1 ) 

1/ 2) = 2ar sinh((n/4T') 1/ 2). 
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Therefore 

'e(x )f"(x )- 1/ 2e(f(x) + kx + 1/8) • o n o o o 

and since e(-n/2) • enri = (-1)n it is seen using (6.48) and (nx ) 1/ 2 • T' 
0 

l~ d(n)n- 1/ 4t(x )f"(x )- 1/ 2e(f(x) + x + 1/s)\ < 
~ ono o o -

12i (-1)nd(n)n-
1
/ 2(1/4 + T1/n)• 1/ 4exp(if(T,n))ex:p(-(Gar sinh((n/4T 1 )

1
/ 2)) 2)!, 

n<N 

where f(T,n) is given by (6.22), and the last sum is exactly the one that appears 

in (6.25). 

Thus it remains to show that the contribution of error terms of I+ to 
n 

the sum in (6.45) is << L. This is analogous to the corresponding proof of the 

approximate functional equation (4.11) by the use of Voronoi's formula, and the 

only terms which are non-trivial to estimate are 

The equation 1 + fri(M1) = 0 has only one solution in n, namely n = N, so 

it is convenient to write n •[N]+ k. Then 

aince 1/2 1/2 -1/2 · 
(N+k) - N ~ lkfN for I kl ~ N/2. Also for t > 0 fixed and sufficiently 

small for lk( >½Nin f~(M1) + 1 either the term 1 - T'/M
1 

X- G- 11( 1+~)/ 2 or -tht. i:ttlll 

(n/M )• 1
/

2 dominates, and in either case we haTe 
1 

T1/2, lkl < T1/2G-1 1 (1+s)/2 

( If~ (M1 )+11 + T- 1/ 2)- 1 << \k\- 1TG ... 1 L ( 1+ ~)/ 2,T 112
G-

1
L (

1
+ ~)/

2 
!:: lkl .::: jN. 

(G T 1/2 -1/2) max, n, 
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Therefore finally 

<< 

<< L, 

which completes the proof of Theorem 6.2. 

In concluding this section let it be recalled that the proof of Theorem 6.2 

depended on the use of the appro:ximate functional equation (4.13) forlC(t/2+it)l 2, 

whose proof is not easy. Instead of (4.13) one may use the reflection principle, 

which is simpler thalil the approximate functional equation for C2 (s), and obtain a 

result of the same st:rength as Theorem 6.2 (the unimportant exponential factors which 

will appear in the course of the proof may be easily removed by partial summation). 

Namely from (4.66) with h = log 2T, k • 2, T - GL,::: t ,ST+ GL, s = 1/2 + it, 

M • 4T2/Y, w = u + iv, 0( • 1/2 + f we have 

~2(1/2+it) = L, d(n)e-(n/Y)hn- 1/ 2-it + "X,2 (1/2+it) L, d(n)n- 1/ 2+it + 
n<2Y n54,T2/y 

- (29ri)- 1 ( 't2 (1/2+i t+w) ~ d (n)n - 1/ 2+i t+wywf'(1 + w/h) dw. 
) 2 2 w 

U•E, jv(<h n<4T /Y 

+ 0 (1) 

Here we choose Y= 2T to equalize the length of the sums and multiply by 

'X,-1(1/2+it) to obtain 

i-1<1/2+i t)~
2 

(1/2+i t) = 1~(1/2+i t) 12• 

From this point on the proof would be quite similar to the one given already 

for Theorem 6.2. The reflected sum (with -1/2 + it + w) will give the same upper 

bound as the other two, namely (6,20). 



116 

§5. The order of the zeta-function in the critical strip 

The problem of finding the order of \l:(6+i t) \ in the "cri tical strip" 

O < d < 1 is one of the deepest problems of analytic number theory, with many 

different applications. The present state of knowledge is far from satisfactory, 

unless one accepta the truth of unproved conjectures like Lindel5f's or Riemann•s. 

Lemma 6.1 and Theorem 6.1 provide at once the means for the estimation of{~(o+it)l, 

1/2 < 6 < 1 fixed. By (6.1) and (6.13) we have 

for 

'l'H~~ 

\Ï:(d + iT) l 2 << 1 + logT• S IC(& - 1/log'l' + iv) l 2dv << 
If'- ~~rr 

'l'+G 

1 + logT. ) lZ: (6 - 1/logT + iv) [ 2dv << GlogT 

'1'-G 

where (p,q) is an exponent pair. This gives 

4(1, + iT) << T(p+q+1-2~)/(4p+4) (logT) (3+2p)/(2p+2), 1/2 <d < 1, 

if 1 + q .. p ~ 2d, and for 6 = 1/2 we obtain 

If we define for any real 9 the function o(Q) in suoh a way that 

for any E > 0 and T ~ T
0

(€), then finding the order of the zeta-function means in 

fact finding upper bounds for c(9). The bound furnished by (6.49) provides fairly 

good estimates with an adequate choice of (p,q), while (6.50) yields with 

(p,q) = (11/30,16/30) the bound c(1/2).::: 27/164 = 0.164634 ••• , which was proved in 

E.C. Titchmarsh 1s book (a]. With the theory of exponent pairs good upper bounds 

for c(9) may be derived from the approximate functional equation (4.10) for C(s). 

Namely choosing x •y= (t/2m)
1
/ 2 in (4.10) we have by partial summation 

t'(~+ it) << 1 + LiN-2. max \ L nit l 
N N<:N1 <:2N N<ri.<:N1 
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+ r~-1t 1/2-0 max I z nit 1 ' 
N N<N1<2N N<ll<N 1 

where N take■ 0(logT) valuea of the form (t/2~) 
1
/ 22-j, j • 1,2, •••• Since N << t

1
/ 2 

•• aay uae the theory of exponent pairs (see §3 of Chapter 2) to estimate 

L exp(iF(n)), F(x) = tlogx. 

• • • • 

(6.54) 

'"\' it 
S(N,t) = LJ n • 

N<n_sN' N<n_sN' 

Here F 1 (x) ... t/x ::>1.> 1 for N ~ !: 2N, and also F(k) (x) X tN-k for k = 1,2, 

Therefore we obtain 

and from (6.51) and (6.54) we infer that 

(6.55) C(d+it) << 1 + ZctpNq•p-a +t 112-l+pNq-p~- 1). 
N 

If further we have 

then (6.55) gives 

[(t!. + it) << 1 + (tp+(q-p-~)/ 2 + t 1/ 2-~+p+(q-p+d- 1)/ 2)1ogt, 

or 

(6.57) 

In case d • 1/2 (when q - p:::, 1/2 has to be observed) we get a small 

iaprovement of c(1/2) _s 27/164, viz. 

(6.58) 0(1/2) ,S 0.164510678 ••• , 

by ta.king the exponent pair (p,q) • (~/2 + t,1/2 + dt/1 + f),«-• 0.3290213568 ••• , 

and this seems to be the present limit obtainable by the method of exponent pairs 

in the one-dimensional case. The classical estimatea of van der Corput and 

r, 1 1-1 Hardy-Littlewood (see Titchmarsh Le, Chapter 5) state that for L =2 , 1:::, 3 

on• haa 

(6.59) c(Q) < 1/(21 - 2) for Q = 1 - 1/(21 - 2), 

(6.60) c(Q) < 1/1(1 + 1) for 9 = 1 - 1/1. 

Starting from the exppnent pair (p,q) • (1/6,2/3) and using Lemma 2.a 

(A-proceas) it is seen by induction on 1 that (p,q) = (1/(21-2);(21•1-1)/(21-2)) is 
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also an exponent pair, so that (6.59) follows from (6,.57) and similarly one arrives 

at (6.6u). 

From the functional equation (A.3) it follows at once that c(G) = 1/2 - ~ 

for 8 < O,c(9) = O for ~ :::_ 1. Since c(e) is a non-increa.sing,convex fur..ctior. of 9 

i t is seen that upper bound for c (~) may be obtai.ned in a sa tisfactory way from 

(6.57)-(6.6c) ,conv(-:xity, and the functi.onal equation for the zeta-function. 

As mentioned at the end of Chapter 2, E.C. Titchmarsh developed in the 

1930 1s a powerful two-dimersional method for the estimation of ex1-0nential suros. 

He considered sums of the type L_; e (f (x,y)), where (x,y) is a point whose 
(x,y)E.D 

ccordinates are integers, and which lies in a two-dimensional domain D, while f 

is a function of two variables possessing at least the partial derivatives of 

the second order. Several variants of the two-dimensional method have appeared 

in the past fifty years, and at present the best results seem to be those coming 

from the method of G. Kolesnik [3J, [51, [6]. In some problems, like in the esti

mation. of c (1/2), i t is not easy to transform a one-dimensional exponential sum 

into a two-dimensional sum, al though a genera1 procedure is being offered by 

Lemma 2.6, especially by (2.38). However Theorem 6.2 and Lemma 6.1 provide us with 

the means of applying two-dimensional tect.niques at once, since (6.21) contains 

the diviser function d(n), and therefore S(x) is really a two-dimensional sum. 
n~ 

Before obtaining estima tes of c (1/2) and ) l~(1/2+i t) [ 2dt we shall quote the 

ï-c, 

following result of G. Kolesnik [6]. 

Lemma 6.3. Let D be the domain X _:5 x S X1 ;:S 2X, Y _:5 y,::: Y1 < 2Y,. XY • N, 

where x and y are positive integers. Then 

(6.61) ~ e(f(x,y)) 
(x,y)éD 

<< + 

where f(x,y) <<F, f k 
1

(x,y) = Ck 
1

f(x,y)x-ky-l + O(hFx-ky--l) for (x,y)éD, 
X y ' 

oo/ e ti4~e; o 11.s 

~ << N-
1
/ 3, X:::_ Y, and a cèrtain system involving partial derivatives of f(x,y) 

must be satisfied. 

This last condition mentioned above, involving a certain system of equa

tions, is rather technical and lengthy, and therefore is not stated in detail for 
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brevity 1 s sake. For the details of the difficult proof of (6.61) the reader is 

referred to Kolesnik [61, since a complete proof of this result falls beyond the 

scope of this text. Having at disposal an estimate such as (6.61) is, one can 

improve a little (6.19) and also (6.58) by proving 

(6.62) 

For G :> T35/ 1os and T :> T 
- 0 

THEOREM 6.3. 

'f+G 

) IC(1/2 + it) j2dt 
2 

<.< Glog To 

'1'-G 

In view of Lemma 6.1, theabove estimate yields for G; T35/ 108 

t.:l l'i" 

\t(1/2 + iT)/ 2 
<< logT + logT ) e-lu\1~(1/2 + iT + iu)[ 2du << 

-~'-'r 

(1 + ) (4(1/2 + it)l 2dt)logT << T35/ 1081og3T, 

1'-G 

giving at once 

Corollary 6.1. For T > T 
- 0 

This improves (6.58) since 35/216 = 0.162037037 ••• • The estimate (6.63) 

is the best of its kind at the moment of writing this text. G. Kolesnik 1s proof (61 

of (6.63) had the weaker T~ instead of log 3/ 2T. 

Proof of Theorem 6.3. The interesting range in (6.62) is G < T 1/ 3 - ' since 

the larger values of Gare covered by the proof of Theorem 6.1. We use Theorem 6.2 

with b = 19 which leads to the estimation of the sum 

S(x,K,T) • L (-1)nd(n)exp(if(T,n)), 
K<n<K+x 

where f(T,n) is given by (6~22). The factor (-1)n, which is present in (6.64), is 

harmless. Indeed, if n,k,kpm,m 1 are positive integers, .0 <a< b, and g(n) is any 

arithmetical function, then 

LJ (-1)kmg(km) = L g(2k 1m) + 
a<km<b a/2<k 1~/2 

+ L g(2km1) - L g(4k m) - L g({2kr1)(2m1+1)). 
a/2<km 1<b/2 a/ 4<k1m1s,/ 4 

1 1 
a<(2k 1+1) (2m1+1b:;b 
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But the last sum above is equal to 

which shows that the estimation of (6.64) reduces to the estimation of several 

sums of the type 

L exp(if(T,Cmn)), 
K/ C<lllnS( K + x) / C 

where C • 1,2 or 4. All these sums are estimated analogously, and thus henceforth 

we shall assume that C = 1. Writing 

g(z) = ar sinhz + z(z 2 + 1)
1
/

2 

it is seen that g'(z) = 2(z 2 + 1) 
1
/

2
, hence for z < 1 

( 6. 66) 

and thus a 1 • 2 and !amis 1/(2m~1). for m~ 2. Therefore with some suitable 

00 

(6.67) f(T,u) ~b T3/2-j j-1/2 
+ L..., . u ' 

j=3 J 

and the function F will be easier to estimate by Kolesnik 1s Lemma 6.3 than f 

i tself. If we suppose that G ~ T 
1
/. 4, then for i < 1 in Theorem 6.2 we have that 

-2 2 K,::: TG log T, and hence 

L, (exp(if(T,mn)) - exp(iF(T,mn))) << L d(n)\f(T,n) - F(T,n)\ 
K<llln<K+x K<n<K+x 

<< Tt.-K max lf(T,n) - F(T,n)\ << TtK7/ 2T- 3/ 2 << TEK1
/

2
• 

K<n<K+x 

Therefore for G> T
1
/ 4 in Theorem 6.2 we have reduced the problem to the 

estimation of the sum 

To estimate s2 (x,K,T) we apply Lemma 6.~, taking f(x,y) • F(x,y) (here F 



121 

refers to (6.68)), F • (TK)1/ 2, N = K, and dividing the domain K < mn,::: K + x into 

O(log'r) subdomains of the f9rm X,::: x,::: x1 ,::: 2X, Y,::: y,::: Y1 ,::: 2Y, X~ Y. It may be 

readily verified that the conditions of Lemmà 6.3 hold, and we obtain 

<< 

Further observe that for·any fixed C > 0 we have 

(6.72) 
-2 C 

<< (TG ) • 

Therefore for G~ T35/ 108 it follows from Theorem 6.2 and the aboTe 

estimates that 

2 Glog T(1 + 

'l'+C, 

~ 1~(1/2 + it)j
2

dt << 

'1'· G 

L (K135/152T-5/16 + K81/152T-3/16 + K1/4Te-1/4)e•G
2
K/T) 

K=2k <l.1G-2log 2T 

which completes the proof of Theorem 6.3. 

§6. Third and fourth power moments in short intervals 

Having developed a method based on the use of Fourier coefficients of 

cusp forms and Kloosterman sums, H. Iwaniec [2] recently obtained a deep estimate 

for the fourth power moment in short intervals. His Theorem 4 states the following: 

If T ~ 2, T 
1
/

2 
< G,::: T and T ,::: t 1 < t 2 .< • •• < tR ,::: 2T, tr+ 1 - tr ~ G for r = 1, • •• ,R, 

then t-,-+G 

L ~ IC(1/2 + i t)l 4dt <i< Tt(RG + R 
1
/
2

G-
1
/

2
T). 

r<R tr 

The proof of this result is too complex to be included here, and (6.73) 

is used in this te:rt only _for. the derivation of the approximate functional equation 

for ~k(s) (k > 2) in Chapter 4, where the special case 
'l'+G 

(6.14) ,~ lt(1/2 + i t) l 4dt << TEG, G ~ T2/ 3 

<T'-G 

of (6.73) is needed. It was mentioned by Iwaniec (21 that (6.73) may be used for the 
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proof of the twelfth power moment estimate (7.15) of Heath-Erown 01, which will 

be proved here with the aid of Theorem 6.2. It may be also remarked that in the 

case of the twelfth power moment Iwaniec 1s method yields Ti instead of log 17T in 

(7.15). As an application of (6.73) for R = 1 note that for G> T
1
/

2 
we haYe by 

Theorem 6.2 and the Cauchy-Schwarz inequality 
1'tG '1'+6 'NG 

5 \((1/2+it)l 3dt .!:: () IC(1/2+it)l
2

dt)
1
/

2
() lt(1/2+it)( 4dt)

1
/

2 
<< 

CT'-G 'l'-C:> 'l'-6 

(6.75) 

which is used in Chapter 4 in the proof of the approximate functional equation 

for C3(s) (with G = 2T
1
/

2
). 

Other interesting mean values involving the zeta-funotion were investi

gated by H. Iwaniec (11 and Deshouillers-Iwaniec [11. A natural way to attack the 
'JI 

eixth power moment for the zeta-function ( ~ [((1/2+it)[ 6dt << T
1+r) is to try to 

0 
prove 

(6.76) 

for N <i<T
1/ 2, where a 1, ••• ,aN are arbitrary complex numbers, since by the appro

rlmate functional equation (4.10) (or the reflection principle) it is seen that 

((1/2+it) may be majorized by two Diri~let polynomiale of length << T
1/ 2

• Proving 

(6.76) for the range N << T
1
/ 2 seems to be out of reach at preaent, but using 

intricate techniques involving noosterman sums, H. Iwaniec [11 o1iained (6.76) 

for the range N .!:: T1/ 10, while J.-M. Deshouillers and H. Iwaniec [11 improved 

this to N ,S T1
/ 5• They also mention that under the truth of a certain conjecture 

involving the lower bou.nd of eigenTalues of the non-euclidean Laplacian of Hecke 

congruence subgroups, their method would give N ~T 1/ 4• 

NOTES 

The proof of Theorem 6.1 is due to the author and has not appeared in 

print before. An interesting problem seems to be the estimation of R(k,d ;T) ,where 
l'J' 

s I e (d + i t) 1 2k dt = 
1 
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k ·~ 1 is a fixed integer, 1/2 <6 < 1 is fixed. This problem will be investi

gated in more detail in §4 of Chapter 7, while the analogue of (6.77) when k = 1, 

d = 1/2 is one of the main topics of this text and will be extensively treated 

in Chapter 11. 

In [91 D.R. Heath-Brown uses an inequality due to P.X. Gallagher (Lemma 

1.10 of H.L. Montgomery [2]) to obtain an estimate very similar to Lemma 6.2 and 

1/;i; 
proves (6.19) for the range G~ T /• 

The proof of Theorem 6.2 is new, and is based on M. Jutila 1s paper [6] 

and the exponential averaging technique which gives (6.35). Indeed it would have 

been shorter to apply Jutila's Theorem 1 of [6J to (4.13) and then to integrate 

the resulting expression, but the proof given here is self-contained. Also several 

details in the proof are simpler than the corresponding ones in Jutila 1s proof, 

since we are dealing here with a special Dirichlet polynomial, while Jutila con-

( ) ~ d(n)n-1/2-i t siders the general case of transforming s1 M1,M2;t = k.. by 
M1,!?l<M2 

Voronoï 1s summation formula. This approach, based on the use of Voronoï 1s formula, 

seems very natural and the aforementioned paper of Jutila contains generalizations 

to other Dirichlet polynomiale (e.g. whose coefficients are generated by certain 

eusp forms) • 

Theorem 6.3 and its Corollary are given in the author 1s paper [2]. The 

final version of Kolesnik 1s estimate (6.61), as published in his paper (6], had 

... , but the slightly 

sharper version used in the text may be obtained by refining his argument a little. 

Theorem 6.3 provides the best-known order estimate for IC(1/2+iT)\, while 

Theorem 6.2 serves as a basis for higher power moments which will be discussed in 

Chapter 7. It is seen from the proof of Theorem 6.2 that in fact one essentially 

obtains (6.25) without the absolute value sign and (as remarked in detail in 

Notes of Chapter 11) it is thus unnecessary ta use the Halasz-Montgomery inequality 

in Thh•r0n7.1. Instead one may proceed directly with the Cauchy-9ll:warz inequality, 

simplifying the proof of Th•,:::t":r. 7. 1. 

Let c = c(1/2) be the constant for which s(1/2+it) << /t/c+~. The esti

mates of c have slowly evolved from the first significant exponent 1/6 to today's 
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sharpest 35/216, and though the gain over all these years is just 1/216, never

theless the improvements of the value of c reflect in a certain sense the constant 

development of modern analytic number theory. Various values of c are given below 

with a due references 

C = 1/6 = 0.16t ••• 

C = 163/988 = 0.1649797 ••• 

C = 27/164 = 0.1646341 ••• 

C = 229/1392 = 0.1645114 ••• 

C • 19/116 = 001637931••• 

C = 15/92 = 0.1630434••• 

C = 6/37 = 0.1621621••• 

C = 173/1067 = 0.1621368 ••• 

C = 35/216 = 0.162037037••• 

G.H. Hardy and J.E. Littlewood (2], 1921 

A. Walfisz (1], 1924 

E.C. Titchmarsh (11, 1931 

E. Phillips (1], 1933 

E.C. Titchmarsh (61, 1942 

s.H. Min (1), 1949 

W. Haneke (1), 1963 and Chen Jing-run (1] , 1965 

G. Kolesnik (3], 1973 

G. Kolesnik (6J,' 1982. 

Order results for ~(s) given in this chapter involve upper bounds. Con

cerning results about lower bounds one may mention the result of R. Balasubramaniari 

and K. Ramachandra (see Ramachandra [6]) that 

1 
p / . l (2. logH 1/2 0 001 ., (1 2 + 1 t) > exp 4 (logÎogH) ) , 10 !:: (logT) • :;: H !:: T, 

while for 1/2 < d < 1 fixed H.L. Montgomery [4] showed that 

log l((d + it)I = S2 (log 1-dt(loglogt)- 6
) 

+ 
holds fort> O. Also M. Jutila has kindly informed me that in a yet unpublished 

manuscript he has proved that there exist positive constants a 1,a 2 and a
3 

such 

that for T > 10 

exp(a 1(1oglogT)
1
/

2
) !:: JC(1/2 + it)I !:: exp(a 2 (1oglogT)

1
/ 2

) 

on a subset of measure at least a
3

T of the interval [o,T]. 

To assess the strength of lwaniec 1 s estimate (6.74),note that by Lemma 

6.1 wi th k = 4 

)~(1/2 + iT)( 4 << logT(1 

'l't-G 

+ ~ 1~<1/2 + it)l 4dt) << GT( 
<l'-G 

for G~ T2/ 3 , hence for G = T2/ 3 one obtains 4(1/2 + iT) << T1/ 6+E, which is 

the claesical result of Hardy and Littlewood(2]. 
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TOPICS IN RECENT ZETA-FUNCTION THEORY 

CHAPTER 7 

HIGHER POWER MOMENTS 

§1. Introduction 

§2. Power moments for J = 1/2 

§3. Power moments for 1/2 < o < 1 

§4. Asymptotic formulas for power moments when 1/2 <~ < 1 



C H A r T ~ R 7 

H I G H E R POWER MOMENTS 

§1. Introduction 

In this chapter we focus our attention on higher power moments (i.e. higher 

than the fourth,which was discussed in Chapter 5) for 1/2 !:: d < 1 fixed. As was 

the case with mean value estimates in Chapter 6, we shall distinguish between the 

cases J ~ 1/2 and 1/2 <d < 1,and since our main concern will be upper bounds, 

it seems appropriate to define M(A) (A::: 1) for any fixed A::: 4 as the number for 

which 'I' 

(7 .1) s j~(1/2 + it)f Adt << TM(A)+E 
4 

for any e > O. Similarly for 1/2 < & < 1 fixed we define m(d) as the number for 

which 'T' 

~ l4(d + it)lm(«i)dt << T1
+E 

4 

for any i > O, and naturally we seek upper bounds for M(A) and lower bounds for 

m(d). This difference lietween the definitions of M(A) and m(d) seems in place, since 

M(A) = 1 is not known to hold for any A> 4 at the moment of wri ting of this 

text, while for any fixed 1/2 < d < 1 it is possible to find a number m(o) > 4 

such that (7.2) holds (see E.c. Titchmarsh [81, Chapter 7). Results given by 

Chapter 7 of Titchmarsh (a] will be however substantially improved here, and the 

results of this chapter will be used for zero-density theorems of Chapter 9 and 

for divisor problems in Chapter 10. One of the main instruments in our study of 

(7.1) and (7.2) will be Theorem 6.2, and moreover in view of Lemma 6.1 the esti

mation of the integrals appearing in (7.1) and (7.2) is essentially equivalent to 

the estimation of discrete sums of the type 

where B • A or B • m(&) and t 1, ••• , tR are well-spaced real numbers in th,, aense 

that and (t - t 1 > 1 for r 1 s _< R. r s - r 

Finally we turn our attention in §4 to asymptotic formulas for 

"' ~\C~+it)\2kdt (ka fixed integer), lind not only to upper buunds of the type (7.2), 
◄ 
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§2. Power moments for d = 1/2 

In this section we shall suppose that t 1, • •• , tR form a ia~xiuu1:i:1t, se

quBnce of real n\1mbers which satisfy 

(7 .4) 

and 

(7.5) {((1/2 + itr)I ~ V "> O, (r = 1,2, ••• ,R). 

Our aim is to derive upper bounds for R = R(V), which will eventually • 

lead to estimates of the type (7.1). As an auxiliary reault which is analogous 

to the fourth power moment, it may be noted that 

(7 .6) 

and this will turn out to be the best available bound for R when Vis small, as will 

be precisely seen by comparing (7.6) with later results of this chapter. To see that 

(7.6) holds it is sufficient to suppose that T/2.::: tr:;: T, and then to replace T 

by T/2,T/2 2 etc. and to sum all the results. From the reflection principle esti

mate (4.66) with k • 2, h = log 2T, Y= M • 2T, s • 1/2 + it ,« = 3/4 we obtain r 

-1/2-i t \ 2 16 d(n)n r + R + 
n<2T 

~1. 

1
" -1/4-it -ivl2 c -1 2 
Li d(n)n r )( J e-lvl h l1/4 + iv\- 1dv), 

n<2T 
- -i~ 

where the Cauchy-Schwarz inequality was used, (1.32) and (4.4). The integral above 

is clearly J."L 

<< 1 + 5 -1 v dv << loglogl' ~ 
., 

The sums over r <Rare estimated by the mean value Theorem 5.3, where 

one uses (5.26). We obtain 

RV4 << Tlog 5T + R + T- 1/ 2 (loglogT) 2 (T L d2 (n)n - 1/ 2 + ~ d2 (n)n 1/ 2)1ogl' 
n<2T n<2T 
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if V> logT, and (7.6) follows. For V< logT (7.6) follows again from the trivial 

estimate R,::: T. 

We pass now to the main result of this section, which is 
1 

THEOREM 7.1. Let (p,q) be any exponent pair with p > O, and let 

t 1 < ••• < tR satisfy (7.4) and (7.5). Then 

-6 8 
R << TV log T + 

For special choices of the exponent pair (p,q) we obtain from (7 .a) 

Corollary 7.1. Under the hypotheses of Theorem 7.1 we have 

(7 .9) R << TV-6log 8T + T29/13v-17s/13 10g235/13T, 

(7. 10) R << TV- 6log 8T + T5/2v-31/2 10ga1/4T, 

(7 .11) R << TV- 6log 8T + T3v-19log49/2T, 

(7.12) R << TV-6log 8T + T4v-12a/5log 162/ 5T, 

(7.13) R <t< TV- 6log 8T + T15/4v-24log61/2T. 

The exponent pair (p,q) • (1/2,1/2) in Theorem 7.1 leads to an important 

result, proved first by D.R. Heath-Brown Q]. This is 

(7. 15) 

Corollary 7.2. Under the hypothesesof Theorem 7.1 we have 

2 -12 16 
R << T V log T. 

From this result it follows that M(12),::: 2, or more precisely 

rr 
~ /4(1/2 + it) j12

dt << T
2
log 17T. 

1 

Before the proof of Theorem 7.1 we shall give a lemma providing estimates 

for moduli of S(x,K,t) over well-spaced points t, where S(x,K,T) is defined by 
r r 

(6.21). The result is contained in 

Lemma 7.1. Let A be a set of real numbers t such that T/2 < t < T and 
r - r-

2 
log T,::: G !S \tr - t

8
\ !SJ for r f s. If IAI denotes the cardinality of A, then 

for K !: T/logT, T?:, T
0 

and any exponent pair (p,q) we have 

(7. 16) L \S(x,K, t ) \ << 
t A r rE. 

l(K+K3/4T1/4G-1/2log1/2T) IAl1/2 + 

+ Jp/2T-p/4\AIK(2q-p+2)/4/1og3/2T. 



Proof of Lemma 7.1. We start from (1.35), and choose 

; = (-1)nd(n) for K < n < K + x and zero otherwise, 
n 

00 

'f - { V' 7. , wi th r - l r nJ 
' n=1 

129 

with 

'rr,n = exp(if(tr,n)) for K,::: n,::: 2K and zero otherwise, where f(tr,n) is defined 

by (6.22). Then by (1.39) we have uniformly for x ,=:: K 

Il t ll2 
= L, d

2 (n) << Klog 3T, 
K<n<K+x 

(7 .17) L js(x,K,t )1 
t €.A r 
r 

<< K
1
/

2
log 3/

2TI ~ 1 L exp(if(t ,n)-if(t ,n))l!
1
/

2 

t t €.A K<n<2K r 8 

r' s -

The inner sum on the right-hand side of (7.17) is O(K) if r = s, and if 

r ~ s we shall use the theory of exponent pairs (§3 of Chapter 2) to estimate 

S = L; exp(if(n)), f(u) • f(t ,u) - f(t ,u), r f s. 
K<n<2K r s 

Defining g(z) = ar sinhz + z(z 2 + 1)
1
/

2 we recall that (6.66) holds 

and since 

f(u) 

it is sa:n -t'herefore for r,s fixed that for K,::: u,::: 2K and j = 1,2, ••• 

where we used (6.66), the mean value theorem and the condition K < T/logT. This 

1 
-1/2 -1/2 implies that if. F = lt - t K T ~ 1 we may use the theory of exponent r s 

pairs to estimate (7.18), and if this condition is not satisfied we use Lemma 2.1 

and Lemma 2.5 to obtain in any case 

S = Li exp(if(n)) 
K<n<2K 

<< FpKq + max l f 1 (u) 1-1 << 
K<U<2K 

The spacing condition imposed on the t 1 s gives 
r 

.LI \t - t \- 1 
.1 r s t ,t fA,r,-s r s 

-1 n -1 \ << G !A logT, 

and thus substituting (7.18) and (7.19) in (7.17) we obtain (7.16). 



130 

Proof of Theorem 7.1. Having atour disposal Theorem 6.2 and Lemma 7.1 

it will be a fairly simple matter to derive Theorem 7.1. Let first A
3 

denote a 

set of points t satisfying the spacing condition (7.4) but with 2T/3 < t < 5T/6. 
r - r -

We shall divide the interval [2T/3,5'f/6] into N subintervals of length at most 

J "'T/(6N), and we shall denote by A1,k (k = 1, ••• ,N) the set of points in the 

k-th of these intervals. Then the points of each A1 k lie in an interval [T ,T +J] 
, 0 0 

for some T
0 

which satisfies 2T/3 < T
0

,:::: 5T/6 - J. We shall estimate first A
1

,k by 

taking 

2 BGlog T 

for some sui table B > 0 and defining 

for 7T/12,:::: 'T < 11T/12. By (6.63) the relevant range for V in Theorem 7.1 is 

V<< T35/ 2161og3/ 2T, hence G,:::: T1/ 3, which will enable us to use Theorem 6,2, where 

t 1/2- l one requires T S G ST • By Lemma 6.1 

or 

<< 

~tér 

\4(1/2+itr)1
2 

<< logT• Ç e-lul\((1/2+iu+itr)\ 2du. 
-e.o{ti-

We may suppose that V> T2 , for otherwise the trivial R,:::: T is better 

than the second term in (7.8) for E < 1/12, and henceforth we suppose that (7.21) 

holds. Surnmation of (7.21) over tr E A1,k gives for some absolute c1 > 0 

provided that 

for tr E.. l1" - G/2, r + G/2], which is certainly satisfied for V::::. Tt. The spacing 

condition \tr - t
8 

\ ?::. 1 (r f s) implies that the sum in (7 .22) is bounded, and 

for the integral in (7 .22) we use Theorem 6.2 wi th i = 1, recalling that for our 
' 

range of ;f we may use (6.24), which gives 



131 

Choosing B = 202 the above formula simplifies to 

K 

(7.24) \A1 kl << log- 1T.Lt(TK)- 1/ 4e-G
2

K/( 2T)(IS(K,K,~)I + K-1~ ls(x,K,:r)ldx ). 
' K o 

Let now A2,k denote the set of numbers ~ = T
0 

+ G/2 + nG such that 

A1
1 k('3') f ~ and n is such an integer for which T < 'J' < T + J + G/2. If 'T and , o- - o r 

'J' are two different elements of A
2 

k we have G < \ 'l"' - 'J" \ < J, and we may s , - r s -

apply Lemma 7.1 to obtain 

L, IA1 k ('J") 1 << log 1/2T~K (TK)-1/ 4e -G2K/ (2T) 1 (K+K3/ 4T 1/ 4G-1/'log T) {AJ_~/z 
(J"E.A2 k , , 

Using (6.72), the obvious inequalities 

and summing over K = 2k it follows that 

(7 .27) 
p/2 -(p+1)/4 1 1/2T IA \"'\"'K(2q-p+1)/4 -G

2
K/(2T) 

J T og • 2 k L.,; e 
' K 

TG-3log2T + IA2 k!Jp/2G(p-1-2q)/2T(q-p)/2log1/2T. 

' 
Therefore using (7.26) we obtain 

-3 2 << TG log T, 

provided that for some sui table c
3 

> O we have 

<< 
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Now we choose Nin such a way that 

J == 

This gives 

N << 1 + Tg/pG• (2q-p+ 1 )/plog 1/PT 

and 

A. 'Ç' [A j _,._,. NTG- 3log 2T _.,_., 
3 = L.J 1k·-- --

k<N , 

-6 8 
TV log T + 

if G _s J. This condition is certainly satisfied for 

or in view of (7.20) for 

(7.34) V > T
1 

= c
5
T(q-p)/( 2+4q-4p)(logT)(3•4p+4q)/( 2+4q-4p) 

where c
4

,c
5 

> o. Summing over intervals of the form [T(5/4)-j- 1,T(5/4)-j] it 

is seen from (7.32) that Theorem 7.1 follows if (7.34) is satisfied. If (7.34) 

does not hold, then (7.s) follows from (7.6), since 

R << TV-4log5T << T(p+q)/pv•2(1+2p+2q)/p(logT)(3+6p+4q)/p 

for V< Tq/( 2+44 )logc 6T • T
2

• But for T1 given by (7.34) we have T1 < T
2 

for any 

fixed c6 > O,p > 0 and T sufficiently large, which completes the proof of Theorem 

Corollary 7.1 follows from Theorem 7.1 with e:xponent pairs (13/31,16/51), 

(4/11,6/11),(2/7,4/7),(5/24,15/24),(4/1a,11/1a) respectively while Corollary 7.2 

follows with the exponent pair (1/2,1/2). If we choose (p,q) = (1/6,2/3) in (7.8) 

then we obtain 

(7 .35) 

thereby improving the range for which the corresponding estimate (8) of Theorem 2 

of Heath-Brown [11 holds. 

(7 .36) R << 
V:!, T11/72 10 g5/4T, 

VS T11/72log5/4T, 
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where 11/72 = 0.1527~ •• , and tltrefore the first estimate in (7.36) improves (9) of 

Heath-Brown Q1, wht)re one had the range V~ T
2
/ 13log

6
/ 5T, and 2/13 = 0.153846 "> ;~ 

Thus the sixth power estimate R << Tv-61og8T holds for relatively large values of 

V, and from (7.8) one may crudely say that in a certain sense either M(4) = 1 or 

M((2+4p+4q)/p) ~ (p+q)/p holds, which will be used in Chapter 9 for zero-density 

estimates. 

Theorem 7.1 provides the means for obtaining power moment estimates 

when c:J "" 1/2, and we shall prove 

THEOREM 7.2. If M(A) is defined b,y (7. 1), then 

1 + (A - 4)/8, 4 !;: A ~ 12, 

M(A) < 2 + 3(A - 12)/22, 

1 + 35(A - 6)/216, 

12 !:: A~ 178/13 = 13.6923076 ••• 

A ~ 178/13. 

Here Ais a fixed number which does not have to be an integer. The first 

of the estimates in (7.37) is implicit in Heath-Brown [1J, while the last one is 

an improvement of his estimate 
'f\ 

S\~(1/2 + it)lkdt << T1+173(k-6)/1067log2kT, k ~ 15. 

" 
Proof of Theorem 7.2. As remarked in §1 it will be sufficient to prove 

the discrete estimate 

(7. 38) 

where the t's satisfy (7.4). To see this define t by 
r r 

max !( (1/2 + i t) l, 
r<t<r+1 

where ris an integer and the maximum exists by continuity of l~(1/2 + it)\ as a 

function of the real variable t. Then we have 
'1" 

I = ) 1[(1/2 + i t) (dt << 

" 
I 

1<r<T 

A 
ltc1/2 + 1t )\ , r 

and to obtain the condition \tr - ts\ ~ 1 for r f s, we consider separately t
2

m 

and t 2m+1, so that I in (7.40) is majorized by two sums of the form (7.3) with 
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r • 1,2, ••• ,R, R !: T, and the t~s satisfy (7.4). Each 1~(1/2 + itr)I satisfies then 

V < 

for some O <V= 2k << T35/ 2161og1/ 2T, and we define RV as the number of t;s appe

aring in (7.40) which satisfy (7.4) and (7.,1.1). 

Suppose now that 4 !: A!: 12. Then by (7.6) and (7.11.) we may use 

4 5 1/8 11/s 2 -12 16 1/8 11/s R << TV- log T for V !: T lc:,g T and R <.<. T V log T for V -.,,. T log T. 

Therefore 

which gives 

"' 

<< 

(7.42) ) lC(1/2 + it)lAdt << T1+(A- 4)/ 8 (1ogT)( 11A+4)/s, 4 !: A!: 12, 

" 
and the same may be obtained (with an even slightly better log-factor) directly 

from (5.1),(7.15) by using H6lder 1 s inequality for integrals. 

For the range 12.::: A!: 178/13 in Theorerr. 7.2 we use (7.14) to estimate 

Ry when V!: T3/ 22 
and (7.9) for V> T1/ 22 , obtaining similariy as in the previous 

case the estimate M(A) !: 2 + 3(A-12)/22. Finally the third estimate in (7.37) will 

follow from a more general result, viz. 

(7.43) 

where the t;s satisfy (7.4) and C(1/2 + it) << \tlc+E, so that by (6.63) the 

value c = 35/216 leads to M(A) !: 1 + 35(A - 6)/216. To see that (7.43) holds 

write S s1 + s2 , where in s1 we consider the t~s for which (7.,11) ho1cis with 

V~ T4/ 25 , and in s2 the t~s for which (7.41) holds with V< T4/ 25 • For s
1 

we have 

1+E -6 ) Ry << T V by (7. '16 , so that summing over ü (log1 1
) values of V we obtain 
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(7 .44) << Tc (A-6)+ 1 + t 
<< • 

h R__ T29/13+tv-178/1~ In s2 we ave --v << , by (7. 9) , and thus 

(7.45) << 

<< Tc(A-6)+1+e., 

provided that c ~ 4/25. Combining (7.~4) and (7.45) we obtain (7.43), which comple

tes the proof of Theorem 7.2. 

§3. Power moments for 1/2 < d < 1. 

We suppose throughout this section that 1/2 < d < 1 is fixed, and 

consider power moments of the type (7.2), which will follow from discrete estimates 

of the type 

For technical reaeons the following conditions will be imposed on the 

(7.47) 

We seek an upper bound for R when 

(7.48) 

and similarly as in the case d = 1/2 an upper bound for R will lead to estimates 

of the type (7.46) by collecting O(logT) subsuma where 

2k = V !: / C ( 6 + i t r )l < 2V < T 
1 
/ 

6 • 

If we choose the t's such that 
r 

max 

rlog 4T<t_:S(r+1)1og 1T 

ICC& + it)I, r = 1,2, ••• 

and then consider separately t 2m and t 2m+1, it is seen that the spacing condition 

required by (7.47) does hold, so that (7.46) leads to (7.2), namely 
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T" f ~ \ 

~ + ', 1 -· \ t:, i ,1 t 
.J,. "/ V. << 

m1+E 
l. ' 

which is the dN~ired estirnate w.i.th a large n:.:imbe~ c,: applications, s-::,T.e .Jf which 

üur startinP o~int is the relation 

00 ' 

L . ( \ -ri; 1Y -s 
l Y• , p 1 G., V'/.. ., 

ncc1 K 

2.1"Ï00 

(2ri)-
1 5 i' 1r(w)l:; 1'(s 
2.-ioO 

-t wldw 
I ' 

which is just (A.6~) with h = 1. We shall need (7.~9) with k = 1 ~r k • 2, and Y 

Y(r) will be a real number (to be suitab1y cbosen) which sat~sfies 1 << I << TC 

Fors we take s =:d+ it, where t satisfies (7 • .17) and (7.,18). Moving the line of r r 

integration in (7 .,19) to Rew"" 1/2 - ô we enco:mter a pDle of order k at w = 1 - s 

with residue 0(1) in view of (1.~2), and a simple pole at w = 0 with residue Ck(s). 

Therefore 

(7.50) ~ ( ) -nlY -s L..J dk n e ' n 
n<Y 

c'(s) + 0(1) + (2:lli)- 1 5 ~k(s+w)r(w)Ywdw. 
Rew=1/2-~ 

The portion of the integral in (7.50) for which \Imw\';! log
2
T is o(1) 

by (1.~2), and so for each s.;; d + it under consideration we have r 

<< 

Taking into account (7.48) this implies either 

(7o52) 

or 

where 

max 

This disc~ssion sh::ws that the estimation of (7 .2) may be red~1ced to a 

large values estima.te for Dirichlet polynomials whict, satisfy (7 .52), ar•ri a large 

values estimate for (7.5~), which is in fact furnis.hed b,vThe')::-em 7.1 ard its 
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corollaries. 'l'heref:)re t)•::fore we formulate our resal ts concern.ing boun.is f,'.r :n(d), 

it will be useful to der.ive & large vab.es estimate for Dirichlet polynom.ials 

capable of de~Ling with the t•s satisfying (7.52). This estimate is c9r.tained in 
r 

Lemma 7.2. Let t 1 , ... ,tR be real nu.mbers which satisfy (7.47),1/2 <d < 1 

fixed, and let for r < R 

rp €. < y S I L, a(n)n-d-i tri, 
M<n<2M 

(7 5c::,) 
\ 1 0 ..,/ 

e C where a(n) << M , 1 << M << T , C -~ o. 'l'hen 

R 

where 

f (d) 2/ (3 - 46) for 1/2 < & S 2/3, 

f (6) 10/ (7 - 86) for 2/3 S d S 11/1~, 

(7 .57) f(d) )4/(15 - 16è.) for 11/14 S d S 13/15, 

f(t) "' 98/(~1 - 32ô) for 13/15 S 6 S 57/62, 

f(t) - 5/(1 -6) for 57/62 S t3 S 1 - E. 

Proof of Lemma 7.20 The expected bound in (7.56) is R 
e 2-2, -2 

<< T M · V , 

and TV-f(o) is the extra term which may be thought of as an errer term. We start 

from the ir;.equality (1o'35), taking ~ = f~nJ: 1,where ~n"" a(n)b-
1
/

2 (n)n-d 

for M < n S 2M and zero otherwise, and 'f - f 'e 7 
00 

r - L r,n)n ... 1 

h 
b(n) = e-(n/2M) 

by (1oJ9) 

e 
h -(n/M) 2 and h • log T. Then 

2+ioo 

H(it - it ), where 
r s 

(7.58) H(i t) 
oO 

,: ~b(n)n-it 
n"'1 

(~i)- 1 s 4(w + it)r(1 + ~)((2M)w - Mw)w-1dw, 

2~,00 

which follows from (A.60) with Y= 2M and Y"' M respectively on subtracting. Note 

that for M < n S 2M we have 1 << b(n) << 1, H(o) << M,lltll2 
<< TtM

1
-

2
ô, and the 

integrand in (7.58) is regular for Rew'> -h, except for a simple pole at w = 1 - it 

with residue ü(T-c) for any fixed c > 0 if ltl >> log 3T. Recalling that c(g) is 

the function defined by (6.51) to satisfy t(~ + it) << tc(G)+e, it is seen that 

using properties of c(9) discussed in §5 of Chapter 6 we have 
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c(e) = 1/2 - e for g.::: o, 

c(e) = (3 - 49)/6 for o ,:s e ,:s 1/2, 

(7.59) c(G) = (7 - 89)/18 for 1/2,::: Q,::: 5/7, 

c(e) ; (15 - 169)/50 for 5/7 .::: e .::: 5/6, 

C (Q) = (1 - 9)/5 for 5/6.::: g,::: 1, 

where we used (6.59) with 1 = 4 and 1 = 5. 

To estimate H(it) in (7.58) we move the line of integration to Rew = e, 

where 

g "" (3~ - 2)/(2~ - 1) for 1/2 < cJ < ~ < 2/3, 
o- -

e = (9~ - 6)/(40 - 1) for 2/3 ,::: ô ,::: 11/14, 

(7 .60) e = (25d - 16)/(8& + 1) for 11/14,::: i.,::: 13/15, 

e = (656 - 40 ) / ( 1 6cS + 9) for 13/15 ,!: d ~ 57/62, 

e = (12d - 7)/(2d + 3) for 57/62 ,::: d ,::: 1 - e. ' 

so that the values of e lie in the ranges ~,::: O, 0.:::: e.:::: 1/2, 1/2,::: Q.:::: 5/7, 

5/7.:::: e.:::: 5/6, 5/6.:::: Q,::: 1 respectively and so (7.59) may be used. Using (1.32) we 

obtain for r ~ s 
,tt.. 

(7. 61) H(itr - it
8

) << TE5 (C(e+iv+itr-it
8

)(e-lvl/hMQdv + o(1) << Tc(e)+'-M9 + 0 (1). 
_.,. .. 

Therefore (1.35) gives 

R
2v2 << TtM 

1
-

2
~ (RM + ~ \H (i t - i t ) } ) , r s 

s 

and (7.60) leads to 

(7. 62) 

provided that 

(7 .63) T = T = v(2-t)/c(e)M(2d-1-e)/c(e), 
0 

since V:::- Tl by hypothesis. If (7.62) is not satisfied it may be observed that if 

in (7.55) t is replaced by t + T for any fixed T, r r o o then a(n) is replaced by 

-iT 
a (n) = a(n)n °, and \a (n)\ = la(n) \ << Mr. Hence 

0 0 
if the t 1 s lie in an interval r 

(. 2-2ô -2 
of length not exceeding T, then R <<TM V , and dividing Tinto subintervals 

0 

of length at most T
0 

(where T
0 

is given by (7.63)) we obtain 

(7 .64) 



With c(9) and Q given by (7.59) and (7.60) it is readily checked that 

2c(9) + 1 + w - 2(1 + c(Q))d : a, 2(1 + c(Q))/c(Q) = f(d), 

where f(d) is given by (7.57), and thus (7.56) follows. 

Having 'I'heorem 7. 1 and Lemraa 7 .2 at cur disposal we are reaô.y now to 

state anè. prove the main result of this section, whjch is 
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THEOREM 7.3. Let m(d) be defined for each fixed 1/2 <d < 1 by (7.2). Then 

(7. 65) 

m(d)::::. 4/(3 - 4o) 

m(d) ::::_ (48d - 6)/(7 - Bd)(4d - 1) 

m(d) ::::_ (208d - 70)/(15 - 16&)(4~ - 1) 

m(o)::::. (28~ - 13)/(4-1 - 1) (1 - d) 

m(d) ::::. 98/ (31 - 320) 

m(d)-.:::_ (24d - 9)/(4d - 1)(1 - d) 

for 1/2 < d < 5/8, 

for 5/8 < d .::: 5/7, 

for 5/7 < d < 5/6, 

for 5/6 < d !:: 13/15, 

for 13/15 !:: d !:: 0.91591 ••• , 

for 0.91591 ••• !:: d !:: 1 - E • 

In addition we have m(35/54)::::. 9, m(41/6o) ::::_ 10, m(7/10) ::::_ 11,m(5/7) :=:. 12, 

m(2/3) ::::_ 9.6187 ••• , m(3/4)::::. 528/37 = 14.270270 .•• ,m(5/6) ::::_ 168/7, m(7/8) ::::_ 36.8. 

Proof of Theorem 7.3. We begin the proof by considering first the range 

1/2 < d,::: 5/8 and proving m(6) ::::_ 4/(3 - 4ô) (this holds also for&= 1/2 by (5.1)). 

In view of the discussion made at the beginning of this section it will be suffi

cient to prove 

(7.66) 

fo~he number of points tr which sa-l;isfy (7 .47) and (7 .48). To simplify wri ting we 

shall omit in the rest of this proof factors like T'-logcT on right-hand si des of 

inequalities implied by <<. To obtain (7.66) we consider separately subsets A and 

Bof ftr3 such that tr ~ A if V in (7.18) satisfies Vs T( 3- 4a)/s and tr € B if 

v > T( 3-4d)/8 • If a1 = !A\, R2 - !BI, then R = R1 + R
2 

and 

(7 .67) << 

which follows from (7.52) and (7.53) with k • 2 when one applies Lemrna 70 2. Here 

M S Y/2 = Y1/2 is chosen in such a way that :::,;.> 1/logT numbers t C. A sâtisfy r , 

(7.52) with that particular M. Using M(4) = 1 and the Cauchy-Schwarz inequality 

we have 
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(~-,1~ \ /3 
and in view of V < T · 11 the choice gives 

To b0und R
2 

we reason analog·ously, only nc>w we use M(12) < 2 and Holder's 

inequali ty to obtain 

first if 

2/(4&-1) -s/(11.a-1\ Choosing Y "" T V · 1 >> 1 we have 
2 

R << TV-4/(3-ild) + T(4-4d)/('1d-1)V-12/(M-1). 
2 

The second term on the right-hand side of (7.71) does not exceed the 

T (5-8«l )/ (4.~ -1) < VS (5-86 )/ ( 4l -1) (3-4 ~) 
- ' 

and this condition is satisfied since 1/2 < l _::: 5/8 and V:> T( 3- 46 )/s. Thus from 

(7.69) and (7.71) we obtain 

implying m(J):::, 4/(3 - 4i) for 1/2 < 6 _::: 5/8 as asserted. 

We consider now the range 5/8;::: J _::: 2/3, and let this time A and B 

denote subsets of 

(7. 73) 

and 

(7.74) R 

[t'\ (see (7.53) and (7.54)) such that in (7.s) r 

-6 
R << TV 

<< 

hold respectively for R = R1 = \Al 

(2d -1 )/,1 
we have to replace V by VY · in view of (7.53) with k • 2. Therefore we hüve 

R1 << y~-2iv-4 + TV-t.t/(3-'1.d) + yr--6~)TV-6, 

where Lemma 7.2 was used again. With the choice Y1 = (Tv-2) 2/( 1+2~) '::>'> 1 the above 

estimate becomes 



(7 0 75) R << TV-4/(3-4d) + T4(1-~)/(1+2~)V-12/(1+2l) 
1 

Analogously using (7.74) it follows that 
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(7. 76) R Y2-2dv-4 rrv-4/ (3-4d) T (p+q) /pv-2 ( 1+2p+2q) /py(1/2-a) (1+2p+2q) /p 
t2 << 2 + ~ + 2 ' 

and we shall choose Y2 to satisfy 

y
2 

= T2(p+q)/((2+4q)o.;.1+2p-2q)v-4(1+2q)/((2+4q)~-1+2p-2q), 

so that the first and the third term on the right-hand side of (7.76) are equal. 

Since by (7.59) we have c(9) '.'!f 1/8 for 9:::, 5/8 and 2(p+q)/4(1+2q) ~ 1/8 the con

dition Y2 >> 1 will be satisfied, and hence from (7.75) and (7.76) 

(7. 78) 

giving 

(1 .19) 

The exponent of T of the last term above equals unity for 

d = (1 + 2p + 6q)/(2 + 4P + 8q), 

.. F 
+ TV ' 

F • 2(1 + 2p + 2q)(1 + 2p + 4q)/(p + q + 4pq + 2p2 + 2q2). 

-F In (7.79) the term TV is the largest, which will be shown now ford • 2/3. 

In that case (7.78) reduces to q - p = 1/2, and thus with the exponent pair 

(p,q) = (~/2 + ê,oi/2 + 1/2 + î), ol= 0.3290213568 ••• one obtains 

(7. 80) R << TV-9.61872 ••• + (TV-9)4/7, 

and one has (TV-9)4/ 7 ,:s TV-x for 

(7 .a1) v .::: T3/ (7x-36). 

Since by (7.59) one has c(2/3) !: 5/54, it is seen that (7.81) is certainly 

satisfied for 5/54,::: 3/(7x - 36), or x,::: 342/35 = 9.7714 •••• This proves 

m(2/3) ~ 9.61872 ••• , which is actually the optimal bound thi; method allows. With 

(p,q) z (2/7,4/7) in (7.78) we obtain d = 35/54 = o.6481481 ••• 1 and a calculation 

similar to the one above gives m(35/54) :=:, 9. The above procedure may be also used 

when d:::. 2/3, only in view of Lemma 7.2 the first term in (7.77) is to be replaced 

by TV-2f(~),i.e. we have 

(7.82) 
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Calculations for 6 > 2/3 are carried out in the manner àescribed above; the 

-2f(cf) term TV is always the smallest one, and the second and third term in (7.82) 

-x -y do not exceed TV and TV respectively for values of x and y which will depend 

on c(9), where for c(9) we use the bounds furnished by (7.59). With (p,q) = 

B(2/7,4/7) = (1/14,11/14) (here B denotes the operator defined by Lemma 2.9) the 

last term in (7.02) is Tv- 10 for & = 41/60 = 0.68333 ••• , and since then the other 

two terms in (7.82) are smaller, we obtain m(41/6o) ~ 10. Using (p,q) = (2/7,4/7) 

and d = 7/10, 6= 5/7 we obtain likewise m(7/10) > 11 and m(5/7) > 12 respectively. 

For o ~ 3/4 we have from (7.02) that the first and the third term are<< TV-x for 

(7 .83) X < 8(3 + 6p + 2q)/(1 + 4p + 2q), 

where we used c(3/4) ,S 1/16. The choice (p,q) = (5/24,15/24) gives x ::5 528/37 = 

14.270270 ••• , so that m(3/4) ~ 528/37, since the middle term in (7.82) turns out 

to be T
2/ 5v- 24/ 5 < TV-y for y ::5 72/5 = 14.4. Similarly one obtains m(5/6) ~ 188/7 = 

26.857142 ••• for (p,q) • (2/7,4/7) and likewise m(7/8) ~ 36.8. 

To finish the proof of Theorem 7.3 it remains to prove the general 

estimate for m(<t) when d > 5/8, as given by (7 .65). For 5/8 ,S 6 ,S 13/15 we use 

Lemma 7.2 and M(12) ,S 2 to obtain as before 

(7 .84) R << 

<< 

for y= T2/( 4d- 1)v- 8/( 4~- 1). Using estimates for c(9) furnished by (7.59) when 

5/8 ,S Q ,S 13/15 it is seen that the last term in (7.84) is << TV-x for x = m(&) 

given by (7.65), while TV-2f(d) .S TV-m(~). 

To obtain general estimates for m(ô) when d 2::_ 13/15 we shall use (7.51) 

with k • 1, since for that range the values off(&) given by _Lemrna 7.2 are large 

enough for our purposes and the estimate TV-f(d) suffices, whereas for smaller 

values of d it was necessary to use k • 2 in (7.51), with the effect that V in 

Lemma 7.2 is replaced by v2
• To avoid tedious calculations we choose (p,q) • (~,Î) 

in (7.74) and let similarly as before A and B denote subsets of ft'3 for which 
r 

R << TV-
6 

and R << T3v-19 respecti vely hold wi th Ri-= /Al and ~ = jB \. Applying 

then Lemma 7.2 we obtain 
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TV-f (J) 
+ ' 

(7 .86) 

With c(Q) < (1 - e)/5 for 9 ';! 5/6 we obtain R1 + R2 << TV-x for 

(7.87) 

where f(J) = 98/(31 - 32J) for 13/15 ~ 6 ~ 57/62 = 0.919~5 •• and f(d) = 5/(1 - ~) 

for 57/62 ~ o ~ 1 - t.. Now for 13/15 ~ d !:: 1 we have (246 - 9)/(40 - 1) ~ 5 and 

also the second term in (7.87) does not exceed the third. For 57/62 :!6~ 0.91591 •• ~ 

we have (24a - 9)/(4~ - 1)(1 - o) !:: 98/(31 - 32J) = f(e), hence the last part of 

the theorem. In particular we have 

(7.88) 

§4o Asymptotic formulas for power moments when 1/2 < d < 1 

We conc1ude this chapter by considering the asymptotic formula 
~ ~ 

~\4(d + it)l 2kdt = TLd~(n)n-2d + R(k,d;T), 
~ ~1 

where k::::, 1 is a fixed integer, 1/2 < d < 1 is fixed and R(k,ô;T) is supposed to 

be an error term,i.e. R(k,d;T)::.: o(T) as T ➔ oo. This may be co'!lpared with o'J.r 

approach in ~3, where only upper bounds of the form (7.2) were investigated and 

Theorem 7~3• was derived. However results of the type (7.89) may be obtained 

exactly with the use of Theorem 7.3, and. we begin by proving 



144 
Lemma 7.3. For k > 1 a fixed integer let 1/2,::: d~ < 1 denote such a number 

for which 
f'[1 

) \~(dt + i t) l 2kdt << T 1+f 
,1 

holds. Then the asymptotic formula (7.89) holds for d > d*. 
k 

Proof of Lemma 7. 3 '!.. We shall prove the lemma and obtain an explici t 

0-estimate for R(k,d;T). We have with s = 6 + it 
T 11t 11\ 

(7.90) )l(;(s)j
2

kat = )l.L,dk(n)n-
8

t2at 
-1 -i n:51' 

+ 0 ( ~ IC2
k(s) - (L,dk(n)n-

8
/lat), 

n<l' 

and using Theorem 5.2 it follows that 
rr 

(7.91) ) IZ dk(n)n-sl
2

dt = TL,d~(n)n- 2d 
1 n<l' n<l' 

oO 

TLd~(n)n- 2d + O(T 2-2d+E.), 
n=1 

so that the main contribution in (7.89) cornes from the first term on the right-hand 

side of (7.90). Let now 

F(s) = ~2k(s) - (Ltdk(n)n-s)2. 
n<l' 

Since k is an integer, F(s) is regular for Res:::, 1/2, Ims:::_ 1 and thus for 

1/2 ,::: c<. < d · < 13 we may use the well-known convexi ty estima te 

We shall take ol. = J: + ~ , 13 = 1 + î , where O < S < 1/2 is a fixed con

stant which may be chosen arbitrarily small. Since k is fixed we have then 

(7.93) 

(7 .94) 

13- J 1 +S-J 1 - 6 î1/2, = 1 - J* < + 
I'.?> - ol- k 1 - J* k 

6 - o( 
-If,- d - 6* J- 6~ - ) k 

= Il - ot 

Using Theorem 5.2 
l'J" 

5 /F(o(. + it) (dt 

◄ 

1 
< 

- d* 1 - i* 
k k 

and the definition of 6~ we have 

( ·2k "' -~-$-it\2 
< ) /'((dt+ S + i t) ( dt + S { L dk ( n) n dt 

" " n_:§1 

T
1+S 

<< + T
1+S 

<< • 

<< 
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hence 

145 

To estimate the second integral on the right-hand side of (7.92) recall 

F(~+it) 

d~k(n), 
L 

where \gk(n)( ,:::: d2k(n) <<nt. Therefore with Theorem 5.2 a.gain and the Cauchy-

Schwarz inequality it is seen that 

~ ~ 

51F(~ + it)I dt,:::: T1/2() /) gk(n)n-1-S-it/2dt)1/2 
4 4 ~ 

1/2 
<< T • 

Taking into account (7.93) and (7.94) we obtain from (7.92) 
f!'\ 

(7.95) s IF(d + it)jdt << TA, 
4 

$) ( 1 - & S 1/2) + 
d - &* 2 - d - 6* 

(7.96) A (1 + 
k k 

= + < + E 
1 - 6* 2 - 26* - 2 - 2d* 

k k k 

for any E > 0 if ~ = S (€) is sufficiently small. As 

< 1, 

this means that we have proved 

so that (7.89) holds with 

R (k,o ;T) << o (T) 

for o: < d < 1 fixed. 

Recalling that by the definition of dt and Theorem 7.3 we may take 

d~ = 1/2, 6; = 7/12, d! = 5/8, d; = 41/60, cs'6 = 5/7, we obtaïn special estimates 

from (7.97), which we formulate as 

THEOREM 7.,1. 
"' 5 tt(d + it)l 4a_t 
◄ 

rp 

) IC(d + it)l 6
dt 

1 

O(T-;;/ 2-J+f), 1/2 < d < 1, 

00 

T~d~(n)n-2d + O(T(17-12o)/10+t), 7/12 < d < 1, 
n=1 , 
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~ ll:'(6 + it)l 8
ctt I 2 < ) -20 . ( ( 11 -86 ) / 6+ f ) S 18 ~ < 1, - T d

4 
n n + u,T , 1. < 

" 
n=1 

fT'I s U~'(d + it) 110
ctt = 

oa. L 2 2d O(T(? 9• 60d)/~BH.), 41/60 < d < 1, T d
5

(n)n- + 

" ·n=1 

I'!\ 00 

) lt(G + it)!
12

dt TL, d~ (n) n -:?d + C(T( 9-?d)/t1H), 5/7 <d < 1. 

-1 n=1 

Naturally explicit bounds for R(k,d;T) in (7.89) when k > 6 may be also 

obtained by this method, but a general formula would be rather complicated in 

view of Theorem 7.3, and therefore it seems reasonable to consider (7.89) expli

citly for small values of k only. 

Finally it may be mentioned that one Can also investigate power moments 

of lf(l+it)l m when m = 1 or m • 2 by the above method and obtain 

"' 
(7.99) ~ \t(o + it)l 2dt = ,(2o)T + o(T 2-2d), 1/2 < ~ < 1, 

.. 

where ct
1
;

2
(n) is the special case of the generalized diviser function dz(n), 

which is defined by 

Res > 1. 

For the proof of (7.98) and (7.99) we shall use the simplest form of the 

approximate functional equation, namely 

(7.100) 1-S/( ) ( -d / + X s-1 + Ü X ) , X ::> t ~ ::> t , Ü < cl < 1 • 
0 

To obtain (7.98) and (7.99) it will be sufficient to obtain the co11res-

ponding formula for the interval 01/2,TJ. We take in (7.100) x • T, obtaining 

(7.101) ((s) :e °2:n-s + O(T-~), 
n<T 

where s = d + it, T/2,::: t,::: T,1/2 < o < 1. To obtain (7.98) we write 

L n-s = 
n<l' 

where cl early \g(n) 1 .5 1. Then we have 

Li g(n)n-s, 
T1/2<n<I' 



(7.102) 

'11 

lr;;cs>ldt = f 
'f'/2, 

tf'I 

1 L kd½(n)n-sl
2

dt + 0( f 
n<T 2 ~.tz 
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Using the Cauchy-Schwarz inequality and the same argument as in the proof of 

Lemma 7.3 (only with ~ = 1/2 + ô) we obtain that the first 0-term on the right-hand side 

T5/ 4-0-2+E of (7.102) is << and (7.98) follows on applying Theorem 5.2 to the first 

term on the right-hand side of (7.102). 

so that 

The proof of (7.99) is even easier. Namely from ( 7.101) we 

!fi If' 'fi 

f lr;;(s) l2dt = f 1 L n-sl 2dt + O(T-o f 1 l n-s dtj) 

ff'/2, 'f'/2, 
n<T 

'T'/2. 
n<T 

Theorem 5.2 and the Cauchy-Schwarz inequality give 

"' 
f 1 l n-sl 2dt ½TL n 

-20 oc 1 n 1-20) 1 
= + = 2r;;(2o)T 

1'12. 
n<T n<T n<T 

'1' '1' 

f 1 l n-sldt < T 1 /2 ( J l n-sl2dt)1/2 << T, -
1'/2. 

n<T 
'rll 

n<T 

we obtain 
'l'i 

f lr;;(o + it) 1
2

dt = ~(2o)T + O(T2- 20 ), 

'f'/2. 

hence ( 7. 99) . 

NOTE S 

have at once 

+ O(T 1-20). 

+ O(T2-2o), 

The main results of this chapter involve upper bounds for power moments of 

the form (7.1) or (7.2). However when one asks for lower bounds in the same problem 

the situation is different. Already in Chapter 7 of Titchmarsh [8] one can find the 

bound (k > 1 is a fixed integer) 

whence 

proved 

(7.103) 

'1' f Ir;;(½+ it)l2ke-t/Tdt >> k2 
T( logT) , 

0 

'Tl 

f Ir;;(½+ it)12kdt 
0 

k2 
= O(T(logT) ) . 

A substantial advance has been made recently by K. Ramachandra [4],[5], who 

'î'tH 

f Ir;;(½+ it)lkdt > CkH(logH)k
2

/
4 

'1'-H 
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t, 

~or k~ 1 a fixed integer, Ck > 0 a constant depending on k only, T ~ T
0

, H> log T. 

In fact Ramachandra deduced (7.10;) from a general estimate which also gives good 

bounds when t is replaced by t(m) in (7 .103). The bound (7 .10,3) wi th k = 1 will 

be used in the next chapter, where a simple proof of a weaker résult than (7JD3) 

will be given. Ramachandra has also proved 

'1'HI 

S IC(1/2+it)ldt << Hlog
1
/ 4H,Ti,:::H,:::T, 

1'-H 

and on the other hand it may &eem plausible to conjecture 
'T' 

) lt'(1/2 + it) \ 2kdt '"' 
0 

for k~ 3 and some Dk > o. However it is hard even tt give a heuristic value of 

the constant Dk. 

Following an approach that uses convexi ty arguments of R.M. Gabriel [1}, 

D.R. Heath-Brown (71 succeeded to obtain results in a manner that is simpler than 

Ramachandra 1s (4), D), and in some cases his results are also sharper. Thus for 

H • T Heath-Brown proved unconditionally that (7~Q3) holds for all rational k > 0 

and for all real k::> 0 if the Riemann hypothesis is true. 

This discussion shows that the gap between the best upper and lower bounds 

for power moments higher than the fourth is still very large, and the (expected) 

result M(6) = 1 would be a big advance in zeta-function theory. 

An alternative approach to (7.6) is via the approximate functional equa

tion (4.11), where we let T/2;::: t,::: T, s = 1/2 + it, T/'l:Jt;::: x s T/ZJr. We have then 

\~ (1/2+i t) l 4 << }Ld(n)n-1/2-itl2 + 
n<x 

and mul tiplying by dx/x and integrating from 'I'/ 411' to T/21r we obtain 

'T'/L1r 'C'(-z:r 

2 + log T, 

Il'. (1/2+it)l4 «: J lki,d(n)n-1/2-itj2 d; + ) 1 f1 d(n)n-1/2-it\2 d; + 

'f'/« - 'l' l ,1"' n<t / 4,f x 

2 log T, 

2/ 2 and the change of variable y= t 4~ x in the second integral above leads to 

<< 

i/'fr 

( l Ll(n)n-1/2-it}2 d: + 
) n<x 

2 log T. 



In this expression the length of the sum does not depend ont, so that 

summing over t = t and using the mean value theorem (5.-!A.) we obtain (7.6) as r 

beforeo However for k > 6 the lengths of the Dirichlet polynomials are too large 

for (any known form of) the approximate functional equation to produce a good 
'î' 

upper bound for ) ll:'(1/2+i t) \ kdt, and here we use a new method, based on the mean 
0 

value estimate for integrals over short intervals (Theorem 602), which was intro

duced by D.R. Heath-Brown (1]. 

All the results of ~2 and §3 are to be found in the author's paper [2], 

which generalizes and sharpens the results of Heath-Brown 1s paper (11 where the 

first proof of the important result (7.15) is given (as mentioned in Chapter 6, a 

different proof has been given recently by Ho Iwaniec [2} ),but where power moments 

for d > 1/2 are not treated. The use of the theory of exponent pairs, as embodied 

in the estimate of Lemma 7.1, makes it possible to obtain satisfactory results 

both for d • 1/2 and 1/2 < d < 1. In the latter case a novel feature is Lemma 7.2, 

which enables one to deal effectively with large values of the Dirichlet polyno

mials appearing in (7.52). Bounds given here for power moments are the sharpest 

ones hitherto, and improve much on estimates of Chapter 7 of Titchmarsh [a]. 

It may be remarked that the range V-.::, T11/ 721og 5/ 1
T for which the bound 

-6 8 
R << TV log T holds in (7.36) is very close to the optimal result the method 

( ) -6 8 C q/ gives. Namely 7 .8 yields R << TV log T for V?:_ T and any c > (2 - 2p + 4q). 

As mentioned several times in this text, a general method for finding the minimal 

value of f(p,q) (where (p,q) is an exponent pair and fis a "nice" function, say 

rational) has not been found yet. Thus each problem has to be tackled separately, 

and H.-E. Richert has kindly informed me that he has calculated 

min q/(2 
(p, q) 

2p + 4q) = 0.15274776 ••• , 

. 
whereas 11/72 == 0015277, so that this value is very close to the optimal one. 

The useful technique of dividing Tinto subintervals of length < T and 
- 0 

multiplying by 1 + T/T
0

, used in the proof of Lemm.a 7.2, seems to have been intro-

duced by M.No Huxley ~}, p. 117, and will be repeatedly used in Chapter 9. 

Concerning Theorem 7.3 it should be remarked that the bounds given for 
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specific values of d in the range 5/8 < d .!:: 7/8 are much better than the ones that 

follow from the general (7.65) (and even one has m(d) ~ (28&- 13)/(4d - 1)(1 - 6) 

for 5/6 !: d .=:: 1 - €., which is superseded by m(d) 2:. 98/(31-326) for d ~ 0.91143 ••• > 

> 13/15). The results are the sharpest ones yet, but the estimate m(5/8) '> 8 

(follows from the first bound in (7.65)) has been obtained first by D.R. Heath

Brown [8] by a somewhat different approach. No effort has been made (except when 

d • 2/3) to obtain the best possible estimates for m(d) that this method allows, 

as this would involve tedious computations with exponent pairs, and the possible 

improvements would be rather small. Also it may be mentioned that one could replace 

T €. in (7 .2) by logcT, C = C(d) ~ O using the same analysis more carefully. It 

is only when ô ➔ 1 that the bounds of Theorem 7.3 are superseded by the estimate 

m(d) :::,a,> (1 - d)- 3/ 2, which follows from I.M. Vinogradov 1s method (see H.-Ew Ri

chert [41 for the estimation of the zeta-function near the line d = 1). 

For an application of Theorem 7.3 to the asymptotic formula for powerful 

k numbers (i.e. the numbers n with the property if a prime p divides n, then p 

for a fixed k> 2 also divides n) the reader may consult the author 1s paper (3]. 

Various other divisor problems which involve powers of the zeta-function in the 

corresponding generating Dirichlet series admit an approach '\rla Theorem 7 0 3 too. 

The results of §4 are new and hitherto unpublished, improving Satz 2 0 

of R. Wiebelitz [11. The idea to use a convexity argument in Lemma 7.3 may be also 

found in R.T. Turganaliev (1], who used it in a somewhat different context. Turga

naliev namely investigated the asymptotic formula 

'î1 

(7 .104) 5 lt(o + it) 12
:A.dt 

0 

where E.- > 0 is arbitrary, 0 < Â. < 2, s = d + it, 1/2 <d < 1. He proved that 

(7 .104) holds wi th some ~ = ~(d, 1) > o, where i t is understood that l does 

not have to be an integer. Under the simplifying assumption that the Riemann 

hypothesis holds it is seen that the function 

has an analytic continuation for Res:> 1/2, so that the convexity argument used 
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in the proof of Lemma 7.3 may be applied with o( = 1/2 + S, giving (7.104) with 

~ = d - 1/2 (i t has been stated wi thout proof by heath-Brown (81 that Lemma 7. 3 

holds for allvalues of k:::, 1, integral or not). However Turganaliev succeeds in 

proving (7.104) unconditionally, where ?l = :X.(6,i) "> 0 is not explicitly eva

luated, but depends among other things on the quality of estimates for the zero 

density function N(d,T) (see Chapter 9). The proof in the unconditional case is 

rather involved, where instead of using directly the estimate (7.92) (see p. 126 

of Titchmarsh [al) Turganaliev makes a careful division of points of the segment 

[J + iT/2,d + iT] and makes use of Hadamard 1s three circles theorem and other 

devices to obtain (7.104) with some :X.• X(c3,l) "> o. The range O <-;\ < 2 to 

which Turganaliev restricts himself is motivated by the fact that the proof uses 

M(4) = 1, and as we have seen an analogous estimate of this type for A> 4 is 

still not known to hold. The method of Turganaliev can be presumably adapted to 

yield analogues of Theorem 7.4 when k is not an integer, with error terms as in 

(7.104), or perhaps only o(T). 

The proof of the well-known (7.100) may be found in E.C. Titchmarsh [s]. 

It follows from the elementary relation 

~ -s 
L.,_in + 
n<N 

1 -s 
- -N 2 

00 

( ( ) -s-1 - s j Vu u du 

N 

on letting N-. oo, when one uses partial summation and Lemma 2.5 to obtain 

u 
( -it 

= j y dy + 0 (1) 
1-it 1-it 

U - X 

1 - it 
+ 0(1), 

X 

which is used in estimating 

L n-s = 
~ -ô -it 
L_i n •n • 

x<n<N x<n<N 

The asymptotic forrpula (7 098) is due to Turganaliev [1], while (7 .99) 

must be known already, although I have not been able to find a reference in the 

literature. 
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Finally we shall discuss the following interesting mean value problem, where we 

shall suppose that 1/2 < o < and h > 0 are fixed. Is it true that 

(7.105) lim N- 1 }: = z; ( 2o)? 
N-->CX) r<N 

This is a special case of a problem posed recently by A. Reich [2], where r h 

is replaced by tr for a certain nat~ral sequence {tr} such as primes, square-free 

numbers etc. We shall sketch the proof here that (7.105) holds for o > 1 - g(h),where 

g(h) satisfies O < g(h) < 1/2. It will be sufficient to prove 

(7.106) 1 
~(2o)N + O(Na(o)), 0 < a(o) < 1. 

h Using the simple approximate functional equation (7.100) with x = N we obtain 

N/2<r<N 

. h 2 
1 l n -o-ir 1 

n<Nh 

+ 0( 
. h h I I l n-o-ir IN- 0

) + 

N/2<r<N n<Nh 

Since the first 0-term above can be treated by the Cauchy-Schwarz inequality and 

. h 2 
l l n-o-ir 1 

N/2<r<N n<Nh 

(7 .107) 

,½z:;(2o)N + 0( 

+ 

h 1<n<m<N 

-01 (mn) . 

N/2<r<N 

. h 
(m/n)ir 

the problem reduces to obtaining a non-trivial bound for 

= = l exp(irhlogm/n). 
N/2<r <N 

The case O < h < 1 . This case is rela ti vely simple. Let f( x) 

Then for h > 0 we have 

(7.108) h-1 hx logm/n << 2 h-1 h N logN, 

= 

h = x logm/n. 

and h2Nh-1logN = o(1) as N - 00 if O < h < 1. By Lemma 2.1 and Lemma 2.1 we have 

N 

(7 .109) = f exp(if(x))dx + 0(1) << 

N/2 

Using this estimate we obtain 

max I f 1 ( x ) 1 -
1 

N/2<x<N 
<< 1-h -1 N (logm/n) • 
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, -o, * 1 , -o -1 1-h l (mn) SN(m,n) << l (mn) (logm/n) N << 
1<n<m<Nh 1<n<m<Nh 

But for 1/2 < o < 1 one has 1 - h + 2h(1 - o) < 1, which means that for O<h < 1, 

1/2 < o < 1 (7.105) does indeed hold. A variation of the above argument shows that 

this is also true for h = 1, a fact which also follows from Satz 2.3 of A. Reich [1]. 

The case h > 1. Suppose first that h is not an integer. Considering the range 

* m > 2n in SN we may in view of (7.108) use the theory of exponent pairs and deduce that 

(7.110) << Np(h-1)+ql N 
- og ' (m > 2n) 

* for any exponent pair (p,q). For n < m < 2n we estimate SN either by (7.110) if 

f 1 (x) >> 1 or by (7.109) otherwise, which again easily leads to (7.105). Then 

from (7.107) and (7.110) it is seen that (7.105) follows if 

(7.111) p(h - 1) + q < 1 

is satisfied. Recalling that for L 1-1 
= 2 , 1 > 3 

(7 .112) (p,q) = (1/(2L - 2), (2L - 1 - 1)/(2L - 2)) 

is an exponent pair (see the discussion after (6.60)), we choose in (7.12) 1 = [h] + 1. 

Then (7.111) holds and (7.105) follows for o > 1 - g(h), 0 < g(h) < 1/2, as asserted. 

One may evaluate g(h) explicitly, e.g. for h = 3/2 with (p,q) = (2/7,4/7) we obtain 

that (7.105) holds for o > 19/21. Since the theory of exponent pairs can be in fact 

built from the knowledge of the first four der-ivatives of the function in question, 

the above discussion covers all the cases except h = 2 and h = 3. For h = 2 we square 

out directly ls:12
, grouping together suitable terms and using rational approximations 

-1 ~ to 1t logm/n. For h = 3 one may use Lemma 2.7 to transform SN into an exponential sum 

of the same type (plus manageable error terms), corresponding essentially to the 

original sum for h = 3/2, and the latter sum can be dealt with by using the theory 

of exponent pairs. 

Various generalizf1tions of (7.105) are possible. For instance, one may pose the 

corresponding problem when the square of the modulus is replaced by an arbitrary,fixed 

even power etc. 
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C U A P T E R 8 

CONSr~CU'PIVE 7,F;Ros ON 'l'HF. CRITICAL I.TNF. 

§1. Introduction 
,,•···-· 

ttM_•S-: 
This chapter is devoted to the study of consecutive zeroe of;the form 

1/2 + it, where t is real and positive. A clnssical rcsult of A. 3elbcrg stateo 

that there are -:;,,;;. TlogT of these zeros for O < t !: T, and qui te a few have been 

calculated numerically. In view of Riemann 1s hypothesis it is only natural that 

zeros on the critical line 1/2 + it have always attracted much attention. If Yn 

is the imaginary part of the n-th zero of the zeta-function on <the line 1/ 2 + i t, 

then one of the most interesting and yet unsettled problems concerning these zeros 

is the estimation of the gap between consecutive zeros, i.e. inequalities of the 

type 

(8.1) c d 
V << y log'( ln _ n n 

wi th some O !: c < 1 and d ~ o. The first resul t in this direction is the classical 

theorem of G.H. Hardy and J.E. Littlewood [1] that (8.1) holds with c = 1/4 + c.. 

Their investigations were based on the properties of the function 

(8.2) Z(t) = X- 1/ 2(1/2 + it)4(1/2 + it), 

where 1- is the function defined by the functional equation (4.3). The result of 

Hardy and Littlewood remained the best one for an exceptionally long time, until 

independently J. Moser (1], (21 and R. Balasubramanian [11 proved that (8. 1) holàs 

with c = 1/6, d = 5 + t and c = 1/6 + E. respectively. Their methods of proof ,:ere 

different, and Moser•s method forma part of his extensive study of properti.es of 

the function Z(t); he also obtained in (21 the conditional résult c = 1/8 ~ t 

in (8.1) if the LindeH>f hypothesis that Z:(1/2 + it) << jtlt is true. Balas:ibra

manian's approach stems from his work [11 on the mean square of the zeta-function 
'HH 

on the critical line and necessitates a lower bound for ~ l~(1/2 + it)ldt. As 

41'• H 

mentioned in Notes of Chapter 7, K. Ramachandra. [41, (51 obtuined ger1erul lo•Nür 

bounds of integraln of certain Dirichlet scries, and in particular he slwwed t?,at 

for k > 1 a fixod integar 
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(8.3) S !4(1/2 + it)j kdt "::>"> H(logT)k
2
/4, T~::: H .!: T, 

'l'-H 

where the <<-constants depend on k only. 

By any of the methods used in the above mentioned works it is seen that 

the problem of obtaining (8.1) reduces to the estimation of a "short" exponential 

sum after some averaging process •. Following Moser I s method of approach and taking 

into account the particular structure of the exponential sum in question, A.A. 

Karacuba [41 recently obtained (8.1) with c = 5/32, d = 2. The exponent 5/32 is 

interesting, since it is smaller than the best known exponent 35/216 of G. Kolesnik 

(see (6.63)) for the order of ,(1/2 + it). Our purpose in this chapter is to prove 

the following 

(a.4) 

THEOREM 8.1. For any i > 0 and n > n (e.), 
- 0 

This clearly improves the exponent 5/32 of Karacuba, since 5/32 = 0.15625. 

Instead of using what R. Balasubramanian [11 has called "the multiple integration 

process", we shall reduce the problem to the estimation of a short exponential sum 

by smoothing with the exponential integral (1.34). Further, instead of using the 

sharp bound (8.3) with k = 1, whose proof is rather involved, for our purposes it 

will be sùfficient to use the weaker 

Lemma 8.1. For any k> 1 a fixed integer, TE;:: H;:: T, we have uniformly 

in H 
<!'+ li 

(8.5) S lt(1/2+ it)\kdt ':>'> H(logT)- 1/ 2-e. 
'l'-l-! 

Lemma 8.1 will be proved in §2 very simply by using also the exponential 

integral (1.34), while a discussion of estimates (8.1) and a proof of (8.4) will 

be given in §3. 

§2. Proof of Lemma 8.1 

Let G = H(logT)- 1/ 2-~ and 

(a.6) 
H 2 -2 

Ik = 1) 4k(1/2 + it + iT)e-t G dt 

-w 
'l'+H 

H- 2 -2 
< ) 1((1/2 + it + iT)/ke-t G dt 

-H 

< ~ !((1/2 + it)/~t. 

1'-H 
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Then by Cauchy 1 s integral theorem we have 

!+i(HI+) 
z. 2 2 

Ik - \ J ~k(s)e(s-1/ 2-iT) G- ds \ = 

i-+;(Î•I+) 
l_,f-i(T~lf} 

, o( 1) + 1,.,d.,,ck(s)e(s-1/2-iT/G-\8 1, 

since the choice G = H(logT)- 112-f makes the integrals over the segments 

d + i(T1:.H), 1/2 5 d 5 2 equal to o(1), because trivially ((d + it) << t
1
/ 6 for 

/ 2 -2) -c2 o ~ 1/2 and exp~-C 1H G << T for any fixed c1,c2 > O. The same argument 

shows that the integral over [2 + i(T+H),2 ±:_ ioo) is o(1),so that using (1.34) 

we have 00 

Ik = \ ~4k(2 + it + iT)e( 3/ 2+it)
2

G-
2

dt \ + o(1) = 

-ca 

(8.7) \ Ï dk(n)rt2-iTr n-ite(9/4+3it-t2)G-\t \ + o(1) 
n=1 -o:, 

oO 

x 1/2
0 

+ 1/2 (.q __ 2)"'Ç'"' ( ) -2-iT ( 1 2 -2 ) 2) 
']( Gexp 4° Lt dk n n exp - ~ (3G - logn + o(1) = 

n=2 

~
1
/

2
G + o (1) > G, 

since the series for ~k(2 + it + iT) converges absolutely and may be integrated 

termwise, and for any n~ 2, any fixed C > 0 and T sufficiently large 

1 2 -2 2 !. 2 -C 
exp (- ~ (3G ... logn) ) 5 exp (- ("Jlog2, G) ) << T • 

Lemma 8.1 follows therefore from (8.6) and (8.7). 

§3. Proof of Theorem 8.1. 

As stated in §1 we shall smoothen e:xponantial sums that appear in 

the carse of the proof with the aid of (1.34). This is considerably simpler than 

averaging with multi-dim:ensional processes, and when combined with (8.3) (k = 1) 

produces a better log-factor in (8.1) than does Balasubramanian 1 s or Moser's 

method if one uses the same van der Corput estimates for e:xponential sums.However 

this in itself is not sufficient to reduce the e:xponent c = 5/32 in (8.1) to the 

one given by (8.4), and to obtain this improvement we shall employ the same idea 
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as was done by A.A. Karacuba in [4],only the short exponential sum to which the 

problem .reduces will be estimated more carefully with the theory of exponent 

pairs. By using properties of expon•nt pairs developed in §3 of Chapter 2Jit will 

be seen that the value of u in (8.4) is in fact the best one this method allows. 

For possible slight sharpenings of Theorem 8.1 one would thus have to turn to 

two- and multi-dimensional methods of estimating exponential sums. 

The idea of proof of Theorem 8.1, which may be traced to Hardy 1s classic 

proof that there are infinitely many zeros of the zeta-function on the critival 

line, is to suppose that Z(t) (given by (s.2)) does not change sign in (T-U,T+U1 

and to show that this is impossible with a suitably chosen U = U(T) = o(T). Thus we 

suppose that \I 1 l = r2, where 

(8.8) I 1 = r exp(-(T-u)2u- 2L).z(u)du, 
'l'-I) 

(8.9) I 2 a T exp(-(T-u)
2u-2L) • IZ(u)\du, 

rt-v 
where for convenience we shall use the notation L • (logT) 1

+L. Then by Lemma 8.1 

with k • 1 and U > L, 

(8.10) 'l't~L"'-exp(-(T-u) 2u-2L)\!:(1/2 + iu)ldu > 

't-\JL:"'~ 

> .-
1 "JL~~ (1/2 + iu)[ du :»- U(log'r)- 1-•. 

'1'· 111.:"'"' 

We want to majorize r 1 in (s.s), and the simplest way to do this seems 

to be the use of the approximate functional equation (4.12), which gives with 

the abbreviation 

(8.11) 

where 

(8.12) 

Q = (T/2!Jl')1/2 
u 5 exp(-u

2u-21)~- 1
/ 2(1/2 + iT + iu)4(1/2 + iT + iu)du 

-v 

+ 

u 
~n-1/2+iT s ,y1/2( 1/ 2 ) iu ( 2 -2 ) = LJ ~ + iT + iu n exp -u U L du. 
n~ -U 

Now we recall the asymptotic formula (4.4) for 'f, (s) and abbreviate 



f(x) = ~log(2~/x) X ~ + 2 + xlogn + 8. .159 

Using Taylor 1s formula and /exp(ix) - exp(iy){ ::5 /x - y 1 (x,y real) 

-J:oo 

since 5 << exp(-L/2) << T-c for any fixed c > O. At this point we restrict 
*V . 

U to the range Tt ::5 U ::5 T1/ 3, and setting X= (4T/i)- 1 + u-21 we obtain 

-1/2 1 )-1 2( /) -1/2 ( 2 -1 2 / )) ( 3 -1 X exp ,~4X log n Q ) • UL exp -U (41) log (n Q + 0 U T ) • 

Therefore using (1.34) it follows from (8.13) that 

Although the sum that appears in (8.14) has many terms, the presence 

of the second expcmntial factor will make the contribution of many of these terms 

negligible. To see this we let P = (QJ • [(T/2Jt")
1
/ 2], n • P - m, where mis an 

integer satisfying 

But we have 

u2
L-

1
log

2
(n/Q) = u2

1-
1

!log(1 - (m + 0(1))Q-
1f2 :! !11+t, 

and the second exponential factor in (8.14) makes the contribution of these n to 

s1 negligible. For the remaining n in (8.14) we obtain by partial summation 

(8.15) r 1 << u2T- 1/ 4 + UT-1/ 41- 1/ 2 L,max l L, exp(iTlog(P - m)) l, 
M M I M<m<M 1 <2M 

where P = ÛT/2~)
1
/

2
], the maximum is taken over M1 satisfying M < M1 ::5 2M, and 

LJdenotes summation over O(logT) values M = 2-jQU- 1L1
+f, j = 1,2, ••• , so that the 

M 

exponential sums in (s.15) are short in the sense that M, o(P). To see first 

how one obtains the valuè c = 1/6 in (8.1) of Balasubramanian and Moser, we use 

the classical van der Corput estimate 

1/6 << (b - a)Â,
3 

+ 



where f (x) is real, b - a ?::. 1, À
3 

X f f (3) (x) 1 for 
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a _s x _s b. Applying (8.16) 

( ) ( ) " _ T-1 /2 with M = a, M' = b, f x = Tlog P - x, A
3 

- and summing over M we obtain 

on comparing (8.15) with (8.10) 

U(log'I')- 1
-t << I

2
'"' lr

1 
l << U2T- 1/ 4 + T1/ 6 (1og'I') 1/ 2

+t ·+u1/ 2T1/ 12 10/·T, 

provided that Tt< U =::: T1/ 3 , and this is impossible with U = T1/ 6log 2+iT. There~ 

fore Z(t), and èonsequently ((1/2 + it) must have a zero in [T - U,T + u] with 

this choice of U. Setting in = T - U we have fn+i e. [T - U,T + u], hence (8.1) 

with c = 1/6, d = 2 + e. Using the stronger (8.3) instead of (8.5) we would only 

gain on the quality of the log-factor and obtain (8.1) with c = 1/6, d • 3/4 + E. 

However (8.3) is much more difficult to prove than (8.5), and the latter estimate 

is sufficient for (8.4) which contains i in the exponent. 

Therefore to obtain the exponent given by Theorem 8.1 we have to estimate 

more carefully the sum 

(8 .17) s = s (M,M' 'T) = L, exp (iTlog(P -r m))' p = ~T/21r) 
1
/

21, M << T 
1l 2u-111+~ 

M<ln<M1<2M 

From the definition of P we have T = 2?f"(P + 9)
2 for some O < Q < 1, and 

therefore 
00 

Tlog(P - m) - TlogP = -TL, (m/P)kk- 1 
ks1 

Taking into account that exp(2Jrir) • 1 for any integer r we consider 

2 
separately even and odd m (to get rid of"f"m) to obtain 

+ IS"I, 

where S 1 cornes from even m and equals 

(8.18) s• = z: exp(2~iF(m)), M << M1 << M, 
:M1<lll<M1<2M1 

(a.19) F(x) 2 
+ T(2'r).~\(2x) 3/(~P3) + (2x) 4/ (4P4) + ••• ) t = c1x + c2x 

2(2GP + Q
2 )P- 1 0(1), c2 .. -1 O(P-1). c1 = .. c 1P "' 
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The expre~sion for S'' (coming from odd m) is similar and hence it will 

be sufficient to estimate S 1 in (8.18). For M ':'>'.:> T 
1
/ 4 and M1 ,S x ,S 2M1 we have 

\ F 1 ( x) \ ·:,,:> 1 and 

\F(k)(x)\ ~ M~-kT-1/2,k<7i; IF(k)(x)I >:( T1-k/2 < M3-kT-1/2, k > 3, 

where the ><.-constants depend only on k. This means that we ma.y estimate S 1 by the 

theory of exponent pairs of Chapter 2 as 

(8. 20) 

where (p,q) is any exponent pair and 

(8.21) A .. max << 
M1SJC<2M1 

Thus for M>> T~/4 we use (8.20) and (8.21), and for M << T
1
/ 4 we use 

(8.16) to estimate S 1 • Then we obtain 

(8.22) S << M2p+qT-p/ 2 + T5/ 24. 

Summing over various M and keeping in mind that M << T1/ 2u-111+• we 

obtain from (8.15) 

(8.23) I1 << U2T-1/4 + UT-1/24logT + UT(p+q)/2-1/4u-(2p+q)(logT)2p+q-1/2+•. 

Comparing this estimate with (8.10) as before we obtain a contradictio~ 

(8.24) 

and if we used (8.3) with k = 1 instead of (8.5) we would obtain the slightly 

better e?{ponent (8p + 4q ... 1 + f.)/ 4 (2p + q) of logT in (8.24), but as already 

mentioned this is of no importance for the proof of (8.4). Now we use Lemma 2.8 

to deduce that if (p,q) is an exponent pair then (p/(2p+2),1/2 + q/(2p+2)) is 

also an exponent pair, and further an application of Lemma 2.9 shows that 

(q/(2p+2),(2p+1)/(2p+2)) is an exponent pair too. Replacing (p,q) by this last 

exponent pair in (8.24) we obtain the condition 

(8.25) U = T(p+q)/2(2p+2q+1)(logT)(3p+2q+2+E)/(2p+2q+1) 

for which lI 11 • r2 is falsified, and this choice of U trivially satisfies 



JS2 
a 1/4 -1 'l' ,::: U::; 'l' log '11

0 The purpose of thi.n trunoformation is that now thf} ()Xponcnt uf' 

Tin (8.25) is an increaning functi.on of p + q, which means thnt the bc:1t rer;ult 

will be obtained if we take for (p,q) the exponent pair for which p + q i~ B mi

nimum. In accordance with the discussion made at the end of ChuptPr 2 we take 

(p, q) • (rJ./2 + '-, 1/2 + ,;./2 + ~), o<." o. "i290213568 ••• , which is thcn precisnly th~ 

exponent pair for which p + q is minimal, and then 

(p + q)/2(2p + 2q + 1) = 0.15594503 ••• , 

which proves (8.4). It may be noted that the trivial exponent pair (p,q) • (0,1) 

in (8.25) leads toc= 1/6 in (8.1), while Karacuba 1 s value c = 5/32 follows from 

the standard exponent pair (p,q) = (1/6,2/3). 

(8.26) 

N O T E S 

A. Selberg 1 s classical result that 

CTlogT 
21T 

for some absolute,unspecified C > 0 is given in Chapter 10 of Titchmarsh [8]. Here 

N (T) denotes the number of zeros of C(s) of the form s = 1/2 + it, 0 < t.::: T. If 
0 

N(T) denotes the number of zeros of the zeta-function in the rectangle O.::: & .::: 1, 

0.::: t.::: T, then the clas3ical formula of Riemann-von Mangoldt states that (chapter 

9 of Titchmarsh [e]) 

(a. 27) N(T) = (2~)-1TlogT - (1 + (2~)-1)T + O(lofr), 

which implies that up to the value of C the estimate (8.26) of Selberg is best 

possible. N. Levinson [1) obtained C:::, 1/3 in (8.26), which is a remarkable 

achievement, anà his resul t has been recently improved byShi-Tuo Lou (11 b 

C::::, O.35 by an elaboration of Levinson's method. Also by adapting Levinson's rnethoà 

D.R. Heath-Brown (.5) proved that more than one third of zeros of l;(s) are simple 

and on the critical line, but in spite of the quality of this type of results it 

is rather improbable that Levinson' s method will ever give N (T) rv r;('l') as T ➔ (n • 
0 

The Riemann hypothesis and (8.27) trivially imply 

Yn+1 V << logV'n' On 01 
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but it would be interesting to investigate whether anything can be deduced from 

inequalities of the type (8.1) about the horizontal distribution of zeros of the 

zeta function. 

As mentioned in the preface, Theorem 8.1 is due to the author and is 

hitherto unpublished. 

With the advent of refined computational techniques calculations concerning 

zeros on the critical line have been carried out to a remarkable extent. A detailed 

account of these techniques may be found in the book of H.M. Edwards [1J and in 

the paper by J.B. Rosser et al. [1], where additional references may be found. 

The best result at the time of writing of this text seems to be that of R.P. Brent 

01, who obtained by calculations that the first 75 000 001 zeros of the zeta

function which are complex are simple and lie on the critical line (the imaginary 

parts of the first six zeros are 14.13, 21.02, 25.01, 30.42, 32093, 37.58 appro

ximately). No doubt numerical data will continue to accrue rapidly. 

A proof of Lemma 8.1 with the right-hand aide of (8.5) replaced by H 

follows from Theorem 3 of R. Balasubramanian [11. The proof given there is due 

to K. Ramachandra, who has also sharper and more extensive results on this subject 

of which some were discussed in the Notes of Chapter 7. 

The discrete method of E.C. Titchmarsh in zeta-function theory (see Chap

ter 2 of Titchmarsh [81 for outlines of the method) deals with sums involving the 

sequence ltv\: 1 , where ty is the unique real root of 

and Z(t) is defined by (8.2). Therefore 

(8.28) 

,J(t) = - !t1og'TT + Im logr(l + ~t) = !tlog(t/231") 

v'(t) = !1og(t/2~) + 0(1/t). 

E.C. Titchmarsh (41 proved 
N 

v~+
1
z(ty)Z(\+ 1) ("-,/ -2(( + 1)N, 

t X 
- - - - + 2 8 

where M ::> 0 is fixed and sufficiently large, and he conjectured 

0(1/t), 
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(8.29) 

for some A~ o. It may be noted that if for some t! we have Z(tt)z(t:+ 1) < O, 

then there is a zero 1/2 + it of the zeta-function satisfying t€ [t~,t:+ 1], so 

that from (8.28) one immediately has as a corollary Hardy's classical result that 

there are infinitely many zeros on the critical line. This fact shows the connec

tion between the sequence [\,\:.'\ and zeros on the cri tical line. 

In a series of papers (some of which are [11, [2], [3], [4]) J. Moser ob

tained several interesting results concerning Titchmarsh's discrete method, and 

in particular in (4] he proved Titchmarsh's conjecture (8.29) with A= 4. From 

the Cauchy-Schwarz inequality and C(1/2 + it) << t
1
/
6 it is seen that (8.29)' 

will follow from 
N 

Li z4 (tv) << Nlog~. 
Y=M+1 

Taking into account that \4(1/2 + it)\ ""lZ(t)\ it is clear that (8.30J 

is a consequence of the discrete fourth power moment estimate 

,;ç' \t(1/2 + it*)\ 4 << Tlog 5T, \t* \ < T \t* - t* l "> 1 for r / s ~ R, ~ r -r - ' r s -

which follows from (7.6). Namely 

so that each interval [t,t + 1] contains << logt numbers t~ , and then we may 

define t* by r 

\ z ( t,, ) l , r = 1, 2,... . 

Considering separately t~m and t~m+1 we have the spacing condition 

\t; - t: \ ~ 1 for r /,. s, and since N rv (2m-)-
1
TlogT if v ~ N and \, ~ T, then 

collecting O(logT) estimates of the type (8.31) we obtain (8.30) with A= 5, and 

consequently (8.29) too. This is poorer by a log-factor than Moser's result, but 

the derivation sketched here is much simpler. Higher power moments of Chapter 7 

allow one to esti.mate in a similar way sums of the type 
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where k > 1 is a fixed integer. 

The estimate (8.16) of van der Corput is standard and was not proved 

in Chapter 2, since it was not needed before and besides it is given as Theorem 

5.11 of Titchmarsh [al. Its proof follows from (2.38), when each sum 

a~-he(f(n+h)-f(n)) 

is estimated by 

(8. 32) ~ e(F(n)) 
X<n<Y 

(y _ X)À 1/2 "-1/2 
<< 2 + /\2 ' 

where IF"(x)\ ~ À
2 

for X:::: x:::: Y, and His then chosen optimally. The estimate 

(8.32) is an easy consequence of Lemma 2.2 and Lemma 2o4, since e(F(n)) = e(F(n)-kn) 

for any integer k. Thus one may split the sum in (8.32) into not more than 

IF'(Y) - F 1 (X)\ + 1 << (Y - X)Â.2 + 1 

subsuma, and to each of these Lemma 2.5 is applied and the integral estimated by 

(2.2) to produce (8.32). 

A.A. Karacuba I s paper ( 41 contains also a resul t on zeros of Z (k) ('t) 

in short intervals. If k> 1 is a fixed integer, T :> T, 
- 0 

H :::>!> T1/(6k+6)(logT)2/(k+1), 

then Karacuba proves that every interval (T,T + H] contains a zero of Z(k)(t) 

of odd order. The main tool in the proof of this result is an approximate 

functional equation for Z(k)(t), similar to the approximate functional equation 

(4.12), where the length of the Dirichlet polynomiale approximating Z(k)(t) is 

(t/2~) 1/ 2 and the error term is o(t- 1/ 41ogkt). 
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CHAPTER 9 

Z E R O - D E N S I T Y E S T I M A T E S 

§1. Introduction 

Zero-density estimates involve upper bounds for the function N(d,T), which 

represents the number of zeros f = P.>+ ir ( r, ,f real) of the zeta-function for 

which t! ~ d ~ o, where d is fixed and -T _:s 1 _:s T. Estimates for N(d ,T) may be 

written in the form 

where C ::=: O, or 

N(d ,T) << 

where we shall always suppose that the <<-constant is uniform in d and T, but 

depends only one. In view of the Riemann-von Mangoldt formula (s.27) one has 

trivially A(d)(1 - d) = 1, C = 1 in (9.1) for O ,:s d,:S 1/2, while for d > 1/2 

obviously A(d)(1 - d) ,:s 1 and A(d)(1 - d) is non-increasing, Zero-density estimates 

have a large number of applications in many branches of analytic number theory, 

and it turns out that in some of these applications (like the problem of the 

estimation of the difference between consecutive primes) results obtainable from 

the Lindel5f (or even Riemann) hypothesis follow in almost the same degree of 

sharpness from a much weaker conjecture, namely 

A(J) 

which (both in (9.1) and in (9.2)) is known as "the density hypothesis", As for 

many applications (9.1) does not have muc;h advantage over the somewhat weaker 

(9,2), we shall be concerned mostly with estimates of the type (9.2), formulating 

our results for convenience as upper bounds for A(d) in (9.2) rather than for 

N(,,T) itself. In view of the preceding discussion and the well-known fact that 

there are no zeros on the line d • 1, it is sufficient to consider the range 

1/2 < d < 1 in (9.2). Except when d ia very close to 1/2 or 1 we shall prove 

in this chapter the sharpest known bounda for A(~)• To accompli ah this we shall 

use a zero-detection method, which will be fully explained in §2, and which 



offers great ilexibility iu the estimation of &(d). Among other toals we shall 

use the hi~1er power moment estimates of Chapter 7, and certain double zeta sums, 

which will be considered in ;6 and ~8. 

~2. The zero-detection method 

We start from ( 1. 7) wi th x = n/Y, namely 

-n/Y 
e ( Î w -w r w, Y n dw, 

"Ç""' 2 C 
and let MX(s) = LJ r,(n)n-s, where s = d + i t, log T;::: ltl .:::: T, 1 <<X.:::: Y << T , 

n<X 

f(n) is the Mobius fonction and X = X(T), Y = Y('I') are parameters which will be 

suitably chosen. In view of the elementary relation 

n 1 L f (d) { 
1 

= 

dln 
0 n > 1 

it is seen that each zero f ;. /3 + iK of t(s) counted by N(d,T) satisfies 
Z+iao 

e-1/Y + L, a(n)n-f e-n/Y "" 
n>X 

(21ti)-
1 S ~(J + w)Mx(f + w)Ywr(w)dw, 

where 

a(n) !a(n)\ 

2- i'OO 

< d(n) 
( 

< n ' 

c,O 

since the absolutely convergent series C(f + w) = Ln -r-w and Mx <r + w) 
n=1 

may 

be multiplied and then integrated termwise using (9.4). 

Now the line of integration in (9.5) is moved to Rewc 1/2 -13. For 

2 lt \ ~ log T the residue at the pole w = 1 - ..f of the integrand is o ( 1) by 

(1.3;), and the pole w = 0 of r(w) is cancelled by the zero w = 0 of ((f + w). 

Also using (1.;2) one has 

S = o(1) + 
Rew=1i ~-13 

and also one has trivially 

",7 ( \ -j -n/Y 
~ 

2 
a n;n e · 

rr>Ylog-Y 
() ( 1) 

as Y➔ ro. But then exp(-1/Y) ~ 1, so that each f = ~ + it 

satisfies at least one of the following conditions: 

counteà by N (d, T) 



(9.9) 

A. 'rr 

(9. 10) ) 
-f.a'rr' 

(9.11) 

~ 
2 

a(n)n-fe•n/Y :>':> 1, 
X<n.:::Ylog Y 

2 .lrl ,:;: log T. 
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The number of zeros y satisfying (9.11) is trivially O(log 3T), 

since each strip T::: t::: T + 1 contains O(logT) zeros by the Riemann-von Mangoldt 

formula (8.27). By the same argument we may choose R1 zeros satisfying (9.9) 

and R2 zeros satisfying (9.10) so that the imaginary parts of these zeros differ 

from each other by at least 2log~T and therefore 

(9. 12) 

At this point we choose simply 

(9.13) X = Tf. 

so that trivially 

for 2 lv \ ::: log T. 

Next we regulate the length of the Dirichlet polynomial appearing in 

(9.9) by observing that each J counted by R1 satisfies 

(9.15) l, a(n)n-fe-n/Y >> 1/logY 
N<n~N 

E. • 2 
for at least one of O(logY) values T ,:;: N = 2-JYlog Y, j = 1,2, ••• , and we may 

consider representative zeros of those counted by R1 which are::=,,, R1/logî in 

number and which satisfy (9.15) with a particular N. The exact size of N is not 

important, since we are going to raise (9.15) to the power k, where k is a 

natural number depending on N such that Nk = M, (2N)k = P::: Tc, whence k << 1 and 

wi th b (n) << d2k (n) << nl and P << M. We split this last sum into subsuma of 

length not exceeding M and ::hoose k so that ~::: Yrlog 2ry < tf+1, k ~ r~ 2 is 

satisfied, where ris a fixed integer. Then we have 

(9.16) yr
2
/(r+1) 10g2r

2
/(r+1)y << M <:< Yrlog2rY, 
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and in view of existing power moments for the zeta-function it turno out thuL tho 

practical choice for r in (9.16) is r = 2, wli.ch gives 

y4/ 31og8/ 3y << M << Y2log 4Y. 

Therefore we have reduced the estimation of R1 to the estimation of the 

number of representati ve zeros f = O + ir, ~ ~ d of R1 for which 

(9.1a) L b(n)n_,_jr :;;,,,,> 1/logDT 
M<n<2M 

for some 1 << D << 1, b(n) << nt and M satisfying (9.17), since by the partial 

summation formula (1.17) we may replace n-! ~Y n-,-jy without affecting {9.17) and 

the order of magnitude of the b(n) 1s (in the sense that they remain << nE). 

To estimate R2 we set for r = 1, ••• ,R2 

1((1/2 + 1rr + 1v•)I = max fC<1/2 + 1yr + 1v)\ 

-log 2T,:::v<log2T 

and 

where r1, ••• ,rR are ordinates of zeros 1:1atisfying (9.10), and then from (9.10) 
2 

we infer that 

(9.19) f 1/2-&1~ / .. \ 1 << T Y l,(1 2 + 1.tr), r = 1, ••• ,R
2

• 

For r / s obviously jtr - t
8

\:::, log 4T, and so raising {9.19) to the 

power A;::_ 4 we have 

(9.20) TM(A)+L.A( 1/2-d) << r , 

where M(A) is defined by (7 .1). We may also utilize Theorem 7 .1 to estimate R
2

• 

Defining H(T) = Tq/(1-2p+44) it is seen that (7.8) gives 

V;::_ H(T) 

(9.21) R << 
T{p+q+ t)/py-2 {1+2p+2q)/p 

' V .:S H(T) 

for any exponent pair (p,q) such that p > O. Raising (9.19) to powers 6 and 

~(1 + 2p + 2q)/p respectively we obtain 
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Having thus prepared the ground for zero-density estimates we shall 

proceed to specific results, with the'. remark that the estimation of R1 is in 

general more difficult than the estimation of R2, for which good bounds (9.20) 

and (9.22) exist. Severa! techniques for bounding R1 will be presented, but it 

turns out that for 1/2 < d:: 3/4 the mean value theorem for Dirichlet polyno

mials (Theorem 5. 3) is the best available tool, while for d ~ 3/ 4 the best resul ts 
-

are obtained via the Hal~sz-Montgomery inequality (1.35) or (1.36), which offers 

a considerable flexibility of approach. 

§3. The Ingham-Huxley estimates 

For the rest of this chapter we shall be proving bounds for A(d) of the 

type (9.2). The aim of this section is to prove 

THEOREM 9.1. 

A(d) < 

A(d) 

A(d) 

< 

< -

3/(2 - ~), 

3/(30 - 1), 

12/5, 

3/ 4 :: d :: 1, 

The estimate (9.25) is a simple consequence of (9.23) (due to A.E. 

Ingham [2]) and (9.24) (due to M.N. Huxley (21), since for 1/2 ::d:: 3/4 

the function 3/ (2 - d) is increasing, while for 3/ 4 !: d _s 1 the function 3/ ('!d - 1) 

is decreasing and their common value at d = 3/4 is 12/5. The point of (9.25) is 

that it is the best known estimate of the type A(d) !: C (Can absolute constant) 

valid for the whole range 1/2,:: d !: 1, and estimates of this sort are often 

needed in applications. 



Proof of Theorem 9.1. To obtain (9.23) we use (9.17), (9.18) and the 

mean value theorem for Dirichlet polynomiale in the form (5.14). This gives 
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where L, 
r 

denotes summation over representati ve zeros J • Il+ ir r of R1 which 

satisfy (9.18). Using (9.20) with M(4) • 1 it follows from (9.12) that 

N(d,T) << TE.(y1-4~ + TY4(1-2d)/3 + 1) << T3(1-d)/(2-i)+l 

for Y= T3/(e- 2d). It is perhaps surprising that (9.23) has been never improved 

for more than forty years sin ce Ingham 1s work [21 ( except when d is very close 

to 1/2), and the main reason for this seems to be that M(A) = 1 is still known to 

hold 6nly for A~ 4. 

The main difficulty in estimating R1 in general is the presence of the 

coefficients b(n), which are non-monotonie and therefore cannot be removed by 

partial summation techniques such .as ( 1.17) or (1.18) • An obvious way to remove 

the b(n) 1s is the use of the Halâsz~Montgomery inequalities, and for the proof of 
Q) 

(9.24) we shall use (1.35) wi th t = [tJn= 1 and t n = b (n)n -d for M < n ~ 2M 

and zero otherwise, and 'f r,n - n 
-it r 

for M < n ~ 2M and 

zero otherwise, where we have denoted the ordinates of representative zeros of 

R1 by t 1, ••• ,tR. Then from (9.18) and (1.35) we infer that 

The effect of this procedure is that the inner sum above is an exponential 

sum to which the techniques of Chapter2 are applicable. Indeed we estimate this 

sum as 

by the exponent pair (p,q) • (1/2,1/2) if lt - t 1 ~ M and if this is not r s 

satisfied then by Lemma 2.5 and Lemma 2.1. Therefore we have 
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But in view of \ t - t 1 > log 4T 1re have 
r s -

5'1. ( t - t ( • 1 ~ RlogT, 
r"fâ~ r s 

and therefore we obtain 

if T <<M 4•- 2• Thus we divide Tinto subintervals of length at most T = MM-2 
0 

so that if R
0 

denotes the number of representative zeros of R1 in each of these 

intervals then (9.26) holds with R
0 

in place of R1• Using (9.17) we have then 

R1 << Ro (1 + T/To) << T l(M2-2tl + nt4-61i) ~ T '(y4-4a, + TY(16-24l)/3) • 

From (9.20) with M(12),::: 2 we have finall1 

N(d,T) <~ Te.(Y4-4d + TY(16-246)/3 + T2Y6-12d) << T3(1-,)/(3'·1)+E.. 

wihth Y= T3/( 12cr-4), whi,ch completes the proof of Theorem 9.1. 

§4. Estima tes for d near uni ty 

In this section a different approach to the estimation of R1 will be 

presented, again via the Halasz-Montgomery inequality (1.35). The method is 

based on the use of higher power moment estimates of Chapter 7 and gives good 

bounds for A(d) when d is close to tmity. Only when d is quite close to unity 

the bounds connected with zero-free regions for the zeta-function furnish a shar

per reaùlt than ours, which is 

THEOREM 9.2. 

(9.27) A(6) < 4/(2d + 1), 

A(d) < 24/(30d - 11), 

Proof of Theorem 9.2. As in the proof of (9.24) we shall utilize (1.35), 
CD 

but the chqice of ê and lfr will be different. We shall take ~ = f t nJn. 1 , 

for M < n,::: 2M and zero otherwise, and 

( -n/2M -n/M 1/2 -itr 
= e - e ) n , n = 1,2, •••• Writing 
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as before R for the number of representative zeros of R1 and t 1, ••• ,tR for their 

respective ordinates, we obtain from (1.35) and (9.18) 

where fort rcal we have from (4.60) with h = k • 1 

since 1 

Moving the line of integration in (9.30) to Rew = 1/2 we encounter a simple pole 

t 1 . t . th . d M - I t I b ( 1 3 2) th t a w = - 1 wi resi ue << e y • , so a 
'11diOO 

H(it) = (2~1)- 15 C(w + it)((2M)w - M")r(w)dw + O(Me-lt\) • 
.ff&-lo0 

Also in view of (1.32) the integral for }Imwl ~ log
2
T in (9.31) is o(1) 

for M << Tc, which gives 

4-1 \H(i t -i t )( << M e r 8 + o (R ) 
~ ~ - (t -t 1 2 

rfs<R r 8 r <R 

The first sum on the'right-hand side of (9.32) 1s <<R, since by hy

pojhesis the t 1 s are at least log 4T apart, and for the second sum we fix each s 
r 

and set !T = t - t + v. Then l!T \ < 3T for r = 1, ••• ,R and -r r s r -

for r
1 
r r

2
• We use H5lder 1s inequality and (9.21) with (p,q) = (2/7,4/7) to 

obtain 

R (2+3p+4q)/ (2+4p+4q) ( L 1~ ( 1/2 + i 'j )l(2+4p+4q)/p)p/ (2+4p+4q) 
r<R,ltl<H(3T) r 

Inserting (9.33) into (9.32) and using then (9.29) we obtain 



l 2 2J 9-12J 7, 1°(7i-~ô)/2) << T ( M - O + 'l'M O + rr / M .I I ' 

and to bound R2 we use (9.22) also wi.th (p, q) = (?/7, ti/7), so 

'1,3 y 1 9 ( 1 / 2- J) ) . 

175 

that 

We now u~1e first (9. :itl) to estimate the number of points R
0 

lyine 

in an interval of length not cxceeding T 
0 

= M(7?J- 57i)/6. Then R << T~M2- 26 for 
0 

d::: 11/12 and 

<< R (1 + T/T ) 
0 0 

<< Tl(y4-,U + TY2(65-84d)/9) 

for d :::, 65/84. With Y= T6/( 3o&-11 ) it follows from (9.35) and (9.36) that 

<< 

<< T
24 (1- ~)/ (30l-11 )+E. 

for 155/174,::: d,::: 11/12. Ford:::, 11/12 we repeat the procedure choosing this time 

10J 7 . €. 2-2~ 
T ~ M - in (9.34) to obta1n R <<TM and 

0 0 

(9.37) R1 << Ro(1 + T/To) << Tl(M2-2J + TM9-12o) << T\Y4-4<J + TY12-16/) << 

<< T '-(y4-~ + TY3-6i) • 

. 1/(2a+1) / 6/(30J-11) 11 1'7 
Choosing Y = T for J :::, 17 18 and Y = T for 12 ,::: d .::: 18 

respectively we complete the proof ori comparing (9.35)and (9.37),and using 

N(d,T) << Tt(R 1 + R
2 

+ 1). 

§5. Reflection urinciple estimates 

All good known zero-density èstimates for d "> 3/4 (but not when d is very 

close to unit y) invol ve the use of inequali tics of the HalJs2-r!.ontgomery type, ar.d 

here we shall follow M. Jutila [2°] and derive some estimates which follow from the 

reflection principle inequality (4.67) with s • it (where t denotes ordinatcs 
r r 

of representative zeros of R1 satisfying (9.18)) and Y "' M. Similul"ly to (9.2'.J) 

we obtain this time 
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+ M
1
-Zd ~ IK(it - it )\), r s 

r-s<R 

2 where Ris the number of representative zeros uf R1, and where with h = log T 

and t f O real we have 

by (~.67). Therefore from (9.38) and 

Jt. 

M 1/2 5 1 L n-1/2+i t+iv f dv 

-i"" n~t'l'fM 

(9.39) we infer that 

1,/'Hl)/2f L, l L, n-1/2+itr-its+ivldv, 

-.&" t"$-S<R n<4T/M 

As we are interested in the range d ~ 3/4 the term M1- 2'R~ may be dis-

c~rded in (9.40), and on applying Holder 1s inequality with k-::> 1 an integer we 

t 2-2a t k(3-4(l)/2 k 1 ~ -1/2+itr-its+iv,2k 1/2 
R1 <<TM +TM · max ( L.J n ) 

lv l~ 2 r z<R n<4T/M 

have 

<< 

where f(n) << n~ and fis independent of t and t. The point of this approach r s 

is that now the coefficients may be removed from the last double sum by appealing 

to the following simple 

Lemma 9.1. Let a1 , ••• ,aN be complex numbers such that [a1( .::5 A, ••• , 

laN \ !: A and let M ~ N. Then for any fixed O < ~ < 1 

< 

Proof of Lemll"a 9.1.. The left-hand side of (9.42) is 

~ -it +it 
~ a&. (rrm)-~. 6 (m/n) r 8 

~l>r m ri <R m, n:;:i· r, s_ 

2 ~ JI "=Ç' it 12 
A L (mn)- L, (m/n) r = 

m,n<M r<R 

Therefore applying Lemma 9.1 to the last sum in (9.41) with a 
n 
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<< rr\?-:?d + 'l't:/(3-~l)/2 max (S(N)) 1/2, 

N::;:(4T/M) k 

whcre we èefine 

and R:::: R1 is the reprcsentative set of zeros of R1• Thereforo S(N) may be called a 
rsum of, 

"doul::le zeta Gum", since it i::; similar to ai Dirichlet polynornials approxim&ting 

\1'.;(1/2 + itr - it
3

)\ by the approximate functional equation (4.12). The estimation 

of S(N) represents the main step in obtaining density estimates from (9.43). The 

results that will eventually follow then from (9.4~) will provide gbod bounds for 

A(d) in the range 3/4 < d < 1, when J is not close to 3/4 or 1, and in parti

cular we shall show that A(J) .5 2 ("density hypothesis") holds for J :::_ 11/14 = 

0.70571 •••• In the next section we shall deal with the sums S(N), while in §1 we 

shall obtain zero-density results from (9.43) and estimates of S(N). 

§6. Double zeta sums 

There are several ways to treat the double zeta sums S(N) defined by 

(9.44). First of all note that the terms with r = s in (9.44) contribute << RN, 

and if the terms with_r} s were small one would expect 

to hold. This bound is very strong and is, however, certainly well beyond reach 

at present for all N. Although no restriction on N (with respect to T) has been 

made in the definition of S(N), one may safely suppose that N .5 T, since for 

N:> T the sharp bound (9.45) does hold. This is not hard to see since using Lemma 

9.1 for N > T 

<< 

2 
+ R , 

1 
whcre in vicw of N > T, ~lt - t I we were able to use Lcmma 2.5 und then Lemma 2.1. - '- r s 
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Thus in what follows we may always assume that N .!: T. 

Next wi th c • e -n/ ( 2N~ - e -n/N we have 1 << c << 1 for N < n < 2N 
n n 

a.nd c :> 0 for all n -:>_ 1. Obi:::erve that (9.42) remains true wi th la l < Ab 
n n - n 

and the inner sum on the right-hand side of (9.42) replaced by 

so tha.t wi th M = ro we obtain 

(9.,16) S(N) << L /!cnn-1/2-itr+itsJ2 - s*(N). 
r,s~ n=1 

The contribution of the terms r = s to s*(N) is << RN. To estimate the 

contribution of the remaining terms note that fort real such that 2 jtl ~ log T 

we have 

(9.47) 
00 

~ -1/2-i t uc n = 
n=1 n 

-tt-100 

(2'ri)-
1

) 4(w + 1/2 + it)r(w)((2N)w - Nw)dw = 

•-:oo 

ioo 

(2l1tî)-
1

) C(w + 1/2 + it)r(w)((2N)w - Nw)dw + o(1), 

-1.0 

since the integrand is regular at w = 0 (because of the zero of ·f2N)w - Nw) and 

the residue at the pole w = 1/2 - it~ing o(1) by Stirling's formula (1.32)). Likewise 

the last integral in (9.47) may be. broken at (Im wf = log
2

T with an error << 1, 

and we have 

S*(N) 2 
<< RN + R + 

so that (9.46) gives 

S(N) << RN 
2 

+ R + 

max L 
2 

lvl <log T rfs~ 

lt(1/2 + 1t - it + iv)\ 2, r s 

max "'"' 1((1/2 + it - it + iv)\ 2
. 

2 ~ r s 
[vl <log T rf s~ 

Here we shall use Holder 1s inequality and (9.21) as in the proof of 

(9.22) to deduce (by fixing each s and summing over r similarly as in (9.33)) 

- it 
s 

+ ( LJ 1~ j (2+4p+4q)/p)p/ (1+2p+2q)R (2+2p+4q)/ (1+2p+2q) << 

lt: 14! (3T) 

R5/3T 1/3+î + R (2+3p+4q)/ (1+2p+2q)T (p+q+E..)/ (1+2p+2q) • 
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Insertine thin bound in (9.~o) wo obtuin 

Lemma 9.2. For any exponent pair (p,q) with p > 0 

The particular choice (p,q) = (1/2,1/2) giveu i~mcdiately 

S(N) << RN + 

As was remarked already at the bcginning of this section, the terms 

~=sin S(N) make a contribution of order RN, and it seems natural to expoct 

that S(N) is in some sense an increasing function of N (for T fixed). A useful 

result in this direction will be proved now, which is 

Lemma 9.3. For U ~ Nlog'l' 

Proof of Lemma 9.3. Let us define for a fixed K, 1 

-1/2-it +it ~ 1 '\' 
g (n) = n r 8

, S(N,K) = ~ L.J g (n)\2 
r,s r,s<R N<n~N r,s 

S(N) = S(N,2). Consider 

H(e) = r ~<RI NlK/r, s {n) 1 21M.13M/ /mgr, s ( m) l 2 

= 

where 

if we suppose tha t 

By summing H(~) over 

C . 
M << T , and the components ~ of the vector e areœch .:t 1. 

Q.1/21 . 2 possible vectors e and using Lemma 9.1 we obtain 

Lt H(e) !: 2 ~•r/21 Tl S (MN, 3K/2) • 
e 

On the other hand 

2::n(e) "' • 
e 
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-
so that 

(9.52) S(N,K) << TlS(MN, 3K/2). 

Here we used the relation 

~e e { 
2 [J1,r/2] if m1 • m2, 

= 
e m1 m2 

0 if /. m2, m1 

since if m1 f m2, then 2[M/2]- 1 summands are +1 and the other 2(M/2]- 1 are -1, 

cancelling each other. To obtain (9.51) from (9.52) we use first the Cauchy-Schwarz 

inequality and·write 
2 

<< L,, S(N.,K), K = 2
113, N. = NKj, 

j=O J J 
S(N) 

and then apply (9.52) with M = Mj = 1 + (U/Nj1, so that U .::::MjNj and for U/N 

sufficiently large we have 3KM.N./2 < 2U. Since U> NlogT by hypothesis we have 
J J - - . 

that U/N is large and therefore (9.52) and (9.53) give by the use of Lemma 9.1 

E. 2 
S(N) << T Lf S(M.N.,3K/2) << Tf-s(U). 

j=O J J 

Lemma 9.4. 

S(N) 
2 2 

<< Tt.(RN + R + S (Tlog T/N)). 

Proof of Lemma 9.4. As already noted, the result is non-trivial only 

2 for N.:::: T. Letting h = log T we have by the proof of Lemma 9.1 (with M_= oo) 

since the exponential term is positive for all n?; 1 and i t is >( 1 for N < n _:: 2N. 

Here we use once again the reflection principle estimate (4.67) and Lemma 9.1 to 

obtain 

2 t" ' ~ -1/2-itr+i\}2 
S (N) ~ RN + R + T ~ L.J n << 

r,s.;::R n-<4T/N 

O(~"r) 

RN + R
2 

+ TE foc1 S (2
1
-jT/N) << RN + R

2 + TtS (T1og
2T/N), 
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whoro in thn laat ut.ep Lemmn. ').7i Wfül usüd. 'l'hi::; proven Lernrna ').'1. 

The precoding lem'llas enable us to dcduce anothcr expllci t cnt-imato for 

S(N), which iu for some ranges of Rand N ohurpor than the bound providcd by 

Lcmma 9. 2. 'l'h is i:J 

Lemma 'J.1. 

S (N) << 

Proof of Le-:nma 9.5. By using Lemma 9.1 and Lemma 9.3 we have with the 

aid of the Cauchy-Schwarz inequality 

S(N) .:5: R( L; 1 L,. n-1/2-itr+itsl4)1/2 <<R(S(2N2logT))1/2Tf.. 

r, s<R N<n<:2N 

Thon using Lemma 9.4 and Lemma 9.3 

Therefore the range N:::, T for which the bound (9.45) holds may be extended to 

N::: T2
/ 3log 4T, and any further improvement would be very interesting. 

To prove (9.55) we proceed similarly using (9.54) and setting 

U = max(NlogT, R1
/ 4T1

/
2logT). 

Then 

î E. 2 2 S(N) << T s(u) << T (RU + R + S(Tlog T/u)) << 

and using (9.50) we have 

S(N) << Tî(RU + R2 + R3/2TU-1 + R23/12T1/6) << 

Repeating the same procedure but using the above estimate in place of 

(9.50) wc obtain 

S(N) << Tl(RN + R47./241,1/12 + R5/4T1/2 + R13/8T1/'1). 

13/a 1/4 5/'1 1/2 2 But it is easily seen that R T · .:5:R 'l' + R, s0 that the l:.i.st 

term in the above estimate muy be disca.rùed, and repeating the procedure k times 
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wo have 

so that (9.55) follows on taking k sufficiently large. 

§'1. Zero-densi ty theorems for ~/1 < d < 1. 

We now have at disposal good estimates for S(N) furnished by Lemmas of 

;6, and we shall use (9.43), (9.49),(9.55) to obtain for k'!_ 2 an integer 

R
1 

<< Tf{M2-2d + Mk(3-4d)/2R
1 

+ ~(1-2d)Tk/2R~/2 + 

~(3-4d)/2min(R~/8T1/4,R~/6T1/6 + Ri2+3p+4q)/(2+4p+4q)T(p+q)/(2+4p+4q))}. 

In view of d > 3/4 the term Mk(~-Jd)~ may be omitted and after simpli-

fying the above estimate we obtain 

(9.56) R1 << Tt{M2-2ô + ~(2-4&)Tk + 

+ min (T2/3ifk ( 3-41) /3 • TM3k ( 3-14) + T (p+q) / PM; ( 1+2p+2q) (3-44) )} 

To make the first two terms on the right-hand side of (9.56) equal we 

choose 

(9.57) T = T 
0 

With this choice of T the remaining terms do not exceed M2- 2d for 
0 

{ 

-2 2 2 
J . 6k -5k+2 (9k -Jk+2 3k (1+2p+2g)-(4p+2g)l<t2p+2g 
0 :::, m1 n 2 , max 2 , 2 

Sk -7k+2 12k -6k+2 4k (1+2p+2q)-(6p+4q)k+2p+2q 

Thus we obtain, provided that (9.58) holds, 

R
1 

<< TtM2-2d (1 + T/To) << T \il-2' + TM2-2d1/ (2k-2+(2-4k)cl)/k)) << 

Tt(Y4-41 + TY4(4k-2-(6k-2)d)/3k), 

since 4k - 2-(6k - 2)J ,=:: 0 for d :::, 3/4 and k '!_ 2. Using (9.20) with M(12)::: 2 

we have 

(9.59) 

<< T3k ( 1-J)/ ( (3k-2)J +2-k)+ t 

for y. T3k/((12k-8)d+8-,1k) • 
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Bcforc we procced to eBLimatnu urieing from opccific vuluee of kit may be 

noted that letting k ➔ oo oll thn expressions in (9.58) tend to 3/4 and (9.59) 

givcs thon A(d) ~ 3/(7id - 1) when k is vary large, which io just Huxley 1 s estimate 

(9.~4). The functions appcaring in (9.58) are docreasing functions of k, while 

the function that appears in (9.59) in the estirnate for N(&,T) is an increasing 

function of k, so that there is no oirnple k which will furnish the sharpest bound 

0btair1ablc by this rncthod in the wriole range J ?: 6 > 3/4. Taking first k = 2 
0 

we see that A(J) ~ 3/(26) holds for 

(9. 60) ( / (..!.2.. 6 + 9P + 119)) J :::, min 4 5,max 19 , 8 +11p + 134 , 

-S87i1 
and the choice (p,q) = (97/251,132/251) gives A(d) ~ 3/(2a) forJ :::_ 479Î = 0.799624. 

For k = 3 we have A(d) ~ 9/(70 - 1) for 

( / (71 27 + 55P + 50q)) 6 > min 41 53, max 92, 36 + , 6P + 624 , 

and therefore A(d) _::: 9/(7d - 1) holds for d ?: 41/53 = o. 773584 •••. • Since 

9/(7d - 1) < 2 for d :::_ 11/14 we obtain also 

(9. 62) A(J) < 2 for d > 11/14 = O. 785714 ••• , 

which is the best known range for which the density hypothesis holds. Finally we 

shall also consider the case k = 4, when looking at the first expression on the 

right-hand side of (9.58) we see that A(d) _::: 6/(56 - 1) holds for J 2:. 13/17 = 

0.764705 •••• The above estimates may be collected together to give 

THEOREM 9.3. 

(9.63) A(d) < 3/ (2&) for 3831/4791 = 0.799624 ••• < 6 .::: 1, 

(9. 64) A(&) < 2 for 11/14 = 0.705714 ••• < d s 1, 

(9.65) A(J) < 9/(U - 1) for 41/53 o.7735s4 ••• < d s 1, 

(9. 66) A(J) < 6/ (5d - 1) for 13/17 = 0.764705 ••• .!: d .::: 1 • 

~8. Zero-density estirnates for d close to 3/4 

Although all estimates of the type (9.59) improve (9.2'1) for a fixed k, 

none can be made yet to hold in the whole range & :::, 3/'1. Therefore it seems of 

interest to try to find un estimate which will improve (9.24) for ô > 3/4. This 

rnay be donc, and the rcnult is 



TllEOREM 9.4. 

A(o) < 3/(u- 4) 

A(d) < 9/(84- 2) 

for 3/4 !:: d .5 10/13, 

for 10/13 ,:s d .5 1 • 
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Note that both (9.67) and (9.24) give A(3/4) ,:s 3/5, but Theorem 9.4 improvœ 

(9.24) in the whole range d :> 3/4. Neverthelesss (9.66) is still sharper, so that 

the importance of (9.67) lies in the range 3/4 < d .5 13/17. The main idea of 

proof is the use of a double zeta-function sum (different from (9.44)) at the line 

J = 3/ 4. For a fixed 9 satisfyfng 1/2 < Q < 1 let us define 

(9.69) S1(Q) = L n:(e + itr - its + iv 1 )1
2

, 
r,s:5!1. 

where the real numbers t 1, ••• ,tR satisfy !tri .5 T, ltr - t
8
l :::_2log4T for r f s,::: R 

and v 1 is defined by 

max {t(9 + it - it + iv)l. 
2 2 r s 

-log T<v<log T 

Furthermore we define s1(1/2) analogously as s1(9), only for technical 

reasons in the definition of v' the maximum of vis to be taken over the interval 

{-2log 2T,2log 2T]. The proof of Theorem 9.4 will require a good bound for s1(3/4), 

which is furnished by 

Lemma 9.6. 
s1(3/4) << Ti(R2 + R11/aT1/4). 

Proof of Lemma 9.6. The most important step in the proof of (9.71) 

consista in showing that 

To obtain (9.72) we may start from (9.4) with s = 3/4 + it - it• + iv' r s 

(r f s), 1 <<Y<< Tc, and move the line of integration to Rew = -1/4. We encounter 

a pole at w = 1 - a with residue o(1) in view of (1.32) and a pole at w • 0 with 

residue C(s). Therefore ~ 

(9. 7~) ( (s) <><: 1 + 1 Le -n/Yn-•j 2 + Y-
1
/ 21" •-lyl Il'.; (1/2+itr-its +iv 1+iy)( 2dy, 

n<Y -~"1' 

and summing over r,a .5 Rit follows by the Cauchy-Schwarz inequality 

~ f~ -n/Y -3/4-itr+it 8 -iv'}2 _1/ 2 
~ e n + Y s1 (1/2) 

r,o-<n n_ 
<< 



,., ~ , ~ -~1,1-it +it -iv• I? 112 
T(R~ + R( L LJ c(n)n r s ) + 

r,s<R n<Y2 
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y-1/231 (1/2)' 

whPre c(n) << n~. 'ro estimate the sum under the square root we use Lemma 9.1 and ob .. 

tain, similarly as in (9.44), 

L I L,t << logT• max Z I Z: f << T (.. max M-
3/

2 Z lH(itr - it
8

) \
2

, 
r,s<H n<Y M<î2 r,s.<R M<ngM M<î2 r,s~ - -

where fort real 
00 

H(i t) = LJ e -n/2M -
n=1 

-n/M) -it e n 

'Z.+~00 

= (2Jtï)-
15 t(w+it) ((2M)w-Mw)r(w)dw, 

2-; .. 

and therefore trivially H(O) <<M. Fort= t - t / 0 we move the line of integr s 

ration in the above integral to Re w = 3/ 4, encountering a pole at w = 1 - i t + i t 
r a 

<< TE(RY + R2 
+ S1 (3/4)). 

Inserting this estimate in (9.74) and simplifying, we obtain with 

Y = R- 3/ 2s
1 

(1/2) 

s1(3/4) << TlR2 + TE..R3/2y1/2 + y-1/2s1(1/2) << T\R2 + R3/4(s1(1/2))1/2), 

which is precisely (9.72). 

To obtain finally (9.71) from (9.72) we need an adequate bound for s1(1/2). 

From the reflection principle equation (4.66) we have with s = 1/2 + it -it + iv 1 
r s 

(r f s), h • log
2

T, of.= 1/2 - t, M = 4T/Y., k~~ 
"'~ +fS l Li n"'>·t-HiJ ldy. 

_,,_,.. n<4T/Y 

To make the lengths of the sums in (9.75) equal we choose Y= 2T
1
/

2
• 

Squaring, summing over r,s;:,: R, using Lemma 9.1 and Lemma 9.3 it follows that 

<< 

where S(N) is defincd by (9.,1.4). If we use (9.55) to bound S(2T 
1
/

2logT), then 

(~.71) follows at once from (9.72) and (9.76). 

Pronf of Thcorem 9.4. It remains yet to prove Theorem 9.4 with the aid 
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of Lemma 9.6. We use (J.29), but now in (9.30) we move the line of integration 

to Hew .. 1/4 and employ the functional equation (,1.1) for the zeta-function. Inc

tead of (9.32) we obtain now with the aid of the Cauchy-Schwarz inequality ~...,. 
-lt -t l / \ 

fa IH (i t -i t )\ << M ~ e r s + R
2 

+ (MT) 
1 

,1) t.: l4 (f+i tr -i t
5
+iv)idv 

r S<R r s <R <R . r s_ -~"'r r s_ 

Therefore if we use this estimate and Lemma 9.6 in (9.29), it follows 

after some simplification 

(9.77) 

For R points lying in an interval of length T = T = M~- 5-t we have 
0 0 

R << T \M2-2J + T6/5M(20-324)/5) << TtM2-2d 
0 0 

for d :;: 10/13, and therefore for 3/4:;: d _:::; 10/13 with Y= T3/( 28d- 16) we 

obtain 

<< R (1 
0 

+ T/T) 
0 

+ T/T ) << 
0 

€.( 4-4.:l T y + T
3 (1-d)/ (7d -4)+ t. 

<< • 

Using (9.20) with M(4) = 1 it is seen that for 3/4:;: d.:::; 11/14 one has 

TY2- 4d :;: TY(2s-4o~)/3, and (9.67) follows. Analogously we obtain (9.68) if in 

(9.77) we choose T
0 

= M(11o-5)/ 3_ 

NO TES 

A classical application of zero-density estimates consist~ in bounding 

P - p from above, where p is the n-th prime number. The main tool is the n+1 n n 

well-known formula of E. Landau (K. Chandrasekharan (1], Chapter 5) 

(9.78) "f'(x) =- Li/\ (n) = ,Z logp = x - ( 
-1 2 

+ 0 xT log x), T _::: x, 
n<X m 

p 9-

where 111 ,:: T denotes summation over all zeros J 13 + i( of the zeta-function 

counted by N(d,T). If using (9.7B) one can prove 

(9. 79) 

then taking x; p_ one easily deduces from (9.79) 
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However if one forms 1'(x+h) - "f'(x) with the aid of (9.78), then one encoun-

tera the sum 
X...._ 

(9.81) L {x+hi - xY L, ~ zf• 1
dz z IJ-1 << logx 0 max J-1 ( ) 

J 
<< h X x N d,T , 

IYl.sI1 lyf§'" 1r1sr J 

where the maximum is over the interval 

since for~:> 1 - Clog~ 2
/ 3 tyl(loglogtrf)-

1
/ 3 there are no zeros of the zeta-function, 

as shown by A. Walfisz [2] with the use of I.M. Vinogradov•s method of estimating 

exponential sums (for a somewhat weaker zero-free region one may consult E.c. 

Titchmarsh [8) and K. Chandrasekharan lt), while for an elementary approach to 

the zero-free region (9.82) the reader is referred to articles of Y. Motohashi 

(J),[21). Thus (9.81) shows how inequalities of the type (9.80) are connected with 

zero-densi ty estimates, and if A(d) !: D for 1/2 ~ d .s 1 and some absolu te D ~ 2, 
. :.1 

then using (9~81) and (9.82) it follows that (9.80) holds with any Q:> 1 - D • 

Thus (9.25) gives 8 = 7/12 + e., the density hypothesis gives Q =· 1/2 + t, while 

. 1/2 
under the Riemann hypothesis nothing more than p 1 - p << p logp (proved n+ n n n 

by H. Cramér [21) is known, though Cramér himself already conjectured an incom-

parably sharper bound, namely p 
1 

- p << log
2
p, which seems altogether hopeless n+ n n 

for today's methods. For a long time the only approach to (9.80) was the one just 

outlined, but recently H. Iwaniec and M. Jutila [1) have successfully combined 

sieve and analytic techniques to obtain Q = 13/23 in (9.80), and this approach 

was further elaborated by D.R. Heath-Brown and H. Iwaniec (1], where Q = 11/20 + l 

was obtained. In a preprint of the Math. Institute of the Hungarian Academy of 

Sciences J. Pintz showed that the crucial Lemma 2 of Heath-Brown - Iwaniec Dl 
can be improved, which leads to e a 17/31 + t. Pintz also announces the value 

Q. 23/42 + [ • 0.547619 ••• + é which will appear in a joint paper with Iwaniec. 

For a comprehensive atudy of works conoerrdng zero-density estimates the 

r~ader is referred to Chapter 12 of H.L. Montgomery [21, where a general form of 

the zero-detection method is given (to include zero-density estimates for L func

tions),as well as several aharp bounds for N(d,T) when& is close to 1, incluâing 
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which is connected with the zero-free region (9.82). 

Concerning sharp bounds when d is close to 1/2 one should mention 

the bound 

N(d ,T) << 

of A. Selberg [1] • Recently M. Jutila [3] has improved (9.84) by replacing 1/4 

by 1 - 6 for any fixed O < $ < 1. 

The useful procedure of estimating R1 by its representatives for which 

(9.16) and (9.18) hold has been introduced by M. Jutila (11, while (as mentioned 

in Chapter 7) the technique of dividing Tinto subintervals of length T and then 
0 

multiplying the resulting estimate by 1 + T/T
0 

is due to M.N. Huxley (1]. 

A.E. Ingham [21 proved N(d,T) << T3(1-d)/( 2-~)log 5T by a method diffe

rent from the one presented in §2, and which seems to be more complicated. Ingham 1 s 

result, with a slightly weaker log-factor, can be obtained from the zero-detection 

method of §2 when one does not choose X= Tt bur X= T, Y= T3/( 4- 2&) and uses 

again the mean value theorem for Dirichlet polynomials and a discrete form of the 

fourth power moment. The details may be found in Chapter 12 of Montgomery (2) or 

in Chapter 23 of Huxley [1J. A similar discussion holds in connection wi th Huxley' s 

bound (9.24), as he proved in [21 N(d,T) << T3(1-~)/(3ô- 1)1og 4AT. 

As stated in the proof of Ingham's estimate (9.22), the main reason 

why this bound withsiands improvement for more than forty years is the lack of 

M(A) = 1 for A> 4. This explains also the seemingly mysterious choice r = 2 in 

(9.16). Namely if in (9.16) we choose r • 3 (r.:::, 4 can be analyzed analogously), 

then following the proof of Theorem 9.1 we have 

<< << 

<< 

1 +t 2-AJ 2+f. 6-12d ( . If 1re now use R2 << T Y ·. or R2 << T Y com1ng from 

M(4) • 1 and M(12) ~ 2 respectively) we see that we get poorer estimate~ for 

N(d,T) than -the ones furnished by Theorem 9.1. However if M(6) a 1 were known to 

hold, then from (9.20) and the above estimates we would obtain 
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N(~,'1') << T \y6-6c3+ TY9(1-2J)/~ + TY3-6d) << ,/3(1-J)/(5-2J)-ti., 1/ 2 .:: d.:.: ;,/~, 

with Y= T4/( 15- 6d) and 

N(J,'1') <<TE(Y6-6J+ 'l'Y9(2-3J)/2 + 'I'Y3-6J) <<T4(1-.J)/(5J-2)+\ 3/ 4 :;;d :5: 1 

wi th Y = T2/ ( 15~ - 6). This would improve Theorem '). 1, gi ving also A (d) ,::: 16/7 for 

the whole range 1/2:;; 6,:::: 1. This is one more reason for the importance of the 

sixth power moment estimate M(6) = 1. 

The simplest way to obtain (9.22) is to note that from (9.19) one has 

t:(1/2 + itr) >> T-fyi- 1/ 2 for r = 1, ••• ,R2, so that (7.8) can be applied directly 

with V= T-~Y6
-

1
/ 2 , giving (9.22). 

Theorem 9.2 is due to the author [21, and improves on A(J),::: 4/(4a-1), 

25/18 < 6 ,::: 1, which was obtained by D.R. Heath-Brown [4]. For 

= 0.99993625 ••• 

the estimate (9.~3) supersedes (9.27). The exponent pair (p,q) = (2/7,4/7) that 

was used in the proof of Theorem 9.2 gives by no means the best result, but other 

exponent pairs would lead to more complicated formulas and slight improvements 

only. 

If the Lindelof hypothesis that f. 
<< t 

for Y>> T f.i one has R2 << TL for J > 1/2, and by (9.32) 

so that by (9.29) one has for J > 3/4 

R
1 

<< T \i2-2J << TiY4-46. 

Choosing Y = Tl one obtains 

N(J ,T) << T', for '3 ~ 3/ 4 + â , 

is true, then trivial l;y 

where E. • t.(S) may be made arbitrarily small for any S > o, which is a rcsult of 

G. Halt'sz and P. Turan (1]. For a nice survey of Turan I s candi tional and ur..condi.
".-!.2 

tional results concerning density estimatea the reader is referred to P. Tur5n [~. 

§5 is based. on M. Jutila 1 s p~per [2], which amomg other things contains 

the bound d ~ 11/14 for which densl ty A(d) ,::: 2 holds, and this i~ still thü b~st 
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known result of this type. The history of bounds for denGity is ulso mentioned 

in Ju tila [2] and is as follows. Let a be such a conu tant for which the densi ty 

hypothesis A(d) < 2 holds for & :::, a. Then H.L. Montgo:riery (2] proved a :::; 9/10, 

J,j.N. Huxley (2) a:::; 5/6, K. Ramuchandra(2] a:::; 21/26, F. Forti and C. Viola [1] 

a:::; 0.8059 ••• , M.N. Huxley ~1 a:::; 4/5 and some· intermediate resul ts, M. Jutila 

Lemma 9.2 is due to the author, while the remaining lemmas of ~6 are due 

to D.R. Heath-Brown [61• An alternative proof of Lemma 9.5 may be given with the 

aid of (9.48). If we use (9.75), Lemma 9.3 and Lemma 9.4 we obtain 

s1 (1/2) << T€ (s (2YlogT) + S (2TY-\ogT)) << T f(RY + R2 
+ S (2TY-\og 3T)) • 

But now by the Cauchy-Schwarz inequality we have 

S(2TY- 1log 3T) << TfR(S(T 2Y-2log 8T)) 1/ 2 << 

<< Te (R3/ 2TY-1 + R2 + s~/ 2 (1/2)R), 

where we used again Lemma 9.1, Lemma 9.3 and (9.48), and s1 (1/2) is the double 

zeta-sum that appears in (9.48). From the last two bounds we have 

s
1 

(1/2) << T~ (RY + R3/ 2TY-1 + R2) << T'(R5/ 4T 1/ 2 + R2) 

with Y= R1/ 4T1/ 2, and Lemma 9.5 follows then at once from (9.48). 

Ranges given for various estimates by Theorem 9.3 are the best ones known. 

(9.63) was proved by M.N. Huxley to hold for d ';! 37/42 in [3],and by the author 

(11 for d ~ 4/5, while the present range was gi~en by the author in [2j. (9.65) 

was proved by D.R. Heath-Brown [41 for d ~ 11/14 and by the author (1] for 

d:::, 74/95. A proof of (9.66) for d ~ 67/87 is also given in the author 1s paper 

(:tl, where there are also given zero-density bounds coming from c(9) (defined by 

Lemma 9.6 and Theorem 9.4 are due to the author [~)• An argument si

milar to the one used in the proof of Lemma 9.6 gives 

where S(Q) is defined by (9.69), and the above estima.te for~= 3/4 reducesto 
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C H A P T B R 1 0 

D I V I S O R PRORLEMS 

§1. Introduction 

In this chapter we shall investigate various problems involving tl, (x), 
K 

the error term in the asymptotic formula for Lfdk (n), where for k ~ 2 fixcd 
n<x: 

dk(n) is the number of ways n can be written as a product of k factors. For 

Res > 1 we have therefore k 
~ (s) = 

00 

Z:::dk(n)n-s, which shows at once the intrinsic 
n•1 

connection between ~(x) and the zeta-function, and thus it is natural to expéct 

that. properties of ~k(x) and 'k(s) are closely connected. This is even more 

apparent as by the inversion formula (1.8) one has 
1 .. ,00 

(10.1) ( ) -1 ( ,-,k ( ) s -1 = · 25li J '7 s x s ds • 

Moving the line of integration to some 1/2 < c < 1 (but sufficiently close 

to 1) it is seen that the integrand in (10.1) has only a pole of order kat 

s = 1, and so by the residue theorem 
C+IOO 

(~)-
1

) 4k(s)x 8 s-
1ds, 1/2 < c < 1, 

c:-1«, 

where Pk_1(t) is a polynomial of degree k - 1 in t. If we write 

(10. 3) 

then coefficients of Pk_1 may be evaluated by using 

pk-1 (logx) s-1~k( ) -1 Res x ½ s s • 
s=1 

Namely starting from the Laurent expansion 

(10.5) l:(s) = 1/(s - 1) +y+ 

one may calculate explicitly the coefficients of Pk_1(t) ao functiono of the 

tks (y-= ro = Euler's constant"' 0.5772157 ••• ), and for inctance we have 
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( 10. 6) P 1 ( t) = t + ( 2y - 1 ) , 

P2 (t) .. !t2 
+ (;r-1)t + c~r2 

- ;r + ;r1 + 1), 

(10.a) P
3
(t) a !t~ + (2y - 1/2)t2 

+ (6y2 
- 4r + 4( 1 + 1)t + 

+ (-1 + 4(y - 11 + K2) - 6t2 + 4(3 + 12ry1), 

anà in general the coefficients of Pk_1(t) may be found by for~ulas of A.F. Lavrik 

et al. (11• 

This chapter is the direct counterpart of Chapter 12 of E.C. Titchmarsh's 

book (a1, and the aim here is to give an overall improvement of results presented 

by Titchmarsh. The notation is however the same, and in particular we define ~ 

and 13k as the infima of numbers ak and bk respectively for which 

(10.9) ~k(x) 

One of our main topics will be the determination of upper bounds for 

~k and ()k' but in later sections of this chapter we shall investigate some other 

related problems involving ~(x). The chapter ends with a discussion of the 

circle problem, whose close connection with the divisor problem for k = 2 is 

exhibited. 

The most convenient way of obtaining estimates for ~
2

(x) and ~
3

(x) 

seems to be the use of 

(10.10) ~(x) << x(k-1)/2k\_L dk(n)n-(k+1)/2ke(k(nx) 1/k)\ + x(k-1+l) /kN-1/k + xt, 
n<N 

as given by (3.23). By writing 

1 

the sum over n <Nin (10.10) is transformed then into a multiple exponential 

sum, and the best results hitherto seem to be those obtainable by methods of 

G. Kolesnik [5J, [6]. A closer look at Titchmarsh's proof of (10.10) in [a] 

reveals that for k; 2 one has 
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since in Titchmarsh's proof one may take a= ( and c = 1 + 1/logx. Therefore an 

application of Lemma 6.3 gives similarly as in the proof of Thewem 6.3 

<< xt + log2x(x:5/16N59/152 + x5/16N5/152 + x 1/2N•1/2) << x35/1oo1qg2x 

for N = x 19/ 54• Therefore we obtain 

THEOREM 10.1. 

(10.13) f::..2 (x) << '55/1081 2 x· og x. 

t!ere the exponent 35/108 is exactly twice the exponent for the order of 

{,( 1/ 2 + iT) in ( 6. 63). This is no coincidence, since the exponential sums to 

which both problems reàuce are of a very similar nature. More light on the 

intrinsic connection between ~ 2 (x) = f::.,(x) and C(1/2 + iT) will be shed in 

the last chapter. .----~ 
(Éf 6~(~} _ 

The estimationiis naturally more complicated than the estimation of 

.6.,2 (x), and is carried out via (10.10) with k - 3. The best result yetis 

(10.14) Ll,
3

(x) << x43/96+E. 

This is due to G. Kolesnik [51, and the proof is long and complicated 

and will not be presented here. 

(10.15) 

§3. Estimates of .t6..k(x) by power moments of the zeta-function 

From the Perron inversion formula ( l. 10) we have wi th c = 1 + f , T !: x, 

C+i'l' 

l2:,n)- 1) Ck(s)x 8 s- 1ds + o(x 1+tT- 1), 

c-:'f" 

since the contribution -½o,k (x) (if x is an integer) counted by 'Z' in (1.10) is 

1H -1 / absorbed in the error term O(x T ). For 1 2:; d < 1 fixed we deform the path 

of intcgration in the above integral to obtain by the residue theorem 



(10.16) 

say, where 

(10.17) 

and 

(10.18) 

~k( ) s -1 - Res '-, s x s 
ss1 

,♦ Î'r' 

I
1 

= (2!ri)- 1 5 ~k(s)xss- 1ds 
.l-1"1' 

"4i-t. 

rr, 

x'5 (C(J + it)/kt-
1
dt 

1 

I2 + I3 << ~ xQlr(g + iT)/kT-1dQ << x1+ET-1 + xdTkc(A)-1+(, 

d 
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where c(9) is defined by (6.51). From (10.17) it is immediately seen that estimates 

for power moments of the zeta-function lead to estimates of Ac(x). Our result 

will be the following 

THEOREM 10.2. Let o{k be the infimum of numbers ak such that 

for every E > o. Then 

~k < (3k - 4)/4k for 4::: k::: a, 

ol9 < 35/54, °'10 < 41/60, °'11 < 7/10, 

~k < (k ~ 2)/(k + 2) for 12,::: k ~ 25, 

e<k < (k - 1)/(k + 4) for 26 ~ k,::: 50, 

olk < (31k - 98)/32k for 51 ,::: k,::: 57, 

olk < (7k - 34)/7k for k ~ 58. 

Proof of Theorem 10.2. The proof is based on estimates of m(d), as 

furnished by Theorem 7.3. For a fixed integer k we choose d in such away that 

m(d) = k, where for m(d) we take the estimates which are given by Theorem 7.3. 

From bounds for c(9) given in Chapter 6 it is seen that m(d),::: 1/c(d), so that 

taking T = x 1
-~ in (10.17) and (10.18) we obtain 

~(x) • 

In this fashion estimates for 9,::: k,::: 11 given by Theorem 10.2 follow 

at once, and for 4,::: k,::: 8 we use m(d) = 4/(3 - 4d) (1/2,::: J ~ 5/8), so that 

k = 4/(3 - 4ô) gives J = (3k - 4)/4k. Fo:r 4 ,::: k.::; 8 this value of d satinfies 

1/2,::: d ,::: 5/8 and °'le,::: (3k - 4)/4k follows for 4 ,::: k::: 8. l~ext we ta.ke 

d = 5/7 in (10.17) and (10.18). With m(5/7) :!. 12, c(5/7),::: 1/14 we have 

"' 
I 1 << x517 + x5/ 75 1,(5/7 + it) }

12
t-

1
jt7(5/7 + it)lk-

12
dt << 

.. 



5/7T(k-12+t)/14 
<i< X 

for k "> 12 and therefore 

A ( ) 1+f: -1 
ilk X << X 'l' + X 

5/7T (k-12+f) /14 

for 12:::; k,:::: 25 if T = x4/(k+2). 
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<< X 
(k-2)/ (k+2) H 

A similar argument gives °1c,:::: (k - 1)/(k + 4) for k;;: 26 by using 

m(5/6) ::> 26, c(5/6):::; 1/30. Also by Theorem 7.3 we have m(d);;: 98/(31-32d) = k 

for 13/15,:::: d = (31k - 98)/32k,::: 0.91591 ••• , which is satisfied for 30,::: k,:::: 57. 

By (7.88) we have m(d):::, 34/(7 - 7~) = k for d = (7k - 34)/7k:::_ 0.91591 ••• for 

k:::_ 57. On comparing then (k - 1)/(k + 4) with (31k - 98)/32k we obtain tne 

full assertion of Theorem 10.2. 

For each particular k ~ 13 the bounds of Theorem 10.2 can be slightly 

improved by a more careful choice of exponent pairs in bounds furnished by (7.65), 
oe. D 

and taking more care one cuuld also derive buunds of the type ~k(x) << x klog kx 

for some Dk:::, o. The bounds of Theorem 10.2 are the sharpest ones known, except 

when k is very large, when better bounds may be obtained by using the best knovm 

zero-free region of the zeta-function, which will be the topic of the next section. 

§4. Estimates of .L).k(x) when k is very large 

We shall end our order estimates of ~k(x) by proving 

THEOREM 10.3. There is an absolute C > 0 such that for k > k 
- 0 

(10.19) 

This estimate is clearly seen to improve on Theorem 10.2 for k:;: k 1, 

hence for "k very large". The value of the constant C which apJ,;•ears in (10.19) 

depends on order estimates of the zeta-function near the line d • 1 and may be 

explicitly evaluated with some effort, but it is much more difficult to determine 

kc, such that (10.19) holds for k ~ k
0

• The order result needed for the proof of 

Theorem 10.~ is contained in 

Lemma 10.1. There exista an absolute constant D > 0 such that 

uniformly in 1/2 !: d !: 1 we have for t ;:: t
0 

(10.20) << 
D(1-d) 7>/2 

t logt. 
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Proof of Lemma 10.1. The proof of Lemma 10.1 is based on the simple appro-

ximate functional equation 

~ -s 
• L_.tn 

proved fn Notes of Chapter 7, and the estimate 

(10.22) << ( log 3N) Nexp -B 2 , N ~ t, 
log t 

where B > O is eome absolute constant. The estimate (10.22) is in fact 

a consequence of I.M. Vinogradov 1s well-known method of estimating exponential 

sums (see A.A. Karacuba (31, Ch. 5). We take x =tin (10~21) and split the sum 

over n ::: x into O (logT) subsums of the type L, n-s. Using partial sum:nation 
N<n<:2N 

and (10.22) we obtain 

(10.23) L, n-s << 
N<n<2N 

with D = 2/(;V3Ë), since 

1-tf ( log'N) N e:xp -B 2 log t 

and the function f(x) = Bx3log- 2t - (1- cl)x (x > o) attains a minimum at 

The estimate (10.20) follows at once from (10.23). 

Proof of Theorem 10.3. In {1~.17) and (10.18) choose d = 1 - k- 2/ 3, 

Ek-2/3 
T = x , where E > 0 will be sui tably chosen in a moment. Then by (10.20) 

'i' 

x415/i,(& + it)/kt- 1dt << 

2'l\ 

x "1ogT max ) /4(d + i t) 1 kt- 1 dt 
1<':P 1,5l' '1'1 .. 

if E = 1/2D. F'rmm (10.18) 1,e have 

Q D(1-9) ;/ 2 -1 
X T 

<< 

<< 
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for k > 2D, hcnce Theorem 10.3 follows from the above estimates. 

§5. Estimates of ~k 

S
IC 2 1+aic+t 

We recall that I\ iij the infimum of bk for which ~k(y)dy << x 
0 

holds for every E > O, so that ~k may be thought of as the exponent of the 

average crder of l~k(y)I. The classical elemcntary results concerning the esti-

mation of ~k are embodied in the following two lemmas which may be found in 

Chapter 12 of Titchmarsh (sl, but which will be given here for the sake of comple

teness of the exposition. 

(10.24) 

(10.25) 

Lemma 10.2. Let rk be the infimum of d > 0 for which 

00 

j 1 4 (d + i t) j 2k I J + i t / -
2 
dt << 1 • 

-oo 

Then /3k = rk and for d > ~k 

00 

(2~)- 1 ) l((d + it)l 2kfd + itl- 2dt = 

Proof of Lemma 10.2. From (10.2) we have 

~k(x) = 

c+i'I' 

(2.?ri)-1 lim ( Ck(s)x 8 s- 1ds 
T ➔ CD J 

c-ii' 

00 

S "2( ) -24'-1 uk x x dx. 
0 

~k(s)s-1 for some c < 1 and close to 1. Since ~ ~ 0 uniformly in the strip as 

t -a, ±_oo, it is seen on integrating over the rectangle et±. iT, c ±. iT, 

tk < c 1 < c < 1 that (10.25) holds for any c > (k• ~eplacing x by 1/x, taking 

c > 1k and using Parseval 1s identity (1.5) we have 

"° 
(2Ti)-

1
) \((c + it)l 2kjc+itl- 2dt = 

-CIO 

00 

~ ~(x)x- 20
-

1
dx, 

• 
which gives for rk < c < 1 

!ltl 

) ~(x)x• 2c-ldx «<: 1, 

N 

00 

) ~(1/x)x
20

-
1
dx • 

0 

<< 



and thcrcfore 

2c+1 
<< X 
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The other inequality, namely ~k ~ tk' may be obtained by observine 

tha t from ( 10. 25) and Mellin I o formula ( 1. 1) one ha.s 
.0 

~k(s)s-
1 

= ~~(1/x)x
8

-
1
dx == 

0 

.0 5 ~k(x)x-s-1dx. 

0 

The integral in (10.27) is absolutely and uniformly convergent for 

~ < d < 1, since by the Cauchy-Schwarz inequality 

2N lN l~ 

) ILik(x) lx-d-1dx;:::: () d!(x)dx) 1
/

2
() x- 2

d-
2dx) 1

/
2 

N ~ N 

<< 
~ -d+t 

N K 

' 

and by adding integrals over various Q{,2N1 it is seen that the right-hand side 

of (10.27) is regular for 13k < d < 1, so that (10.27) holds by analytic conti

nuation in the strip '\. < & < 1. By the same argument the right-hand side of 

(10.25) is bounded for nk < 6 < 1, hence (10.25) holds in the same strip, giving 

nk ~ Ok' which combined with ~k !:: rk yields finally /3k = t'k· 

Lemma 10.J. For k = 2,3, ••• 

> 1'31 > 
- K -

(k - 1)/2k. 

Proof of Lemma 10.J. The inequality o( > A is obvious, and for 
K-·l.{ 

the other inequality we start from 

'î' 'I' fi" 

T << ) l!(, + it) 1
2

dt !:: () \l'(J + it)l2kdt)1/k() dt)1-1/k, 

~,i.. ,,.,~ 
where the lower bound for 1/2 < d < 1 follows easily by termwise integration 

of ~(s) = L,,n-s + o(t- 6
), or 4irecll'j ~rom c1.,g).Îht"5ore we ob-tai1> 

n<t 
'Tl 

T << ) l 4 ( ~ + i t) l 2 
k dt , 

T/t,. 

where the <<-constant depends only on k. Using the functional equation we have 

for o < d < 1/2 
l[I 

00 

~ ll(i + it) \
2

k 16 + itl-
2

dt > J lt<• + it) 1
2kl• + i q- 2

dt = 
-oo rr12. 
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~:,,-,. T- 2 5 1 C ( i + 
.,.,.,_ 

it) f2kdt ~ Tk(1-2c3)-2J/4(1-J-it) /2kdt » Tk(1-2J)-1, 
.,.,,. 

where in the last step (10.28) was used. For d < (k - 1)/2k the last expression 

remains unbounded, giving rk ;!, (k - 1)/2k, and the result follows from '\ = '(k. 

Lemma 10.4. For each integer k:::_ 2 a necessary and sufficient condition 

that ~k ~ (k - 1)/2k is that m((k+1)/2k) ';!, 2k, where m(,) is definéd by (7.2). 

Proof of Lemma 10.4. Suppose first that m((k+1)/2k):::. 2k. Then for 

d < (k - 1)/2k we have by the functional equation 
~ ~ 

Stl(, + it)l 2kdt <<Tk< 1- 2J)5u:,, -J- it)1 2kdt T
.k ( 1-2d )+ 1+ t 

<< • 
" 4 

Therefore for (k - 1 - l)/2k < ~ < (k + 1 + t.)/2k by convexity of mean 

values we have .. 
~ ll:'(~ + it) \

2
kdt T

1+l+(1/2+1/2k-d)k 
<< ' 

" 
and the exponent of T is < 2 for 6 > (k - 1 + E. )/2k, gi ving 

"' 5 lt<~ + it)l 2
k li+ it\- 2

dt << T-s 
,,.,1.. 

for some f= ~(î) > O. Replacing T by T/2,T/2
2

, etc. it follows that rk:::. (k-1)/2k, 

and so by Lemma 10.2 13k ~ (k-1)/2k also. 

In the other direction, if /3k m (k-1)/2k, then by (10.24} 

"' 5 l4(d + i t) l 2kdt << T2
+l 

4 

for d > (k-1)/2k, and using convexity of mean values and the functional equation 

we obtain m((k+1)/2k):::, 2k by following the argument just given. 

The l~m.mas that were just presented show how the estim~tion of'\ may 

be reduced to obtaining sufficiently sharp estimates for m(d). We shall prove the 

following 

THEOREM 10.4. ~ = (k:-1)/2k for k • 2,3,4 and 135 ,::: 119/260 = 0.45769 ••• , 

136 ,::: 1/2, 137 _:: 39/70 = 0.5571A ••• • 

Proof of Theorem 10.4. By Theorem 10.2 we have m(d):::, 4/(3 - 4J) for 

1/2.:: & .:: 5/8, hence m(5/8) :::, 8 and so by Lemma 10.4 we obtain at once that 

'\ • (k-1)/2k for k D 2,3,4, which in view of Lemma 10.3 shows that this is best 

possible. For other values of k the estimate /3k ·= (k-1)/2k scems to be beyond 



reach at prenont, as is also the clansical conjecture olk r f\ 

k•2,3, •..• 

Consider now the cane k"' 5. By Lemmu 10.2 it wi11 suffice t.o ::ih>w 
t"I' 

~ l l:'(o + it) 11odt << T2-s 
'11 
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for d > 119/260 and any fixed î > o. From the estima.te m(,11/60) :::, 10, furnishcd 

by Theorem 7.3, and the functional eq_uation for the zcta-function we have for 

t'l1 

5 {l; (d 
fJ'1 

where we used convexity and the estimate M(10) ~ 7/4 of Thcorem 7.2. Since 

(207 - 260J)/44 < 2 for d> 119/260 we obtain 13
5 
~ 119/260 a::; asserted. Sir.i.ilarl.y 

from M(12) < 2 it follows at once that ~6 ,::: 1/2, while for 13
7 

we use M(14),::: ;; 

(Theorem 7.2) and m(3/4) > 14 (Theorem 7.3). This gives by convexity 
?'P s lt(6 + it)l14dt << T(132-140d)/27+t 

"' for 1/2 ~ d,::: 3/4, and (132 - 140d)/27 < 2 for o :> 39/70, proving the last part 

of the theorem. Other values of I\ for k:::_ 8 may be calculated analogously, but 

the present form of estimates for m(d) and M(A) would render a general formula 

for ~ (k:::_ 8) too ccmplicated, and for this reason only estimates for small 

values of k are explicitly stated here. 

§6. Mean square estimates of~, (x) 
K 

By defini tion estima tes of '\ are in fact mean square estimates of ~~/X:· 
However owing to the importance of the integrals in question it seems appropriate 

to investigate them more closely. In particular it would be highly desirable to 

"' 
obtain asymptotic formulas for ) .6.,~(x)dx, and we begin the discussion of this 

problem by proving 

THE0RE:'1Ï 10. 5. 
'l" 

1 

00 

(10.29) ~ ,6.;(x)dx (6r)-1r d2(n)n_7,/2'l,3/2 + 

n=1 
00 

Proof of Theorcm 10.5. The value of the constant ~ d2 (n) n-""'>/2 
,..,_1 

1
. ,, ,, 
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~
1 

(7i/2)/i,(3) ""' 14.8316 •••• It will be sufficient to prove the corresponding esti-
2'1' 

mate for ~ and then to replace T by T/2,T/2
2

, etc. and to add up all the 
tr 

rcsults. We start from the truncated Voronoï formula (3.17), where we take N = T. 

Inte 6"Tating term by term we obtain 
2~ 21' 

~ ~;(x)dx = (2:n-2)-
1
) x

1
/

2 L, d(m)d(n)(mnf 3/ 4cos(4,rl/'mi-,r/4)cos(411,rni"-,r/4)dx+ 
.., .,, m, n<I' 

(10. 30) 2'1" 

+ O(T
1
/ 4+f) (~d(n)n- 3/ 4cos(4X\/nx - .?r/4)(dx) + O(T1+t). 

111 n<I' 

In the first sum in (10.30) we distinguish the cases m = n and m / n. The 

terms with m = n contribute 

(10.31) 

~ 

(2,ff
1L ) d2

(n)n- 3/ 2
x

1
/

2cos 2 (4:Jr~ - Jr/4)dx = 
n<I' "I' 

21f' 

(4.'r2)- 1
L,d

2 (n)n- 3/ 2 ) x1
/

2
(1 + cos(8,r\_,-'nx - :x-/2))dx = 

n<T "' 

«> 

(6:r2)-1((2T)3/ 2 - T3/ 2)L,d 2(n)n- 3/ 2 + O(Tlog 3T). 
n=1 

In (10.31) we have used partial summation and (5.24) to obtain 

LJd 2 (n)n- 3/ 2 << T- 1/ 2log 3T, 
l1>T 

and we have used (2.3) to estimate 
l'll 

L,d
2 (n)n- 3/

2S x1
/

2
cos(8.n--Vm : ,r/2)dx << TL,d 2 (n)n- 2 << T. 

n<T If' ng 

In view of 2cosXcosY = cos(X +Y)+ cos(X - Y) it is seen that the terras in 

(10.30) for which m f n are a multiple of 
:rr 

(10.32) i d(m)d(n)(mn)- 3/ 4 ) x
1
/

2
cos(4'1"\/mx - 4~\(rix,dx + 

m;t:n_§ ~ 

2'1' 

mfr( ... ~/(m)d(n)(mn)-
3
/

4
) x

1
/

2sh,(4~\fn7i + 4Sf~)dx = s1 + s2, 

- "' 
say. Estimating the intograls in s 2 by (2.3) we have 

(10.33) 52 <i< T 6 d(m)d(n)(mn)- 3/ 4 (m
1
/

2 + n
1
/

2
)-

1 
<< Tloa1 T. 

m<n<T -
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Anulogously we obtuin 

say. We have 

as 

S 1 << L, d ( m) m - 1 
/ 4 L d ( n) n - 3 / '1 ( m - n) - 1 << 

m,511 n:5}Tl/ 2 

E. 
<< T • 

Therefore the, first sum in (10.3D) is by preceding estimates equal to 

"° (6~)-1((2T)3/2 - T3/2)L,d2(n)n-3/2 + o(T1+~). 
n==1 

The first 0-term is estimated in (10.30) by the Cauchy-Schwarz inequality 

2.'fl 

<< T3/ 4+E ( ) } L,d (n)n- 3/ 4cos (4W~ - m-/ 4) l 2dx) 
1
/ 2 << T5/ 4+E. 

'I" n<T 

when we square out the modulus under the integral sign and treat the terms m = n 

and m f n similarly as before. 

This remark ends the proof of Theorern 10.5, but it should be observed 

that the error term given in Theorem 10.5 is by no means the best possible one. 

Analyzi ng more carefully the proof i t may be seen that Tf.. in the error t erm in 

(10.30) may be replaced by a suitable log-power, but this would be still much 

weaker than the following result of K.-c. Tong (2] : 
't' 00 

(10. 7i5) ) ~ (x) dx = (6~2)-
1 .L, i (n)n-'i/ 2T3/ 2 + O (Tlog 5T). 

1 n=1 

The proof of this formula is bcyonà the scope of the mcthod u;:; ed for 

Theorem 10.5, and requires subtle averaging techniques involving certain expo

nential integrals. It scems also natural to ask what is the best possible 0-resu1t 

that may be obtaincd in (10.35). In this direction we shall prove the following 
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THEORf.M 10.6. The asymptotic formula. 

(10. 36) 

CIO 

(~)-1Ld2(n)n-3/2T3/2 + O(T3/1-s) 
n=1 

cannot hold for any Î > o. 

Proof of Theorem 10.6. From Theorem 10.5 it is aeen that there exist 

arbitrarily large x such that 

(10. 37) 

for some sui table C > O, and from the classical work of G.H. Hardy [2] it follows 

that C may be taken arbitrary. Suppose now that \t - x{,::: Gx-l. Since d(n) < nt/ 3 

for n ?:_ n
0

(E) we have in view of (10.3) 

( 10. 38) [~(t) -.6i(x)l < l ~ d(n)\ + (xP 1 (1ogx) - tP 1 (logt)\ -t./2 
:::: Gx , 

t<n<x: 

and then also 

(10.39) 

Next by the Cauchy-Schwarz inequality and (10.39) 

2 -t 
Gx:::: 

where we have set 

(10.41) R(x) 

s l.6.(t){dt :::: 
lC•G.1tt.. 

.a::+G~-t 

(2Gx-E-) 1/2( 5 ~2(t)dt) 1/2 < 

1(-6,t.·t 

~ ~ 

) ~2(y)dy - Dx3/2, D = (6,r2)-1Ld2(n)n-3/2. 
~ n=1 

If R(x) << x3/ 4-s for some S ::> o, then (10.40) yields 

G2x-€ !: (1iD)1/2Gx1/4-f + O(G1/2x-t..j2x3/a-S/2). 

Now if in (10.37) we choose C > (12D) 
1
/ 2 and take E... S/2, then for 

x sufficiently large (10.42) gives a contradiction which proves the theorom, und 

small improvements may be obtained by using sharper 5? -estimates for ~(x) than 

(10.37). 

It seems natural to ask whethor the same type of results such a~ thnue 

furnishcd by Theorem 10.5 and 10.6 hold also for ..6.,k(x) when k ~ 3. In considering 
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this problcm i t ou[;ht to be mpntioncd that K.-C,. Tnng (21 proved a gcneral resul t 
Il 

toncerning usymptotic formulas for ) ~(y)dy, which seems to be hitherto the 
.. 

sharpest one. If in analogy with (10,.41) we àefine 

(10,43) Rk(x) • ~ ~(y)dy - ((4k-2)~2)- 1kd!(n)n-(k+l)/kx( 2k-l)/k, 
" 

then Ton&'s result may be formulated as 

.(10.44) 

where 

(10.45) 

k = 2 

ck+E. :5 - 4dk 

x ' ck = 2 - 2k(1- dk)-1' 

Jk is the infimum of d such that for every f > 0 

"' ) l l:(l + i t) 12
kdt << T

1+\ 
◄ 

and for (10.44) to hold one should have dk _:s (k+1)/2k. 

Suppose now that k = 3, Then by Theorem 7.3 we have m(7/12):::, 6, which 

in the notation of (10.45) implies d
3

:::, 7/12, hence from (10.44) we infer 

This is substantially stronger than 1.3
3 

= 1/3 only, as given by 

Theorem 10,.4, but with k = 3 (10.44) at present exhausts itself in the sense that 

for k > 4 the best estimates for dk obtainable from Thecrem 7.3 are not sufficiently 

sharp to ensure that the condition dk,::: (k+1)/2k is satisfied, and in the case 

k = 4 we have 6
4 

_:s 5/8 which gives only R
4

(x) << x7/ 4+t, and this is equivalent 

to ~
4 

= 3/8, which was already established by Theorem 10.4. A result analogous 

to Theorem 10.6 may be obtained in the general case by defining 9k as the infimum 

of e such that for every E > O 

(10.47) 

Arguing as in the case k -= 2 i t follows that Qk < {3k - 3)/2k cannot 

hold, but _I think that i t is reasonable to conjecture that gk ... (3k - 3)/2k. This 

conjecture, however, seemo to be very strong as it implies at once the classical 
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conjecture o(k = (k - 1)/2k by the following 

~'fŒOiŒM h 1, 7. 

(10.47) holds for evcry 

Lot Qk be the infimum of numbera Q ( < 2 - 1/k) auch lh~l 
1 

(-:> o. Then .,(k~~k• 

Proof of 'l'he,nem 10.7. 'l'he proof is ant1loeous to the proof of 'l'hcorem 

( ) gk+ t/2 
f > x and some l > 0 and suppoze thnt 10.6. Suppose that Rk x << x or x _ 0 

for some sufficiently large x and sui table C > 0 

a. 

Then for -t lt - X l s Gx we have as in (10.38) and (10.39) that. 

and therefore using (10.43) and the Cauchy-Schwarz inequality 

x+e.Jl't 

G2x -E < (2Gx-r) 1/2 ( s 
.1(-G,c.•C. 

for some Ek > O, and we obtain from (10.49) 

However (10.50) is seen to be impossible for C > (2Ek) 1/ 2 in (10.48) 

because 9k :!_ (3k - 3)/2k. Therefore (10.48) cannot holà and we obtain ~ stk 
as asserted. 

From (10.35) and (10.46) we have 92 ,::: 1,. 9
3

,::: 14/9, so that from Theorem 

10.7 we deduce ol2 .::: 1/3, ot 3 $ 11J./27, which is superseded by (10.13) ar.cl (10.1.1). 

In fact the estimates for ()(2 and cl3 can be deduced directly from estimates of 
'l'tG 

5 Li:(y)dy. Using the mcthod of proof of Theorem 10.5 it is readily sccn that 
'f'-6 

for Tç,::: G,::: T 
'!'te. 

(10.51) s ~~( t)dt 
'l'-e. 

<< 'l' f ( GT 1 /2 + T), 

(10.52) s6 ~~ ( t)dt << T f ( G'l'2/~ + T3/2) t 

'l'-G 
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which givea "'z ~ 1/3, cil3 ~ 1/2 following the mcthod of proof of Theorem 10.7. 

§7 •. Large values and power moments of ..ô._k(x) 

In view of Theorem 10.5 and (10.46) it is seen-that in mean square 

..6.,2 (x) and â
3

(x) are of the order x
1
/ 4 and x

1
/ 3 respectively, which supports the 

conjecture ~ 2 = 1/1, 0{ 3 = 1/~. An interestine problem is to generalize mean 

square estimates to higher powers, and to consider integrals of the type 
1T' 

~ l~(x)IAdx, A~ 2. As the starting point of these investigations one may take 
" 

(3.23), namely 

(10.53) ~(x) << x(k-1)/2klL,dk(n)n-(k+1)/2ke(k(nx) 1/k) \ + x(k-1+t)/kN-1/k + xl • 

n<N 

The sum over n < N for k • 2 is similar in nature to the sum occurring 

in the investigation of large values of the zeta-function on the critical line in 

Chapter 7, and the methods that we shall apply to deal with the large values of 

Ll.,k(x) will be similar. The main obstacle is the presence of the divisor function 

dk(n) in (10.53), which will be eliminated by the use of the Halâsz-Montgomery 

inequality. This will lead to a large values estimate for Ll.,k(x), and then (simi

larly as was done for higher power moments of the zeta-function in Chapter 7) we 
rr 

shall estimate ) f~k(x)JAdx by majorizing the integral by discrete sums to which 
.. 

our large values estimate may be applied to bound the number of summands. Although 

our method will work for general Ll._k(x), the results are sharp only when k • 2 

and k • 3, and therefore we shall consider only these cases. The basic estimate is 

the following 

THEOREM 10.a. Let 1 ~ t 1 < t 2 < ••• < tR ~ T and ltr - t
8

1 ~ V for 

r ~ s,::: R. If Ll,
2

(tr) ~ V> T7/ 32+E for r ~ R, then 

(10.54) R ~ TE (TV-3 + T15/4y-12). 

If Ll.3 ( tr) :::,.;,. V> T 18/ 67+e for r,:: R, then 

(10.55) R << TE(T 2v-4 + T57/13y-132/13). 
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Anotrwr proof of cx2 ,::: 1/3, °'
3 

_::: 1/2 follows at once from Theorem 10.8 if 

we ta.ke R = 1, tR = T aa x, thoueh the above entimates are naturally of greater 

interest if R is assurned to be large in some se1,se. Also we could have formulated 

Theirem 10.8 with the spacing condition ltr - \l::::. 1 for r /. s _::: R, and the 
.. 

only change would be that the exponent of V in (10.54) and (10.55) would be in-

crcaccd by unity. However the spacing condition ltr - t
8

\ ~ V ( r / s) imposed in 

the theorem seems more appropriate, since by an argument analoeous to (10.38) and 

(10.7>9) we have J~k(t'){ ~ v/2 if l~(t)\::::, V and (t' - t l ~ Vt-t. 

Now we suppose that Ais a fixed positive number (not necessarily an integer), 

and we formulate our power moment results for ~(x) in the next two theorems. 

(10.56) 

(1c.57) 

( 10. 58) 

(10.59) 

THEORE:M 10.9 
Il\ 

) lâ2(t)l Adt 

" 

THEOREM 10.10. 

< 0 < A < 35/4, 

< T (35A+38+t) /108 
' 

< 
T ( 106A+25 3+ ~) /279 , 

< A > 2237/607 • 

Theorem 10.9 shows that in a mean sense {Ll.
2

(t)I is of the conjectured 

order t 1
/ 4+E for much higher powers than only the second, which was previously 

known only. The ranges for A in (10.56) and (10.58) both depend on the best known 

values (10.13) and (10.14) for oe2 and oe.
3 

respectively, and any improvement of 

these bounds for ~ 2 and ~
3 

would result in a wider range for A. The limit that 

(10.54) can theoretically give is 
'1' 

( 10 • 60) ) j .6..2 ( t ) l 11 
dt < T 

1 5 / ~ + t, 
i 

and this would in turn imply the (yet hypothetical) estimate ~2 _s 5/16 which im-

proves on (10. n) und differs from the best possible value o<
2 

= 1/ 4 by 1/16. To 

sec how o<
2 

!: 5/16 follows from (10.60) suppose tha.t for some E > 0 we have 
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\~('r)\ ., [~2(T) 1 '> 'l,?/ 16
il = a. If lt - ·r l .:S G'J'-s (~ :> o)' t.hen a~ in (10. ~s1) 

we have 1.6.(t)j:.::, G/2, and so by H<.Hder's incquality and (10.10) we obtain 

't' .. C,'(' ·• 

< 5 ,~(t)I dt < 
'1'- c:;,,-·I 

1'+ c;,.· • ( 5 [il(t)l11dt)1/11( 2GT-J)10/11 << T(15/4+~/11 010/11T-1os/11, 

'1'·G1•·S 

and this is a contradiction if S is sufficiently small, in particular if 

O < S < 11E.. This implies oc2 ~ 5/16, and the best uncondi tional estima te of ot2 

which follows from (10.56) by this method of proof is only slightly weaker-than 

Proof of Theorem 10.8. We start from (10.53) and use the Halasz-Montgo

mery inequality to remove dk(n) from the sum in (10.53) and investigate the 

occurrence of large values of Ll_k(x). We use -(1.36) and take t = ftn1:1 with 

~n = dk(n)n-(k+1)/2k ~ for M < n ~ 2M and zero otherwise, and we let 

1/k with 'f = e(k(nt) ) for M < n < 2M and zero otherwise, where 1tI 
r,n r -

is fixed and its range will be specified in a moment. We may restrict ourselves 

to the estimation of the number of points tr lying in [!/2,T] and we suppcse 

that this interval is divided into subintervals of length not exceeëing T (>>Y). 
0 

Denoting then by R the number of t's lying in an interval of length not exceeding o r 

T we have 
0 

(10.62) R << R ( 1 + T/T ) , 
0 0 

since for T > T we have R < R. The idea behind this procedure (used already in 
- 0 - 0 

Chapter 7 and Chapter 9) is that lt - t \ < T r s - o 
2 for each R 
o. 

pairs of points 

(tr,t
8

), so that a ~uitable choice of T
0 

will lead to (10.54) and (1C.55). Ch~osi~; 

in (10.53) N = Tk- 1+tv-k we obtain by (1.36) 
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sinco the contribution of tho termu with r., s iu cleuflY <<N(k-
1)/1-:. 1'he lr;wt 

sum abovo iH nn exponentiul oum of the form 

'Ç' e(f(n)),f(x) ., kx1/k(t 1/k - t 1/k), r / n, LJ r s 
M<l'lgM 

s = 

which is very similar to the sum (7.18) in Lemma 7.1, only (10.64) is sornewhat 

simpler. Since f 1 (x) is monotonie for M ~ x !:: 2M we may suppose that lf' (:x) l < 1 

or lf' (x)[ :::, 1 by splitting S into two subsums if necei,sary. If \f 1 (x) l < 1 hold::i 
l'S by) 1 

we estimatêTiemma 2.5 and Lemma 2.1 as S << max \f'(x)l- to obtain 
M<x:<2M 

-1/k M max 
r<l!. -o 

.L' 1s \ << 
s<l!. ,s/=r -o 

(10.65) 

since T/2 < t < T and \t - t l > V for r _1 s < R - r- r s - f' - 0 • 

If f' (x) >> 1 holds for M :;: x:;: 2M, then observing that 

f(m) (x) '\../ ft - t (T(1-k)/~1(1-mk)/k 
r\ r s ,m=1,2, ••• , 

<< 

it follows that we may use the theory of exponent pai·rs (~3 of ~ Chapter 2). Thus if 
F = max 

M<x:<2~;f 

(10.66) 

/f'(x)I and (p,q) is an exponent pair we have 

Therefore the contribution of these Sis 

max M-
1
/k max L f S \ << 

M5}1/2 r.::::fi
0 

sg.
0

,s/r 

proviè.ed that 

(10.67) qk ::, 1 + (k - 1)p. 

If this condition is natisfied, then from (10.6~),(1u·'.6,5) ,n1 (1, {(;\ 
- Ll. • c. \ \.; 0 ··-' ., i 

we obtain 
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+ R TpT(k-1+t)(1-p)/kN(qk~p-1-pk)/k. 
0 0 

k-1+c -k 1+, .2 hw we consider the caso k .. 2 where we choose N"" T V ., T V , and 

thtn the tirst two terms on the right-hund sido of ( 10. 68) are equal. We take 

(p,\). (4/18,11110) and note that with this exponent pair equality holds in 

(10,67) for k • 2,hence 

R 
0 

Choosing T 
0 

<< 

9 -7/4-f. = V T 

+ R T2/9T 7 /18+tV-2 • 
0 0 

we have T
0 
~ V for V> T7/ 3l+t, and (10.69) gives 

,10,70) R << T1+lv- 3 , 
0 

hence (10.54) follows from (10.62) with T = v9T-7/ 4-~. 
0 

If k • 3 we choose N = Tk- 1+<v-k = T2
Hv-"i and in (10.68) we take (p,q)"' 

(13/40,22/40). With this exponent pair equality holds in (10.67) for k = 3, and 

(10.68) gives 

(10. 71) 

Choosing T = v80/ 13T-1S/i 3-e. we have T ~ V for V> T18/ 67H hence 
0 0 ' 

(10.71) gives R
0 

<< T
2+tv-4 and (10,55) follcws again from (10.62). With a little 

more care we could replace T' in (10.54) and (10.55) by a sui table log-power, and 

ver1 small improvements in the second terms on the right-hand sides of (10.54) anà 

\10,55) could be obtained by a more elaborate choice of the exponent pair (p,q). 

( 6 ) k-1+a -k-1 Froa 10, 8 one obtains for general k the estimate R << T V for 

\~(tr)l:::::, V= V(T,k), r ~ R, but in view of ll4 ~ 1/2 (Theorem 10.2) this is 

weak already for k = 4. 

froof of Theorem 10.9 and Theorem 10.10. It is sufficient to prove our 

eatlmates for integrals over [T/2,Tj and then to sum over intervals of the form 

[2-:uT, 2 
1-mTJ, m :::::, 1. We denote by !l'r the point for which 

and we consider firat those 'J' for which r 

T1/4 ~ 2m • V < ,~2('1'r)l < 2V. 

There are C(logT) choices for V ( << T':55/ 10BH by (10.1'3)), and by picking 
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the maximal [L\,2('J'r) \ in !T'-interva.lo of length V and by considering S<)para.tnly 

pointa with even and odd indexes we may construct a system of points which we 

shall label t 1,t 2 , ••• ,tR' R ~ R(V) and which satisfy 

(10.72) T
1
/ 4 :;;2m .. v,::: lÂ2(tr)l<2V, ltr-tsl:::.V forrrs<R•R(V), 

so that we may write 
'I' 

( ) C l A ( )1 A T(A+4+t)/4 + 10.73 J il 2 t dt < 
T/2. 

Now we consider the range 2,::: A,::: 11 and we u~e (10.54) to bound R = R(V), 

keeping in mind that (10.72) holds. Using V<< T35/ 1oa+t we obtain 

(10.74) v L, f~ (t ) lA << RvA+1 << T'(TVA-2 + T15/4vA-11) << 
r~(V) 2 r 

Here the first term is larger than the second for 35/4 !: A,::: 11, while 

the second is larger for 2 ~A,::: 35/4, which in view of (10.73) proves (10.56) 

for 2,::: A,::: 35/4, while the estimate for O !: A< 2 follows easily by Holder 1s 

inequality for integrals and the estimate for A= 2. To obtain (10.57) for A~ 11 

we proceed analogously, only now we have 

V J. l.t6..2(tr)lA << Tt(TVA-2 + T15/4vA-11) << 
r~V) 

T1+35(A-2)/108+l + T15/4+35(A-11)/108+t + T(A+4+t)/4 << T(35A+38+t)/1os. 

The proof of Theorem 10.10 is similar to the proof of Theorem 10.9 anë. 

utilizes (10.55) and (10.14), but while the proof of Theorem 10.9 is independent 

of (10.29), the proof of Theorem 10.10 will require a weak form of (10.46), namely 

"' 
S ~~(t)dt << T5/ 3+~. This last bound may be obtained directly from (10.53) with 
'\ , 

k • 3, N • T by squaring the modulus and integrating termwise. Insteed of (10.73) 

we impose for the proof of Theorem 10.10 a similar condition, namely 

where the points tr are constructed ana.logously as in the previous case and the 

optimal choice for U is U = T
106

/ 279 • For 2 !: A .s 2237/607"' 3.6853 ••• we h:..i.ve tht.?n 
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Here the third terrn is the largest one for 2,::: A!: 2237/607 and 

'l'/l 

<< T(106A+352+t.)/279 • 

This proves (10.58). For A> 2237/607 the analysis is analogous and 

gives (10.59). 

§a. The circle problem 

This chapter is concluded by a discussion of the classical circle 

problem, which has been mentioned in §4 of Chapter 3. The problem of the 

estimation of 

P(x) == R(x) - 'lfx = ~ r(n) - ~x 
n<X 

bears many resemblances to the estimation of ~(x) in the diviser problem, and we 

recall G.H. Hardy's classical formula ((3.36) with q • 1) -= CJ'l'x - 1 + ·x 1/
2L, r (n) n- 1/ 2J 1 (2ar\.,fnx"), 

n=1 

or using the approximation 

J 1(y) = -(2/'Jïyf/2cos(y + CJV4) + o(y- 3/ 2) 

we may write 
eO 

(10.77) P(x) .. O(x 2
) - ~-

1x
1
/ 4Lr(n)n- 3/ 4cos(2m"~ ~ '1'/,t), 

n=1 

since in (10.76) we have to count r(x)/2 if n =xis an integer, and obviously 

r(n) << n~. A trivial bound for P(x) is P(x) << x1/ 2, since P(x) is clearly 

majorized by the circumference of a cirole with radius x
1
/ 2 • One would expect thùt 

(10.77) would proviàe the analogue of the truncated Voronoï formula (~.16) for 

b,(x), and this would be 
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P(x) = -~
1
x

1
/,1LJr(n)n- 3/ 4cos(2,ryiîi" + ,r/4) + O(xf(1 + (x/N) 1/ 2). 

n<N 

A direct proof of (10.78) via (10.76> does not seem easy (as is also 

the ca::.:e in the anu.logous problem of the trunca·;ed formula for ~(x)), but pne 

.. 00 

muy use the method of Titchmarsh 1s proof of (3.16) by considering ~r(n)n-s 

for Re:::> 1 and using the truncated Perron formula (1.10-) to estimate L,r(n). 
n<:x 

A similar approach has been adopted by H.-E. Richert [21, where general est1mates 

for sums of the type L,f(n)(x - nr are considered for certain classes of 
n<:x 

arithmetical functions f, without developing the sums in question into infinite 

serics containing (generalized) Bessel functions, but into explicit exponential 

sums of length N plus error terms, and this is exactly what is needed for (10.78). 

Therefore instead of trying to obtain a direct proof of (10.78), we shall briefly 

state now Richert's discussion of the circle problem, and then obtain a result 

(Lemrna 10.5) which is analogous to (10:78) and may be used to obtain estimates of 

power moments with P(x). Richert [21 transforma the circle problem-into a divisor 

problem by noting that 

(10. 79) 

and writing 

(10.ao) 

1 1 

x(k 1k2)-\og(x/k 1k2) - (~(1 1/k 1) + ~(1 2/k 2))(k 1½f1
x + ~(x;k 1,1 1,k 2 ,1 2) 

one has 

(10.81) R(x) == 4L(x;4;1,1,1) - 4D(x;4;3,1,1) =,rx + 4~(x;4,1,1,1)--1il,(x;4,3,1,1), 

when one recalls tha.t ~
1

('~/4) - ~(1/4) "'(Jt' • Thus (10.81) shows that P(x) may 

be considered as the difference of two divisor problem error terms, and Richert f?1 
obt~inod 

(10.132) Ll,(x;k 1,1 1,k 2 ,1 2)"' (-yl2,r) .. 1 (x/k 1k2)
1
/

1Rclc(-1/0) L, (n 11n2)- 3/ 4e(F)l + 
1si1n~ { 

+ o((xN)1/5+t) + o((x/N)1/2+t), 
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Whcre 

F • 

Here for N .!: x3/ 7 we have x1/ 5N1/ 5 !:: x1/ 2N-1/ 2 , so that for the range 

x1
/ 3 !:: N .!: x3/ 7 the first error term in (10.82) may be discarded. Except for the 

linear part -(1 1n1)/k 1 - (12n2)/k2 the exponential term in (10.82) is (up to a 

c0nstant) the same as in the formula (3.17) for ~(x). It is readily se€n that the 

linear part poses no problem in the application of Kolesnik's mcthod (Lemma 6.3), 

as the linear terms are small when compared with (xn
1
n

2
)

1/ 2
, and moreover the 

linear terms vanish already in the second partial derivatives of F = F(n 1,n
2

) in 

(10.82). As in the proof of Theorem 10.1 we have then 

THEOREM 10,11. 

R (x) L,r(n) 
n<:x 

Next to obtain (10.78) note that using (10.82) in (10.81) we have 

-,cin 1/2 

{ 

e , k1 = 4,k 2 = 11 • 1 

= exp(-2,,ril 1n1/k 1) • 
m.n1/2 

e , k1 = 4,k 2 = 1,1 1 = 3. 

This shows that for x1/ 3 .!: N .!: x3/ 7 we have 

(10.85) P(x) = 4lf2~)-1(x/4)4itefe(-1/8) L, (n1n2)- 3/ 4(-2isin(n 1,r/2))e(\fxn 1n2~+ 
l n 1n~ J 

where we used (10.79). In view of the error term in (10.82) the best that this 

approach can give is P(x) << x
2
/ 7+l, which though better than Theorem 10.11 is 

atill poorer than the conjectured estima te P~x) << x 
1/ 4+t. We would like to use 

(10.78) to obtain a result· anulogoua to Theorern 10.9 for power moments of P(x), 

but as we huve (10.78) for x
1
/ 3 .!: N .!: x3/ 7 we would not obtain a reoult of the 
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same strength as Theorem 10.9, since we need (10.78) in the range· x1
/ 3 ,::: N.::: x1

/
2 

for that purpose. Therefore we turn back again to Hardy 1s formula (10.76) and use 

the technique of exponential averaging, as intr9duced in Chapter 6, to obtain a 

rosult similar to (10.78), but without the rcsiriction N .!: x3/ 7• This is 

Lemma 10.5. For T < x < 2T, T
1
/ 4 < G < T1

/~ we have uniformly in x - -. . - -

Proof of Lemma 10.5. Let llx_ll denote the distance of x to the nearest 

integer and let the hypotheses of the lemma hold. The first step in the proof' 

will be to show that 

x 1/ 4L, r(n)n- 3/ 4e( ~) << TtG, if Il x Il '>> GT-3/ 4• 
rt>T2 

To see this write 

• x1/4 s t-3/4e(yit}c!R(t). • 

't1t. 

'](x 1/4 j t-3/4.c y'iët)dt + x1/4 I t-3/4.c 1/it)dP(t) • 

t7'& "° fl' .. 

o(1) + x1/ 4 ) t- 3/ 4e(\/xî)dP(t). 

~~ / 
Integrating by parts and using P(t) << t

1 2 it is·seen that-the last 

expression above is, 
00 

O(x- 1/ 4) - x1/ 45 P(t)(- ¾t-7/ 4 + ~ix 1/ 2t- 5/ 4)e(\/xt)dt = O(x- 1/ 4)-2ix 3/ 4I, 

where 'l''-

00 

(10.88) I = s P(t)t-5/ 4e(\/xt)dt. 

"'' Using (10.77) we obtain 
oO oO 

I = 0(1- 1/ 2) - X- 1rr(n)n- 3/ 4 ) t- 1cos(2~Vnt + ,r/4)e(\fxt)dt. 
· n=1 ~s 

The above integral ia written as a sum of integrals of the type 

1ft 

5 g(x)eiF(x)dx << max jg(x)l max \F' (x)\ - 1 

K x,(M,2M) x&(M,2M] 

by Lemma 2.1, eq. (2,3) to give 
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L) <<' 
rr>2x 

t-1 ~ -3/4 1/21 ,-1 + T L., n T n - X 
x/2<n<2.x 

<< 

and this proves (10.07), since This step in the proof was neccssary, 

since it reduces the series in (10.77) to a finite expression, and thus serves 

as a basis for (10.86), 

The next step is to derive a suitable averaged expression for P(x), 

using the ele~entary integral ~ exp(-x 2)dx = rir
1
/ 2• Abbreviating L = logT 

we have 

since 

.Kt-GL 

CJT'1/2P(x) - G-1 5 
JC-GL. 

--
( )

1. -2 
P(t)e- x-t G dt 

,c♦GL 

= o(1) + G-15 (P(x)-P(t))e-(x-t)2G-2dt 

x-6L 

<< 1 + L max \P(x) - P(t)l << GTL, 
lx-tt <GL 

\P(x) - P(t) 1 ,::: 'Jflx - t \ + ( L r(n) l + O(Tl) << (1 + {x - t l)T\ 
t<ll:SX 

in view of r(n) << nt. To use (10.07) write 

11.-tGL. IC:tGI. 

) P(t)e-(x-t)
2
a-\t = ) (P(t) + :JC-\ 1/ 4 2::: r(n)n- 3/.~cos(2:ir\{rit+,r/4))e-(x-t)

2
G-~t 

lC-Gil- >t-GI.. n<T 2 

(10. 90) 

say. The main contribution in (10.90) .(and hence the main contribution to P(x) in 

(10.89)) cornes from r2, and to show this we shall prove 

<< 

To uch~e this let 
00 

(10.92) A1 , ~ j(x - GL,x + orJfl[n - GT-3/ 4,n + GT-3f4Jj,A 2 •(x-GL 1x+oLJ, A
1

, 

and spli t I 1 in to integrulo over A-i und A11 respccti vely. For t ~ A
1 

we ohall use 



the trivial 

to obtain 

P(t) + Dr"-
1t 1/~ ,L r(n)n- 3/ 4cos(2ar\lnt +'Jl/4) << T3/ 4+i 

n~2 

5 << GT3/ 4+tGT-3/ 4 
A" 

2 t 
<<:: G T , 
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since obviously fA1l << 

(10.a7) to obtain at once 

2 -~/.1+e G T - · • For the intcgral over A2 we use (10.77) a.nd 

Therefore we are 
~L 

S 2 t. 
<< G T, hence (10.91). 

A2,. 

left with the evaluation of 

I 2 == 5 (x + t) 
1
/ 4L r(n)n- 3/ 4cos(2!7r\ln(x+t) + ~/4)exp(-t 2o-2)d,t, 

-G~ n<T
2 

and we can replace (x+t) 1/ 4 by x1/ 4 with an error which is << G2TL, so that 

combining previous estimates we have 
6L 

(10.94) P(x) << GTE + G-
1
T 1/ 4 J l

2 
r(n)n- 3/ 4 5 exp (~i Vn(x+t) - t 2G-2)dt l. 

n<T -6'--
Using (1.34) and Taylor 1s formula we obtain 

where we have set 

Y G-2 _!_. ~3/2 1/2 
• + 4J11X n • 

Therefore from (10.94) it follows that 

(10.95) P(x) << GTf. + G-1T 1/ 4 !Y(- 1/ 2 { L,
2 
r(n)n - 3/ 4exp(~~ - lafnY- 1x~1)j +G3Tt-'f4_ 

n,:SI' 

-2 2 Now for n ~ TG L and any fixed c> 0 

-2 2 ( ) so that the contribution of the terms with n "> TG L in 10.95 is negligible 

and moreover the last term in (10.95) may be dincarded since G3T- 3/ 4 < G. For 

n ~ TG-2L 2 one can replace Y by G-2 wi th a total error << Gr, hence ( 10.86) 

followo from (10.95). 

Lomma 10.5 is now completely analogoua to the truncated Voronor 
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formula (3.17) (with G = (TN-\og 2T) 1/ 2), since the exponential factor 

exp(-:1t' 2nG2x- 1/4) which appears in (10.86) is < 1 and does not affect order results 

obtainable from (10.86). Combining Theorem 10.11 with Lemma 10.5 one can obtain 

easily the analogue of Theorem 10.9 virtually by repeating the same proof with 

d(n) replaced by r(n), and the result will be 

THEOREM 10. 12. 

'1' 

) IP(x)I Adx << T (A+4+E)/ 4, 0 < A < 35/4, 
~ ,,. 
) IP(x)IAdx << T(35A+38+E)/1os, A > 35/4. 
◄ 

This is new for A> 2, while a sharp asymptotic formula for A= 2, corn-

pletely analogous to (10.35),has been established by K.-C. Tong [2].The estimates 

(10.85) and (10.86) show great similarities in the circle and divisor problem,and 

naturally the analogue of (10.86) may be derived by the method of Lemma 10.5 from 

the Voronoï series expression (3.1) for ~(x). 

NOTES 

Strictly speaking (10.3) holds for x not an integer,since in L 1
dk(n) 

n<X 

the last term is to be counted as ,½a.k(x) if xis an integer, but as already 

remarked in Notes of Chapter 3 concerning lJ.,(x) = L12 (x), for most purposes this 

distinction is irrelevant. 

An explicit formula for (k' the k-th coefficient in the Laurent expansion 

of 4(s) at s = 1, is given by (10.5). A simple proof of this formula (obtained 

already by Stieltjes in the 19th century) will be presented now. Let k,r ~ O be 

integers and let 
00 

C = - ~ t-\ogrt•d-v(t), ,y(t) = t - [tl - 1/2. r 
<(•O 

By the Stieltjes integral representation we have 

N " 
cr = -lim S t-\ogrt.d"f'(t) 

N ➔ w ••o 
lim () t-\ogrt,d (t] 
N➔w 4•0 

lim 
N-,.oo 

( 
~ -1 r 
L_in log n -
n<N 

( ) -1 r+ 1 ··) r+1 log N • 

Ill 

C -1 r 
) t log t,dt) 

-4-0 



Let further Sr (x) = L, n-\ogr x/n. Then 
n<X 

l( lt 

Sr(x) = 5 t-\ogrx/t.d(t] = )t-\ogrx/t•dt -
4-0 

-1 r+1 (r+1) log x -

., 
oO 

) t- 1(1ogx - logt)rd"t'(t) + 
4•0 

-r 

X. 

) t-\ogrx/t•d"l'(t) 
-t-0 -
) t-\ogrx/t•d'"+'(t) 
X. 

( ) 
-1 r+ 1 ~ k r r- k 

r+1 log x + LJ (-1) (k)cklog x + R (x), 
k=O r 

say. Our aim is to prove rk = (-1)kcJk! for O,:::: k,:::: r, where for Res> ü 

where 

~(s + 1) = 

oO 
~ -s-1 
L.:.., n 
n=1 

-1 
s + 

To accomp+ish this, observe first that 
dl QO 

r )t-s- 1sr_ 1 (t)dt 

" 
-1 ( ( ) -s -rs J sr_ 1 t dt 

" CIO 

-1 C -s c ) rs J t dSr_ 1 t = 
1 

oO 

= r!s-rJt- 8 dS
0

(t) 
.. 

eO 

-r~ -s-1 r!s L...Jn = 
n=1 

.0 
-r-1 'Ç'I k-r 

r!s + L.JÎkrls . 
k•O 

On the other hand, using the expression for S (x), it is seen that r 

oO 

sk-r(-1)k(~)ck(r-k) ~ e-vvr-k- 1dv = 
0 

k-r( 1)k 1 /k' s - r.ck •• -
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= 

Comparing the two series expansions for St-sdS (t) we obtain the desired 
" r 

identity fk = (-1)kcJk! for O,:::: k,:::: r, and since r may be arbitrary (10.5) 

follows. 

The paper of A.F. Lavrik,M.I. Israilov and z. Edgorov (:1] which contains 

the proof of (10.7) and (10.8) also gives an explicit evaluation of 
.0 

s~k(u)u- 2du for k.:::: 5 in terms of the yks as defined by (10.5); for instance 
1 

2 cy - 1) + 

Explicit evaluation of coefficients of Pk_ 1(t) in (10.3) is also discussed 

by A.] 1
• Lavrik [11. 

The history of the estimation of oC.k (and in particular of ol
2

) is at 

least as long and as rich as the history of estimates for 4 ( 1 / 2 + i t) , whi ch 

was given in the Notes of Chepter 6. This history goes deep into the 19th century 
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to r.G.L. Dirichlet, who provcd in an elcmentary wny that ~
2 
~ 1/2 and in 

whosc honour the problem in lrnown us "the Dirichlet divisor probl~m". Furthor 

est.irnate:.; for 

o{ 

2 

°'2 

°'2 

c,(2 

o(2 

~ 

°'2 

°' nre llS follovrss 
2 

< 1/7; 0.333333 ••• , 

< 33/100 - 0.33 

< 27/82 = 0.329268 ••• , 

< 15/46 = 0."2i26086 ••• , 

< 12/37 s 0.324324 ••• , 

< 346/1067 = 0.324273 ••• , 

< 35/108 = 0.324074 ••• , 

G.F. Voron0i (1]' 190.-1 

J • G • vo..n der Corput [21, 1922 

J • G' van der Corput [li], 1928 

H.-E. Richr,rt [1] , 1953 and 

Chih Tsung-tao [11' 1950 

G. Kolesnik [2], 1969 

G. Kolesnik [3]' 1973 

G. Kolesnik [6], 1902. 

Koleenik [6] obtains actually ~
2

(x) << x35/ 1
oa+E (so that (10.13) is 

slightly sharper), but his argument clearly gives alsc (10.13). Anyway the 

log-factors are n.ot so important as Kolesnik' s method is not exhausted by the 

value ~2 .:::; 35/108, and he has kindly informed me that the best it can give at 

present is a value slightly less than 35/108. 

The history of estirnates for o(
3 

is as followss 

o( < 1/2 = 0.5 G.H.Hardy and J .E.Li ttlewood (2)
1
1~22 3 

i,(3 < 43/87 = 0.494252 ••• , A. Walfisz (2.J, 1925 

~ < 37/75 = 0.493333 ••• , F.V. Atkinson (1], 1941 3 

o{3 < 14/29 - o.4s275s ••• , Yüh r:;ing-i ()1, 1950· 

c,(3 < 0/17 = 0.470500 ••• , Yüh Ming-i and \'iu Fang (11, 1962 

ol3 < 5/11 o.~54545 ••• , Chen Jing-run [2]' 1965 

°'3 < 43/96 = 0.447916 ••• , ,.., Kolesnik [53, 1981. Je 

For several general estimates of o{k' all of which. are poorer than 

those given by Theorem 10.2 when k ~ 5, the reader is referred to Chapter 12 of 

E.c. 'l'itchmarsh (s]. 

The estima.te~.::: (3k - ,1)/,1k, 4,::: k,:::: 8 of Thc-orcm 1ü.? hc.u been 

c-ivcn by D.R. Heuth-Tirovrn [iS), who proved in [OJ also otk ,::: (k - 3)/k for k > 8, 

but this ic supcrsedeJ now by corre~ponding cctim4tca of Thoorem 10.2, which is 

tltrn to the author (2]. 
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The method of proof of Theorem 10.2 is based on the use of .'rheorem 7 .3 and 

shows that one can obtain °'le .:::: 1 - A/k for any fixed A-, 0 and k '> k(A), but 

this is supersedeâby Theorem 10.~ for sufficiently large k. Besides choosing more 

carefully the exponent pairs in the proof of (7.65), there are other possibilities 

of improving Theorem 1u.2 for large k, rwmely the bound o(k.:::: 1 - 34/(7k) for 

k ~ 58. Instead of c(Q) • (1 - 8)/5 (5/6 _::: Q.:::: 1) one may use sharper bounds for 

c(e) in (7.57) and Lemme 7.2 for appropriate ranges of 8. Thus from (6.59) with 

1 = 6 we obtain c(G) _:;; (1 - ~)/6 for 28/31 =::: ~ _::: 1 and this will lead to 

m(d) ~ 5/(1 - d) for ü.:;i1 _s d _s 1 - E, and consequently to oCk < 1 - 5/k for k > 58. 

Still a better result may be obtained if in bounding c(e) convexity is used for 

two consecutive values of 1 ir: (6.'.:;>9). This was the idea used by A. Fujii (11, who 

obtained a bound for °'k which does net depend explicitly on k, but on a parameter 

b, so that additional calculations are necessary to evaluate ock, and a general 

formula for OCk is difficul t to obtain. A calculation shows that Fuj ii I s estimates 

lead to better values than °'k: _s 1 - 34/(7k) of Theorem 10.2 for k ~ 109, but his 

results are fuither improvable if instead of Theorem 7.10 of Titchmarsh [8] one 

uses sharper bounds for m(d) (when d is close to 1) obtainable by the method of 

Theoxem 7.3, as described above, Also a slight sharpening is possible if instead 

of (6.59) one uses the sharper bound 

1 240Qg - 16Q, + 128 q-1 
c( 9 ) .S JQ - 2•240Qq - 15Q + 128' Q = 2 ' 

which was proved long ago by E. Phillips (11. 

= 1 - g + 1 
.-1.Q - 2' 

Theorem 10. 3 is due to H.-E. Richert (3], and was rediscovered by A. A. Kara cu

ba [11, who in [2] proved a stronger result than 'rheorem 10.3, namely 

1-Ck- 2/7i k 
~k(x) << x (Dlogx) , 

where C,D > 0 are absolute constants and the estimate is uniform in k. 

A. Ii'u.jii [11 showed that ir; Theorem 10.3 one may take 

improving the value of C given by A.A. Karacuba [i), but the value k such that 
0 

olk .S 1 - Ck- 2/7i for k> k is not explici tly deterrnirrnd in either of these works. - 0 
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Lemma 10.1 is a weakened form of a result of H.-~. Richert [4], who used 

I.'M. Vinogradov' s estima tes [11, [21 (eee also A. Walfisz [3] for a good account 

of Vinogradov'e method) of exponentia.l sums and gave an elegant proof of 

t(& + it) 

This result is significant when d is close to 1, when it improves results 

obtainable by van der Corput's method. 

Concerning Theorem 10.4 it may be mentioned that ~2 = 1/4, ~3 = 1/3 

are classical results that may be found in Titchmarsh's book (8], while 1,
4 

= 3/8 

has been proved by Heath-Brown [a] and the remaining bounds of Theorem 10.4 are 

due to the author (31. They improve on ~ < 1/2, '\ ,::: 35/62, ~ ,::: 11/18, 

% ,::: 149/230 of K. -c. Tong [1]; indeed his bound for 138 is poorer than our 

bound for ~• 

The form of Theorem 10.5 is due to H. Cramér (11, and curiously enough 

no result of this type is to be found in Titchmarsh [e1. The results of Theorem 

10.6 and Theorem 10.7 are new and have not appeared in print yet, while the 

theorems of §7 are proved by the author in ~J. 
Theorem 10.5 and its analogue for the circle problem provide weak 

omega resul ts for L.\.(x) and P(x), namely ~(x) • 5'2 (x 
1
/ 4) and P(x) = 5è.(x 

1/1). 

Sowie better resul ts are known, and in 1916 G.H. Hardy [11 , [21 proved 

P(x) 

= { Si!+((xlogx)
1
/ 4loglogx)

0 

Q_ (x1/4) 

.. { .5?. _ ( (xlogx) 
1
/ 

4
) 

.52 +(x1/4). 

Hardy 1s Q_ estimate for ~(x) and 5? estimate for P(x) have bcen 
+ 

improved a li ttle by K.S. Ga.ngadharan [1], and the best resul fo in thiu direction 

seem te be due to K. Corr,di and I. K,tai [1], who proved with some absoluto 
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~( x) • 5? _ ( x 1/ 4 exp (c 1 (loe;logx) 
1
/ 4 (logloglo~x)-~/ 4)), 

Hardy's 52+ estimate for ~(x) and S'2 estima te for P(x) withstood 

improvement for a very long time. Only recently J .L. Hafner [1) eucceeded in 

proving with some absolute c
3
,c

4 
> 0 that 

~(x) = 2+ ( (xlogx) 1/ 4 (loglogx) (3+2log 2)/ 4 exp (-c
3 

(logloe;logx) 1/ 2)), 

P(x) = 52._ ( (xlogx) 1/ 4 (loglogx) (log 2)/ 4exp(-C 
4 

(loglo~logx) 1/ 2)). 

Although the circle problem, discussed in §a, is certainly a digression 

from the main topic which is the zeta-function, I have nevertheless felt it 

appropriate to include this material (new and hitherto unpublished) for two 

reasons. Firstly the results seem to be interesting, and secondly they stress the 

intrinsic connection between the divisor problem for ~(x) and the circle problem. 

Most earlier authors have ir.vestigated the circle problem, diviser problem and 

the problem of the order of 4(1/2 +· it) separately and by different mcthods. The 

approach presented hcre shows a unified view of the circle and diviser problem, 

and the idea to use exponential averaging in the proof of Lemma 10.5 has been 

kindly suggested by M. Jutila, whose works [41 and [}1 (parts of which will be 

discussed in the next chapter) show the intrinsic connection between ~(x), 

4(1/2 + it) and E(T) mainly in the light of Atkinson 1s formula. The problem of 

the estimation of ~(1/2 + it) was already discusse.d in Chapter 6 in Theorem 6.3, 

which bears a close resemblance to Theorem 10.1. It turns out at present that 

all the best known exponents in the di visor problem, circle pr:,blem and the 

problem of the order of E(T) are the same ono, namely 35/108 + t. by Kolc::;r.ik 1 :; 

method. Whether the r eal order of the functions in question (for which one 

naturally conjectures the exponent 1/4 + t) is the same (up to t's und log

factors) is not possible to tell yet, though one cxpects the answet• to be 

affirmative. 
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C H A P T E R 1 1 

ATKINSCN1.S FOmlULA FOR THE ME~AN SQUARE 

§1. Introduction 

A classica1 problem in zeta--function theory is the investigation of the 

asymptotic behaviour of the integral 
l'('I 

I(T) = ) \((1/2 + it)j
2
dt, 

0 

and the first non-trivial result has been obtained by G.H. Hardy and J.-E. Litt-

lewood [1], where they showed that 

I(T) = (1 + o(1))TlogT. 

A substantial advance in this problem has been made in 1922 by J.E. 

Littlewood [11 who proved that 

(11.2) E(T) << T3/ 4+\ 
where 

E(T) = I(T) - Tlog(T/21r) - T(24' - 1). 

An explici t formula for E(T) was discovered by F.V. Atkinson [~], 

and this forn:ula is the main topic of this chapter. This deep and important 

result of Atkinson seems to have been neglected for a long time, until first 

important applications have been made by D. R. Heath-Brown (1), (2], and i t seems 

certain that the possibilities of Atkinson 1s formula are far from being exhausted. 

The depth and the scope of Atkinson 1s formula seem to provide an adequate ending 

of this text, and the result will be formulated as 

THEOREM 11.1. Let O <A< A' be any fixed constants such that 

AT < N < A1T and let N1 = N1 (T) = T/2'1f. + N/2 - (1r2/4 + 1"1'/2,rj 
1
/

2• Then 

E(T) = 
-1/2) n -1/2 . ·~; 1/2i1 / / -V+ 2 ~(-1) d(n)n (arsinh((,n112T) l (T 2,m+1 4) cos(f(T,n)) 

where 

(11.5) 



We may rewrite (11.,1) in the form 
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( 11 • 6) 

where 

(11.8) 

where 

E(T) 

e(T,n) = 

2 + O(log T), 

(1 +!Jrn/2T)-
1
/ 4 {<2T/9f"n)

1
/

2
arsinh((:,rn/2T)

1
/

2
}-

1 
- 1 + O(n'l'-

1
), 

-2L,, d(n)n- 1/ 2 (logT/2,m)-
1

cos(g(T,n)), 
n,SN' 

g(T,n) = Tlog(T/2~n) - T + "f/4. 

Using the Taylor expansion 

(11.11) f(T,n) = -,r/4 + 4?t(nT/2:K)
1
/ 2 + o(n 3/ 2T- 11z), n = o(T), 

it is seen that, apart from the oscillating factor (-1)n, the first o(T 1/ 3) terms 

in Z,1(T) are asymptotically equal to the corresponding terms in the truncated 

Voronoï formula for 2~i::l,(T/2,r), as given by (3.17). This deep analogy between the 

divisor problem and the mean square of the zeta-function on the critical line has 

been one of primary motivations of Atkinson's work concerning Theorem 11.1. This 

tapie will be further pursued in §5. 

There is another possibility of proving an explicit formula for E(T). This 

has been found recently by R. Balasubramanian (1] who used a complicated integ

ration technique based on the classical Riemann-Siegel formula for the zeta-fun

ction to prove 

(11.12) E(T) + 

+ 2 2: ~ sin_f2~ - Tlop:mn) + 0 (log2T), 
n<K mfn.:::}~ (mn) / (2g' - logmn) 

where 

Upper bounds for E(T) may be obtained from (11.12), but it seems 

simpler to use Atkinson's formula and the averaging techniques similar to thone 

of Chapter 6. In this wa.y it will be seen that 
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E(T) << T35/1os+e.., 

which is completely analogous to corresponding estimates for _ô,(x) and P(x) 

furnished by Theorem 10.1 and Theorem 10.11 respectively, since the estimation 

will be reduced to very similar eocponential sums. We reserve §2 of this chapter 

for the proof of the difficult Theorem 11.1, while some applications of Atkin

son1s formula will be presented in later sections. 

§2. Proof of Atkinson 1s formula 

We start from the obvious identity, valid for Re u > 1, Re v > 1, 

e>O -
(11.15) t(u)~(v) = ~ ~m-un-v = C(u+v) + f(u,v) + f(v,u), 

m=1 n=1 

where 
~ -

(11.16) f(u,v) = L, Lr-u(r + s)-v. 
r=1 s=1 

We shall show first that f(u,v) is a meromorphic function of u and v 

for Re(u + v) :> o. Taking Re v > 1 and writing "'f'(:x) = x - [:c] - 1/2, -Y1 (x) • 
l(. 

= S "'f'(t)dt, it follows on integrating by parts that 
'1 00 00 

L, (r + s) -v = 5 ( r + t) -v d ( t] = v 5 ([x] ) -v-1 
-rx dx = 

s=1 •-o y 

oo 00) 
-v-1 1-v -1 1 -v -v-

v )"'t'(x)x dx - r (v-1) - 7 - v(v+1) "'!'1 (x)x ~ 
r r 

1-v( = r V - )
-1 

1 - 1 -v ( l J 2 •Rev-1) 
2r + 0 v r , 

since "'!'1 (x) << 1 uniformly in x. Hence 

- 00 -

f(u,v) = (v-1)-1L,r1-u-v - ~L,.r-u-v + o(tvl2L,,r-Reu-Rev-1), 
r=1 r=1 r=1 

and therefore 

f(u,v) (v - 1)-
1 ((u + v - 1) + ~l;'(u + v) 

is analytic for Re(u + v) :> o. Thus (11.15) holds by analytic continuation when 

u and v both lie in the ctitical strip, apart from the poles at v = 1,u + v • 1, 

U +V= 2. 

We consider next the case Reu<O, Re(u + v) > 2• Uaing the Poisson 

summatiop formula (1.23) we obtain 



(11.17) 
00 

~ -u( )-v L.., r r+s 
r=O 

.. 
= ) x -u ( x+s) -v dx + 

' 

a 1-u-v( ~ y-u(1+y)-vdy + 2Ï, r y-u(1+y)-vcos(2'nnsy)dy), 
o m=1 o 

aiter the change of variable x = sy. Summing over s and using (1.29) we have 

g(u,v) = f(u,v) - r(u+v-1)r(1-u)r-
1

(v)!(u+v-1) = 

(11.18) 
00 ,,. -

2 L,s 1-u-v L 5 y-u(1+y)-v cos (2'rmsy)dy. 
s=1 m=1 o 

To investigate the convergence of the last expression we note that 

for Re u < 1 , Re ( u + v) > 0, n ~ 1 
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~ -
2) y-u(1+y)-vcos(23rny)dy = nu- 1) y-u(1 + y/n)-v(e(y) + e(-y))dy = 

(11.19) 
0 0 

-loo 

/ ) -v ) u-1( -u( + y n e(y dy + n J y 1 

0 

uniformly for bounded u and v, which follows after integrating by parts. Thus 

the double series in (11.18) is absolutely convergent for Reu < O,Re v > 1, 
00 oO 

Re(u + v) > o, by comparison with Lt tsrv Z, lmu-1(, and represents an analytic 
s=1 m=1 

function of both variables in this region. Hence (11.18) holds throughout this 

region and grouping terme with ms= n together we have 
oO ~ 

g(u,v). = 2L, d1_u_v(n) ~ y-u(1 + y)-vcos(2Jtny)dy, 
n=1 o 

where dk(n) .. ~ dk is the sum of the k-th powers of divisors of n, so that 
dln 

d (n) = d(n). Therefore if g(u,v) is the analytic continuation of the function 
0 

given by (11.18), then for O < Reu < 1, 0 < Rev< 1, u + v /, 1 we have 

(11.21) ~(u)~(v) = C(u+v) + ~(u+v-1)r(u+v-1)(~è~)) + r~è~))) + g(u,v) + g(v,u). 

It is however the exceptional case u + v • 1, in which we are interested. 

Here we may use the fact that g(u,v) is continuous and write u + v = 1 + i, 

O < fil < 1/2, with the aim of letting S ➔ O. Then the first terme on the 



right-hand side of (11.21) become 

l(~+~) 2rîî=uî r{u; + 2( - log2!Ji' + 

= 

where we used Taylor 1s formula for the gamma-function terms, the functional equa

tion for the zeta-function and 

((s) = (s - 1)-
1 

+ t + o(ls - 11). 

Hence letting ~ ➔ 0 we have, for O < Re u < 1, 

with a view to the eventual application u = 1/2 + it in mind. Reasoning as in 

( 11 • 19) we have, for Re u < 0, 
CIO 00 

2L,d(n)5 y-u(1 + y)u-\os(2'tny)dy, 
n=1 0 

g(u,1-u) = 

and so what we need is an analytic continuation of (11.23) valid when Reu = 1/2. 

At this point of the proof the Voronoi formula for ~(x) cames into play, since 

it is a powerful tool which will provide the desired analytic continuation and 

enable us to integrate (11.22) over t when u = 1/2 + it (t real), thus giving the 
Il" 

expression 2i) !!(1/2+it)! 2dt on the left-hand side of (11.22). Using the Voro-
o 

noi formula (3.1) and the asymptotic formulas (3.12) and (~.13) we have, when x 

is not an integer, 
00 

~(x) = (,r2 1/ 2)- 1 L d(n)n - 3/ 4 ( cos (~-:Jr/ 4)-3 (32.11'/m)-\in (,11r\fni-JT/ 4)) + 
n=1 

and the series is boundedly convergent in any finite x-interval. 

(11.25) 

Let now N bèfa positive integer, and let ,... 
of' 

h(u,x) = 2~ y-u(1 + y)u- 1cos(2'1:xy)dy. 

0 

Then we have with D(x) = L,d\n) 
n<x 

+ o(x-3/4), 
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= S (lo#x + 2i)h(u,x)dx + 5 h(u,x)d~(x) = L d(n)h(u,n) = 
IJ;::PN 

h(u,x)dD(x) 

- ~(N+1/2)h(u,N+1/2) + 5 (1ogx+2y)h(u,x)dx -

Hence (11.23) be.c..ol'lles 

g(u, 1-u) = zh(u,n)d(n) - ~(N+1/2)h(u,N+1/2) 
n,SN 

(logx + 2y)h(u,x)dx -

(11.26) 
00 - s ~(x)~h}~,x)dx = g1 (u) - g2(u) + g3(u) - g4 (u), 

11+112, 

say. Here g1(u) and g2(u) are analytic functions of u in the region Re u < 1, since 

the right-hand side of (11.25) is analytic in this region. Consider next g
4

(u). 

We have ioo -ioo 

h(u,x) ) -u( )u-1 ( ) ) y-u(1 )u-1 = y 1+y exydy+ + y e(-xy)dy, 
0 0 

ioo .. iGO 

~h~~1x) 2n J 1-u( )u-1 ( ) 2!7f'i ) 1-u( )u-1 ( ) = y 1+y e xy dy - y 1+y e -xy dy = 

0 0 

;oo -ioo 

2~1xu-2( J Y1-u( 1 + y/x)u-1e(y)dy _ ~ 7 1-u( 1 + y/x)u-1 8 (-y)dy) << xReu-2 

0 0 

for Reu_s 1 and bounded u. Using only the estimate â(x) << x1
/ 3+e. it is seen 

that the integral defining g4(u) is an analytic function of u at any rate when 

Reu < 2/3. 

It remains to consider g
3

(u). Let for brevity X• N + 1/2. Then 

q0 i00 -ico 

(11.27) g
3

(u) = ~ (1ofx+2() () y-u(1+y)u-\(xy)dy + ) y-u(1+y)u-\(-xy)dy). 
X o o 

For Reu < 0 an integration by parts shows that the first two integrals in 

(11.27) are equal to 
i~ $ 

-(2!1!i)-\1ogX+2r) 5 y-u- 1 (1+y)u- 1e(Xy)dy - (2,ri)- 1 ) 
o X 

~ .~ 
( ) -1 ) ( -u-1 ( )u-1 ( ) 1 , )-1 r -u-1 u • 2,d (logX+2r J y 1+y e Xy dy + \2,ri.µ j y (X+ y) e(y)dy. 

0 0 

In the last integral above the line of integration may be taken as [o,oo) 

and the variable y replaced by y= Xz. The other two integrals in (11.27) are 

treated similarly, and the results may be combined to produce 



00 

g
3

(u) = - ar-1(1ogX + 2K) j y-u- 1(1 + y)u- 1sin(2~Xy)dy + 

c,O 

(!,ru)- 1 5 y-u- 1 (1 + y)usin(2'.JiXy)dy. 

0 

Noting that the integrals in (11.28) are uniformly convergent when 
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Reu.::: 1 - E., it follows that (11.28) provides us with an analytic continuation 

which is valid when Re u = 1/2, and thus we may proceed to integrate (11.22). l'hen 

u • .1/2 + it we have ,cu)t(1-u) = ll:' (1/2 + it)l 2, 80 that the integration of 

(11.22) gives 
t1.-t-i'I'\ '1tz.+:ITI 

2iI(T) = ) ((u)((1-u)du = f(-dlogr(1-u) + dlogr'(u)) + 2iT(2~ - log29r) 
"1Ji.-i'T' 4'2,◄ •'1" 

A/1,.~l'\' 

+ ~ (~,1-u) + g(1-u,u))du = l0g~f~7~: i~~ + 2iT(2K - log2'/) + 

111..+; 'Tl 

+ 2 S g(u, 1-u)du. 

111 - :'T' 

Using Stirling 1s formula in the form given by (1.31) this becomes 

(11.29) I(T) = Tlog(T/2.?T-) + (2( - 1)T - i ~ g(u,1-u)du + 0(1) = 

where for n = 1,2,3,4 

(11.30) g (u)du, n 

so that using (11.26) and (11.28) we have 

(:,0 

4 ~ d(n) ( sin(Tlog(1+ 7)/y) cos~yd 1 1 = .4./ j 1/2 1 2 y, 
n,SN O y (1 + y) log(1+y)/y 

00 

(11.32) 4A(x) s sin(Tlog(1+ 7)/y)cos29t-Xy d 
L.l. 1/2 1 2 Y, 

y (1 + y) log(1 + y)/y 
0 

oO 

( 11• 2 1r) 2 ( 2r) } sin(Tlog( 1+1}/y) sin2't'Xy d 
n 13 = - ;f logX + 0 3/2 1 2 y + 

y (1 + y) log(1+y)/y 
0 



and lastly 

(11.34) 

00 A/1:t-i'f' 

r4 = -1 5 ~(x)dx ) 
X •ri.-1'1" 

233 

where N is a positive integer, X =-N + 1/2, and as in the formulation of the 

theorem we shall restriot N to the range AT< N < A1T. A more explioit formula 

for r
4 

aay be derived as follows. We have from (11.25) 

sin(T(log(1+y)/y)cos(2:,rxy)d ! 
1/2 1/2 y • 

y (1 + y) log(1 + y)/y 

sin(Tlog(x+ 7)/y)cos(2:rY},d l 
1/2 1 2 y • y (x +y). log(x + y)/y 

00 

41 r 1/2 cos~i~ [Tcos(Tlog(x+y)/y-) - sin(Tlog(x+y)/y)(½ + log- 1 x:z)jdy. J y (x+y) log(x+y)/y ~ 
• 

Hence replacing y by xy we obtain 

(11.35) 

00 00 

~
l::::a,(x) ) oos2~ [ ( _1+y) . ( ~hY)(1 -1 1+v~ = 4 x dx 172 T 2 1+ Tcos Tlog-::- - sin Tlog-::- 2 + log ~) 4. 

y (1+y) le~ y y y 
X o y 

The main difficulty lies now in the evaluation of the integrals which 

represent I. We shall need two lemmaa which will follow from Theorem 2.2. These 
n 

are 

Lemma 11. 1. Let ,,t. , ~, 0 , a, b, k, T be real numbe~. suoh that o/. , r.. •6 
are positive and bounded, o/. f 1, 0 <a< 1/2, a< T/(8'tk), b;.:: T, k;.:: 1, T:,:: 10 

Then 

Q.. 



( 1-oL. -1) + 0 a T + 

unif ormly for \ o( - 1 \ > e. , where 

U • (T/2m-k + 1/4) 1/ 2, V = 2arsinh((:irk/2T) 1/ 2), 

R(T,k) << T(ir _.,,._ ~)/2-1/ 4k-('(-,1--n.)/2-5/ 4 

R('f ,k) 
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for 1 !:: k !:: T, 

for 

A similar result holds for the corresponding integral with -k in place 

of k, except that in that case the exp1cit term on the right-hand aide of (11.36) 

is to be omitted'. 

Lemma 11.2. 1/2 1/2 For AT < a < At T , 0 < A < A 1 , cl :> 0, 

-

provided that n ?:, 1, n < T/2<Jr, (T/ZJr - n) 
2 

> na 
2

• If the last two restrictions on 

n are not satisfied, or if Vn is replaced by - Vn, then the mai• term and the 

laat error term on the right-hand aide of (11.37) are to be omitted. 

Proof of Le:ama 11.1 and Lemma 11.2. To obtain Lemma 11.1 one may apply 

Theorem 2.2 with 

'f(x) • x_.,,.(1 + x)-IS(log 1+x)-Y, f(x) = (T/2,r)lo~, 
X X 

We have 

T 
f' (x) • - 2'tx(1 + x), 

ao that the saddle points of Theorem 2 are the roots of 

X (x + 1) • T/(2-.r-k), 
0 0 

hence x • U - 1/2 in the notation of Lemma 11.1. Thus 
0 



T(2x + 1) 
0 f" = __ 2 ____ 2 = 

0 2~x (x + 1) 
0 0 
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log(1 + 1/x) l U + 1~2 l (2T,htk + 1)1/2 + 1 • 
o = ogu - 1 2 = og (2T/~k + 1)1/2 - 1 

(!7tk/2T + 1) 
1
/

2 
+ (~k/2T) 

1
/

2 
/ 1/2 r-,,/2T) 1/2) 2 

log --------~------------~or.:-= log((?rk 2T + 1) + \;/IA. = 
(~k/2T + 1) 1/ 2 - (ik/2T)

1/ 2 

Hence 

f + kx • TY/(2-Jr) + k(U - 1/2), 
0 0 

and the main term furnished by Theorem 2.2 is 

"'(f")· 1/ 2
e(f + la: + 1/a) • 1 o o o o 

Consider now the error terms. If 1,::: k,::: T, we have then 

A,::: A(T/k) 1
/ 2 < x

0 
< A1 (T/k) 1

/ 2 , q>
0 

<< ~-ot.-
13

, 

"'- << x , A(kT) 
1
/

2 < F < A1 (kT) 
1
/

2
, 

✓ o o o 

and thus for 1 < k < T, 
_312 - 1<r-ot-1?>)-1/4 -<r-d.-r;)/2-s/4 

<P I.A F <K T-z k , 
oJ o 

while in case k~ T we obtain similarly 

J.. .fr F-:5/2 -C(.-1/2 oe-1 
~ <K T k • 

0 0 

1 From f 1 (x) • - T/2nx(1+x) we have, for a< max(2,T/8~k), 

f 1 (x) + k < -ATa- 1, 

whioh gives 

q)(a)(f 1 (a) + k)- 1 1-o< -1 
<< a T • 

Likewise, if b ~ T, 

cp(b)lft (b) + k)- 1 <K J-ol-nk- 1• 

The error-term integral in Theorem 2.2 is 
" 
( - "'--Akx-AT 

<KJxe dx+ 
-o.. 

Ir 

( y---13 -.Akx-AT/x J x e dx, 
4 

and for 1~ - 1 1 > ( > 0 the contribution of the above terms olearly does not 
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exceed the order of the error terme given by Lemma 11.1. This establishes Lemma 

11.1 for k ~ 1, while for k .!:: -1 the argument differs only in that the the terms 

in x do not occur, since then there are no saddle points in Theorem 2.2. 
0 

For the proof of Lemma 11.2 we apply Theorem 2.2 with a,b as limita of 

integration, where b > T, and 

'f(x) • x-oi.(arsinh(x\f?r/2T))- 1 ((T/2nx 2 + 1/4)
1
/ 2+ 1/2)-

1
(T/2~x 2 + 1/4)-

1
/ 4 , 

(Tx3/'2,r + x4/4) 1
/

2 
- jarsinh(x\,hv2T). f(x) 

1 2 -~ -2 

We have then 

f 1 (:x:) = x - (:x:2 + 2T/!rr) 1/ 2 , f" (x) = 1 - x(x 2 + T/2:Jr)- 1/ 2 , 

so that we may take f-(:x:) • x/2, cp(x) • x-«., F(x) = T. We dispose first of the 

error terms in a and b. We have 

4> (a) ( 1 f ~ + 2 \ln 1 + f ;-1 / 2) -1 << T- oe/ 2 min ( 1 ' l 2 vn + a - ( a 2 + ;r) 1 / 2 1-1 ) ' 

and 

A--( ,r.:\-1 -- ,r.: ( -1 -1 
41 b) (fb + 2 v n1 << b ( v n + 0 Tb ) ) 

which is o ( 1) for b ➔ oo • The error-term integral of Theorem 2. 2 gi ves here 
.&-
\ -"' -Ax · f'iî-AT -A v'iiT-AT 

while 

<< J x e V n dx << e , 

1-0( -3/2 
X T 

0 

(ce.-1 )/2 ( / ) 1-ot. -3/2 << n T2:lr-n T , 

as x is given by 
0 

Here if y'ii .!:: -1, or n > T/2:J( or (T/2'! - n) .!:: na
2 

there will be no 

terme in x and the lemma is proved. In other cases we find that 
0 

f~ = 2n(T/2~ + n)-
1

, arsinh(x
0 

VT/ZJi') = !1og(T/21rn), 

/ 2 / 1/2 / T / -1 (T 2!JPC
0 

+ 1 4) + 1 2 • 2!1T(T 2Jr - n) , 

etc. and calcula.tin~ the main term, which ie 

1f
0 

(f~)-
1
/

2
exp (2.?rif 

O 
+ 4-11i-x

0 
Vn + ;m.), 

we obtain Lemma 11.2. 
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Having now at disposal Lemma 11.1 and Lemma 11.2 we proceed to evaluate 

In for n=:;:4, as given by (11.31) - (11.34). We consider first r 1, taking in 

Le:mma 11.1 O < d- < 1, el+ 11,:> 0 , so that we may let a ➔ O,b ➔ oo. Hence, if 

1/2 < ..(. < 3/ 4, 1 < k < AT we obtain 

oO 

~ 
sin(Tlog(1+y)/y)cos2Jrkyd = 

'°' 1/2 · / y y (1+y) log(1 + y) y 
• 

and since this resul t holds uniformly in rJ.. we ma.y put ol. • 1/2. Taking into 

account that sin(x - ~k) • (-1)ksinx we obtain,after substituting (11.38) into 

11 
• 2-1/2L.,'(- 1)n~~~iiù_. sin(2Tarsinh 0îiJ2T + /;nT ~ ~n

2 
+ w'4) + 

n~ ~ arsinh V:1rn/2T • (T/21rn + 1/ 4) / 

+ O(T-1/4), 

taking AT< N < A1T. Similarly, from (11.32), 

(11.40) r2 << l~(x)lx-1/ 2 << T- 1/ 6 

if•• use ~(X) <ic::: x113• 

To deal with r
3 

•• write (11.33) in the form 

2 )-1 
13 

: - !Jr(logX + 20)131 + (,ti r32 

and consider firat r31• We have 

<< -1/2 
T ' 

if the firat integral ia estimated by the second mean value theorem for integrala 

t 
2,rxt1/2(1 + t)1/2(log~1+~)/~)-1) ain;(;~:f+y)/y)dy • 

~ t 
2,11:;1

/ 2(1 + t) 1/ 2(1og(1+tl/t)- 1[T-1.oa (Tlog(1+.1)/T)J 1 «: 

"l 

-1/2 
T ' 
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where O !: 1 !: !: (2X)- 1, and the integral S 
(_2X)"4 

is estimated by Lemma 11.1 

by treating the main terms on the right-hand side of (11.36) as an error term. 

Take next r
32

and write 

oD A/1:+i"î' ,\ 

J y-
1
sin(2.,rxy)dy ~- -;;(

1
;y)udu = ~ 

0 0 

"" 
• • .dy + ) 

1 

say. In r 32 we have O <y!: 1, hence by the residue theorem 

since 

<< -1 -1/2 
<< T y • 

Hence ,t 

2~i S y- 1sin(2~Xy)dy + O(T- 1
) lsin2JXy(y- 3/ 2dy) = 

0 x·~ 
o(x- 1) + O(T- 1 ~ :x:y-1/ 2dy) 

0 

0 

-
+ O(T-1j y-3/2dy) = 

Next, an integration by parts gives 

I" = 32 

since for y~ 1 

Alt,t-l'l' 

5 y -1 sin(2JIXT)dy "5'"' ( 17) uu -1 du • 
,t Ah,- ,'[' 

(1;1)V1d~~ -
~ 

<< -1 T logT, 

1,u.:'T' 

) ( 1 ;y) uu -1 du << ) lu-1duj << logT, 
411,-\'l' "lc.~:1' 

so that finally 

r., = X + 0 (T- 1/ 21ogT) • 

It remains yet to evaluate r
4

, as given by (11.35), which will produce 

the terme of I:2(T) in (11.9) in the final result. We estimate first the inner 

integrals in ( 11. 35) , making a -=, 0, b -=, CD in Lemma 11 • 1 • We have then in the 
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in Ûl8. notation of Lemrna 11. 1, for k == x > AT, 

( -1 -1/2) + 0 T x , 

and similarly for r = 1,2 

Thus we have 

= "'°) -1 "( )l( Tcos (2Tarsinh \Jqrx/2T + (2.?TxT + 'Jr2x
2

) 
1
/

2 
- !7rx + or/4) ( -1/2)1,;i.· 

I 4 X U X ,___,___ 1/2 1 . 1/4 + 0 X UA• 

X V2xarsinh l/rix/2T •( (T/ZJfx + 1/ 4) + 2) (T/ZJrx + 1/ 4) 

Using ~(x) << x1
/ 3 and changing the variable x to x1

/
2 in the above 

integral we obtain with the aid of (11024) 

(11.42) 

say. 

•{cos(4,rxyn" - !Jif4) - 3(32DTxVn)-
1

sin(4,rx Vn - 9r/4)5dx + O(T-
1
/ 6) • 

= ;f d(n)n-7i/4Jn + O(T-1/6), 
n=1 

Now it is transparent why a result like Lemma 11.2 was formulated and 

proved; it is needed to estimate the integral J in (11.42). Indeed if 
n 

(T/2'Jf - n) 
2 

> nX, n < T/2.X, tha t is to say if 

then an application of Lem.ma 11.2 gives wi th oL = 3/2, ol = 5/2 

r
4 

= 2Ld(n)n-
1
/

2
(1ogT/2Tïn)-

1
cos(T(logT/21rn) - T +ar/4) + 

n<Z 

+ ü(LJd(n)n- 1/
2

(T - 2:lrn)- 1) + O(T- 1
/

2Ld(n)n- 1
/ 2 (T - 2,rn)- 1

/ 2) + 
n<Z n<Z 

00 

+ O(T 1/ 4Ld(n)n- 3/ 4min(1,12v; +{!x-Vx + 2T/,r[-1) + O(T- 1/ 6) -
n=1 

Ili1 + I,.2 + 11.j) + I4'-{ + ocr-1")' 
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aay. Now r41 contributesthe main term in - Z2(T) in (11.9), while the contri

bution of the other terme (r
42 

comes from applying Lemma 11.2 to estimate the 

sine terma in (11.42) with ~ = 5/2) is << log 2T. To see thie observe that in view 

of AT< X< A 1T we have 

Z << T, T/'àr - Z :,l.> .T. 

Hence 

r
42 

<i<:: T- 1 ,Zd(n)n- 1/ 2 << T- 1/ 2logT, 
ng, 

and it reaains yet to deal with r
44

• Since 

(~ vx + 2T/5( - ~ VX) 2 
= x/2 + T/2'J< - (x2 

/ 4 + xT/2Jr - z, 

we have 
oO 

<< T1/4L,d(n)n-3/4min(1, ln1/2 - z1/2,-1) • 
n=1 

1/4 T (s1 + s2 + s
3 

+ s
4 

+ s5), 

say. Using partial summation and the crude estimate Z,d(n),v xlogx, we obtain 
n_sx 

~ d() -3/4(z1/2 1/2)-1 s1 = L...J n n - n << 
ng,/2 

2/i.. 

<< T- 1/ 4(zlogz.z- 1 + ~ tlogt.t- 2dt) -1/4 2 << T log T, 
'L"'t,. 

~ ( ) -3/4 83 • 1/2 L.J 1/2d n n << 
z-z <n:5&+Z 

s4 << T-
1
/ 4log 2T 

follows analogously as the estimate for s2, and finally 



Therefore we obtain 

1
4 

= 2Ld(n)n- 1/ 2 (1ogT/2m:i)-1cos(T(logT/2Jfn) - T + ar/4) + O(log 2T), 
n<Z 

and here the limit of summation Z may be replaced by 

N' = N' (T) = T/'2!Jr + N/2 - (N
2 
/ 4 + NT/2!ii) 

1
/

2
, 

L41 

as in the formulation of Theorem 11.1, with a total error which is certainly 

2 << log T. This proves then Theorem 11.1 if N is an integer, and if N is not an 

integer then in (11.4) we replace N by [N1 2 again with an error << log T. 

§3. Modified Atkinson•s formula 

Atkineon 1s formula for E(T), as given by {11.4), has the restriction that 

N should satisfy AT< N < A1T. So far this restriction has not proved to be im
'onc.. •~J 

portant in applications, of which'the first was the mean value estimate for 
•r-tG 

) I' (1/2+i t)I 
2

dt (Theorem 6.2) which was made by D.R. ~eath-:Brown [1] and enabled 
1"-G 

him to obtain the twelfth power moment est±mate M(12),::: 2. Another application 

of Atkinson 1s formula, due to Heath-Brown [2], involves an asymptotic formula 
1T' 

for S E2 (t)dt and will be presented in §4 of this ch~pter. For both of these 

" 
applications the range AT< N <A'T has proved to be qui te sufficient, but it seems 

desirable to have a more flexible form of Atkinson 1s formula available. M. Jutila's 

approach [61 of transforming Dirichlet polynomiale with the divisor function by 

the use of Voronoi~ formula (used also in our proof of Theorem 6.2) can be also 

successfully applied here to give 

THEOREM 11.2. Let T~ << N << T2 and N1 and f(T,n) as in Theorem 11.1. 

Then 

( 11 0 44) E (T) .. 2- 1/ 2 L, (-1 )nd(n)n-
1
/ 4 (areinh Vni/2T)- 1 (T/2'rn + 1/ 4)- 1/ 4coe(f(T, n}) 

n<N . -
- 2L,, d(n)n-

1
/ 2(logT/2mi)-

1
cos(T(logT/2rrn) - T + m/4) + 

n<N' 

This formula differs from Atkinson 1s original formula (11.4) in the error 

term, which is now a function of N also, but this is compensated by the wide 
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range TS << N << T2, where $ > O is arbi trary. If AT < N < AI T, then the above 

2 error terrns reduce to O(log T), i.e. one obtains exactly Atkinson's (11.4). A 

proof of (11.44) is given by M. Jutila [6], based on the method of his Theorem 1. 

To prove (11.44) it suffices to show that if T5 << N1 < N2 << T2, N1 ~ N2, then 

with L = logT we have 

+ O(T1/ 2N~1L2) + O(L2min((T/N 1) 1/ 2,(T/N 1)
1
/ 4) + O(N~/2T- 1(T2/N 1)t). 

Here N1 (T,N) • N1 = T/2tJr+ N/2 - (N2/4 + NT/2~) 
1
/ 2, and the idea is to 

start from (11.4) with N X T and use the Voronoi summation formula to shorten 

one sum in (11.4) and to lengthen the.other. The details of the proof are similar 

to the proof of Theorem 6.2 and thus will be omi tted, but some r emarks ho1e1er will 

be offered. The case N2 < N is considered first, where N is fixed and satisfies 
- 0 0 

T/41r .s N'(T,N
0

) .S 3T/SX-. As in the proof of Theorem 6.2 the summands are multi-

plie4 by e(n) • 1, which will regulate the distrubution of the saddle points 

ooming from the application of Theorem 2.2. After this,the sum is transformed by 
w'C. T,11,) 

the Voronoi formula ~3.2), and the integral 5 (logx + 21)f(x)dx estimated by 
N'C,'T;t'li.) 

Lemma 2.2. Since exp(iT(logT/2~n)) • n-iTexp(iTlogT/zm, the saddle points will be 

the same as those given by (6.48), except now in the sum on the left-hand aide of 

(11.45) we shall have an extra factor (1ogT/2~n)- 1, and as in the proof of 

Theorem 6.2 we see that 

log(T/2Jrx ) • 2log( (,rn/2T) 1/ 2 + (1 + orn/2T) 1/ 2) = 2arsinh( (,rn/2T) 112). 
0 

Therefore calculating 

'Ç"\ If( X ) f 11 ( X ) -
1 
/ 2 

e ( f ( X ) + kX + 1 / 8) L-..1 o n o o o 

by Theorem 2.2 we obtain-the right-hand aide of (11.45). The error terme in (11.45) 

are obtained by reasoning analogous to the one given in the proof of Theorem 6.2, 

when one observes that 

TAA - N' (T, N1) ~ (TN1) 
1
/ 2 , (log(T/2mc) )- 1 << (T/N1) 1/ 2 
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for N1 (T,N2) ;:S x ;:S N1 (T,N1). In the case when T << N1 << T2 it seems easier to 

transform the sum on the right-hand side of (11.45) by Voronor 1 s formula, using 

actually the averaged sum 
\) 

(11.46) u-1 
) I ••• du 

o N1+u,:::n<.N2-u 

similar to the one used in the proof of Theorem 6.2, but with the parameter 

U = T1/ 2 + N1T- 1
• The terms arising from saddle points of the sum in (11.46) will 

be exactly those on the left-hand side of (11.45), and the total contribution 

of the errorterms is given by (11.44). This approach seems less difficult than 

attempts to adapt Atkinson 1s original proof of Theorem 11.1, where one encounters 

eonsiderable difficulties when N = o(T). Furthermore the approach via Voronoi 1s 

summation formula may be used to yield an explicit formula for 1~(1/2+it)1 2 itself, 

which corresponds to a differer)tiated form of (11.4) in a certain sense. This 

result is also given by M. Jutila [6], and it will be stated here as 

THEOREM 11.3. Let t> t, t~ <<N !:t/4'(, and let N1 = N'(t,N) and 
- 0 

f(t,n) be as in Theorem 11.1. Then 

+ 2 Li d(n)n - 1/ 2
00s ( tlog(t/2mi.) - t - vr/ 4) + 0 (N 

1
/ 4t-

1
/ 41og2t) + 0 (logt). 

n<N' 

The equation (11.47) may be considered as an approximate functional 

equation for lt(1/2+it)[ 
2

, different from the one that follows from (4.11) with 

s = 1/2 + it. However this difference is in some sense not essential, since (4.11) 

may be used to prove (11.47), as will be explained now. First of all, note that 

\~(1/2 + it)\
2 

"" t 2 ( 1 / 2 + i t )-x,-1 
( 1 / 2 + i t) , 

where by (4.4) for t > t - 0 

(11.48) :t(1/2 + it) = (2~/t)iteit+u/4( 1 + o(t-1)), 

so that (4.11) may be written in the form 



+ ~(1/2 + it) ~ 2 2 d(n)n- 1/ 2+it + O(logt). 
N 1 <n<t / 4tJi. N 1 

Now using (11.48) we have 

2Refexp(itlog(t/2~)-it-i1r/4)L d(n)n- 1/ 2-itÎ + o(N'1/ 2t- 11ogt) 
n<N1 
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= 

Here the error term is trivially dominated by the error termsin (11.47), 

and soit is seen that (11.47) reduces to the proof of 

(11.50) 

-2 1/ 2 exp (i tlog(t.Y'2.1r)-i t~jjr/ 4) Z (-1 )nd(n)n - 1/ 2 (1 + t/2'rn)-
1
/ 4sin(f ( t,n)) + 

n<N 

+ O(N1/ 4t- 1/ 4log 2t) + O(logt). 

This is again achieved via the Voronoï summation formula (3.2) and the 

u■ e of the proof of Theorem 6.2. The terms of the sum on the left-hand aide of 

(11.50) are again multiplied by e(n) = 1, and an averaged form of the sum, as in 

(11.46), is considered. The series which appears in Voronoi 1s formulais split 

into two parts at N(1+E). The terms with n > N(1+E.) will have no saddle points 

in view of the range of summation, which is N1 < n !: t
2/4'!'2N1 , while the terms 

for n !: N will give rise to saddle points x (given again by ( 6.48)), which wiH 
0 

contribute the main terms on the right-hand aide of (11.50). The error terms 

in (11.47) are small for N << T, and thus this formula can be also used for the 

derivation of a variant of Theorem 6.2, and then also for higher power moments of 

the zeta-function. The proof of (11.47) is notably simpler than the proof of 

Atkinson 1s formula (11.4), and (11.47) can be also looked at from another view

point in the light of Atkinson 1s formula. Namely starting from (11.22) we have 

IC(1/2 + it)[ 
2 

= 2Re g(u,1-u) + O(logt), u = 1/2 + it, 

where g(u,1-u) is defined by (11.23). Using Voronoï 1s formula we have 
00 

g(u,1-u) = 2) d(n)) y-u(1 + y)u- 1cos(2'rny)dy + 
f@ro 
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00 oO 00 

+ ( (logx + 2f)h(u,x)dx + L d(n) ) h(u,x)oc(nx)dx, 
J n=1 N 
N 

where o((nx) is given by (3.15) and h(u,x) by (11.25). A direct application of 

2 Theorem 2.2 gives for 1 << N << t 
00 

4Re Ltd(n)) y-u(1 + y)u- 1cos(2,rny)dy = 
n~ o 

so that combining (11.52) and (11.53) we obtain the main term on the right-hand aide 

of (11.47). However difficulties arise with this approach when one tri-es to 

estima.te the seriea on the right-hand side of (11.52), and therefore the first 

proof of (11.47) seems preferable. 

§4. The mean sguare of E(t) 

Let as before 
"' 

E(T) • ) IC(1/2 + it){
2

dt - Tlog(T/2:,r) - (2r - 1)T • 

• 
Atkinson's formula (11.4) for E(T) provides the means for obtaining 

a aean square estimate for E(t) which is analogous to Theorem 10.5. The method 

of proof, due to D.R. Heath-Brown [2], is similar in nature to Cramér 1s proof 

of (10.29) and the result is contained in 

THEOREM 11.4. 

(11.54) 
rr oo 

~ E2 ( t)dt • ~ (2't) •1/2:Z: d2 (n)n-3/2 .T3/2 
i ~1 

+ 

Proof of Theorem 11.A. It will be sufficient to prove 

.2.'îl .0 

5E2(t)dt = l(29r)"" 1/ 2Ld 2 (n)n- 3/ 2 ((2T) 3/ 2 - T3/ 2) + O(T5/ 4log 2T), 
rr, 3 n-1 

and then to replace T by T/2,T/2 2, etc. and to sum all the results. We use Atkin

son1s formula in the form 



where I 1(T) and ~ 2(T) are given by (1.7) and (1.9),and R(T) << 

l.'I' '2,.1'[1 

(11.57) = ) Z~(t)dt + 2) .61 (t)( Ï:2(t) + R(t))it + 
.,. rr 

%.'l' 

+ ) ( Z:2Ct) + R(t))
2

dt. 
'(1 
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2 log T. Then 

The main term on the right-hand side of (11.55) will come from the first 

integral on the right-hand side of (11.57). We ehoose N =Tin Atkinson 1s formula 

and proceed to show that 
2.'l"I 00 

(11.58) ) Z~(t)dt = ~(2lf)- 1/ 2Ld 2(n)n- 3/ 2 ((2T) 3/ 2 - T3/ 2) + O(T1+'). 
q-, n=1 

To demonstrate this we merely square out Z:,1(t) and integrate term by 

term, estimating the non-diagonal terms (i.e. those for whieh m / n) by the 

following 

Lemma 11.1. Let gj(t), (1 s j ,.s k) and f(t) be eontinuous, monotonie 

real-valued functions on [a,bl and let f(t) have a continuous,monotonie derivative 

on [a,b]. If \gj(t)I ,.sMj, (1 S j S k), !f'(t)l ~ M~
1 

on [a,b], then 

.e, k: k 

(11.59) 1 ~ pgj(t)exp(if(-t))dtl .s 2k+:5I1Mj. 

4 

Proof of Lemma 11.1. ~he lemma is a straightforward generalization of 

Lem.ma 2.1. Reeall that if F(x),G(x) are real-valued on [a,b] and F(x) is monotonie, 

then the second mean-value 
.& 

(11.60) ~ F(x) G(x)dx 

theorem. for integrals states that 

• F(a) ~ G(x)dx + F(b) f G(x)dx 
... t 

for some a ,.s ~,Sb. Applying (11.60) k times to the real and imaginary part of the 

integral in (11.59) we obtain 

~ ~ 1 Jj jr:\gj(t)exp(if(t))dt < 

.G--1 

max f ~ sinf(t) •dt 1 ) 
8~1 <b 1.sb Cl.1 

< 

(?t" 

max f ) dcosf(t) l 
a_s ol1< ~1<b .c,. 



Now we retur~ to the proof of Theorem 11.4, noting that the terms of 

Li~(t) are of the form 

1(-1)m+nd(n)d(m)(mn)- 1/ 2g(t)cosf(t), 

where with f(T,n) given by (11.5) we have 

f(t) = f(t,n) + f(t,m), 

g(t) = g1(t)g2(t)g3(t)g4(t), 

g
1

(t) = (t/2~n + 1/4)- 1/ 4 , g
2

(t) = (t/2~m + 1/4)- 1/ 4 , 

= = (arsinh V!!r•/2t )- 1• 
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The contribution of the terms with m ~ n is estimated by Lemma 11.1, where 

we take M1 << (n/T)
1
/ 4, M2 << (m/T)

1
/ 4, M

3 
<< (T/n) 

1
/

2
, M

4 
<< (T/m)

1
/

2
• Also, 

since 

f 1 (t,n) = 2arsinh V,rn/2t 

we may take 

Thus the contribution of the non-diagonal terms is -<< T /, d(m)d(n)(mn)-3/41n1/2 - m1/2i-1 + TL!d2(n)n-2 << T1+l 
m?;_<.r n= 1 

by repeating the estimate of (10.34), where the second sum above comes from those 

terms for which m • n but f(t) f O. 

The contribution of the diagonal terms m = n to the left-hand side of 

(11.58) is 
l.'1' 

;Ld
2

(n)n-
1 S g(t)dt, 

n.::;N rr 

where we recall that N = T. For {xi< 1 we have (arsinhx)- 2 
= x- 2 + 0(1), and 

for n ~ N = T we thus have 

g(t) = 23/2t1/2(~n)-1/2 + O(n1/2T-1/2), 

which gives 
1.'t\ '2.'î' 

) Lt~(t)dt = 1.23/2,x-1/2L,d2(n)n-3/2 s t1/2dt + O(L,,d2(n)n-1/2T1/2)+ O(T1H)= 
'T' 

4 n<!.r rr n<l' 

CIO 2,.,, 
= (2'.Jt)-1/2Id2(n)n-3/2) t1/2dt + O(T3/2L,d2(n)n-3/2) + ü(T1H) • 

n=1 fJ' !1>T 
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~(2m")-1/2fd2(n)n-3/2(( 2T)3/2 _ T3/2) + O(T1+~). 
n•1 

This proves (11.58), and now it remains to consider the mean value of 

L\(t). We have 

(11.61) << 

The method of proof will be similar to the proof of (11.58). The choice 

N = T makea now 

N' = N'(t) • t/2~ + N/2 - (N
2/4 + Nt/2Jr) 1/ 2 

dependent ont. However for T !:: t !: 2T and n !: N1 (t) we have (logt/23lll)- 1 
<< 1, so 

that the logarithmic 

L,~(t) are of the form 

factor in ~(t) will cause no trouble. The terms of 

-1; 2 f 21 2 , 1 1
1_ 2d (ra) d {n) (mn) g( t )lcos ( tlog( t 4,r mn) - 2t + :r 2) + cos ( tlogm n)f , 

where 

For each pair m,n we have to integrate over that subinterval of [J1,2T] 

for which N'(t) ~ max(a,n). Since 

' llogm/nl, (tlogm/n) :,o1> \logm/n\, 

an application of Lemma 11.1 shows that the contribution of the terme m f n is 

since 

L \logm/nl- 1 
= 

m<r,mfn 
L (logn/m)-

1 
+ 

m<:n-1 

+ L, (logn+r)-1 
r<T-n n 

~ -1 
LJ nr + 

r<n-1 
2J (1 

r<T-n 
-1) + nr <<T 

<< 

+ nlogT. 



The terms m = n trivially contribute 24-9 

<< T LJd
2 

(n)n-
1 

<< Tlog 4T, 
n<T 

and therefore (11.61) follows. 

The proof of (11.54) is finally obtained by combining (11.57),(11.58), 

(11.61) and using the Cauchy-Schwarz inequality, since 
t.'I' . 'l!l" i."t" ( s L1(t)(~2(t) + R(t))dt)

2 
<< ~L~(t)dt s (L:(t) + R

2
(t))dt << 

'I" 'l' <t' 

t.'t" tT 

) (LJ2 (t) + R(t))
2
tt !: 2 S (L~(t) + R

2
(t))dt << Tlog 4T. 

~ ~ 

This finishes the proof of Theorem 11.4, which gives immediately 

Corollary 11.1. 

E(T) 

This is analogous to .L1,(x) s 2(x 1/ 4) which follows from Theorem 10.5, 

but the sharper 2.-resul ts known to hold for Ê:::!.(x) are not known yet to hold 

for E(T). This should not be surprising, as Atkinson 1s formula for E(T) waa deri• 

ved with the aid of a formula for L(x), embodied in VoronoI 1s formula, so that it 

is natural to expect that p~oblems involving E(T) will be at least as difficult 

as those involving A(x), and more about the connection between E(T) and -6,(x) 

will be found in the next section. Going through the proof of Theorem 11.4 one 

may observe that the proof enablee one to estimate the integral of E
2 (t) over a 

short interval, and that the proof actually gives 

Corollary 11.2. For T' << o,'r'uniformly in G we have 

<< 

This estima te is analogous. to ( 10.51) for .L1,(x), and the main interest 

in eetimates of this sortis tha.t they provide· us with a way of estimating 
1/,-u .. 

C(1/2 + iT), and Corollary 11.2 leads to the classical estimate ~(1/2+iT) << T 

To see this observe that with L = logT and the notation of (11.3) we have 
'l'i(I, GL 

~ \ ~(1/2 + i t)[ 
2
dt << 5 exp (-t 2

G-
2

) dI (T+t) 

(11.62) 

tf'-G 

G&. 2 -2 T+t S exp (-t G ) (lo8"T,;' + 
-GL. 

(il,. 

( ( ) -2 ( 2 -2 + JE T+t tG exp -t G )dt 

-&L 

<< 



'î';-GL "l'+GL 250 

<< GL + G-1L( 5 E2 (t)dt) 1/ 2 ( 5 dt) 1/2 << 
<'l'-GI- 't'- GL-

<< Tl(G + T1/4 + G-1/2T1/2), 

if we use Corollary 11.2 and the 

(eq. (6.2) with k • 2) and S 
Cauchy-Schwarz inequality. In view of Lemma 6.1 

G 

<< S the estimate t(1/2+iT) ~ T 1/
6

+E. 
-G 

follows from (11.62) with the choice G • T1/ 3• Therefore if we define F(T) by 

rr, 00 

(11.63) s E2 (t)dt • j(2'")- 1/ 2Ld 2 (n)n- 3/ 2T3/ 2 + F(T), 
1 ~1 

any order estimate F(T) << Tc+'i, 3/ 4 _s c _s 5/ 4 would give ~(1/2+iT) << Tc/ 6
+€ by 

the above method. In analogy with Theorem 10.7 I conjecture that 

( 11. 64) F(T) -
for any , > 0. By the method of proof of Theorem 10. 7 this may be obtained if the 

truth of the Lindel5f hypothesis is assumed, in which case trivially 

Il' ... \ s lt(1/2+it)l 2dt \ + \T1(logT/2~) + T1(2t-1) - T2(logT2/21r) - T2(2r-1)\ 

for T _s T1,T2 _s 2T. Thus it is seen that the method of proof of Theorem 10.7 may 

be applied and (11.64) follows, but it would be interesting to obtain an uncon

ditional proof of (11.64). 

§5. Connection between E(T) and ~(x) 

As mentioned in §1, a comparison between (11.4) and (3.17) shows a 

similarity between L1(T) and 2:JIÂ,(T/~), since apart from the osciltating factor 

(-1)n the first o(T 1/3) terms are asymptotically equal to each other. The influ

ence of L2 (T) in Atkinson 1s formula ~11.4) may be usually made small by some 

averaging processs, so that there is in a certain sense also an analogy between 

E(T) and 2JJr~(T/2~), pointed out ,already by Atkinson [il. 
Furthermore, if ~2 and s2 are the infima of constants a 2 and c2 such 
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a 2+E c2+L 
that ~(x) << x , E(T) << T for every ~> O, then one would expect 

~2 = 92 • 1/4 in view of Theorem 10.5 and Theorem 11.4, and as shown by these 

theorems the inequalities oc2 < 1/4 and 92 < 1/4 are impossible. Albeit the 

equality ~ 2 = 92 is atill not known to hold, the best upper bounds ~2 ~ 35/108 

and 92 ~ 35/108 are indeed equal. The bound o<2 _s 35/108 is Theorem 10. 1, while 

it was shown by R. Balasubramanian [11 from (11.12) that the estimation of E(T) 

may be reduced to the estimation of exponential sums to which the methoda of G. 

Kolesnik uaed for (10.13) equally apply, and the bound 92 ~ 35/108 (given here 

as Corollary 11.4 by another approach) is a consequence. Following the method of 

M. Jutila [4] it will be shown that E(T) may be majorized by an expression very 

similar to the one which is given for 21{' L'.l(T/2!7T) by ~3.17) wi th (-1 )n factor, 

so that the estimation is reduced to very similar exponential sums,which prompts 

one to expect that (){2 • 92 does hold. Furthermo~e by ~emma 6.1 it is seen that 

(92+ E.)/2 92+ E. 
+ iT) << T if E(T) <KT , so that Atkinson 1s formula shows in 

faot how the three problems of estimating the order of .6,(x),E(T) and C(1/2+iT) 

(and in view of §8 of Chapter 10 one might add P(x) also) may be unified in more 

or less one problem, with very similar exponential sums appearing in each case. 

Previously these problems have been treated separately and by different methods, 

and though we repeat again that cX2 • 92 still oa.nnot be proved in general, it is 

hard to imagine a method for the estimation of exponential sums in question which 

would yield °'2 ; 92• 

Our first task will be teohnical and consista in introducing a new 

function b.,.*(x), which will be similar to ~(x) but will contain the oscillating 

factor (-1)n, thus providing a more exact analogy between E(T) and the error 

term in the divisor problem. Let us for this purpose consider the function 

(11.65) D*(x) -D(x) 2D(2x) 1 
= + - 2:n (4x), 

where 

D(x) = Ld(n) 
n.sx: 

= xlogx -+ (2( - 1 )x + ~(x), 

so that we may-write 

(11.66) D* (x) = xlogx + (2( - 1)x + ~•(x), 
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- ~(4x). 
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Now i t will turn out that 2'.ffA* (T/2,r) is the "right" analogue of ~ 1 (T) 

in Atkinson 1s formula, since for N <-< x we have 

To see that (11.68) holds use (3.17) with N << x, viz. 

~(x) = (1rV2)- 1x 1
/ 4 ~d(n)n- 3/ 4cos(49rvnx -:,r/4) + O(x 1/ 2HN- 1

/ 2) 
n<N 

with x,2x,4x and N,N/2,N/4 reepectively. From (11.67) we have then 

(11.69) 'Jry'2x- 1/ 4~*(x) = -L1d(n)n- 3/ 4cos(4$'Vnx - rt/4) + 
n<N 

- 2 L d(m)(4m)- 3/ 4cos(-10(\/4mx - 'Jf/4) + o(x 1/ 4+f.N-1/ 2). 
411,SN 

The su.ms on the right-hand side of (11.69) will give one sum 

~f(r)r- 3/ 4cos(4:Jrv'ri -m'/4) 
r~ 

over natural numbers r, and it remains to consider f(r). If r 1s odd, then 

obviously f(r) = -d(r) = (-1)rd(r), since 2k and 4m are even. If r = 2s, buts 

is odd, then d(2s) • 2d(s) and so f(r) comes from the first two sums on the 

right-hand side of ( 11.69) and equals f (r) • -dfr) + 2d~r) = (-1 )r d(r). Finally 

if r = 4q, observe that from d(2a) =a+ 1 we always have d(4q) = 2d(2q) - d(q), 

so that.in this case 

f(r) • -d(4q) + 2
2
d(2q) - 2d(q) • d(4q) = (-1)rd(r), 

and thus (11.68) follows from (11.69). 

Next we need an averaged expression for E(T). This will be accomplished 

by integrating E(T) over very short intervals, the precise meaning of "very 

short" being given below. Because of the square roots in the expression for 

E(T) it will be technically more convenient to work with the function 

(11.70) E (x) 
0 

= 

than with E(x) directly, and with this in mind we define the averaged integral 
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Here H = GL = GlogT, T-a < G < T-b for some 1/2 > a -~ b > O. The 

estimate that we need is contained in 

Lem.ma 11.2. 1 1/2 3 1/2 -2 2 
For 11' ~ x ~ ~ , M = G L we have 

Here 

and the expressions fore and f are given by Atkinson's formula, i.e. 

e (x,n) = (1 + 9I'n/2x)-
1
/ 4 ( v'2x/1înarsinh(ihr·n/2x) )-

1 
= 1 - ~~ + O (n2x -

2
), 

f(x,n) = 2xarsinh v'~n;'2x + 
2 2 1/2 

(,rn + 2nlx) -:Jr/4 = 

-'Jf/4 + (8~nx) 1
/

2 + o(n 3/ 2x- 1
/

2
), 

where n << x in both (11.74) and (11.75). 

Proof of Lemma 11.2. Take N =Tin Atkinson 1s formula. By (11.6) we 

have 
1-t 

2 1 ( 2 2G-2 2 
= L,G- J L.((x+ u) )e-u du+ L. 

J·=1 J 
-ti 

Consider here first the term with j = 1. By (11.7) this is 

1-l 2 -2 
(2/:rr) 1/ 4a-1S (x+u) 1/2L;(-1)nd(n}i- 3fte((x-tu) 2,n)cos(f((x+u)2,n)e-u G du. 

-H n<l' 

As in Chapter 6 and Chapter 8 we shall use the exponential integral 

(1.34), namely 
00 2 s exp(At - Bt )dt • 

-oo 

The choice H = GL in (11.71) makes it possible to replace the limits 

of integration in (11.77) by (-co,m) with a negligible error. However before 

doing this we use Taylor 1s formula to replace (x + u) 
1
/ 2 by x1/ 2 and likewise 

e((x + u)
2

,n) by e(x
2

,n) with a total error which is << 1. Also by Taylor 1s 

formula usi.ng f' (t,n) • 2arsinh V,rn/2t we have 



where A(n,x) ;:::::: (n/T) 3/ 2, since in view of 

1 z3 
arsinh z = z - 2.T + . . . ' 

we have wi th F(x) • f (x2 ,n) that F" (x) X (n/T) 3/ 2, F (3) (x) << n3/ 2T- 2 holds. 
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Now we substitute (11.78) into (11.77), using exp(iy) = 1 + O(lyl) for real y, 

so that the error term in (11.7a) makes a total contribution<< 0314 « 1. 

Then we use (1.34), noting that with the abbreviation B(n,x) • G-2 - A(n,x)i the 

expression in (11.77) becomes 

(11.79) (2/!JT')1/ 4x1/ 2o-1L,(-1)nd(n)n- 3/ 4e(x 2,n)• 
n<T 

• Re .1f(x2,n)c~/B(n,x))1/2•xp(-4(xa~1~::fl~x-1))2)i + 0(1). 

Here the terms with n > M • G-2L2 make a negligible contribution 

becauae of the presence of the exponential factor containing (xarsinh ••• ) 2, and 

if we replace B(n,x) by G-2 using Taylor's formula we make a total error which 

ia q::: T- 5/ 4o·3/ 2t 5 « 1. 

In this faehion the main term in (11.72) is obtained, and to complete 

the proof of Lemma 11.2 it remains to aho·,7 that the term with j • 2 in (11.76) 

ia «TE. Since N • T was fixed in the definition of LJ1 (T) in Atkinson's formula, 

tÀen N1 in the definition of Z2 (T) in Atkinscn's formula will depend on (x+u) 2 • 

However it is convenient to replac0 N1 ((x+u) 2,T) by N1 (x 2,T). Recalling that 

N1 • N1 (x,T) • T/21r+ x/2 - (x2/4 + x"l/2~)1/ 2, 

we have 

2 
- N1 ( (x+u) , T) 

2 1 (x+u) 2 
For n !: N1 ((x+u) 1 T) we have og-

2
~n- ~ 1 and 

2 
(l (x+u) )-1 

og 2.1rn = 

2 
( X )-1 
log21rn 

Therefore by Atkinson's formula, for \ul !: H, 

(11.ao) 

where from ( 11. 1:Q) we obtain 
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g((x+u) 2 ,u) = g(x 2,n) + 2xlog(x 2/2~n)•u + (log(x 2/2,rn) + 2)u 2 + O(G313T- 1/ 2). 

We substitute the expression for g((x+u) 2,n) in (11.80) and argue as in the 

case j = 1, using the integral (1.34). The exponential factor, analogous to the 

one in (11.79) with (xarsinh ••• ) 2, will make each term in the sum << T-c for 

any fixed c > O, while the error term in (11.80) will make the contribution O(Tl) 

in (11.72) so that Lem.ma 11.2 follows. 

Having proved Lemma 11.2 we shall use it to obtain an expression for E(T) 

analogous to the expression for 2~A*(T/2:Jr) which follows from (11.68), except 

that cos(4,r\/ni - ,r/4) will be replaeed by cos(f(T,n)). We suppose that 
"' 

T/2 .!: t 1 .!: T .!: t 2 .!: 2T, and with I(T) •) (t(1/2+it)l 
2

dt we have trivially 
0 

I(t 1) !:: I(T) .!: I(t 2). 

This gives easily 

(11.81) 

by (11o3), and the idea is to integrate (11.81) over a very short interval using 

Lemma 11.2. We snall consider the first inequality in (11.81) only, since the 

other one is treated in exactly the same way. Since the relevant range for the 

order of E(T) is T1/ 4 ~ E(T) << T
1
/ 3, we suppose that Y is a parameter which 

satisfies T1/ 4L- 1 .!: Y .!: T1/ 31-
1 and let G = T- 1/ 2YL-2, so that G clearly 

satisfies the condition assumed in Lemma 11.2. Letting 

t 1 = T - Y+ 2(T - Y) 
1
/

2
u + u

2
, lul::: GL, 

it is seen that with our choice G = T- 1/ 2YL-2 we have t 1 .!: Tas needed in (11.81), 

and therefore integrating (11.81) we obtain 
G~ 2 -2 

(11 0 82) G-1 ) E(T - Y+ 2(T - Y) 
1
/ 2u + u 2)e-u G du + ü(YL) < V1CE(T). 

-GI. 

But the integral in (11.82) is just E1 ((T - Y)1/ 2) by (11.70), and 

thus (11081) gives in fact 

E1((T - Y)
1
/ 2) + O(YL) ~'fflE(T) =:: E1 ((T + Y)1/ 2) + O(YL). 

The integrals E1((T ::!:. Y)
1
/ 2) are evaluated by Lemma 11.2, and setting 

X= YL it is seen that we obtain 
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THE0REM 11.5. Let T !:: 'J" .!:: 2T, T1/ 4 ,!::X.:;:T 1/ 3• Then uniformly in 'Y 

(11.83) E(T) <<X+ T1/ 4 sup I L_2 8 (-1)nd(n)n- 3/ 4e(t,n)r(t 1/ 2 ,n)cos(f(t,n))I. 
!t-:rlSi,n<TX L 

-2 8 -2 2 -2 6 -2 8 The value TX L appears because M = G L = TY L • TX L, and the 

presence of the exponential factors in the proof of Lemma 11.2 which come from 

the application of (11.34) make it possible to obtain the result for T.::: 'J".:;: 2T. 
1/2 Using partial summation we may remove the factors e(t,n) and r(t ,n) to obtain 

the analogue of (11.68), which may be stated as 

Corollary 11.3. Let T1/ 4 .:;: X~ T1/ 3 and M = TX-2t 8
• Then 

Ji• 

This is a restricted analogue of 

-2 8 TX L here. Since for n<:$ t we have 

(11.68), with N corresponding to 

f(t,n) = -"74 + 4~(nt/2,r)
1
/ 2 

it is seen that (11.84) corresponds to 2r~*(T/'2!Jr), and so using Kolesnik 1s method 

we obtain easily from (11.84) the analogue of Theorem 10.1, namely 

Corollary 11.4. 

E(T) 

The analogy between E(t) and 2Jr~*(t/2'Jr) oan be pursued even further. From 

Theorem 11.4 we have 

(11.86) 
'T' 

~ E
2

(t)dt = (c1 + o(1))T 3/
2

, 
1 

while squaring and integrating (11.68) in the way Theorem 10.5 was derived we 

obtain 
'T' 

~ Â,* 2(t)dt = (c2 + o(1))T 3/ 2, 
1 

which shows that the average order of both \E(t)\ and 1.6.*(t)I is << t 1/ 4. 

However if we define 

(11.88) 

then it can be shown that the average order of!E*(t)\ is << t 1/ 61og3/ 2t. This 

follows from 
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'î' 

T4/\og 3T. (11.a9) ) E*2(t)dt << 
2. 

Proof of Theore11 11.6. The general idea of the proof is the same one 

that was used in the proof of Theorem 10.5. It will be sufficient to prove (11.a9) 

for the integral over [T,2T) and we apply Atkinson 1a formula with N •Tin ï:;(t), 

The quality of the final result in (11.89) is determined by the size of the 

error term in the expansion for f(t,n) in (11.75), which is small for n = o(t
1
/ 3). 

Write 

(11.90) 

where in 6 11 summation is over n,::: X, and in Z12 over X< n _::: T. If we set 

then from (11.7) and (11.8) we infer 

L11(t,X) - S(t,X) << 

with the choice 

X 

We use now (11.68) with N = T, x • t/2:rr and decompose the sum simi

larty as the sum in (11.90)1 

(11.93) 

Therefore we obtain 
T • ~ 

s E*
2

(t)dt << ~ (s(t,X) - 2,rLl_~(t/~,x))
2

dt + s L,~2(t,X)dt + 
L 2.. 'l" 

t't'\ 

~ ~~
2 (t/2x,X)dt + T 

1
+c 

'T' 

say. By (11.61) we have r
3 

<< Tlog 4T, and likewise the non-diagonal terme (those 

with m / n when the sum is squared) of r2 contribute << T1
+f, while the diagonal 

terms give trivially 

<i< T3/2 Ld2 (n)n-3/2 
rt>X 

<< 

T1/3, ce X= and the same argument applies to r
4 

as well, hence 

I 2 + r
3 

+ r
4 

<< T4/ 3log 3T. 
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It . t ti t I U . b 2 · a+b · a-b d remains o es ma e 1• sing cosa - cos • - si~i~ an 

defining 

we have 

s(t,X) - 2~~~(t/2~,X) = -2(2t/,r)
1
/ 4 L,(-1)nd(n)n- 3/ 4sin(h_(t,n))sin(h+(t,n)). 

nS{ 
Hence 

:2.'l'I 

r 1 <:< T
1
/ 2 lt' d(m)d(n)(mn)- 3/ 4 \ ~ sin(h_(t,m))s:i.n(h_(t,n))sin(h+(t,m))lin(h/t,n))dt \. 

m,n<X ~ 

As in the proof of Theorem 10.5 and Theorem 11.4 we may estimate the 

non-diagonal terms m f n above by Lemma 2.1 to obtain a total contribution which 

is << T
1
+E. As for the diagonal terms, observe that by (11.75) 

h_(t,n) << n;/2t-1/2 << n3/2T-1/2, 

and thus using lsinxl .5 [x(for x réal we get a contribution which is 

2'î1 

~ T1/ 2Lfd 2(n)n- 3/ 2) sin 2(h_(t,n))dt 
n<X lf1 

<< 

<< 

which completes the proof of Theorem 11.6. 

§6. Large values and power moments of E(T) 

Pursuing further the analogy between E(T) and the divisor problem we 

present now estimates for power moments of E(T). These estimates are the analo

gues of Theorem 10.9 and Theorem 10.12, and the result is contained in 

THEOREM 11.z. 

l'fl 

(11.94) s /E(t)IAdt < T (A+4+ E)/ 4, for 0 < A < 35/4, 
2. 

11'\ 

(11.95) ) IE(t)\Adt < T(35A+38+t)/1oa, for A '.> 35/4. 
2 

The proof of Theorem 11.7 is completely analogous to the proof of 

Theorem 10.9, using (11.85) instead of (10.13) and (11.s;) as the analogue of 

1 -2 8 the truncated Voronoi formula ,3.17) with TX L corresponding to N. A large 

values estimate for E(T), namely 
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T 1/4 << V 1/7, 
<< T . ' 

is deduced for E(T) in the same way as (10.54) was derived, and the restriction 

T1
/ 4 <<V<< T

1/ 3 is not essential, since V>> T
1
/ 3 cannot hold because of 

1/ ,1 Corollary 11.4 and for V<< T · one will trivially obtain (11.94) for the corres-

ponding discrete sum. For (11.96) we suppose that T/2,:::: t 1 < ••• < tR,:::: T are 

points which satisfy ltr - tsl ~ CV (r f s,:::: R) for some sui table C > O, 

T 1/ 4 << V << T 1/ 3 and E( t ) >"> V for r = 1, ••• ,Re Choosing X = CV we have 
r 

then from {11.s3J 

(11.97) R << 

<< T 1/2Hv-2 maie 

M<CTV-218 
L; 1 L (-1)nd(n)n- 3/ 4e(t~,n)r(t~

1
/

2
,n)exp(if(t;,n)),

2
, 

r<R M<n<2M - -
where t 1 is the point for which the supremum in (11e83) is attained. Considering 

r 

separately t 4m,t4m+1,t 4m+2 ,t 4m+3 we may suppose that /t~ - t~( ~ CV when r / s. 

From this point the proof of (11.96) is almost identical with the proof of \10.54), 

since after the application of the Hal~sz-Montgomery inequality (1.36) the 

functions e and r which appear in (11.97) may be easily removed by partial summa

tion keeping in mind that r(x,n) is monotonie and,:::: 1 and that (11.74) holds. 

Similarly one has \11.75) for f(t,n), and the theory of exponent pairs that was 

used in the proof of (10.54) may be equally well applied here, producing (11.96) 

which yields then Theorem 11.7 with the aid of (11.a5). 

In analogy with (10.60) it may be noted that the theoretical limit 

for power moments that (11.96) can give is 
17'1 

s IE(t)[11dt < T15/4+E., 
t. 

which would give then 

<< 

Namely using Lemma 6.1, Holder 1s inequality and arguing as in (11.62) 

we have wi. th L = logT "l'+GL 

l 4 ( 1 / 2 + i T) ! 2 
<< GT t ( 1 + G-

1 ~ 1 E ( t) ! dt) << 
'1'-Gi.. 

'Z.']'\ 

GTE-(1 + G-2( s [E(t) ! 11dt) 1/11G 10/11) << T5/16+r 

for G = T':i/-11:,. 
'L 
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NOTES 

J .E. Littlewood proved ( 11. 3) in [1] by means of resul ts connected 

with the approximate functional equation for the zeta-function. E.C. Titchmarsh 1s 

T1/2+~ 5/12+e book (a] contains a proof of E(T) << and a proof that E(T) << T 

has been given by Titchmarsh (4]. 

The Riemann-Siegel formula used by R. Balasubramanian (1] in hie proof 

of (11.12) is Theorem 4.16 of Titchmarsh [a] with N • 5. The idea of Balasubra

manian1s proof is to square the expression for ei 9t(1/2+it) and to estimate the 

resulting integrals, s.ome of which are technically rather complicated. His paper 

also contains the result rn+1 - Yn << i:/6
+~, which was discussed in Chapter 8, 

plus some related results concerning Dirichlet series. Discussing estimates of 

E(T),Balasubramanian mentions Atkinson 1s formula (11.4) in his §1 by sayings 

"In this conneotion, we oan also mention that our result seems to be more useful 

than that of Atkinson". In view of (11.84) and other applications of Atkinson 1s 

formula one could hardiy agree with this statement. 

In §2 we have followed closely Atkinson's original proof [3] of (11.4), 

where ouriously in 1.3 on p. 375 he makea a mistake in sign, obtaining +2 L, d(n) ••• 
nS{' 

in place of •2LJ d(n) •••• The corrected fora of (11.4) wae stated by •• Jutila 
n~• 

[(l without comment. For technical reasona (to avoid the last term in LJ 1d(n) 
n<:x 

in (3.1)) one takes X• N + 1/2,N an integer, from (11.27) onwards, and it is 

easily seen that this restriction does not affect the final result. 

Heath-:Brown 1s derivation [1) of Theorem 6.2 starts from (11.62) in the 

form 'T'+G GL 

s IC(1/2 + it)I 
2
dt 5 E(T + 

2 -2 
<< GL + t)tG- 2e-t G dt, 

1'-G -GL 

and uses Atkinson 1s formula. The contribution of ~ 2(T + t) to the above integral 

is saall, and the main contribution arises from ~ 1(T + t), producing a sum of 

-2 2 length << TG log T. In analJzrng the differance in the proofs of Theorem 6.2 it 

ahould be notes that in Heath-Brown 1s proof one uses first the Voronoî summation 

formula, which is implicit in Atkihson'• formula, and then exponential integrals 

of the form (11.34), while in our proof one makes first an exponential averaging 
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of the approximate functional equation for 42 (1/2 + it) and then applies the 

Voronoi summation formula. 

It should be perhaps stressed that one of the chief aerits of Atkinson 1s 

formula or one of its variants like Theorem 11.3 is that the explicit formula in 

question contains a su.m (and nota square or an absolute value etc.) which may be 

directly integrated termwise as in Lemma 11.2 or in Heath-Br0\ln 1s proof (1] of 

Theorem 6.2. Take for example (11.47) and set 

N = TG-2L2, L • log'!', T/2 !: tr • t !: T, T
1
/ 5+E !: G .!: T1/ 3• 

Results of §2 of Chapter 7 concerning power moments of the zeta-function 

may be successfully obtained then from (11.47), where for our range of G we may 

replace (1/4 + t/2~n)-
1
/ 4 by (t/2mi.)- 1/ 4 with an error which is << 1. Namely 

the basic etep in the proof of Theorem 7.1 consista in bounding the su.m 
-t;+<S 

(11.99) L ) lt(1/2 + it)l 2dt 
tlA -trG 

over some sui table points tre A~ [_T/2,T], where ltr - t
8

( ~ G for tr /, t
8

e A. 

Averaging {11.47) with the usual exponential factor exp{-t 2G-2) and using {1.34) 

we infer that the expression in (11.99) is bounded by a constant times 

+ IA!GlogT = GS + IAIGlogT, 

say. In Chapter 7 the Halasz-Montgomery inequality (1.35) was used to bound in 

Lemma 7.1 a sum very similar to S above, but the point here is that Scan be esti

meted directly from first principlea with the same effect as if one used (1 0 35). 

This is possible since there is no absolute value sign in S, and thus the order of 

summation can be changed. Since exp(-(Garsinh V~n/2t )
2

) can be easily removed from r 

S by partial summation as in the proof of Theorem 602, it is seen that for 

K !:½rG- 212 the sum Sis in fact majorized by the largest of sums of the type 

12, L; (-1)nd(n) (nt )-
1
/ 4sin(f(t ,n)) J !: 

t K<n<2K r r 
r 

<< 
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<< l.,; (t t )- 1
/. 4exp(if(t ,n)-if(t ,n)))) 1

/
2 

t t EA r s r s 
r' s 

P. l L. exp (if ( t , n) - if ( t , n) ) \ ) 
1 
/ 

2 
• 

t E A K<n<.2K r 8 

s -

This exactly corresponds to the use of Lernma 7.1, namely (7.17) in the 

proof of Theorem 7.1, since 

~ exp(if(t ,n)-if(t ,n)), 
K<n<2K r s 

t I= t ' r s 

can be estimated either by Lemma 2.5 and Lemma 2.1 or by the theory of exponent 

pairs as in the proof of Lemma 7.1, and the end result will be therefore the same. 

The same observation may be made concerning (6.25), where following the proof one 

obtains the sum on the right-hand aide of (6.25) without the absolute value 

signs with exp(if(T,n)) replaced by sin(f(T,n)). Thus the bounds for the sum in 

(11,99) may be obtained without the use of (1.35). 

The results of §3 are to be found in M. Jutila 1s work [6], where more 

general applications of Voronoi type summation formulas are considered. 

Theorem 11.4 is due to D.R. Heath-Brown [2]. The result E(T) = X(T
1/ 4), 

stated here as Corollary 11.2, was obtained a little before Heath-hrown by A. Good 

~], who used a complicated technique which was not based on Atkinson I s formula. 

A plausible conjecture is that F(T) << T3/ 4+E, where F(T) is defined by (11.63), 

and this would lead to the hypothetical i'.:(1/2 + iT) << T 1/S+f'., a resul t out of 

reach at present. The same would follow of course from the conjectural estimate 

( ) 1/4+t . ET << T · , which in view of (11.84) seems to be of the same degree of diffi-

culty as the classical conjecture o( 2 = 1/A in the divisor problem. There seems 

to be no method available at present which would permit one to deduce from the 

(global) estimate E(T) << Tc+t, 1/A,:::: c ~ 35/108, anything better than the obvious 

(local) estimate t(1/2 + iT) << T0
/
2

+t. ~roving that such a method does not 

exist would lead at once to the falsity of the Lindelof hypothesis. 

Using the method of K.S. Gangadharan l1l one ought to be able to prove 

E(T) C1 1/;1 1/,1 
= -::IL (T (loglogT) ·) 

+ 

(in analogy to ~(x) = 2+(x
1
/ 4 (1oglogx) 

1
/ 4))), and then prove (11.6,1) also. 
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The analysis and connection between loval and global estimates of ~(x) 

and t(1/2 + iT) has been thoroughly discussed by M. Jutila [41, [51, where the 

results of §5 may be found. Jutila 1s analytic proof [41 of (11.68) has been however 

replaced here by a short elementary argument which uses (~.17). In [5] Jutila proves 

a more general estimate than Theorem 11.6, namely 
<'l'tH s E*2 (t)dt << HT1

/ 3log 3T + T1
+t, 2:;: H:;: T, 

rr-\-1 

but the proof of this more general result is the same as the proof of (11.89). The 

method of proof of Theorem 10.8 and Theorem 10.9 could be used to furnish an 
<Tl 

estimate for ) E*4(t)dt, showing that in the mean sense (E*(t)/ is of the order 
·1 

t 0 for some c between 1/5 and 1/4, while Theorem 110 6 shows that in mea.n square 

\E*(t)I is of the order t 
1
/

61og3/ 2t. 

Interesting conditional results are obtained by M. Jutila [6], and they 

seem to be the first ones of their kind. For example, if the conjecture that 

o(2 = 1/4 in the divisor problem is true, then Jutila proved 

T
5/16+é 

<< ' 

and the exponents in the above estimates are better than the best unconditional 

values 35/216 and 35/108 respectively. These results may be compared with the 

conditional estimate (11.9s), which is the limit of (11.96). 

Theorem 11.7 has been given by the author in [6]. 
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