PROBLEMES AUX LIMITES ELLIPTIQUES DANS LP

Exposés de

G. Geymonat et P. Grisvard

(ORSAY, Janvier-Mars 1964)

Exposés de

G. Geymonat* et P. Grisvard**

(ORSAY, Janvier-Mars 1964)

- * Boursier du Consiglio Nazionale delle Ricerche pour l'année 1963-64.
- ** Attaché de Recherches au C.N.R.S.

I - INTRODUCTION

La théorie des problèmes aux limites a été particulièrement développée dans les espaces de Sobolev; nous allons en
étudier quelques aspects dans cette série d'exposés.

Avant de poser les problèmes avec rigueur, nous faisons quelques rappels très brefs sur les espaces de Sabalev.

1. Les espaces de Sobolev :

Commençons par quelques notations.

U est un ouvert quelconque de Rⁿ

$$R_{+}^{n} = \{x = (x_{1}, \dots x_{n}) \in R^{n}; x_{n} > 0\}$$

 Ω désigne un ouvert borné \subset \mathbb{R}^n , de frontière $\Gamma=\mathfrak{d}\Omega$ variété (indéfiniment) différentiable de dimension n-1 , Ω étant d'un seul côté de Γ (1) .

p est un exposant tel que 1 .

 $L_p(U)$ désigne l'espace des (classes de) fonctions mesurables et de puissance $p^{i \stackrel{\circ}{=} me}$ sommable pour la mesure de Lebesgue dans U;

⁽¹⁾ Pour fixer les idées, nous dirons dans la suite qu'un tel ouvert est borné et "très régulier"

pour $u \in L_p(U)$ on note

$$\|u\|_{p} = (\int_{U} |u(x)|^{p} dx)^{1/p}$$

Pour k entier> 0, $W_p^k(U)$ est l'espace des fonctions $u \in L_p(U)$ dont toutes les dérivées distributions d'ordre $\leq k$, sont dans $L_p(U)$; c'est un espace de Banach réflexif pour la norme :

$$\mathbf{u} \sim \left\{ \sum_{\alpha \leq k} \|\mathbf{p}^{\alpha} \mathbf{u}\| \|_{\mathbf{p}}^{\mathbf{p}} \right\}^{1/\mathbf{p}} = \|\mathbf{u}\|_{\mathbf{k},\mathbf{p}}$$

Pour s non entier> 0, s = k + σ (k entier >0, 0 < σ <1)

 $W_p^s(U)$ est l'espace des fonctions $u \in W_p^k(U)$, telles que

pour tout $|\alpha| = k$; c'est un espace de Banach réflexif pour la

norme :

$$u \longrightarrow \left\{ \|u\|_{k,p}^{p} + \sum_{|\alpha|=k} \iint_{uxu} \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|^{p}}{|x-y|^{u+p\sigma}} dx dy \right\}^{1/p} = \|u\|_{s,p}$$

 $\overset{\circ}{W}_{p}^{s}(U)$ désigne la fermeture de $\overset{\circ}{C_{o}}(U)$ dans $\overset{\circ}{W}_{p}^{s}(U)$; c'est un espace normal de distributions dans U, poùr la norme induite par $\overset{\circ}{W}_{p}^{s}(U)^{(1)}$; on note $\overset{\circ}{W}_{p}^{s}(U)$ le dual de $\overset{\circ}{W}_{p}^{s}(U)$ avec $\frac{1}{p}$ $+\frac{1}{p}$,=1.

Dans le cas particulier p = 2, on pose :

$$H^{S}(U) = W_{2}^{S}(U)$$
 pour tout s réel, $H^{S}(U) = W_{2}^{S}(U)$ pour s réel $\geqslant 0$

⁽¹⁾ $W_p^{s}(U)$ coincide avec $W_p^{s}(U)$ lorsque $U = R^n$.

et
$$\|u\|_{s,2} = \|u\|_{s}$$
.

On vérifie facilement que pour k entier $\geqslant\!0$, $W_p^{-k}(U)$ est l'espace des distributions

$$T = \sum_{\alpha \mid \alpha \mid \leq \kappa} D^{\alpha} f_{\alpha}$$

avec $\mathbf{f}_{\alpha} \in L_{p}$, (U); la norme de dual fort de $\mathbf{W}_{p}^{k}(\mathbf{U})$ étant équivalente à la norme

Remarque l.l Pour tout s réel, H^S(Rⁿ) est l'espace des distributions tempérées T telles que

$$(1 + |\xi|^2)^{s/2} \hat{T} (\xi) \in L_2(\mathbb{R}^n)$$

la norme T \longrightarrow $\|T\|_s$ étant équivalente à la norme

$$T \longrightarrow \|(1 + |\xi|^2)^{s/2} \hat{T}(\xi)\|_{0,2}$$

L'analogue pour p \ddagger 2 , de cette remarque est fausse en général: $W_p^s(\mathbb{R}^n)$ ne coïncide avec l'espace $H^{s,p}(\mathbb{R}^n)$ des distributions tempérées telles que $2^{s/2}$ Υ (ξ) \in Υ $L_p(\mathbb{R}^n)$

pour p † 2 , que lorsque s est entier (de signe quelconque)

ce fait, que nous n'aurons pas à utiliser dans la suite résulte du théorème de Mihlin 29 (voir p.ex. 16)

Nous allons étudier plus en détail les espaces W_p^S (U) lorsque $U=R_+^n$ ou Ω . Leurs propriétés essentielles résultent de leur "caractère local".

Proposition 1.1:

a) Soient U_1 et U_2 deux ouverts bornés de \mathbb{R}^n , tels $\underline{\text{qu'il existe un diff\'eomorphisme}} \phi (C^{\infty}) \underline{\text{de } \overline{U}_1} \underline{\text{sur } \overline{U}_2};^{(1)}$ alors l'application $u \longrightarrow \phi^* u \underline{\text{est un isomorphisme de }} W_p^s(U_2)$ $\underline{\text{sur }} W_p^s(U_1) \underline{\text{pour tout }} s, \underline{\text{et de }} W_p^s(U_2) \underline{\text{sur }} W_p^s(U_1) \underline{\text{pour }} s \geqslant 0.$

b) Si U est un ouvert de Rⁿ, et $\alpha \in C_0^{\infty}$ (\overline{U}) 1'application u $\sim \sim > \alpha$. u est linéaire continue de $W_p^s(U)$ dans luimême pour s réel quelconque et de $W_p^s(U)$ dans luimême pour s > 0.

Pour s \geqslant 0 , on vérifie aisément ces propriétés sur la définition des espaces W_p^s ; le cas s \leqslant 0 s'en déduit par transposition.

⁽¹⁾ c.à.d. ϕ est un difféomorphisme d'un voisinage de \overline{U}_1 sur un voisinage de \overline{U}_2 , qui applique \overline{U}_1 sur \overline{U}_2 (2) α est indéfiniment dérivable dans un voisinage de \overline{U} .

Cette proposition permet de donner une nouvelle définition des espaces $W_p^S(\Omega)$, $W_p^S(\Omega)$ pour $s \geqslant 0$, à partir des espaces modèles $W_p^S(R_+^n)$, $W_p^S(R_+^n)$: on fixe un recouvrement fini du compact $\Gamma = 0$ par des ouverts $\left\{\Theta_i\right\}_{i=1}^N$ ayant la propriété suivante : pour tout i il existe un difféomorphisme ϕ_i de Θ_i sur $B = \left\{x \in \mathbb{R}^n \; ; \; |x| < 1\right\}$, tel que l'image de $\Theta_i \cap \Omega$ par ϕ_i soit $B_+ = \left\{x \in B \; ; \; x_n > 0\right\}$ et que l'image de $\Theta_i \cap \Gamma$ par ϕ_i soit $B_0 = \left\{x \in B \; ; \; x_n = 0\right\}$; on note ψ_i le difféomorphisme inverse. On complète ce recouvrement avec un ouvert Θ_0 , tel que $\widetilde{\Theta}_0 \subset \Omega$ et que $\left\{\Theta_i\right\}_{i=0}^N$ soit un recouvrement de $\overline{\Omega}$. On

Alors pour $u \in L_p(\Omega)$, les fonctions $\psi_i^*(\alpha_i u)$, $i=1,2,\ldots N$, sont définies dans B_+ ; on note $\psi_i^*(\alpha_i u)$ leur prolongement par 0 dans $R_+^n - B_+$, et on note $\alpha_i u$ le prolongement de $\alpha_i u$ par 0 dans $\alpha_i u$ dans $\alpha_i u$ le prolongement de $\alpha_i u$ par 0 dans $\alpha_i u$ de $\alpha_i u$ le prolongement de $\alpha_i u$ par $\alpha_i u$ de $\alpha_i u$ de $\alpha_i u$ par $\alpha_i u$ de $\alpha_i u$ de $\alpha_i u$ de $\alpha_i u$ par $\alpha_i u$ de α_i

Proposition 1.2 : $W_p^s(\Omega)$ (resp^t $W_p^s(\Omega)$) s > 0 , est l'espace . des fonctions u $\in L_p(\Omega)$ telles que

i)
$$(\alpha_0 u) \in W_p^s(\mathbb{R}^n)$$

ii)
$$\psi_{i}^{*}(\alpha_{i}u) \in W_{p}^{s}(R^{n})$$
 (resp^t $W_{p}^{s}(R^{n}_{+})$) i = 1,2,...N

et les normes
$$u \longrightarrow \|u\|_{s,p}$$
 et $u \longrightarrow \|u\|_{s,p}$ $u \longrightarrow \{\|(\alpha_0 u)\|_{s,p}^p + \sum_{i=1}^{n} \|\psi_i^*(\alpha_i u)\|_{s,p}^p\}^{1/p}$

sont équivalentes (1).

Nous allons développer quelques conséquences de cette proposition ; Un désignant soit R_+^n , soit Ω , il existe un opérateur linéaire continu P (de prolongement) de $W_p^S(U)$ dans $W_p^S(R^n)$, tel que $P_u \Big|_{U} = u$ pour toute $u \in W_p^S(U)$; la démonstration se réduit immédiatement au cas de $W_p^S(R_+^n)$ grâce à la proposition 1.2; et dans ce dernier cas la démonstration est classique, au moins dans le cas s'entier cf. par ex.[22]. Comme $C_0^\infty(R^n)$ est dense dans $W_p^S(R^n)$ (par régularisation et tronquature) on en déduit la :

Proposition 1.3: Pour $U = \mathbb{R}^n_+$ ou = Ω , $C_0^{\infty}(\widehat{U})$ est dense dans $W_p^{S}(U)$.

⁽¹⁾ On peut évidemment donner des caractérisations analogues pour s < 0 .

Une autre conséquence intéressante de l'existence de l'opérateur P est la suivante :

Proposition 1.4: L'injection de $W_p^{k+1}(\Omega)$ dans $W_p^k(\Omega)$ est compacte (k entier > 0) (1)

En effet par prolongement, on se ramène à montrer qu'un ensemble borné de $W_p^{k+1}(R^n)$ formé de fonctions ayant leurs supports dans un compact fixe, est relativement compact dans $W_p^k(\Omega)$, ce qui est classique ("lemme de Weyl"). Il en résulte la :

Proposition 1.5: Pour $k \geqslant 2$ et pour tout $\epsilon > 0$ il existe un nombre $C(\epsilon)$ tel que pour toute $u \in W_p^k(\Omega)$ on ait l'inégalité $\|u\|_{k-1,p} \leqslant \epsilon \|u\|_{k,p} + C(\epsilon) \|u\|_{0,p}$

Cette proposition est un cas particulier du :

Lemme 1.1: Soient E_1 , E_2 , E_3 trois espaces de Banach avec $E_1 \subset E_2 \subset E_3 \quad (\text{injections continues}), \quad \text{l'injection de} \quad E_1 \quad \text{dans}$ $E_2 \quad \text{étant de plus complétement continue; alors pour tout} \quad \epsilon > 0,$ $\text{il existe} \quad C(\epsilon) \quad \text{tel que}$

 $\|e\|_{E_2}$ < ϵ $\|e\|_{E_1}$ + $C(\epsilon)$ $\|e\|_{E_3}$ pour tout $e \in E_1$.

⁽¹⁾ de même l'injection de $W^s(\Omega)$ dans $W^{s-\varepsilon}_p(\Omega)$ est compacte pour tout s et tout $\varepsilon > 0$, [23].

Pour la démonstration (élémentaire) de ce lemme, on peut voir [26].

La proposition 1.2 suggère un procédé de définition des espaces $W_p^s(\Gamma)$ (pour $s \geqslant 0$) à partir de l'espace modèle $W_p^s(\mathbb{R}^{n-1})$:

Pour $u \in L_p(\Gamma)$ (1) les fonctions ψ_i^* (α_i u), $i=1,2,\ldots N$ sont définies dans B_o , on note ψ_i^* (α_i u) leur prolongement par 0 dans \mathbb{R}^{n-1} - B_o , et on définit $W_p^s(\Gamma)$ de la manière suivante : $W_p^s(\Gamma)$ ($s \geqslant 0$) est l'espace des fonctions $u \in L_p(\Gamma)$ telles que ψ_i^* (α_i u) $\in W_p^s(\mathbb{R}^{n-1})$, $i=1,2,\ldots N$; c'est un espace de Banach réflexif pour la norme :

$$\mathbf{u} \sim \begin{cases} \sum_{i=1}^{\mathbb{N}} & \left\| \psi_{i}^{\times} \left(\alpha_{i} \mathbf{u} \right) \right\| \quad \mathbf{s}, \mathbf{p} \end{cases}$$

Il est facile de vérifier que cette définition ne dépend pas du choix particulier des Θ_i et des α_i que nous avons fait (2) et que $W_p^s(\Gamma)$ est un espace normal de distributions sur Γ , on note $W_p^{-s}(\Gamma)$ son dual $(\frac{1}{p}+\frac{1}{p},=1)$.

⁽¹⁾ On munit Γ d'une mesure de la manière suivante : une fonction u définie sur Γ est mesurable si les ψ_i^* (α_i u) sont mesurables dans B pour la mesure de Lebesgue et on pose $\int_{\Gamma} |u(x)| d\sigma(x) = \sum_{i=1}^{N} \int_{B} |\psi_i^* (\alpha_i u) (y)| dy$. Si l'on change de recouvrement $\{0_i\}$ et de partition $\{\alpha_i\}$, on définit une mesure équivalente. (2) Les diverses normes ainsi définies sur $W_p^s(\Gamma)$ sont équivalentes.

Remarque 1.2 : On aurait pu donner une caractérisation directe de $W_p^S(\Gamma)$ au moins pour 0 < s < l : si on fixe une mesure $d\sigma(x)$ sur Γ (cf. note de bas de page 8), $W_p^\sigma(\Gamma)$ pour 0 < σ <1, est l'espace des $u \in L_p(\Gamma)$ telles que

$$\iint_{\Gamma \times \Gamma} \frac{|u(x) - u(y)|^p}{|x-y|^{n+p\sigma-1}} d\sigma(x) d\sigma(y) < + \infty$$

Le résultat suivant qui motive l'introduction des espaces W_p^s avec s non entier, est fondamental dans la suite : pour $U=R_+^n$ ou Ω et $u\in C_0^\infty(\overline{U})$ (qui est un sous-espace dense de $W_p^s(U)$), on peut définir $\frac{\partial^j u}{\partial n^j}$, $j=0,1,2,\ldots$ où n est la normale extérieure à ∂U $\frac{\partial^0 u}{\partial n^0}$ = $u/\partial U$

Théorème 1.1: Pour $s > \frac{1}{p}$, ($s = \frac{1}{p}$ non entier pour $p \neq 2$),

le plus grand entier $< s - \frac{1}{p}$ étant noté $\left[s - \frac{1}{p}\right]$, l'application $v \sim \left\{\frac{\partial^{j} u}{\partial n^{j}}\right\}_{j=0}^{\left[s - \frac{1}{p}\right]_{-j}}$

qui est définie pour $u \in C_0^{\infty}(\overline{U})$, se prolonge par continuité en une application notée

$$\begin{bmatrix} s - \frac{1}{p} \end{bmatrix}_{j=0}$$

$$\begin{bmatrix} w \\ p \end{bmatrix} = 0$$

$$\begin{bmatrix} w$$

En résumé on a la suite exacte :

$$0 \longrightarrow \overset{\circ}{W_{p}^{s}}(U) \longrightarrow \overset{\circ}{W_{p}^{s}}(U) \xrightarrow{\overset{\circ}{X}} \begin{bmatrix} s - \frac{1}{p} \end{bmatrix} - W_{p}^{s - j - \frac{1}{p}}(\delta U) \longrightarrow 0$$

On peut donner un théorème de traces analogue pour s $-\frac{1}{p}$ entier et $p \neq 2$, mais il est alors nécessaire d'introduire de nouveaux espaces (de Besov[6]); notre but n'étant pas d'introduire toutes les généralisations possibles des espaces de Sobolev, nous n'en parlerons pas. Le théorème 1.1 montre la nécessité d'introduire les espaces $W_p^S(\Gamma)$ d'exposant non entier, si l'on veut caractériser les traces des fonctions de $W_p^k(\Omega)$ avec exposant k entier. Dans les sept premiers exposés, nous n'utiliserons le théorème 1.1 qu'avec s'entier; pour la démonstration nous nous bornerons à détailler le cas s = 1 n = 2, car le cas général utilise les mêmes idées avec quelques complications techniques.

démonstration pour s = 1, n = 2:

Grâce à la proposition 1.2 et à la manière dont nous avons

⁽¹⁾ $W_p^{S}(U)$ et $W_p^{S}(U)$ coincident pour $s \leq 1/p$.

 $1-\frac{1}{p}$ défini $W_p^{(\Gamma)}$, on se réduit immédiatement au cas $U=R_+^2$.

Pour montrer que γ_0 applique $W_p^1(R_+^2)$ dans $W_p^{1-\frac{1}{p}}(R)$ il suffit de vérifier les inégalités suivantes, pour $u \in C_0^\infty(\overline{R_+^2})$:

$$\int_{-\infty}^{+\infty} |u(o,y)|^p dy \ll C \int_{0}^{+\infty} |u(x,y)|^p dx dy + C \int_{0}^{\infty} |\frac{\partial u}{\partial x}(x,y)|^p dx dy$$
(1.1)

$$\int_{0}^{\infty} \left| \frac{u(o,y+t) - u(o,y)}{t} \right|^{p} dy dt \leq$$

$$c \int_{0}^{+\infty} \left| \frac{\partial u}{\partial x}(x,y) \right|^{p} dx dy + \int_{0-\infty}^{+\infty} \left| \frac{\partial u}{\partial y}(x,y) \right|^{p} dx dy$$
(1.2)

L'inégalité (1.1) résulte de l'identité suivante, où $x \longrightarrow \zeta(x)$ est une fonction (indéfiniment) dérivable de $x \geqslant 0$, nulle pour x assez grand et telle que $\zeta(0) = 1$:

$$u(o,y) = -\int_{0}^{+\infty} \frac{\partial}{\partial x} \left[\zeta(x) \ u(x,y) \right] dx$$

$$= -\int_{0}^{+\infty} \zeta'(x) \ u(x,y) \ dx - \int_{0}^{+\infty} \zeta(x) \ \frac{\partial u}{\partial x}(x,y) \ dx$$
(1.3)

L'inégalité (1.2) résulte de l'inégalité de Hardy [15] et de l'identité

$$\frac{u(o,y+t) - u(o,y)}{t} = -\frac{1}{t} \int_{0}^{t} \frac{\partial u}{\partial x} (x,y+t) dx$$

$$+ \frac{1}{t} \int_{0}^{t} \left[\frac{\partial u}{\partial x} (s,y+s) + \frac{\partial u}{\partial y} (s,y+s) \right] ds.$$
(1.4)

Pour montrer que γ_0 est surjective on construit un relèvement de $W_p^{1-\frac{1}{p}}(R)$ dans $W_p^1(R_+^2)$: Pour $f \in W_p^{1-\frac{1}{p}}(R)$ on pose $u(x,y) = \zeta(x) \frac{1}{x} \begin{cases} x \\ 0 \end{cases}$

il est facile de vérifier (à l'aide de l'inégalité de Hardy) $\text{que l'application } f \xrightarrow{p} u \text{ est linéaire continue de } W_p^{1-\frac{1}{p}}(R)$ $\text{dans } W_p^1(R_+^2) \text{ , et que } \gamma_0 u = f.$

Il reste à déterminer le noyau de γ_o . Pour $u \in C_o^{\infty}(\mathbb{R}^2_+)$ on a évidemment $\gamma_o u = 0$, d'où $\overset{\circ}{W}_p^1(\mathbb{R}^2_+) \subset \overset{-1}{\gamma_o}(0)$.

Réciproquement si $u \ll W_p^1(R_+^2)$ et $\gamma_0 u = 0$, on vérifie aisément que la suite de fonctions

$$u_{n}(x,y) = \begin{cases} u(x-\frac{1}{n}, y) & x > \frac{1}{n} \\ 0 & 0 < x \leq \frac{1}{n} \end{cases}$$

converge vers u dans $W_p^1(R_+^2)$; comme u_n a son support dans $x \geqslant \frac{1}{n}$, il est facile d'approcher u_n par des fonctions de $C_0^\infty(R_+^2)$ (par régularisation et tronquature), ce qui montre que $u \in W_p^1(R_+^2)$.

Remarque 1.3: Dans le cas s = l nous venons de vérifier l'existence d'un "relèvement" linéaire continu de $W_p^{1-\frac{1}{p}}(R)$ dans $W_p^1(R_+^2)$; plus généralement on montre l'existence d'un opérateur $\begin{bmatrix} s-1/p \end{bmatrix}_-$ linéaire continu de $H_p^1 = W_p^1 =$

Remarque 1.4: On peut déduire ceci de l'inégalité (1.2).

L'opération u \longrightarrow u $|_{R^{n-1}}$ définie pour les fonctions u continues se prolonge par continuité en une application u \longrightarrow γ_{o} u linéaire continue de l'espace des fonctions localement intégrables dans R^{n} , dont les dérivées premières sont dans $L_{p}(R^{n})$, dans l'espace des fonctions f définies dans R^{n-1} , localement intégrables et telles que

$$\iint_{\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}} \frac{\left| f(x) - f(y) \right|^p}{\left| x - y \right|^{n+p-2}} dx dy < + \infty .$$

Pour terminer nous rappelons (sans démonstration) le

Théorème (de Sobolev) :

 $\frac{p_{our}}{1} = \frac{1}{p} - \frac{s}{n}; \text{ et pour } s > \frac{n}{p}, \text{ on a l'inclusion } W_p^s(\Omega) \subset L_q(\Omega) \text{ avec}$

où [s-n/p] désigne la partie entière de s-n/p .

Pour plus de détails sur les théorèmes de traces du type du théorème 1.1 on peut consulter [12] [20] [30bis] [38] [22] (III et IV) [23] sur les théorèmes d'immersion du type du théorème de Sobolev [36] [18] [13] [30bis], et plus généralement pour toutes les questions concernant les espaces de Sobolev [21].

2 - Position du problème

Soit A un opérateur différentiel linéaire à coefficients (à valeurs complexes) dans $C^{\infty}(\overline{\Omega})$, elliptique d'ordre 2m. B₁,.

.. B_m sont des opérateurs différentiels linéaires à coefficients (à valeurs complexes) dans $C^{\infty}(\Gamma)$; on suppose que l'ordre de B_j est m_j < 2m-1. (On les appellera"opérateurs-frontière \mathbb{F})

Dans un langage approximatif, un problème aux limites consiste en ceci : On se donne f fonction (ou distribution) dans $\Omega \ \ \text{et g}_1, \dots \text{g}_m \ \ \text{fonctions (ou distributions) sur } \Gamma \ , \ \text{et on chereche une fonction (ou distribution) } \ u \ \ \text{dans } \overline{\Omega} \ \ \text{telle que}$

$$\begin{cases}
A u = f & \text{dans } \Omega \\
B_{j} u = B_{j} & \text{sur } \Gamma, j = 1,2,... m
\end{cases} (1)$$

Naturellement il faudra préciser le sens des équations (1) et (2); pour cela on fixera un espace K de fonctions (ou distributions) dans lequel on peut donner un sens aux opérateurs $\frac{\eth}{\eth x_i}, A \text{ et } B_j \text{ . En pratique nous prendrons pour espaces K des espaces de Sobolev. Si l'on prend$

$$K = W_p^{2m}(\Omega)$$

l'équation (1) a un sens pourvu que $f \in L_p(\Omega)$. Pour donner un sens à l'équation (2) on considère un prolongement \widehat{B}_j d'ordre m_j , à coefficients $C^\infty(\overline{\Omega})$ de l'opérateur B_j (qui est défini sur Γ), $j=1,\,2,\ldots m$; on posera

$$B_{j} u = \gamma_{o}(B_{j} u)$$

ceci a un sens et définit B_j $u \in W_p^{2m-m}j^{-\frac{1}{p}}(\Gamma)$ et l'équation (2) aura elle-même un sens pourvu que

$$g_{j} \in W_{p}^{2m-m} j^{-\frac{1}{p}}(r)$$
 $j = 1, 2, ...m$.

(On peut facilement vérifier que B_j u ainsi défini ne dépend pas du prolongement B_j choisi).

On démontrera le résultat suivant (exp. VII et IX), sous des hypothèses convenables sur A et B $_{
m j}$ (voir exp. V) . L'opérateur

A considéré comme opérant de

 $W_p^{2m+\ell}(\Omega; \{B_j\}_{j=1}^m) = \{u \in W_p^{2m+\ell}(\Omega); B_j u = 0 \ j = 1,2,...m\}$ dans $W_p^{\ell}(\Omega)$ est un opérateur fermé et à indice, cet indice, de même que le spectre de l'opérateur ne dépend ni de $p \in]1,+\infty[$ ni de $\ell = 0,1,2,...$

La transposition du résultat précédent permettra de résoudre (en un sens à préciser : exp VIII) le problème (1) (2) avec (par exemple) f $\in L_p(\Omega)$ et $g_j \in \mathcal{D}'(\Gamma)$ distributions sur Γ d'ordre quelconque.

Par interpolation entre ces deux types de résultats on obtiendra quelques types de résultats intermédiaires, voisins

(lorsque p = 2) de ceux obtenus par la méthode variationnelle

[19], [26] (qui ne peut pas s'appliquer à tous les problèmes considérés ici !)

Un outil fondamental pour démontrer les résultats dont on vient de parler, est fourni par les "estimations a priori" (exp. III) dont un cas particulier est le suivant : Si $u \in \mathbb{F}_p^{2m}(\Omega;\{B_j\}_{j=1}^m)$ on a l'inégalité

 $\|u\|_{2m,p} \le C \left[\|Au\|_{0,p} + \|u\|_{0,p} \right]$ (1.5)

Il est facile de vérifier que cette inégalité est nécessaire pour que A soit un opérateur fermé de $W_p^{2m}(\Omega; \{B_j\}_{j=1}^m)$ dans $L_p(\Omega)$: En effet dire que cet opérateur est fermé c'est dire que $W_p^{2m}(\Omega; \{B_j\}_{j=1}^m)$ est un espace de Banach pour la "norme du graphe" $u \longrightarrow \|Au\|_{0,p} + \|u\|_{0,p}$

Comme $W_p^{2m}(\Omega; \{B_j\}^m)$ est aussi un espace de Banach pour j=1 la norme induite par $W_p^{2m}(\Omega)$, et comme cette norme est comparable à la norme du graphe grâce à l'inégalité :

$$\|Au\|_{0,p} + \|u\|_{0,p} \le C \|u\|_{2m,p}$$

les normes considérées sont équivalentes, et en particulier on a l'inégalité "a priori" (1.5).

Il faut se garder de croire que le choix des espaces de Sobolev comme espace K soit l'unique choix possible; dans la littérature on considère souvent par exemple, les espaces $C^{\alpha}(\overline{\Omega})$.

3 - Plan et Bibliographie

Nous supposerons connue l'hypoellipticité des opérateurs elliptiques à coefficients indéfiniment dérivables [35] [28] [17]

le théorème de Calderon-Zygmund et l'existence de solutions élémentaires des opérateurs elliptiques à coefficients constants,

ayant de "bonnes" propriétés; ces points étant mis à part, de

même que les propriétés des espaces de Sobolev, tous les résultats que nous énoncerons, seront démontrés.

Le plan est le suivant :

II - Noyaux de Poisson et représentation des solutions :

Nous démontrons les résultats des n° 1 à 4 de [4], en suivant à peu près cet article, sauf pour le lemme 2.2 qui développe
une idée de [37]. Pour une construction explicite des noyaux de

Paisson dans le cas du problème de Dirichlet, on peut voir [1] et

[30] pour des généralisations (dans le cas n = 2), et pour d'au
tres formules de représentation [9].

III - Estimations a priori dans Lp:

On suit l'exposé de [4] n° 14-15; pour le cas p=2 on peut consulter [32] et plus généralement pour $p \neq 2$: [9]. Un autre type d'estimations a priori, est lié à la théorie variationnelle, cf. par ex: [26], [0].

IV - Formules de Green :

Les résultats sont de [5] et [33] on suit l'exposé de [33] n° 4 et appendice II.

V - Réalisations d'un opérateur elliptique dans L_p :

On s'est inspiré de $\begin{bmatrix} 7 \end{bmatrix}$; l'appendice d'analyse fonction-nelle suit $\begin{bmatrix} 8 \end{bmatrix}$.

VI - Existence dans L2:

Les résultats sont annoncés sous une forme plus générale dans [7] et par Agmon (cf. General elliptic boundary value problems, à paraître). Pour l'inégalité de Garding, on peut voir [14], pour la V-ellipticité, voir [19], [26], [21]; la proposition 7.2 est inspirée du n° 12.4 de [4].

VIII - Application de la transposition et de l'interpolation :

On a suivi [22](VI) en évitant l'utilisation de [2]. Pour l'existence du foncteur $\Phi_{\rm p,\sigma}$, on peut consulter [20] et [23];

pour l'existence de $\Phi_{\ell,m}$ voir [11]. Plus généralement pour un exposé systématique on peut voir [24] et [25].

IX - Quelques éléments de théorie spectrale :

On a suivi de près le n° 2 de [3]; le cas du problème de Dirichlet est traité en détail dans [10].

Remarque 1.5 : Pour démontrer les théorèmes d'existence nous utilisons le "problème adjoint" (cf. exp. IV); une méthode différente (n'utilisant pas l'adjoint) est développée (dans le cas p = 2) dans [17] ainsi que dans l'exposé de B. Malgrange au Séminaire Bourbaki 16ème année (1963/64) : Problèmes aux limites elliptiques.

- [0] AGMON S. The coerciveness problem... J. d'analyse Math. 6 (1958) pp. 183 223
- [1] AGMON S. Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane I. C.P.A.M. Vol 10 (1957) pp. 179 - 239
- [2] AGMON S. The L approach to the Dirichlet problem I
 Ann. Scuola Norm. Sup. Pisa 13 (1959) pp. 405 448
- [3] AGMON S. On the Eigenfunctions and on the Eigenvalues of General elliptic boundary value problems. C.P.A.M. Vol. 15 (1962) pp. 119 147
- [4] AGMON S. DOUGLIS A. NIRENBERG L. Estimates near the Boundary for solutions of elliptic partial diff. C.P.A.M. Vol. 12 (1959) pp. 623 727
- [5] ARONSZAJN N.- MILGRAM N. Differential operators on Riemannian manifolds: Rend. Circ. Mat. Palermo, 2 (1952) pp. 1 - 61
- [6] BESOV O. V. Recherches sur une famille d'espaces fonctionnels: Trudy Math. Inst. Steklova: 60 (1961) p. p. 42
- [7] BROWDER F. E. Estimates and existence theorems for elliptic boundary value problems: Proceeding of Nat. Acad. Sc. Vol. 45 (1959) p. 365 372
- [8] BROWDER F. E. On functional analysis and partial diff.
 equations I: Math. Annalen 138 (1959) p. 55 79
- [9] BROWDER F. E. A priori estimates for solutions of elliptic boundary value problems: Indagationes Mathematicae: I (1960) p. 145,II (1960) p. 160, III (1961) p. 404
- [10] BROWDER F. E. On the spectral theory of elliptic diff.

 operators I: Math. Annalen 142 (1961) p. 22
 130
- [11] CALDERON A. P. Conférences au Collège de France. Paris (1962)
- [12] GAGLIARDO E. Caratterizzazione delle tracce sulla frontiera

- relative ad alcune classi di funzioni in n variabili, Rend. Sem. Math. Padova 27 (1957) pp. 284 305
- [13] GAGLIARDO E. Proprietà di alcune classi di funzioni in più variabili : Ricerche Math. 7 (1958) pp. 102 137 et Ulteriori proprietà di alcune classi di funzioni in più variabili : Ricerche Math. 8 (1959) pp. 24 51
- [14] GARDING L Dirichlet's problem for linear elliptic partial diff. eq. Math. Scand. Vol. 1 (1953) pp. 55 72
- [15] HARDY G.H. LITTLEWOOD J. E. POLYA G. Inequalities, Cambridge Univer. Press (1934)
- [16] HORMANDER L. -Estimates for Translation invariant operators in L^p spaces, Acta Math. 104 (1960) pp. 93 139
- [17] HORMANDER L. Linear partial differential operators Springer Verlag (1963)
- [18] IL'IN V. P. Sur les théorèmes d'immersion pour l'exposant limite, Doklady Akad Nauk. 96 (1954) pp. 908 909
- [19] LIONS J. L. Problèmes aux limites en théorie des distributions : Acta Math. 94 (1955) pp. 1 - 153
- [20] LIONS J. L. Théorèmes de trace et d'interpolation

 (I) Ann. Scuola Norm. Sup. Pisa XIII (1959) p p.

 389 403

 (II) Ann. Scuola Norm. Sup. Pisa XIV (1960) pp.
 - (II) Ann. Scuola Norm. Sup. Pisa XIV (1960) pp. 317 331
 - (IV) Math. Annalen 151 (1963) p p. 42 56
- [21] LIONS J. L. Problèmes aux limites dans les éq. aux dérivées partielles : Séminaire de Math. Supérieures Montréal (1962)
- [22] LIONS J. L. MAGENES E. Problèmes aux limites non homogènes (II) Annales de l'Inst. Fourier XI (1961) p p. 137 - 178 (III) : Annali Scuola Norm. Sup. Pisa XV (1961) p p. 39 - 101 (IV) Annali Scuola

- Norm. Sup. Pisa XV (1961) pp. 311 326 (V) Annali Scuola Norm. Sup. Pisa XVI (1962) p p. 1 44 (VI) Journal d'analyse Mathématique XI (1963)
 p p. 165 188.
- [23] LIONS J. L.-PEETRE J.- Sur une classe d'espaces d'interpolation, à paraître aux publications de l'I.H.E.S. Paris.
- [24] MAGENES E. Sur les problèmes aux limites pour les équations linéaires elliptiques : Colloque International du C.N.R.S. n° 117 Paris (1962)
- [25] MAGENES E. Spazi di Interpolazione ed equazioni a derivate parziali : 7ème Congrès de l'U.M.I. Genova (1963)
- [26] MAGENES E. STAMPACCHIA G. I Problemi al contorno per les equazioni differenziali di tipo ellittico : Annali della Scuola Norm. Sup. Pisa 12 (1958) p p.
 247 357
- [27] MALGRANGE B. Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution; Annales de l'Inst. Fourier 6 (1955-56) p p. 271 355
- [28] MALGRANGE B. Sur une classe d'opérateurs différentiels hypoelliptiques : Bull. Soc. Math. de France 85 (1957) p p. 283 306
- [29] MIHLIN S. G. Sur les multiplicateurs des Intégrales de Fourier : Doklady Akad. Nauk. (1956) 109 pp. 701 703
- [30] MIRANDA C. Teorema del massimo modulo : Ann. Math. pura Appl. 46 (1958) p p. 265 312
- [30 bis]NIKOLSKIIS. M. Théorèmes d'immersion de prolongement et d'approximation ..: Uspeki Math. Nauk 16 (1961) p p. 63 114
- [31] NIRENBERG L. Remarks on strongly elliptic partial diff.
 equations C.P.A.M. VIII (1955) p p. 648 674
- [32] SCHECHTER M. Integral inequalities for partial diff. op...

 C.P.A.M. XII (1959) p p. 37 66

- [33] SCHECHTER M. General boundary value problems for elliptic ... C.P.A.M. XII (1959) p p. 457 486
- [34] SCHECHTER M. Remarks on elliptic boundary value problems
 ... C.P.A.M. XII (1959) p p. 561 573
- [35] SCHWARTZ L. S u alcuni problemi della teoria delle equazioni diff... Rendiconti del Sem. Math. fis. Milano XXVII (1958) p p. 1 - 41
- [36] SOBOLEV S. L. Applications de l'analyse fonctionnelle à la physique mathématique. Leningrad (1950) traduction de l'A.M.S. (1963).
- [37] USPENSKIIS. V. Sur les théorèmes d'immersion pour les classes avec poids : Trudy Math. Inst. Steklova (1961) T. 61 p p. 283 303
- [38] USPENSKIÏS. V. Propriétés des classes généralisées W^r de Sobolev : Sibinkiï Math. J. (1962) T. III p p. 418 445.

II - NOYAUX DE POISSON ET REPRESENTATION DES SOLUTIONS

La démonstration des estimations a priori dans l'exposé III réduira le problème au cas du demi-espace (cartes locales) des coefficients constants (artifice de Korn) et des opérateurs homogènes; dans ce cas réduit la démonstration des estimations a priori utilisera une construction explicite des solutions à l'aide de la "formule de représentation" qui est établie dans le présent exposé.

1 - Préliminaires :

$$A = A(D_x, D_t) = \sum_{i=0}^{2m} \sum_{|\alpha|=2m-i} a_{\alpha,i} D_x^{\alpha} D_t^{i}$$

est un opérateur différentiel à coefficients constants, homogène d'ordre 2m (1). On fera sur A l'hypothèse suivante

- (I) A est proprement elliptique:
- (i) Il existe C > 0 tel que pour $\xi \in \mathbb{R}^{n-1}$, $\tau \in \mathbb{R}$

$$C^{-1} (|\xi|^{2} + \tau^{2})^{m} \leq |A(\xi, \tau)| = \left| \sum_{i=0}^{2m} \sum_{|\alpha| = 2m-i} a_{\alpha, i} \xi^{\alpha} \tau^{i} \right| \leq C(|\xi|^{2} + \tau^{2})^{m}$$
(2.1)

(ii) Pour $\xi \in \mathbb{R}^{n-1}$, $\xi \neq 0$, le polynôme en τ , $A(\xi,\tau)$ a

⁽¹⁾ On note (x,t) avec $x \in \mathbb{R}^{n-1}$, $t \notin \mathbb{R}$ les points de \mathbb{R}^n ; $\mathbb{R}^n_+ = \{(x,t) \mid t > 0\}$.

exactement m racines avec partie imaginaire positive.

Remarque 2.1: Le point (i) exprime simplement que A est elliptique. Le point (ii) (lorsque (i) a lieu) n'est une restriction que pour n=2, car dans ce cas $\{\xi\in \mathbb{R}^{n-1}:\xi\neq 0\}$ n'est pas connexe; en dimension n>3 tout opérateur elliptique est proprement elliptique. Il est également immédiat de vérifier que tout opérateur elliptique à coefficients réels est proprement elliptique. Nous développons pour commencer quelques conséquences de l'hypothèse (I): De (2.1) (faisant $\xi=0$) on obtient

$$c^{-1} \le |a_{0,2m}| \le c$$
 (2.2)

Par ailleurs on a

 $\left| \sum_{|\alpha|=2m-i} a_{\alpha,i} \xi^{\alpha} \right| \leqslant C \quad \text{pour } \xi \quad \text{réel, } |\xi|=1$ On en déduit que pour toutes les racines $\tau(\xi)$ de $A(\xi,\tau)$ avec $\xi \quad \text{réel, } |\xi|=1$, on a

$$|\tau(\xi)| \leq C$$
 (2.3)

puis
$$|\operatorname{Im} \tau(\xi)|^{-1} \leq C$$
 (2.3)

Nous notons $\tau_k^+(\xi)$ (resp^t $\tau_k^-(\xi)$), k = 1, 2, ... les racines de $A(\xi,\tau)$ dont la partie imaginaire est positive (resp^t négative),

pour ξ réel # 0; nous posons

$$M^{+}(\xi,\tau) = \prod_{k=1}^{m} (\tau - \tau_{k}^{+}(\xi)) = \sum_{p=0}^{m} \alpha_{p}^{+}(\xi) \tau^{m-p}$$
 (2.4)

$$M^{-}(\xi,\tau) = \prod_{k=1}^{m} (\tau - \tau_{k}^{-}(\xi)) = \sum_{p=0}^{m} \alpha_{p}^{-}(\xi) \tau^{m-p}$$

Observons que

$$A(\xi,\tau) = a_{0,2m} \quad M^{+}(\xi,\tau) \quad M^{-}(\xi,\tau)$$
 et
$$M^{+}(\xi,\tau) = (-1)^{m} \quad M^{-}(-\xi,+\tau) \quad (2.5)$$

Il est facile de vérifier que les coefficients $\alpha_p^+(\xi)$ et $\alpha_p^-(\xi)$ sont des fonctions analytiques de ξ , pour $\xi \in \mathbb{R}^{n-1}$ -{ 0}, et homogènes de degré p.

Considérons les polynômes en τ de degré j:

$$M_{j}^{+}(\xi,\tau) = \sum_{p=0}^{j} \alpha_{p}^{+}(\xi) \tau^{j-p}, \quad j = 0,1,... m-1 \quad (2.6)$$

ces polynômes possèdent la propriété suivante :

Proposition 2.1: Soit γ une courbe fermée de Jordan, contenue en entier dans le demi-plan $\{\tau; | \text{Im}\, \tau > 0\}$, et qui entoure toutes les racines $\tau_k^+(\xi)$, $k = 1, \ldots m$ pour $\xi \in \mathbb{R}^{n-1}$, $|\xi| = 1$; on a

$$\frac{1}{2\pi i} \int_{\gamma} \frac{M_{m-1-j}^{+}(\xi,\tau)}{M^{+}(\xi,\tau)} \tau^{k} d\tau = \delta_{j,k} \qquad j,k = 0,1,...m-1$$

⁽¹⁾ L'existence d'une telle courbe est assurée par les inégalités (2.3), (2.3)'.

démonstration :

Pour $j \ge k$, on a

$$\frac{M_{m-j-1}^{+}(\xi,\tau)}{M^{+}(\xi,\tau)} \qquad \tau^{k} \sim \tau^{k-j-1}$$

pour $|\tau| \xrightarrow{-->} + \infty$, et on obtient le résultat par déformation du contour γ_+ en un cercle centré à l'origine et dont le rayon augmente indéfiniment. Pour j < k, on remarque que

$$\tau^{k} M_{m-j-1}^{+}(\xi,\tau) - \tau^{k-j-1} M^{+}(\xi,\tau) = Q(\xi,\tau)$$

est un polynôme en τ (à coefficients analytiques en ξ) de degré \leq k-1 \leq m-2 , on a donc

$$\frac{1}{2\pi i} \int_{\gamma_{+}} \frac{M_{m-j-1}^{+}(\xi,\tau)}{M^{+}(\xi,\tau)} \tau^{k} d\tau = \frac{1}{2\pi i} \int_{\gamma_{+}} \frac{Q(\xi,\tau)}{M^{+}(\xi,\tau)} d\tau ;$$

on vérifie que cette dernière intégrale est nulle en déformant à nouveau le contour d'intégration en un cercle de centre l'origine et de rayon augmentant indéfiniment et en utilisant l'estimation suivante :

$$\frac{Q(\xi,\tau)}{M^{+}(\xi,\tau)} = 0 \left(\frac{1}{|\tau|^{2}}\right) \quad \text{pour } |\tau| \longrightarrow + \infty$$

$$C.Q.F.D.$$

On considère ensuite m opérateurs différentiels à coefficients constants homogènes :

$$B_{j} = B_{j} (D_{x}, D_{t}) = \sum_{i=0}^{mj} \sum_{|\alpha|=mj-i} b_{j,\alpha,i} \nu_{x}^{\alpha} D_{t}^{i} \qquad j = 1,2,..m$$

avec $m_j \le 2m-1$ j = 1,2,...m. On fera sur les B_j l'hypothèse suivante :

(II) Les B; recouvrent l'opérateur A:

Pour tout $\xi \in \mathbb{R}^{n-1}$, $\xi \neq 0$, les polynômes en τ $B_j(\xi,\tau)$ sont linéairement indépendants modulo $M^+(\xi,\tau)$, (donc aussi grâce à (2.5), modulo $M^-(\xi,\tau)$).

Nous notons :

$$B_{j}^{+}(\xi,\tau) = \sum_{k=1}^{m} \beta_{j,k} (\xi) \tau^{k-1}$$

le reste de la division de $\;B_{\,j}(\,\xi\,,\tau\,)\;$ par $\,M^{\,+}(\,\xi\,,\tau\,)\,$.

L'hypothèse (II) signifie que

$$d(\xi) = det \|\beta_{j,k}(\xi)\|_{j,k=1,2,...m} \neq 0$$

pour $\xi \in \mathbb{R}^{n-1}$ - $\{0\}$; comme $d(\xi)$ est évidemment analytique, on en déduit qu'il existe C>0 telle que

$$|d(\xi)| \ge C$$

pour ξ réel, $|\xi| = 1$.

Posons $\|\beta^{j,k}(\xi)\|_{j,k=1,2,...m} = \|\beta_{j,k}(\xi)\|^{-1}_{j,k=1,2,...m}$

et
$$\mathbb{N}_{k}(\xi,\tau) = \sum_{q=1}^{m} \beta^{q,k}(\xi) M^{+}(\xi,\tau)$$
 (2.8)

ces polynômes en τ vérifient la :

Proposition 2.2: y désignant la même courbe que dans la pro-

position 2.1 on a

$$\frac{1}{2\pi i} \int_{\gamma_{+}}^{N_{k}(\xi,\tau)} \frac{N_{k}(\xi,\tau)}{M^{+}(\xi,\tau)} d\tau = \delta_{j,k} \qquad j,k=1,2,...m$$

$$\xi \in \mathbb{R}^{n-1}, |\xi| = 1.$$
(2.9)

Démonstration : On a

$$\frac{1}{2\pi i} \int_{\gamma_{+}}^{N_{k}(\xi,\tau)} \frac{N_{k}(\xi,\tau)}{M^{+}(\xi,\tau)} d\tau = \frac{1}{2\pi i} \int_{\gamma_{+}}^{N_{k}} \frac{N_{k}}{M^{+}} d\tau$$

$$= \frac{1}{2\pi i} \int_{\gamma_{+}}^{N_{k}} \frac{N_{k}}{M^{+}} d\tau$$

$$= \sum_{q,p=1}^{m} \beta^{q,k}(\xi) \beta_{j,p}(\xi) \frac{1}{2\pi i} \int_{m}^{M_{m-q}} \tau^{p-1} d\tau$$

$$= \sum_{q,p=1}^{m} \beta^{q,k} \beta_{j,p} \delta_{q,p} = \sum_{q=1}^{m} \beta^{q,k} \beta_{j,q} = \delta_{j,k}$$

grâce à la proposition 2.1

C.Q.F.D.

2. On appelle "noyaux de Poisson" du problème $\left\{ A\text{ , }B_{\mathbf{j}}\right\}$, les

fonctions:
$$K_{\mathbf{j}}(\mathbf{x},t) = \frac{\beta_{\mathbf{j}}}{2\pi i} \int_{|\xi|=1}^{d\omega_{\xi}} \left[\int_{\gamma_{+}}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} (\langle \mathbf{x},\xi \rangle + t\tau) \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} (\langle \mathbf{x},\xi \rangle + t\tau) \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} (\langle \mathbf{x},\xi \rangle + t\tau) \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} (\langle \mathbf{x},\xi \rangle + t\tau) \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}(\xi,\tau)} \int_{\mathbb{N}_{\mathbf{j}}(\xi,\tau)}^{\mathbb{N}_{\mathbf{j}}$$

pour
$$m_{j} > n-1$$

$$K_{j}(x,t) = \frac{\beta_{j}}{2\pi i} \int_{|\xi|=1}^{d\omega_{\xi}} \frac{N_{j}(\xi,\tau)}{M^{+}(\xi,\tau)(\langle x,\xi\rangle+t\tau)^{n-m}} e^{-1} d\tau$$
pour m_j < n-1 (2.11)

où (i) d ω_{ξ} désigne la mesure de surface sur la sphère $|\xi|$ =1

(ii) le logarithme est défini par
$$-\pi$$
 < arg. log $\mathscr{C} \leqslant \pi$

(iii)
$$\langle x, \xi \rangle = \sum_{i=1}^{n-1} x_i \xi_i, x, \xi \in \mathbb{R}^{n-1}, \tau > 0$$

(i v) γ est la même courbe que dans la

Proposition 2;1.

$$\beta_{j} = -\frac{1}{(2\pi i)^{n-1}(m_{j}-n+1)!} \qquad \text{si } m_{j} > n-1$$

$$\beta_{j} = (-1)^{n-m_{j}-1} \frac{(n-m_{j}-2)!}{(2\pi i)^{n-1}} \qquad \text{si } 0 \le m_{j} \le n-1$$

La propriété essentielle de ces fonctions est donnée par le théorème suivant, qui justifie leur appellation de "Noyaux de Poisson":

Théorème 2.1: Pour
$$\phi_{j} \in C_{0}^{\infty}(\mathbb{R}^{n-1})$$
 $j=1,2,...m$, la fonction

$$u(x,t) = \sum_{j=1}^{m} \int_{\mathbb{R}^{n-1}} K_{j}(x-y,t) \phi_{j}(y) dy = \sum_{j=1}^{m} K_{j} *_{x} \phi_{j}$$

est solution du problème :

$$\begin{cases} A u = 0 & \underline{dans} & t > 0 \\ B_j u = \phi_j & \underline{pour} & t = 0 & j=1,2,...m \end{cases}$$

Remarque 2.2: Nous avons donné les expressions des noyaux de Poisson et nous allons vérifier a posteriori leurs propriétés, on peut évidemment construire ces noyaux au moins d'une manière "heuristique" (1).

(1) L'idée est la suivante : on peut <u>formellement</u>, chercher K_j solution à croissance lente en t du problème

$$\begin{cases}
A K_{j} = 0 & \text{dans } t > 0 \\
B_{\ell} K_{j} = 0 & \text{pour } t = 0, \quad j \neq \ell \\
B_{j} K_{j} = \delta & \text{pour } t = 0
\end{cases}$$

ou ce qui revient au même, après transformation de Fourier partielle par rapport à la viarable x, chercher $\widehat{K}_{j}(\xi,t)$ solution de $\begin{pmatrix} M^{+}(2\pi i\xi,\ D_{t}) & \widehat{K}_{j}(\xi,t) = 0 & t>0 \\ B_{\ell}^{+}(2\pi i\xi,\ D_{t}) & \widehat{K}_{j}(\xi,t) = 0 & t=0\ ,\ j\neq \ell \\ B_{j}^{+}(2\pi i\xi,\ D_{t}) & \widehat{K}_{j}(\xi,t) = 1 & t=0 \end{pmatrix}$

On résoud ce dernier problème en fixant ξ ; l'hypothèse (II) assure l'existence et l'unicité de la solution. On obtient K_j par transformation de Fourier inverse.

Avant de démontrer le théorème 2.1 il nous faut établir un certain nombre de propositions.

Proposition 2.3 : Pour q entier positif de même parité que n-l,

n-1, on a

$$K_{j}(x,t) = \Delta_{x}$$
 $K_{j,q}(x,t) = \Delta_{x}$
 $K_{j,q}(x,t) = \Delta_{x}$

avec

$$K_{j,q}(x,t) = \frac{\beta_{j}(m_{j}-n+1)!}{2\pi i (m_{j}+q)!} \begin{cases} d\omega_{\xi} \\ |\xi|=1 \end{cases}$$

$$\left[\int_{\gamma_{+}} \frac{N_{j}(\xi,\tau) (\langle x,\xi \rangle + t\tau)^{m}j^{+q} \{\log \frac{\langle x,\xi \rangle + t\tau}{i} + C(n,m_{j},q)\}_{d}}{M^{+}(\xi,\tau)} \right]$$

pour m; < n-l.

<u>Démonstration</u>: Il suffit d'appliquer les formules:

$$\frac{\mu!}{(\lambda+\mu)!} \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^{\lambda} \left[z^{\lambda+\mu} \left(\log \frac{z}{i} + C(\lambda,\mu)\right)\right] = z^{\mu} \log \frac{z}{i}, \mu \geqslant 0, \lambda \geqslant 0$$
(2.15)

⁽¹⁾ $C(n,m_j,q)$ désigne une constante réelle qui dépend de n,m_j et q.

$$\frac{\left(-1\right)^{\mu+1}}{\left(\lambda+\mu\right)!\left(-\mu-1\right)!}\left(\frac{d}{dz}\right)^{\lambda}\left(z^{\lambda+\mu}\log\frac{z}{i}\right)=z^{\mu}, \mu<0, \lambda+\mu>0$$

où $C(\lambda,\mu)$ désigne une constante réelle dépendant de λ et μ .

Proposition 2.4:
$$K_{j,q} \in C$$
 $m_j + q - 1 \longrightarrow R_+^n$

Proposition 2.5: $K_j = K_{j,q}$ sont analytiques dans R_+^n

Proposition 2.6 : $A(D_x, D_t) K_i(x,t) = 0$ dans R_t^n

et
$$A(D_x, D_t) K_{j,q}(x,t) = 0$$
 dans R_+^n

Lemme 2.1 (1): Pour $\Phi \in C_0^{\infty}(\mathbb{R}^{n-1})$ on a l'identité :

$$\Phi(x) = \frac{-1}{(2\pi i)^{n-1}} q! \Delta_{x} \frac{n-1+q}{2} \int_{\mathbb{R}^{n-1}} \Phi(y) \left((\langle x-y, \xi \rangle)^{q} \log \frac{\langle x-y, \xi \rangle}{i} d\omega_{\xi} \right) dy$$
(2.16)

Démonstration : On considère la solution élémentaire E de

$$\Delta \frac{n-1+q}{x}$$
 donnée par (2)

$$E(x) = \frac{-1}{(2\pi i)^{n-1}q!} \int_{|\xi|=1} (\langle x \xi \rangle)^{q} \log \frac{\langle x, \xi \rangle}{i} d_{\omega_{\xi}}$$

et on écrit

$$\Phi = S * \Phi = \Delta \frac{n-1+q}{2} (3 * \Phi)$$

C.Q.F.D.

Démonstration du théorème 2.1 : Posons $u_j = K_j * \phi_j$ et soit

q un entier de même parité que n-1, tel que q > s-m, +1,

nous avons pour $|\alpha| = s$ et t > 0

⁽²⁾ cf. par ex: Guelfand-Chilov, Les distributions tome I p.119 et suivantes de l'édition française (Dunod) (1) F. John Plane waves and spherical means...Interscience New-York 1955).

$$D^{\alpha}u_{j} = (D^{\alpha}K_{j,q}) \overset{\underline{m+q-1}}{(x)} (\Delta^{\underline{p}}) \qquad (2.17)$$

car $\phi_j \in C_0^\infty(\mathbb{R}^{n-1})$; comme $|\alpha| \leq m_j + q - 1$, il résulte de(2.17) grâce à la proposition 2.4 que $D^\alpha u_j$ est continue dans \mathbb{R}^n_+ et peut être prolongée à \mathbb{R}^n_+ en une fonction continue. s'étant arbitraire le raisonnement précédent montre que

$$u_j \in C^{\infty}(\overline{R^n_+})$$

Grâce à (2.17) et à la proposition 2.6, on a

$$A u_{j} = 0 \quad dans \quad t > 0$$

Il faut encore calculer $B_k(D)$ u_j (x,0); on a

$$\left[\mathbb{B}_{k}(D) \ u_{j}\right](x,0) = \int_{\mathbb{R}^{n-1}}^{\Delta} \Delta_{x} \left[\mathbb{B}_{k}(D) \ K_{j,q}\right](y,0) \ dy$$
(2.18)

Pour $k \neq j$ il résulte de (2.13) (2.14) que

$$\begin{bmatrix} B_{\mathbf{k}}(\mathbf{D})K_{\mathbf{j},\mathbf{q}} \end{bmatrix} (\mathbf{y},0) = C \begin{cases} d\omega_{\xi} \end{bmatrix} \begin{bmatrix} \frac{N_{\mathbf{j}}(\xi,\tau)B_{\mathbf{k}}(\xi,\tau)}{M^{+}(\xi,\tau)} (\langle \mathbf{y},\xi \rangle) \end{bmatrix}^{m_{\mathbf{j}}-m_{\mathbf{k}}+\mathbf{q}}$$

$$(\log^{\langle \underline{y,\xi\rangle}} + C) d_T$$

d'où
$$\left[B_{k}(D)K_{j,q}\right](y,0) = 0$$
 et $\left[B_{k}(D)u_{j}\right](x,0) = 0$

puisque
$$\int_{\gamma_{+}}^{\frac{N_{j}}{M^{+}}} \frac{B_{k}}{d\tau} = 0 \quad \text{pour } k \neq j \quad (cf. Prop. 2.2).$$

Pour k = j et $m_{j} > n-1$, on a

$$\left[B_{j}(D)K_{j,q}\right](y,0) = \frac{\beta_{j}(m_{j}-n+1)!}{2\pi i q!} \int_{|\xi|=1}^{d\omega_{\xi}}$$

où $\Psi_{q}(y)$ est un polynôme homogène de degré q , puisque

$$\frac{1}{2\pi i} \int_{\gamma_{+}}^{N_{j}} \frac{B_{j}}{M^{+}} d\tau = 1 \text{ (cf. Prop. 2.2)} . \text{ On en déduit l'iden-}$$

tité

$$\begin{bmatrix} B_{j}(D) & u_{j} \end{bmatrix} (x,0) = -\frac{1}{(2\pi i)^{n-1} q!} \Delta_{x}^{\frac{n+q-1}{2}} \begin{bmatrix} \Phi_{j}(y) \\ (\langle x-y,\xi \rangle)^{q} & \log \frac{\langle x-y,\xi \rangle}{i} & d\omega_{\xi} \end{bmatrix} dy$$

$$= \Phi_{j}(x)$$

grâce au lemme 2.1 (on a utilisé le fait que Δ $\frac{n+q-1}{2}$ Ψ = 0).

Le calcul pour $m_{j} < n-1$ est analogue.

C.Q.F.D.

Remarque 2.3 : Il est clair que lorsque $\phi_j \in C_0^{n-m} j^{+s+1} (\mathbb{R}^{n-1})$, $j=1,\ldots,m$ et $s \geqslant \max(m_k)$ alors u est solution du problème

$$\begin{cases} A & u = 0 & dans & t > 0 \\ B_{j} & u = \phi_{j} & pour & t = 0, & j=1,...,m \end{cases}$$

de classe $C^{s}(\overline{\mathbb{R}^{n}_{+}})$. Pour le voir on raisonne comme dans la dé-monstration du théorème 2.1.

Dans la suite nous utiliserons la :

<u>Proposition 2.7</u>: $K_{j,q} \in C^{\infty}(\overline{R_{+}^{n}} - \{0\})$ <u>et vérifient les iné-</u>

-galités (1)

Démonstration : Les propriétés énoncées de K_j , résultent de celles de $K_{j,q}$, grâce à (2.12) ; il suffit donc de vérifier (2.19) et (i). L'inégalité (2.19) pour s < m_j +q+l et l'homogénéité affirmée au point (i) pour s> m_j +q+l , sont faciles à vérifier sur les formules explicites (2.13) (2.14). Il reste donc à démontrer (2.19) pour s> m_j +q+l et |P| = 1 grâce à l'homogénéité. C'est le seul point délicat de la démonstration :

On peut écrire pour
$$|\alpha| = s > m_j + q + 1$$
, $\alpha = (\alpha', \alpha_n)$

$$D^{\alpha}K_{j,q} = C \begin{cases} d\omega_{\xi} & \frac{N_j}{M^+} & \alpha^n_{\xi} & \frac{d\tau}{(\langle x, \xi \rangle + t\tau)} \\ -\frac{1}{2} & \frac{d\omega_{\xi}}{M^+} & \frac{F(\xi, \tau)}{(\langle x, \xi \rangle + t\tau)} & \frac{d\tau}{M^+} \end{cases}$$

$$= \begin{cases} |\xi| = 1 & d\omega_{\xi} & \int_{\gamma_{+}} & \frac{F(\xi, \tau)}{(\langle x, \xi \rangle + t\tau)} & \frac{d\tau}{M^+} &$$

⁽¹⁾ P désigne un point de R_+^n : P = (x,t)

avec $\sigma=s-m_j-q\gg 1$ et $F(\xi,\tau)$ fonction analytique en ξ et τ dans un voisinage de $\{\xi\subset\mathbb{R}^{n-1}; |\xi|=1\}\times\gamma$.

Pour montrer que toutes les dérivées d'ordre $> m_j+q-1$ de $K_{j,q}$ sont bornées sur $\{|P|=1; t>0\}$, il suffit (par intégration) de vérifier les estimations

$$|D^{\alpha}K_{j,q}(x,t)| \leq \frac{C(\alpha)}{t}$$
 (2.22)

pour |P|=1, t > 0, P=(x,t); comme (2.22) est facile à vérifier pour $t \geqslant \frac{1}{2}$, on supposera dans la suite $t \leqslant \frac{1}{2}$ i.e. $|x| \geqslant \frac{\sqrt{3}}{2}$. Dans le cas où t est petit, la difficulté provient de ce que dans l'intégrale (2.21) on peut avoir $\langle x, \xi \rangle = 0$; on isole cette singularité : Soit $r \longrightarrow \zeta(r)$ une fonction réelle indéfiniment dérivable dans [-1,+1] telle que $0 \leqslant \zeta(r) \leqslant 1$ pour tout r, $\zeta(r) \equiv 0$ pour $|r| \geqslant \frac{3}{4}$ $\zeta(r) \equiv 1$ pour $|r| \leqslant \frac{1}{2}$; on pose :

$$\operatorname{avec} \ T_{1} = \begin{cases} \int_{|\xi|=1}^{\alpha} d\omega_{\xi} & \int_{|\xi|=1}^{\pi} \int_{|\xi|=1}^{\pi}$$

et
$$I_2 = \int_{|\xi|=1}^{d\omega_{\xi}} \int_{\gamma_{+}(\langle x,\xi\rangle+t_{\tau})^{\sigma}}^{F(\xi,\tau)} [1-\zeta(\langle x,\xi\rangle)] d\tau$$

Puisque dans I la fonction à intégrer est ≠ 0, seulement pour $|\langle x, \xi \rangle| \ge \frac{1}{2}$, on a $|I_2| \le C$. Il reste à estimer I_1 : Soit T_x la rotation dans R^{n-1} qui transforme $x = (x_1, \dots x_{n-1})$ en $(|x|, 0, \dots 0)$; nous effectuons dans I_1 , le changement de variable $\xi \longrightarrow \eta = T_x \xi$: $I_{1} = \begin{cases} |n| = 1 & d\omega_{\eta} \\ |n_{1}| \leq \sqrt{3/\eta_{0}} \end{cases} \qquad \int_{\gamma_{+}} \frac{F(T_{x}^{-1}\eta, \tau) \zeta(\eta_{1}|x|)}{(|x|\eta_{1} + t\tau)^{\sigma}} d\tau$ où $n' = (n_2, ..., n_{n-1}) \in \mathbb{R}^{n-2}$ (1). Par intégration par parties on a: $|I_1| = \left| \frac{C}{|x|^{\sigma-1}} \right|_{|n|=1} d\omega_n, \quad \int_{-\sqrt{3}/2} d\eta_1$ $\left| \left[\frac{1}{|\mathbf{x}| \, \eta_1 + t \, \tau} \left(\frac{\partial}{\partial \, \eta_1} \right)^{\sigma - 1} \left(F(T_{\mathbf{x}}^{-1} \eta) \, \zeta(\eta_1 |\mathbf{x}|) \left(1 - \eta_1^2 \right) \frac{n - 4}{2} \right) d\tau \right] \right|$ et comme on a''|x| > 1/2, on obtient $|I_1| \le C/+$ (2.25) Proposition 2.8 $\left[B_k(D)K_j\right](x,0) = 0$ pour $x \neq 0$, j,k =1,2...m

$$\frac{\text{et}}{|B_{k}(D)K_{j}(x,t)|} \leq C \quad t(1+|\log|P||) \quad |P|^{j^{-m}k^{-n}}$$
 (2.26)

C'est immédiat

<u>Proposition 2.9</u>: <u>On suppose que</u> $\phi_j \in C$ $n+2m-m_j+1 \in C$ \mathbb{R}^{n-1}) <u>est</u>

⁽¹⁾ Pour n = 2 ou 3 les modifications à apporter à la démonstration sont évidentes.

telle que

$$|D^{\alpha}\phi_{j}(x)| = O((1 + \log|x|) |x|^{2m-n-m}j^{-k}), \quad j=1,2,...m$$

$$\frac{\text{pour}}{\hat{u}_{j}(x,t)} = \sum_{i=1}^{m} \int_{\mathbb{R}^{n-1}} D_{x}^{\beta} B_{j} (D_{x}, D_{t}) K_{i}(x-y,t) \phi_{i}(y) dy$$

Alors $\tilde{u}_{j}(x,t)$ peut être prolongée à R_{+}^{n} en une fonction continue telle que $\tilde{u}_{j}(x,0) = D_{x}^{\beta} \phi_{j}(x)$

Démonstration : Grâce à l'inégalité (2.20) et aux hypothèses sur ϕ_j , on peut faire les intégrations par parties qui permettent d'écrire

$$u_{j}(x,t) = \sum_{i=1}^{m} \int_{\mathbb{R}^{n-1}} B_{j} K_{i}(x-y,t) D_{y}^{\beta} \phi_{i}(y) dy$$

Soit $\zeta \in C_0^\infty(\mathbb{R}^{n-1})$ une fonction Ξ l dans la boule de rayon \mathbb{R} et telle que $|\zeta| \le 1$; nous pouvons écrire

Grâce à la remarque 2.3 on voit que $B_j w_l$ peut être prolongée à R_+^n en une fonction continue et que pour $|x| < \frac{1}{2}R$,

 $B_j w_l(x,0) = D_x^{\beta} \phi_j(x)$. Pour |x| < R/2 on considère à présent w_2 ; la fonction à intégrer est $\neq 0$ seulement pour |y| > R, et dans ce domaine on a $\frac{1}{2}|y| < |x-y| < \frac{3}{2}|y|$, on en déduit à l'aide de (2.26) et des hypothèses sur ϕ_j que

$$|w_2(x,t)| \le C t \int_{|y|>R} (1 + \log|y|)^2 |y|^{-2n} dy$$

et cette quantité tend vers zéro lorsque t \longrightarrow 0. Nous avons ainsi démontré que \widetilde{u}_j est continue aux points (x,0) tels que $|x| < \frac{1}{2}R$ et que $\widetilde{u}_j(x,0) = D_x^\beta \phi_j(x)$ pour $|x| < \frac{1}{2}R$; comme R est arbitraire la proposition est démontrée.

3 - Pour démontrer la "formule de représentation" et les estimations a priori nous utiliserons le :

Lemme 2.2 : Soit K une function de $C^{\infty}(R_{+}^{n} - \{0\})$ solution dans R_{+}^{n} de A(D)K = 0. On suppose que les dérivées d'ordre 2m de K sont homogènes de degré -n. Pour $\phi \in L^{\infty}(R^{n-1})$ on considère les transformations

$$\phi \sim u_{\alpha}(x,t) = \int_{\mathbb{R}^{n-1}} D^{\alpha}K(y,t) \phi(x-y) dy \quad (t > 0) \quad (2.27)$$

$$\underline{avec} \quad |\alpha| = 2m .$$

Alors il existe C > 0 telle que

$$\left\{ \int_{\mathbb{R}^{n}_{+}} |u_{\alpha}(x,t)|^{p} dx dt \right\}^{1/p} \leq C \left\{ \int_{\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}} \frac{|\phi(x) - \phi(y)|^{p}}{|x-y|^{n+p-2}} dx dy \right\}^{1/p}$$
(2.28)

pour $|\alpha|$ = 2m et toute ϕ telle que l'intégrale de droite dans (2.28) soit finie.

Démonstration : Pour $|\alpha|=2m$, $D^{\alpha}K(x,t)$ est indéfiniment dérivable dans $R^{\overline{n}}_+$ - {0} et homogène de degré -n ; il existe donc une constante C > 0 telle que

$$|D^{\alpha}K(x,t)| \le \frac{C}{(|x|^2 + t^2)^{n/2}}$$
 (2.29)

et comme $\phi \in L^{\infty}(\mathbb{R}^{n-1})$ les intégrales (2.27) convergent.

a) Nous considérons pour commencer le cas où D lpha contient au moins une dérivation en x (ou y !); dans ce cas nous avons

$$\int_{\mathbb{R}^{n-1}} \mathbb{D}^{\alpha} K(y,t) dy = 0 \quad \text{pour } t > 0$$

(l'intégrale converge grâce à (2.29)), et nous pouvons écrire

$$u_{\alpha}(x,t) = \int_{\mathbb{R}}^{\alpha} n-1 D^{\alpha} K(y,t) \left(\phi(x) - \phi(x-y) \right) dy$$
 (2.30)

d'où grâce à (2.29) :

$$|u_{\alpha}(x,t)| \leq C \int_{\mathbb{R}^{n-1}} \frac{|\phi(x) - \phi(x-y)|}{(|y|^2 + t^2)^{n/2}} dy$$
et
$$\begin{cases} \begin{cases} \prod_{R_{+}^{n}} |u_{\alpha}(x,t)|^p dx dt \end{cases} \frac{1}{p} \\ \leq C \begin{cases} \int_{0}^{\infty} \left[\int_{\mathbb{R}^{n-1}} \frac{\left(\prod_{R^{n-1}} |\phi(x) - \phi(x-y)|^p dx \right)^{1/p}}{(|y|^2 + t^2)^{n/2}} dy \right]^p dt \end{cases}$$

$$= C \begin{cases} \int_{0}^{\infty} \left[\int_{\mathbb{R}^{n-1}} \frac{\partial(y)}{(|y|^2 + t^2)^{n/2}} dy \right]^p dt \end{cases}$$

$$|\phi(x) - \phi(x-y)|^p dx \end{cases}$$
avec $\partial(y) = \left(\int_{\mathbb{R}^{n-1}} |\phi(x) - \phi(x-y)|^p dx \right)^{1/p}$

Ensuite, grâce à l'inégalité de Minkovski, nous avons

$$\int_{\mathbb{R}^{n-1}} \frac{\partial(y) \, dy}{(|y|^2 + t^2)^{n/2}} \leq$$

$$\left(\int_{\mathbb{R}^{n-1}} \frac{|\mathfrak{d}(y)|^p}{(|y|^2+t^2)^{\theta p}} dy\right)^{1/p} \left(\int_{\mathbb{R}^{n-1}} \frac{dy}{(|y|^2+t^2)^{\{n/2-\theta\}} p'}\right)^{1/p'}$$

où θ est choisi tel que n-l+p > $2\theta p$ > n+p-2.

On en déduit

$$\int_{\mathbb{R}^{n-1}} \frac{\partial(y) \, dy}{(|y|^2 + t^2)^{n/2}} \leq c t^{\frac{n-1}{p'} - (n-2\theta)} \left(\int_{\mathbb{R}^{n-1}} \frac{|\partial(y)|^p}{(|y|^2 + t^2)^{\theta p}} dy \right)^{1/p}$$

et de (2.31) il vient :

$$\left\{ \int_{\mathbb{R}^{n}_{+}} \left| u_{\alpha}(x,t) \right|^{p} dx dt \right\}^{1/p} \leq$$

$$C \left\{ \int_{0}^{\infty} t^{(n-1)\frac{p}{p}}, -(n-2\theta)p \right\} \left[\frac{|\partial(y)|^{p}}{|x^{n-1}|(|y|^{2}+t^{2})^{\theta p}} dt dy \right\}^{1/p}$$

$$= c \left\{ \int_{\mathbb{R}^{n-1}} |\partial(y)|^{p} \int_{0}^{\infty} \frac{t^{-n-p+1+2\theta p}}{(|y|^{2}+t^{2})^{\theta p}} dt dy \right\}^{1/p}$$

$$= C \left(\int_{\mathbb{R}^{n-1}} \frac{|\partial(y)|^p}{|y|^{n+p-2}} dy \right)^{1/p}$$

C'est l'inégalité (2.28).

b) Il reste à examiner le cas où $D^{\alpha}=\frac{\delta}{\delta t}^{2m}$; on le déduit du cas a) en utilisant l'ellipticité de A:

On écrit
$$D_{\mathbf{t}}^{2m} = \frac{1}{a_{0;2m}} \left\{ A(D_{x}, D_{t}) - \sum_{i=0}^{2m-1} \sum_{|\alpha|=2m-i} a_{\alpha,i} D_{x}^{\alpha} D_{t}^{i} \right\}$$

d'où (puisque A K = 0 dans \mathbb{R}_+^n)

$$u_{0,...0;2m}$$
 $=\frac{1}{a_{0,2m}} \sum_{i=0}^{2m-1} \sum_{|\alpha|=2m-i}^{a_{\alpha,i}} u_{\alpha,i} (x,t) t > 0$

L'inégalité (2.22) pour uo,...o,2m est alors immédiate.

4) On cherche à construire une solution du problème non homogène :

$$\begin{cases} A & (D) \ u(x,t) = f(x,t) & t > 0 \\ \\ \left[B_{j} & (D) \ u\right](x,0) = \phi_{j}(x) & t = 0 , \quad j = 1,2,...m \end{cases}$$
 avec $f \in C_{0}^{\infty}(\mathbb{R}^{n})$ et $\phi_{j} \in C_{0}^{\infty}(\mathbb{R}^{n-1})$ $j = 1,2,...m$.

Ce problème est résolu par le théorème 2.1 lorsque $f \equiv 0$. Dans le cas $f \not\equiv 0$ nous utiliserons une solution élémentaire (1) de l'opérateur A de la forme :

$$E(P) = |P|^{2m-n} \quad \psi\left(\frac{P}{|P|}\right) + q(P) \log |P| \qquad (2.32)$$

où q(P) est un polynôme de degré 2m-n (éventuellement nul) et ψ une fonction analytique sur la sphère unité de \mathbb{R}^n , avec les majorations :

$$|D^{\alpha} E(P)| \leq C |P|^{2m-n-s} \qquad (2.33)$$

pour $|\alpha|=s>0$ lorsque n est impair, ou lorsque n est pair et > 2m , ou lorsque n est pair et < 2m et $|\alpha|=s>2m-n$

⁽¹⁾ mêmes références que pour le lemme 2.1.

$$|D^{\alpha} E(P)| \leq C |P|^{2m-n-s} (1 + |\log |P||) \qquad (2.33)$$

$$|\alpha| = s \leq 2m-n \quad \text{lorsque} \quad n \quad \text{est pair} .$$

Nous considérons un prolongement f_N de f à R^n tel que $f \sim f_N$ soit linéaire continue de $C_0^\infty(R_+^n)$ dans $C_0^N(R^n)$; et nous posons $v = E \times f_N$ (2.34)

On a $v \in C^{N+2m-1}(\mathbb{R}^n)$ et évidemment

$$A(D) \ v(x,t) = f(x,t) \quad \text{pour } t > 0$$
 Posons
$$\psi_{j}(x) = \left[B_{j}(D)v\right] \ (x,0) \quad j = 1,2,\dots m \quad (2.35)$$
 et
$$\omega_{j} = \phi_{j} - \psi_{j} \quad , \quad j = 1,2,\dots m \quad ; \quad \text{il nous faut encore résoudre}$$
 le problème

$$\begin{cases} A(D) \ w(x,t) = 0 & \text{pour } t > 0 \\ \\ \left[B_{j}(D) \ w\right] \ (x,0) = \omega_{j}(x) & j = 1,2,...m \end{cases}$$

 ω_{j} <u>n'étant pas à support compact</u>, la solution de ce problème n'est <u>pas</u> donnée par le théorème 2.1; dans le cas général les intégrales qui représenteraient $K_{j} * \omega_{j}$ <u>peuvent ne pas converger</u>. Nous avons seulement le résultat suivant :

Théorème 2.2: Si $u \in C_0^{\infty}(\overline{\mathbb{R}^n_+})$, on pose f = A u et $\phi_j = \left[\mathbb{B}_j(D) \ u \right] \quad (x,0)$, j = 1,2;...m. Alors si v est définie

par (2.34) et les ψ_i par (2.35) on a la "formule de représentation":

$$D^{\alpha} u(x,t) = D^{\alpha} v(x,t) + \sum_{j=1}^{m} (D^{\alpha}K_{j}) \underset{(x)}{*} \omega_{j} \quad (2.36)$$

$$pour |\alpha| \ge 2\pi, t > 0, avec \omega_{j} = \phi_{j} - \psi_{j}, j = 1,2,...m.$$

Vérifions pour commencer la convergence des intégrales représentant $D^{\alpha}K_{j} \times \omega_{j}$: comme f_{N} est à support compact, v (et ses dérivées) a un comportement asymptotique pour $|P| \rightarrow + \infty$, identique à celui de E (et de ses dérivées), plus précisément $|D^{\beta} v(P)| \le C |P|^{2m-n-|\beta|} (1 + |\log|P||)$ (2.37, on a

$$|D^{\beta} v(P)| \le C |P|^{2m-n-|\beta|} (1 + |\log|P||)$$
 (2.37)

(pour
$$|\beta| \leqslant N + 2m-1$$
) d'où (pour $|\gamma| \leqslant N + 2m-m_j-1$)

$$|D_{x}^{\gamma} \psi_{j}(x)| \leq C |x|^{2m-n-m} j^{-|\gamma|} (1 + |\log|x||)$$
 (2.38)

L'inégalité (2.38) est valable avec ψ_j remplacée par ω_j car ϕ_{j} est à support compact ; on en déduit, grâce aux estimations (2.20) que l'identité (2.36) a un sens.

Dans la démonstration du théorème 2.2 nous utiliserons le : Lemme 2.3 : Soit $u \in C^{2m}(\overline{\mathbb{R}^n_+})$, solution de

A
$$u = 0$$
 dans $t \ge 0$

$$B_{j} u = 0$$
 pour $t = 0$ $j = 1, 2, ... m$

On suppose que

- a) $u \in L^2(\mathbb{R}^n_+)$
- b) u et ses dérivées d'ordre $\leq 2m$, considérées comme fonctions de t , sont continues dans]0, + ∞ [à valeurs dans $L_1(\mathbb{R}^{n-1})$
- c) u et ses dérivées d'ordre $\leq 2m$, considérées comme fonctions de t, sont bornées dans $[0, + \infty[$ à valeurs dans $L_2(\mathbb{R}^{n-1})$

Alors $u \equiv 0$.

<u>Démonstration</u>: On effectue une transformation de Fourier partielle par rapport à $x: \hat{u}(\xi,t) = \begin{cases} e^{-2\pi i < x, \xi > u(x,t) dt}; \\ \mathbb{R}^{n-1} \end{cases}$ on déduit des hypothèses sur u, que

- a) $\hat{\mathbf{u}} \in L_2(\mathbb{R}^n_+)$
- b) les dérivées d'ordre \leqslant 2m en t de $\mathbf{\hat{u}}$ sont continues dans R_{\perp}^{n}
- c) les dérivées d'ordre < 2m en t de û considérées comme fonctions de t sont bornées dans $\left[0,+\infty\right[$ à valeurs dans $L_2(\mathbb{R}^{n-1})$.

On a done
$$\begin{cases} A & (2\pi i \xi, D_t) \hat{u}(\xi,t) = 0 & t > 0 \\ B_j & (2\pi i \xi, D_t) \hat{u} \end{bmatrix} & (\xi,0) = 0 & j=1,2,...m & (2.40) \end{cases}$$

et grâce à b) c) ces identités sont vraies ponctuellement.

De (2.39), résulte que pour chaque ξ , $\hat{u}(\xi,t)$ est combinaison linéaire à coefficients polynômes en t des $e^{2\pi i}$ t $\tau_k^+(\xi)$ et $e^{2\pi i}$ t $\tau_k^-(\xi)$ $k=1,2,\ldots m$; la condition a) montre que \hat{u} est combinaison linéaire des seules exponentielles décroissantes en t:

$$e^{2\pi i t \tau_{k}^{+}(\xi)}$$
, k=1,2,...m

et on a

$$\left[B_{j}^{+}\left(\xi, \frac{1}{2\pi i} D_{t}\right) \hat{u}\right] (\xi, 0) = 0 \quad j=1,2,...m \quad (2.40)'$$

Grâce à l'hypothèse (II) sur les B_j , la solution de ce dernier problème est (pour chaque ξ) unique, donc on a

$$\hat{u}$$
 (ξ ,t) = 0 . C.Q.F.D.

Démonstration du théorème 2.2 : Le schéma est le suivant :

i) on vérifie qu'il existe une fonction $g(x,t) \in C^{4m+2}(\mathbb{R}^n_+)$ telle que $D^{\alpha}g = \sum_{j=1}^{m} (D^{\alpha}K_j) \underset{(x)}{\times} \omega_j$ (2.41)

pour $|\alpha| \ge 2m$, et on étudie les propriétés de g.

ii) On considère la fonction $h=u-v-g\ll C^{\frac{1}{4}m+2}(\overline{\mathbb{R}^n_+})$ et on démontre que toutes ses dérivées d'ordre 4m sont $\equiv 0$; donc h est un polynôme d'ordre 4m-1.

iii) On vérifie que les dérivées d'ordre 2m de h sont de carré sommable sur chaque plan $t=C^{t\,e}$, et donc \equiv O grâce à ii) ; d'où D h = O , i.e.

$$D^{\alpha}u - D^{\alpha}v - \sum_{j=1}^{m} (D^{\alpha}K_{j}) * \omega_{j} = 0 \text{ pour } |\alpha| = 2m$$

ce qui achèvera la démonstration.

Vérification de i): L'existence de g est évidente car les conditions de compatibilité entre les dérivées sont vérifiées par les D^{α} K $_{j}$ $_{(x)}$ Ensuite on a

$$A g = 0$$
 dans $t > 0$ (2.42)

$$[D_{x}^{\beta} B_{j}(D)]g(x,0) = D_{x}^{\beta} \omega_{j}(x)$$
 $j=1,2,...m$, $|\beta|=2m-m_{j}$ (2.42)

en effet, comme A est homogène de degré 2m , on déduit de m (2.41) que A g = $\sum_{j=1}^{m} (AK_j) * \omega_j = 0$ (Prop. 2.6) et les identités (2.42)' résultent de la proposition 2.9

On va vérifier que

a)
$$D^{\alpha}g \in L_2(\mathbb{R}^n_+)$$
 pour $2m < |\alpha| < 4m+2$

- b) D^{\alpha} g considérée comme fonction de t est continue dans $\label{eq:bound} \ \]0\,,\,\infty \left[\ \ \grave{a}\ \ valeurs\ \ dans\ \ L_1(R^{n-1})\ \ ,\ pour\ \ 2m+1\ \leqslant \ |\alpha|\ \leqslant \ 4m+1\ \ \right]$
- c) \mathbb{P}^{α} g considérée comme fonction de t est bornée dans $[0, +\infty[\text{ à valeurs dans } L_2(\mathbb{R}^{n-1}) \text{ pour } 2m \leqslant |\alpha| \leqslant 4m+1 \text{ .}$ Le point c) résulte de a) grâce à l'inclusion élémentaire :

Pour établir a) il faut majorer les termes $D^{\alpha}K_{j}$ (%) (x) (x)

$$D^{\alpha} K_{j} \underset{(x)}{*} \omega_{j} = D^{\alpha} \Delta_{x} \frac{n+q-1}{2} K_{j,q} \underset{(x)}{*} \omega_{j}$$

1°) Pour $|\alpha| - m_{j} - 1$ pair et $= 2\nu$ on écrit $D^{\alpha}K_{j} \underset{(x)}{\times} \omega_{j} = (D^{\alpha}\Delta_{x} \xrightarrow{K_{j,q}}) \underset{(x)}{\times} \Delta_{x} \omega_{j} \qquad (2.43)$

2°) Pour $|\alpha|$ -m_{,j}-l impair et =2v+l on écrit

$$D^{\alpha}K_{j} \underset{(x)}{*} \boldsymbol{\omega}_{j} = \sum_{i=1}^{n-1} \left(D^{\alpha} \frac{z}{\partial x_{i}} \Delta_{x} \frac{n+q-1}{2} - \nu - 1 K_{j,q} \right) \underset{(x)}{*} \left(\frac{\partial}{\partial x_{i}} \Delta_{x}^{\nu} \boldsymbol{\omega}_{j}\right)$$

$$(2.43)$$

On applique le lemme 2.2 avec K remplacé successivement par $D^{\alpha''} \Delta_{x}^{\frac{n+q-1}{2} \nu}$ dans le cas l°) et par $D^{\alpha''} \Delta_{i}^{\frac{n+q-1}{2} \nu}$

dans le cas 2°) avec $\alpha = \alpha' + \alpha''$, $|\alpha'| = 2m$; ce sont des dérivées d'ordre $n+q+m_j-2m$ de $K_{j,q}$ et les conditions sur K sont vérifiées (Prop. 2.7) . $\Delta_x^V \omega_j$ dans le cas 1°) et $\frac{\partial}{\partial x_i} \Delta_x^V \omega_j$ dans le cas 2°) sont des fonctions bornées ; par ailleurs comme $\omega_j \in \mathbb{C}^{N+2m-m}j^{-1}(\mathbb{R}^{n-1})$ où \mathbb{N} est aussi grand que l'on veut, on déduit des estimations (2.38) que

 $D_x^{\beta} \omega_j \in H^1(\mathbb{R}^{n-1}) \subset H^{1/2}(\mathbb{R}^{n-1})$, pour $s > |\beta| > 2m-m_j-1$ avec s aussi grand que l'on veut ; le lemme 2.2 montre alors que

$$\mathsf{D}^{\alpha} \; \mathsf{K}_{\mathsf{j}} \; (\overset{\star}{\mathsf{x}}) \omega_{\mathsf{j}} \; \in \; \mathsf{L}_{2}(\mathsf{R}^{\mathsf{n}}_{\mathsf{+}})$$

pour $2m \le |\alpha| \le 2m+k$, k aussi grand que l'on veut.

Le point b) résulte facilement des estimations (2.38) et de la Proposition 2.7 , grâce à l'inclusion

$$L^{1}(R^{n-1}) \times L^{1}(R^{n-1}) < L^{1}(R^{n-1})$$
.

<u>Vérification de ii</u>): On pose w = u-v, d'où h = w-g alors $h \in C^{4m+2}(\overline{\mathbb{R}^n_+}) \quad \text{et}$

A h = 0 pour t > 0 (2.44)
$$\left[D_{x}^{\beta} B_{j}(D) \right] h(x,0) = 0 \quad j=1,2,...m \quad |\beta| = 2m-m_{j}$$

d'où
$$\begin{bmatrix} A D_x^{\beta} h = 0 & pour t > 0 \\ B_j (D) D_x^{\beta} h \end{bmatrix} (x,0) = 0 \quad j=1,2,...m \quad pour |\beta| = 2m$$
Les conditions du lemme 2.3 sont vérifiées par D^{β} h pour

Les conditions du lemme 2.3 sont verifiées par $D_{\mathbf{x}}^{\beta}$ h pour $|\beta|$ = 2m (grâce aux estimations (2.37) et au point i)), on en déduit que

$$D_{\mathbf{x}}^{\beta} h \equiv 0$$
 pour $|\beta| = 2m$ (2.45)

Le point ii) résulte de (2.44) et (2.45) ; on a évidemment $D^{\beta'}$ D_X^{β} $h \equiv 0$ pour $|\beta| = |\beta'| = 2m$; nous allons montrer comment de (2.44) et (2.45) on déduit que $D^{\beta'}$ D_X^{β} $h \equiv 0$ pour $|\beta'| = 2m+1$, $|\beta| = 2m-1$ cela résulte immédiatement (2.45) lorsque $D^{\beta'}$ contient une dérivation en x; il reste à considérer le cas $D^{\beta'} = \left(\frac{\partial}{\partial t}\right)^{2m+1}$, on remarque alors que grâce à (2.44) $D^{\beta'}$ D_X^{β} h est combinaison linéaire de dérivées $D^{\beta'}$ D_X^{β} h avec $|\beta| = |\beta'| = 2m$, qui sont Ξ 0. En répétant 2m fois ce raisonnement on obtient $D^{\beta'}$ $h \equiv 0$ pour $|\beta| = 4m$.

<u>Vérification de iii</u>) C'est une conséquence évidente des majorations (2.37) et du point i) c).

Le théorème est démontré.

III - LES ESTIMATIONS A PRIORI DANS $L_{_{\mathfrak{D}}}$.

1 - On commence par les estimations a priori dans le cas du demiespace et des coefficients constants. On démontre avant tout le

Lemme 3.1 : Si E est la solution élémentaire de l'opérateur

A (v. exposé II.4) slors D^{α} E * $\in \mathcal{L}(L_p(\mathbb{R}^n), L_p(\mathbb{R}^n))$ pour

Démonstration : E est une distribution tempérée et l'on a

$$A E = \delta$$

et donc A D $^{\alpha}$ E = D $^{\alpha}$ δ pour $|\alpha|$ = 2m; on sait déjà que D $^{\alpha}$ E est C $^{\infty}$ dans R n -{0} et homogène de degré -n; par trans-formation de Fourier on obtient

$$A (\xi) (D^{\alpha} E)^{\hat{}} = \xi^{\alpha}$$

$$d'où \qquad (D^{\alpha} E)^{\hat{}} = \frac{\xi^{\alpha}}{A(\xi)} \qquad dans \ \mathbb{R}^{n} - \{0\}$$

et $(D^{\alpha} E)^{\hat{}} \in C^{\infty} (\mathbb{R}^{n} - \{0\})$, $(D^{\alpha} E)^{\hat{}}$ est homogène de degré 0.

Notions
$$C_{\alpha} = \begin{cases} \frac{\xi^{\alpha}}{A(\xi)} & d & \omega_{\xi} \\ |\xi| = 1 \end{cases} dw_{\xi}$$

alors

$$(D^{\alpha} E)^{\hat{}} = \left(\frac{\xi^{\alpha}}{A(\xi)} - C_{\alpha}\right) + C_{\alpha} = f_{\alpha}(\xi) + C_{\alpha}$$

Comme $D^{\alpha} \mathbf{E} = \widehat{\mathcal{F}}_{f_a} + C_a \delta$ on a le lemme.

Théorème 3.1 : Si l'opérateur A et les opérateurs B_j , j=1, ..., m vérifient les hypothèses (I) et (II) de l'exposé II.1, si $u \in W_p^{2m+k}(\mathbb{R}^n_+)$, $k=0,1,2,\ldots$, et si u(P) est nulle pour $|P| \ge 1$, alors on a l'inégalité suivante :

(3.1)
$$\|u\|_{2m+k,p} \le C \left(\|Au\|_{k,p} + \sum_{j=1}^{m} \|B_{j} u\|_{2m+k-m_{j}-1/p, p}\right)$$

où la constante C ne dépend pas de u.

<u>Démonstration</u>. On observe avant tout que les termes de (3.1) sont bien définis, car si $u \in W_p^{2m+k}(\mathbb{R}^n_+)$, alors $Au \in W_p^k(\mathbb{R}^n_+)$ et B_j $u \in W_p^{2m+k-m}j^{-1/p}(\mathbb{R}^{n-1})$.

Il suffit évidemment de démontrer l'inégalité dans le cas où $u \in C^{\infty}(\overline{\mathbb{R}^n_+})$, et même, grâce à la propriété du support de u, il suffit de vérifier les inégalités

(3.2)
$$\|D^{\beta} u\|_{0,p} \le C \left(\|Au\|_{k,p} + \sum_{j=1}^{m} \|B_{j} u\|_{2m+k-m_{j}-1/p,p}\right)$$

pour $|\beta| = 2m+k$.

Pour simplifier on pose Au = f(x,t) et $B_ju = \phi_j(x)$; pour démontrer les inégalités (3.2) on utilise la "formule de représentation" (2.36) :

$$D^{\beta} u(x,t) = D^{\beta} v(x,t) + \sum_{j=1}^{m} (D^{\beta} K_{j}) \underset{(x)}{*} \omega_{j}$$
pour $|\beta| = 2m+k$.

a) Majoration de $\|D^{\beta} v\|_{0,p}$: grâce à (2.34) on a $D^{\beta} v = D^{\alpha} E * D^{\beta-\alpha} f_{N} \quad \text{evec} \quad |\alpha| = 2m ;$

on en déduit grâce au lemme 3.1, l'inégalité :

(3.3)
$$\|D^{\beta} v\|_{0,p} \leq C_1 \|f_N\|_{k,p} \leq C_2 \|Au\|_{k,p}$$

b) Majoration de $\|(D^{\beta}K_{j}) \times \omega_{j}\|_{0,p}$: le même raisonnement qu'am point a) i) de la démonstration du théorème 2.2 montre que l'on peut exprimer $(D^{\beta}K_{j}) \times \omega_{j}$ à l'aide des noyaux $K_{j,q}$ et l'on obtient grâce au lemme 2.2 la majoration suivante

$$(3.4) \quad \| (D^{\beta} K_{j}) \underset{(x)}{\times} \omega_{j} \|_{o,p} \leq C_{3} \quad \sum_{|\gamma|=2m+k-m_{j}-1} \left[D_{x}^{\gamma} (\phi_{j}-\psi_{j}) \right] |_{1-1/p,p}$$

où l'on a posé

$$|[\phi]|_{1-1/p,p} = \left\{ \int_{\mathbb{R}^{n-1} \times \mathbb{R}^{n-1} |x-y|^{n+p-2}} ||\phi(x) - \phi(y)|^{p} dx dy \right\}^{1/p}$$

On a grâce au théorème 1.1 et à (3.3) la majoration

(3.5) $|[D_{\mathbf{x}}^{\mathbf{y}}\psi_{\mathbf{j}}]|_{1-1/p}$, $p < C_{4}$ ||Au|| avec $|\gamma|=2m+k-m_{\mathbf{j}}-1$ et les inégalités (3.2) résultent de (3.3), (3.4), (3.5) . C.Q.F.D.

2 - On donne les estimations a priori dans le cas du demi-espace et des coefficients variables.

A présent A est un opérateur elliptique d'ordre 2m à coefficients $C^\infty(\overline{\mathbb{R}^n_+})$ à valeurs complexes et les B_j sont m opérateurs-frontière d'ordre $m_j < 2m-1$ respectivement, à coefficients $C^\infty(\mathbb{R}^{n-1})$ à valeurs complexes.

On fait les hypothèses suivantes :

(I) Si P = (x,0) $\in \mathbb{R}^{n-1}$, si A° désigne la partie homogène de degré 2m de A , alors A°(P,D) est proprement elliptique.

(II) Si B° désigne la partie homogène de degré m; de B; , alors le système $\left\{B^{\circ}_{j}(x,D)\right\}_{j=1}^{m}$ recouvre A°(P,D) avec P = (x,0). On pose $\sum (R) = \{P = (x,t) \in \mathbb{R}^{n}, x \in \mathbb{R}^{n-1}, t \geq 0, |P| \leq R\}$

Théorème 3.2 : Il existe $r_1 < +\infty$ tel que pour $r < r_1$ toute $u \in \mathbb{W}_p^{2m}(\mathbb{R}_+^n) \quad \underline{\text{à support dans}} \quad \sum (r) \text{, avec } \text{Au} \in \mathbb{W}_p^k(\mathbb{R}_+^n) \quad \underline{\text{et}}$ $B_j u \in \mathbb{W}_p^{2m+k-m} j^{-1/p} \quad (\mathbb{R}^{n-1}) \text{, } k=0,1,2,\ldots, \quad \underline{\text{soit un élément de}}$

 $^{2m+k}_{p}$ $^{(\mathbb{R}^{n}_{+})}$, l'inégalité suivante ayant lieu :

(3.6)
$$\|u\|_{2m+k,p} \le c \left\{ \|Au\|_{k,p} + \sum_{j=1}^{m} \|B_{j}u\|_{2m+k-m_{j}-1/p,p} + \|u\|_{0,p} \right\}$$

où la constante C ne dépend pas de u .

Démonstration . On démontre d'abord l'inégalité (3.6) pour

 $u \in W_p^{2m+k}(\mathbb{R}^n_+)$. On applique le théorème 3.1 aux opérateurs

$$A^{\circ}(0,D)$$
, $B_{1}^{\circ}(0,D)$, ..., $B_{m}^{\circ}(0,D)$ et on a donc

(3.7)
$$\| u \|_{2m+k,p} \le C \left\{ \| f \|_{k,p} + \sum_{j=1}^{m} \| \phi_j \|_{2m+k-m_j-1/p,p} \right\}$$

avec

$$f = A^{\circ}(0,D)u = A(P,D)u + \left\{A^{\circ}(0,D) - A^{\circ}(P,D)\right\}u - L(P,D)u$$

$$\phi_{j} = B_{j}^{\circ}(0,D)u(x,0) = B_{j}(x,D)u(x,0) - \left\{B_{j}^{\circ}(0,D) - B_{j}^{\circ}(x,D)\right\}u(x,0)$$

$$- R_{j}(x,D)u(x,0)$$

où
$$L = A - A^{\circ}$$
 et $R_{j} = B_{j} - B_{j}^{\circ}$, $j=1,\ldots,m$.

On vérifie facilement les inégalités suivantes

$$\|L(P,D)v\|_{k,p} \le C_1 \|u\|_{2m+k-1,p}$$

$$\left\| \left\{ A^{\circ}(0,D) - A(P,D) \right\} u \right\|_{k,p} \leq C_{2} \left\{ r \|u\|_{2m+k,p} + \|u\|_{2m+k-1,p} \right\}$$

$$\|R_{j}(x,D)u(x,0)\|_{2m+k-m_{j}-1/p,p} \leq c_{3} \|u\|_{2m+k-1,p} , j=1,...,m$$

$$\|\{B_{j}^{o}(0,D) - B_{j}^{o}(x,D)\}u(x,0)\|_{2m+k-m_{j}-1/p,p} \leq$$

$$\leq C_{4} \left\{ r \|u\|_{2m+k,p} + \|u\|_{2m+k-1,p} \right\}$$
 $j=1,2,...m$

d'où grâce à la proposition 1.5, on déduit de (3.7) :

$$\|u\|_{2m+k,p} \leq c_{5} \left\{ \|Au\|_{k,p} + \sum_{j=1}^{m} \|B_{j}u\|_{2m+k-m_{j}-1/p,p} + \|u\|_{0,p} + c_{6} r \|u\|_{2m+k,p} \right\}.$$

On choisit r_1 tel que pour $r \leqslant r_1$, on a C_5 C_6 $r \leqslant \frac{1}{2}$ et on a (3.6) pour $u \leqslant W_p^{2m+k}(\mathbb{R}_+^n)$, $k=0,1,2,\ldots$.

Pour achever la démonstration du théorème il suffit de démontrer le lemme suivant de régularisation.

Lemme 3.2: Si $u \in W_p^{2m}(\mathbb{R}_+^n)$ à support dans $\sum (r)$ est telle que $Au \in W_p^1(\mathbb{R}_+^n)$ et $B_ju \in W_p^{2m+1-m}j^{-1/p}(\mathbb{R}^{n-1})$ alors $u \in W_p^{2m+1}(\mathbb{R}_+^n)$.

<u>Démonstration</u>: On utilise l'inégalité (3.6) pour k=0 et la méthode des quotients différentiels :

Pour <u>h</u> assez petit et i=1,2,...,n-1, $\Delta_{i,h}u$ a son support dans \sum (r) et par conséquent on a :

$$\|\Delta_{i,h}u\|_{2m,p} \leq c \left\{ \|A\Delta_{i,h}u\|_{1,p} + \sum_{j=1}^{m} \|B_{j}\Delta_{i,h}u\|_{2m+1-m_{j}-1/p,p} + \|\Delta_{i,h}u\|_{0,p} \right\}$$

$$(3.8)$$

Majorons les termes de droite ; on vérifie aisément les inégalités

$$\|A \Delta_{i,h} u - \Delta_{i,h} Au\|_{1,p} \le C \|u\|_{2m,p}$$

$$\|B_{j}\Delta_{i,h}u - \Delta_{i,h}B_{j}u\|_{2m+1-m_{j}-1/p,p} \le C \|u\|_{2m,p}$$
 $j=1,...,m$

les constantes étant indépendantes de h.

On obtient alors de (3.8):

$$\|\Delta_{i,h}u\|_{2m,p} \le c \left\{ \|Au\|_{1,p} + \sum_{j=1}^{m} \|B_{j}u\|_{2m+1-m_{j}-1/p,p} + \|u\|_{0,p} \right\}$$

et donc $\Delta_{i,h}$ u demeure dans un ensemble borné de $W_p^{2m}(\mathbb{F}_+^n)$.

Comme $\mathbb{V}_p^{2m}(\mathbb{R}_+^n)$ est réflexif (car l \infty) on en déduit fai-

sant h -> 0 que

$$\frac{\partial u}{\partial x_i} \in W_p^{2m}(\mathbb{R}^n_+)$$
 $i=1,2,\ldots,n-1$

Comme l'opérateur A est elliptique et $Au \subset W_p^1(\mathbb{R}^n_+)$ on en déduit

que
$$\frac{\partial^{2m} u}{\partial t^{2m}} \leq W_p^1(\mathbb{R}_+^n)$$
 et donc $u \in W_p^{2m+1}(\mathbb{R}_+^n)$.

3 - On démontre quelques estimations dans L_p sans conditions aux limites, c.à.d. "à l'intérieur".

On commence par le théorème suivant analogue au théorèms 3.1, où A est un opérateur elliptique à coefficients constants, comme dans 1.

Théorème 3.3 : Si l'opérateur A vérifie l'hypothèse (I) de $\frac{1 \cdot \exposé}{|P| > 1} \quad \text{in exposé} \quad \text{II.l.}, \quad \frac{\sin}{\mu} \quad \text{in exposé} \quad \text{in expose} \quad \text{in$

(3.9) $\|u\|_{2m,p} \le C \|Au\|_{0,p}$;

si de plus Au $\in \mathbb{W}_p^k(\mathbb{R}^n)$, alors $u \in \mathbb{W}_p^{2m+k}(\mathbb{R}^n)$ et l'on a l'inégalité

(3.10) $\|u\|_{2m+k,p} \le C \|Au\|_{k,p}$.

Démonstration : Il suffit évidemment de démontrer (3.9) po ur $u \in C^{\infty}(\mathbb{R}^n) \quad \text{et même, grâce à la propriété du support de } u \ ,$ il suffit de vérifier les inégalités

(3.11) $\|D^{\beta_u}\|_{0,p} \leqslant C \|Au\|_{0,p}$ pour $|\beta| = 2m$.

Il suffit alors d'observer que u = E *Au et d'appliquer le lemme 3.1 pour avoir (3.11).

Pour démontrer l'autre partie du théorème il suffit d'utiliser la méthode des quotients différentiels.

C.Q.F.D.

Soit à présent A un opérateur elliptique d'ordre 2m à coefficients $C^{\infty}(\mathbb{R}^n)$ à valeurs complexes. A l'aide du raisonnement utilisé dans la démonstration du théorème 3.2 on peut

déduire du théorème 3.3 le théorème suivant.

où la constante C ne dépend pas de u.

4 - On peut établir les estimations a priori dans $L_p(\Omega)$ avec Ω ouvert borné et "très régulier" de R^n ; on note x le point générique de R^n .

 $A = A(x,D) = \sum_{\alpha \in \mathbb{Z}} a_{\alpha}(x) D^{\alpha}$ $|\alpha| \leq 2m$ est un opérateur elliptique d'ordre 2m à coefficients $C^{\infty}(\overline{\Omega})$ à valeurs complexes ; on fait sur A l'hypothèse suivante :

(I) pour chaque $x \in \Gamma$, $A^{O}(x,D)$ est proprement elliptique, c.à.d. $A^{O}(x,D)$ est elliptique dans $\overline{\Omega}$ et pour chaque $\xi \in \mathbb{R}^{n} - \{0\}$ parallèle à Γ dans x, et chaque $v \in \mathbb{R}^{n} - \{0\}$ normal à Γ dans x le polynôme $A^{O}(\tau) = A^{O}(x,\xi+\tau v)$ a m racines λ $k^{+}(x,\xi,v)$ k=1,..., avec parties imaginaires positives.

Si Γ est connexe l'ellipticité de A et la continuité des

Si A vérifie la condition (I) on dit que A est proprement elliptique dans $\overline{\Omega}$; comme on l'a observé dans l'exposé II, Remarque 2.1, la condition (I) n'est une restriction seulement, que lorsque n=2.

 $B_{j} = B_{j}(x,D) = \sum_{|\mu| \leq m_{j}} b_{j,\mu}(x) D^{\mu} \qquad j=1,\dots,m$ sont m opérateurs à coefficients $C^{\infty}(\Gamma)$ à valeurs complexes d'ordre $m_{j} \leq 2m-1$, qui sont dits "opérateurs-frontière". On fait sur le système $\left\{B_{j}\right\}_{j=1}^{m}$ l'hypothèse suivante :

(II) Les B_j , $j=1,\ldots,m$, recouvrent A, i.e. pour chaque $x \in \Gamma$, le système $\left\{B_j^O(x,D)\right\}_{j=1}^m$ recouvre l'opérateur $A^O(x,D)$ c.à.d. pour chaque $\xi \in \mathbb{R}^n$ - $\{0\}$ parallèle à Γ dans x et chaque $v \in \mathbb{R}^n$ - $\{0\}$ normal à Γ dans x, les polynômes $B_j^O(x,\xi+\tau v) = B_j^O(\tau)$, $j=1,\ldots,m$ sont linéairement indépendants mod ulo le polynôme

$$A^{+}(\tau) = \prod_{k=1}^{m} (\tau - \lambda_{k}^{+}(x_{0}, \xi, v)) .$$

Si l'on pose

$$A^{-}(\tau) = \prod_{k=1}^{m} (\tau - \lambda_{k}^{-}(x_{i}; \xi, v))$$

il est facile de vérifier que les polynômes $B_j^{\circ}(\tau)$, j=1,...,m sont aussi linéairement indépendants modulo $A^{-}(\tau)$.

On démontre le théorème suivant :

Théorème 3.5 : Sous les hypothèses (I), (II), si $u \in W_p^{2m}(\Omega)$, $Au \in W_p^k(\Omega) \quad B_j u \in W_p^{2m+k-m} j^{-1/p}(\Gamma) , j=1,\ldots,m, k=0,1,2,\ldots,$ alors $u \in W_p^{2m+k}(\Omega)$ et l'inégalité suivante a lieu :

$$\|u\|_{2m+k,p} \le C \left\{ \|Au\|_{k,p} + \sum_{j=1}^{m} \|B_{j}u\|_{2m+k-m_{j}-1/p} + \|u\|_{0,p} \right\}$$

où la constante C ne dépend pas de u .

<u>Démonstration</u>: En utilisant les propositions 1.1, 1.2 et 1.5 on se ramène par cartes locales au cas du demi-espace et on applique le théorème 3.2, ou bien on se ramène au cas de \mathbb{R}^n et on applique le théorème 3.4.

IV - FORMULES DE GREEN .

La démonstration des formules de Green réduit le problème au cas d'une demi-boule fermée $\sum \subset \mathbb{R}^n_+$ où $\sum = \{P = (x,t); |P| < R, t > 0\}$. On va donc commencer par ce cas.

1 - Soient

$$B_{j} = B_{j}(x,D) = \sum_{|\mu| \leq m_{j}} b_{j\mu}(x) D^{\mu}$$

$$(4.1)$$

$$= \sum_{|\mu'| + \mu_{n} \leq m_{j}} b_{j\mu}(x) D_{x}^{\mu'} D_{t}^{\mu_{n}} \qquad j=1,...,m$$

$$\mu = (\mu', \mu_{n})$$

des opérateurs définis sur $\partial_1 \Sigma = \{ P \in \overline{\Sigma} ; t = 0 \}$; on fait les hypothèses suivantes :

- (i) les coefficients $b_{ju}(x) \in C^{\infty}(\partial_{1}\Sigma)$ sont à valeurs complexes;
- (ii) pour $j=1,\ldots,m$ on a $m_j \leqslant 2m-1$.

Introduisons les définitions suivantes :

Définition 4.1 : On dit que le système d'opérateurs $\left\{B_{j}\right\}_{j=1}^{m}$ est un système normal dans ∂_{1} si les opérateurs B_{j} vérifient les conditions (i), (ii) et

(iV)
$$\underline{si} \mu = (0, \dots, 0, m_j)$$
, alors on a $b_{j\mu}(x) \neq 0$.

Définition 4.2 : On dit que le système d'opérateurs $\left\{\mathcal{D}_{j}\right\}_{j=1}^{2m}$ est un système de Dirichlet d'ordre 2m dans $\partial_{1}\sum$ s'il est normal et si $m_{j} = j-1$, où m_{j} est l'ordre de \mathcal{D}_{j} , $j = 1, \dots, 2m$.

De la définition 4.2 il découle que les opérateurs $\mathfrak{P}_{\mathbf{j}}$ peuvent être écrits de la manière suivante :

(4.2)
$$\mathcal{D}_{j} = \mathfrak{D}_{jj}^{j-1} + \sum_{h=1}^{j-1} \mathfrak{D}_{jh}^{h-1} \quad j=1,\ldots,2m$$

avec \mathfrak{D}_{jj} fonctions $\neq 0$ de $C^{\infty}(\mathfrak{D}_{1})$ et \mathfrak{D}_{jh}^{h-1} opérateurs tangentiels (1) d'ordre $\leq j-h$ dans \mathfrak{D}_{1} à coefficients $C^{\infty}(\mathfrak{D}_{1})$.

Proposition 4.1: Si $\left\{B_{j}\right\}_{j=1}^{m}$ est un système normal dans \mathfrak{D}_{1} il existe un système normal dans \mathfrak{D}_{1} $\sum_{j=1}^{m}$ tel que $\left\{B_{j}\right\}_{j=1}^{m}$

U $\left\{C_{j}\right\}_{j=1}^{m}$ soit un système de Dirichlet d'ordre $2m$, si l'on numérote les opérateurs dans un ordre correct.

En effet il suffit de prendre

$$C_{j} = D_{t}^{\mu_{j}} \qquad j=1,\ldots,m$$

de façon que les 2m nombres m_j , μ_j , $j=1,\ldots,m$ parcourent l'intervalle $\left[0,2m-1\right]$ de Z .

Proposition 4.2: Si $\left\{ \mathcal{D}_{\mathbf{j}} \right\}_{\mathbf{j}=1}^{2m}$ est un système de Dirichlet, alors pour chaque système $\left\{ \phi_{\mathbf{j}} \right\}_{\mathbf{j}=1}^{2m}$ de fonctions de $C^{\infty}(\partial_{\mathbf{j}} \Sigma)$ il existe

⁽¹⁾ Un opérateur qui contient seulement des dérivées en x est dit "opérateur tangentiel".

une fonction $v \in C^{\infty}(\overline{\Sigma})$ telle que

$$\mathfrak{D}_{j} \quad v = \phi_{j} \qquad j=1,\ldots,2m$$

En utilisant (4.3) on voit que les dérivées en t de v sont déterminées par les identités :

$$v = \frac{\phi_1}{\Theta_{11}} = \psi_1$$

$$D_t v = (\phi_2 - \Theta_{21} \psi_1) \frac{1}{\Theta_{22}} = \psi_2$$

(4.3)

$$D_{t}^{2m-1} \quad v = (\phi_{2m} - \sum_{h=1}^{2m-2} \Theta_{2m,h} \quad \psi_{h}) \frac{1}{\Theta_{2m,2m}} = \psi_{2m} ;$$

il est alors facile de trouver une fonction $\mathbf{v}\in C^\infty(\overline{\Sigma})$ qui $\mathbf{v}\text{\'erifie les identit\'es (4.3) et on voit ais\'ement que } \mathbf{j} \ \mathbf{v} = \phi_{\mathbf{j}} \ ,$ $\mathbf{j}=1,\ldots,2m \ .$

Proposition 4.3: Si $\{\mathcal{D}_j\}_{j=1}^{2m}$ et $\{\mathcal{D}_j^{\#}\}_{j=1}^{2m}$ sont deux systèmes de

Dirichlet, alors on a

(4.4)
$$\mathfrak{D}_{j}^{\#} = \sum_{s=1}^{j} \wedge_{js} \mathfrak{D}_{s}$$
 $j=1,\ldots,2m$

(4.5)
$$\mathcal{D}_{j} = \sum_{s=1}^{j} \wedge_{js}^{\#} \mathcal{D}_{s}^{\#}$$
 $j=1,...,2m$

Démonstration : Il suffit de vérifier (4.4); il suffit même de

prendre
$$\mathcal{D}_{j}^{\#} = D_{t}^{j-1}$$
, $j=1,\ldots,2m$; en effet si l'on a
$$\mathcal{D}_{j}^{\#} = \sum_{h=1}^{j} \mathcal{D}_{jh}^{h-1} \qquad j=1,\ldots,2m$$

et
$$D_{t}^{h-1} = \sum_{s=1}^{n} \Gamma_{hs} \quad \mathcal{D}_{s} \quad h=1,...,2m$$

alors on obtient

$$\mathcal{D}_{j}^{\#} = \sum_{h=1}^{j} \Theta_{jh}^{\#} D_{t}^{h-1} = \sum_{h=1}^{j} \Theta_{jh}^{\#} \sum_{s=1}^{h} \Gamma_{hs} \mathcal{D}_{s}$$
$$= \sum_{s=1}^{j} \Lambda_{js} \mathcal{D}_{s}$$
$$j=1,\dots,2m$$

où $\bigwedge_{jj} = \bigoplus_{jj}^{\#} \Gamma_{jj}$ est une fonction $\neq 0$ de $C^{\infty}(\partial_{1})$ et $\bigwedge_{js} = \sum_{h=s}^{r} \bigoplus_{jh}^{\#} \Gamma_{hs}$ est un opérateur tangentiel d'ordre $\leq (j-h) + (h-s) = j-s$ à coefficients $C^{\infty}(\partial_{1})$.

On va donc montrer (4.6) par récurrence.

Pour h = 1 (4.6) est vraie.

Supposons que (4.6) soit vraie pour $h < k \le 2m$ et démontrons (4.6) pour h = k. De (4.2) on déduit

$$\Theta_{kk} \quad D_{t}^{k-1} = \mathcal{Z}_{k} - \sum_{\substack{h=1\\ k-1}} \Theta_{kh} \quad D_{t}^{h-1}$$

$$= \mathcal{Z}_{k} - \sum_{\substack{h=1\\ k-1}} \Theta_{kh} \sum_{\substack{s=1\\ k-1}} \Gamma_{hs} \mathcal{D}_{s}$$

$$= \mathcal{D}_{k} - \sum_{\substack{s=1\\ s=1}} \left(\sum_{\substack{h=s}} \Theta_{kh} \Gamma_{hs} \right) \mathcal{D}_{s}$$

et on a donc

$$D_{t}^{k-1} = \frac{1}{\Theta_{kk}} \mathcal{D}_{k} - \frac{1}{\Theta_{kk}} \sum_{s=1}^{k-1} \begin{pmatrix} s-1 \\ \sum_{h=s} \Theta_{kh} & hs \end{pmatrix} \mathcal{D}_{s}.$$

$$C.Q.F.D.$$

2 - On va étudier certaines généralisations des formules bien connues de Green.

Soit
$$A = A(P,D) = \sum_{\alpha \in \mathbb{Z}} a_{\alpha}(x,t) D^{\alpha}$$

$$= \sum_{\alpha \in \mathbb{Z}} a_{\alpha}(x,t) D_{x}^{\alpha} D_{t}^{\alpha}$$

$$= \sum_{\alpha \in \mathbb{Z}} a_{\alpha}(x,t) D_{x}^{\alpha} D_{t}^{\alpha}$$

$$= \alpha = (\alpha', \alpha_{n})$$

un opérateur différentiel défini dans $\overline{\Sigma}$; on fait les hypothèses suivantes :

- (i) les coefficients $a_{\alpha}(x,t) \in C^{\infty}(\overline{\Sigma})$ et sont à valeurs complexes ;
- (ii) A est elliptique dans $\overline{\Sigma}$.

Soient u et v deux fonctions de $C^{\infty}(\overline{\Sigma})$, nulles dans un voisinage de $\partial_2 \Sigma = \{P; |P| = R, t > 0\}$; alors, grâce à (i), en intégrant par parties on obtient

(4.8)
$$\int_{\Sigma} A u \overline{v} dx dt = \sum_{|\alpha| \leq 2m} \int_{\Xi} a_{\alpha}(x,t) D^{\alpha}u(x,t) \overline{v(x,t)} dx dt$$

$$= \sum_{|\alpha'| + \alpha_{n} \leq 2m} (-1)^{|\alpha'|} \int_{\Sigma} D_{t}^{\alpha} u(x,t) \overline{D_{x}^{\alpha'}(a_{\alpha}(x,t)) v(x,t)} dx dt$$

$$= \sum_{\substack{|\alpha'|+\alpha_{n} \leqslant 2m \\ \alpha_{n} \geqslant 1}} (-1)^{|\alpha'|} \int_{D_{t}} \left[D_{t}^{\alpha_{n}-1} u(x,t) D_{x}^{\alpha'} (\overline{a_{\alpha}(x,t)}) v(x,t) \right]_{t=0} dx + \sum_{\substack{|\alpha'|+\alpha_{n} \leqslant 2m \\ \leq \gamma_{n} \geqslant 1}} (-1)^{|\alpha'|+1} \int_{\sum D_{t}} D_{t}^{\alpha_{n}-1} u(x,t) D_{t}^{\alpha'} (\overline{a_{\alpha}(x,t)}) v(x,t) dx dt + \sum_{\substack{|\alpha'|\leqslant 2m \\ |\alpha| \leqslant 2m }} (-1)^{|\alpha'|} \int_{\sum u(x,t)} D_{x}^{\alpha'} (\overline{a_{\alpha}(x,t)}) v(x,t) dx dt + \sum_{\substack{2m \\ s=1}} \int_{D_{t}} \left[D_{t}^{s-1} u(x,t) D_{\alpha}^{\alpha'} (\overline{a_{\alpha}(x,t)}) v(x,t) \right]_{t=0} dx$$

(4.9) $N_{2m-s+1} = \sum_{\substack{|\alpha| \leq 2m \\ |\alpha| \leq 2m}} (-1)^{|\alpha|-s} D_t^{\alpha} = D_x^{\alpha} (\frac{1}{\alpha}(x,t)) v(x,t)$ Des hypothèses (i) et (1i) il découle que le système $\{N_{2m-s+1}\}_{s=1}^{n}$ est un système de Dirichlet.

On pose

A'
$$v = \sum_{\alpha \in 2m} (-1)^{|\alpha|} D^{\alpha}(\overline{a_{\alpha}(x,t)}) v)$$

et on dit que A' est <u>l'adjoint formel de A</u> car on a

$$\int_{\Sigma} Au \, \overline{v} \, dx \, dt = \int_{\Sigma} u \, \overline{A^{\prime} \, v} \, dx \, dt \quad \text{pour } u, v \in C_{O}^{\infty}(\Sigma)$$

Si l'on se donne un système d'opérateurs $\left\{B_{j}\right\}_{j=1}^{m}$ vérifians

les hypothèses (i) - (iV) de l, et si $\left\{ \begin{smallmatrix} C \end{smallmatrix}_j \right\}_{j=1}^m$ est un système normal dans $\left\{ \begin{smallmatrix} O \end{smallmatrix}_j \right\}_{j=1}^m$ $\left\{ \begin{smallmatrix} C \end{smallmatrix}_j \right\}_{j=1}^m$ soit un système

de Dirichlet (si l'on numérote les opérateurs dans un ordre correct)

que l'on notera $\left\{ \mathfrak{D}_{j} \right\}_{j=1}^{2m}$, alors, grâce à la prop.4.3., on a $\mathbb{D}_{t}^{s-1} = \sum_{\rho=1}^{s} \Lambda_{s\rho} \mathfrak{D}_{\rho} \qquad s = 1, \dots, 2m.$

En observant que u(x,0) et v(x,0) sont à support compact dans $\partial_1 \Sigma$ et en notant $\Lambda^*_{s\rho}$ l'adjoint formel de $\Lambda_{s\rho}$ on obtient :

$$(4.10) \qquad \int_{\Sigma} Au \, \overline{v} \, dx \, dt - \int_{\Sigma} u \, \overline{A' \, v} \, dx \, dt =$$

$$= \sum_{s=1}^{2m} \int_{\partial_{1} \Sigma} \left[D_{t}^{s-1} \, u(x,t) \, \overline{N_{2m-s+1}} \, \overline{v(x,t)} \right]_{t=0} \, dx$$

$$= \sum_{\rho=1}^{2m} \int_{\partial_{1} \Sigma} \left[\partial_{\rho} \, u(x,t) \right]_{t=0} \, \sum_{s=\rho}^{2m} \bigwedge_{s} \left[\overline{N_{2m-s+1}} \, v(x,t) \right]_{t=0} \, dx$$

On vérifie aisément que le système d'opérateurs

$$\mathfrak{D}_{2m-\rho+1}' = \sum_{s=\rho}^{2m} \Lambda_{s\rho}' \quad \mathbb{N}_{2m-s+1} \\
= \tilde{\Lambda}_{\rho\rho} \quad \mathbb{N}_{2m-\rho+1} + \sum_{s=\rho+1}^{2m} \Lambda_{s\rho}' \quad \mathbb{N}_{2m-s+1} \\
= (-1)^{|\alpha|-\rho} \overline{\Lambda_{(x) a_{(0,...,0,2m)}(x,0)}} \quad \mathbb{D}_{t}^{2m-\rho} + \\
+ \sum_{j=1}^{2m-\rho} \Theta_{2m-\rho+1,j} \quad \mathbb{D}_{t}^{j-1} \quad \rho = 1,...,2m, \\
\text{avec } \Lambda_{\rho\rho} \quad (x) \quad \text{fonction} \neq 0 \quad \text{de} \quad \mathbb{C}^{\infty}(\tilde{\partial}_{1}\Sigma), \quad a_{(0,...,0,2m)}(x,0)$$

⁽¹⁾ $\bigwedge_{s\rho}$ est défini par l'identité $\int_{\partial_{1}} \sum_{\lambda_{1}} \bigwedge_{s\rho} \phi \overline{\psi} dx = \int_{\partial_{1}} \int_{s\rho} \overline{\psi} \overline{\lambda'_{s\rho}} \psi dx$ pour ϕ, ψ $C^{\infty}(\partial_{1} \Sigma)$ nulles au bord.

fonction $\neq 0$ de $C^{\infty}(\partial_{1}\Sigma)$ grâce à (i) et (ii), et $\Theta_{2m-\rho+1,j}$ opérateur tangentiel d'ordre $\leq 2m-\rho+1$ à coefficients $C^{\infty}(\partial_{1}\Sigma)$, est un système de Dirichlet d'ordre 2m.

Si l'on note B; les $\mathcal{D}'_{2m-\rho+1}$ qui correspondent aux $\mathcal{D}_{\rho} = C_{j}$ et $C_{j}^{!}$ les $-\mathcal{D}'_{2m-\rho+1}$ qui correspondent aux $\mathcal{D}_{\rho} = B_{j}$ on a la <u>formule de Green</u> suivante :

$$\int_{\Sigma} A u \overline{v} dx dt - \int_{\Sigma} u \overline{A' v} dx dt =$$

$$= \int_{j=1}^{2m} \int_{\partial_{1}^{\infty}} \left[\mathcal{D}_{p} u(x,t) \overline{\mathcal{D}'}_{2m-p+1} v(x,t) \right]_{t=0} dx$$

$$= \int_{j=1}^{m} \int_{\partial_{1}^{\infty}} C_{j} u \overline{B'_{j} v} dx - \int_{j=1}^{m} \int_{\partial_{1}^{\infty}} B_{j} u \overline{C' v} dx ;$$

de la construction faite il découle que si C_j est d'ordre μ_j , alors B_j^* est d'ordre $m_j^*=2m-\mu_j-1$ et C_j^* est d'ordre $2m-m_j-1$, $j=1,\ldots,m$.

3 - On peut étendre les résultats précédents aux opérateurs. A et $\left\{B_j\right\}_{j=1}^m$ considérés dans l'Introduction (v. exposé I, 2 et aussi exposé III,4).

- (i) pour $j \neq k$ on a $m_j \neq m_k$;
- (ii) Γ est partout "non caractéristique" pour chaque B_j , c.a. d. pour chaque $j=1,\ldots,m$ et chaque $x\in\Gamma$ le polynôme caractéristique

$$B_{j}^{\circ}(x,v) = \sum_{|\mu|=m_{j}} b_{j\mu}(x) v^{\mu}$$

est $\neq 0$ pour $v \in \mathbb{R}^n - \{0\}$ vecteur normal à Γ surpoint x.

Définition 4.4 : On dit que le système d'opérateurs-frontières

$$\left\{ \begin{array}{c} \mathcal{D}_{\mathbf{j}} \\ \mathbf{j} = 1 \end{array} \right. \quad \underline{\text{est un système de Dirichlet d'ordre}} \quad \underline{\text{si}}$$

- (i) $\left\{ \mathcal{D}_{j} \right\}_{j=1}^{2m}$ est un système normal;
- (ii) $m_j = j-1$, j = 1,...,2m.

On peut démontrer le théorème suivant.

Théorème 4.1.a) Si $\left\{B_{j}\right\}_{j=1}^{m}$ est un système normal il existe un système normal $\left\{C_{j}\right\}_{j=1}^{m}$ tel que $\left\{B_{j}\right\}_{j=1}^{m}$ $\left\{C_{j}\right\}_{j=1}^{m}$ soit un système de Dirichlet si l'on numérote les opérateurs dans un ordre correct.

b) Si $\{\mathcal{D}_j\}_{j=1}^{2m}$ est un système de Dirichlet, alors pour chaque système $\{\phi_j\}_{j=1}^{2m}$ de fonctions de $C^{\infty}(\Gamma)$ il existe une fonction $\mathbf{v} \in C^{\infty}(\Omega)$ telle que

$$\mathfrak{D}_{j} \quad v = \phi_{j} \qquad \qquad j = 1, \dots, 2m.$$

c) Si
$$\{\mathcal{D}_{j}\}_{j=1}^{2m}$$
 et $\{\mathcal{D}_{j}\}_{j=1}^{2m}$ sont deux systèmes de

Dirichlet d'ordre 2m, alors on a

$$\mathcal{D}_{j} = \sum_{s=1}^{j} \Lambda_{js} \mathcal{D}_{s} \qquad j = 1, \dots, 2m$$

$$\mathcal{D}_{j} = \sum_{s=1}^{j} \Lambda_{js}^{\#} \mathcal{D}_{s}^{\#} \qquad j = 1, \dots, 2m$$

d) Si $\left\{ \mathfrak{D}_{\mathbf{j}} \right\}_{\mathbf{j}=1}^{2m}$ est un système de Dirichlet d'ordre 2m, alors pour chaque système $\left\{ \phi_{\mathbf{j}} \right\}_{\mathbf{j}=1}^{2m} \in \mathbb{R}$ \mathbb{R} $\mathbb{R$

$$\mathfrak{D}_{j} \quad \mathbf{v} = \phi_{j} \qquad \qquad \mathbf{j} = 1, \dots, 2m,$$

1'application $\{\phi_{j}\}_{j=1}^{2m}$ v étant continue de

non entier lorsque $p \neq 2$.

Pour démontrer les points a), b), c) il suffit de se ramener

⁽¹⁾ Un opérateur défini sur Γ et qui opère de $C^{\infty}(\Gamma)$ dans $C^{\infty}(\Gamma)$ est dit "opérateur tangentiel à Γ ".

par cartes locales à la demi-boule \sum et d'utiliser les propositions 4.1, 4.2, 4.3 ; pour démontrer d) grâce à c) il suffit de considérer le cas $\mathfrak{D}_{j} = \gamma_{j-1}$, $j=1,\ldots,2m$; alors, du théorème 1.1, on déduit le résultat.

Si u,
$$v \in C^{\infty}(\overline{\Omega})$$
 posons $(u, v) = \int_{\Omega} u \, \overline{v} \, dx$.

Définition 4.5.: Si A est l'opérateur défini dans $\overline{\Omega}$ par

$$A = \sum_{\alpha \leq 2m} a_{\alpha}(x) D^{\alpha}$$

alors on dit que l'opérateur défini dans $\overline{\Omega}$ par :

(4.12)
$$A' \cdot = \sum_{|\alpha| \leq 2m} (-1)^{|\alpha|} D^{\alpha}(\overline{a_{\alpha}(x)} \cdot)$$

est l'adjoint formel de A .

Il est facile de vérifier que A est elliptique si et seulement si son adjoint formel A' est elliptique.

On a le théorème suivant :

Théorème 4.2: Etant donné l'opérateur A et le système normal $\begin{cases} B_j \end{pmatrix}_{j=1}^m & \text{il existe un système normal} \\ C_j \end{pmatrix}_{j=1}^m, & \text{tel que le système} \\ \frac{1}{2} \\$

soit un système de Dirichlet (si l'on numérote les opérateurs dans un ordre correct), de façon que pour chaque u, $v \in C^{\infty}(\overline{\Omega})$ on ait la formule de Green suivante :

(4.13) (Au, v) - (u, A'v) =
$$= \sum_{j=1}^{m} \int_{\Gamma} C_{j} u \frac{B_{j}^{!} v d \sigma}{J_{j}^{!} v d \sigma} - \sum_{j=1}^{m} \int_{\Gamma} B_{j} u \frac{C_{j}^{!} v d \sigma}{J_{j}^{!} v d \sigma}.$$

Par cartes locales on se ramène à la formule (4.11) dans \sum .

Définition 4.6: On dit que le système normal d'opérateurs-frontière $\left\{B_{j}^{i}\right\}_{j=1}^{m}$ est adjoint au système $\left\{B_{j}^{i}\right\}_{j=1}^{m}$ relativement à A $\left\{C_{j}^{i}\right\}_{j=1}^{m}$ et $\left\{C_{j}^{i}\right\}_{j=1}^{m}$ tels que pour chaque u, $v \in C^{\infty}(\overline{\Omega})$ soit valable la formule de Green (4.13).

Corollaire 4.1.: Etant donnés A , le système normal $\left\{B_{j}\right\}_{j=1}^{m}$ et $u \in C^{\infty}(\overline{\Omega})$ on a B_{j} u = 0 , $j = 1, \ldots, m$ si et seulement si (A u, v) = (u, A' v)

pour chaque $v \in C^{\infty}(\overline{\Omega})$ vérifiant B_{j}^{i} v = 0, $j = 1, \ldots, m$, où $\begin{cases} B_{j}^{i} \\ j \end{cases}^{m} \quad \text{est un système normal adjoint au système} \quad \begin{cases} B_{j}^{i} \\ j \end{cases}^{m} \quad \text{relatiment à A et à la formule de Green (4.13)} .$

Démonstration : La condition nécessaire est triviale ; pour montrer

que la condition est suffisante on remarque que

$$\sum_{j=1}^{m} \begin{cases} B_{j} u \overline{C_{j}^{!} v} d \sigma = 0 \end{cases}$$

pour toute v telle que B_j^i v=0, $j=1,\ldots,m$; il suffit alors de prendre v telle que C_j^i $v=B_j$ u , $j=1,\ldots,m$ et B_j^i v=0 $j=1,\ldots,m$.

Remarque 4.1.: Un problème que l'on étudiera est la généralisation de la formule de Green à des fonctions u, v dans des espaces convenables de type Sobolev.

Il est immédiat de voir que l'on peut prolonger (4.13) par continuité à $u \in W_p^{2m}(\Omega)$ et $v \in W_{p'}^{2m}(\Omega)$, avec $\frac{1}{p} + \frac{1}{p}$, = 1 . En effet si l'ordre de C_j est μ_j , alors l'ordre de $B_j^!$ est $2m - \mu_j - 1$ et l'ordre de $C_j^!$ est $2m - m_j - 1$, $j = 1, \ldots, m$; on a donc $B_j^!$ $u \in W_p^{2m-m}j^{-1/p}(\Gamma)$ et $C_j^!$ $v \in W_p^{m}j^{+1/p}(\Gamma)$ et les intégrales $\int_{\Gamma} B_j^! u \cdot \overline{C_j^!} v \, d\sigma, \quad j = 1, \ldots, m \quad \text{sont bien définies et dépendent}$ continûment de u et v; d'une façon analogue on a $B_j^!$ $v \in W_p^{m-1/p}(\Gamma)$ et les intégrales $\int_{\Gamma} C_j^! u \cdot \overline{B_j^!} v \, d\sigma, \quad j = 1, \ldots, m, \quad \text{sont bien définies et dépendent}$ continûment de u et v.

On verra d'autres prolongements dans l'exposé VIII.

Définition 4.7.: Le problème aux limites $\left\{A', B_j^i\right\}$ est dit problème adjoint formel [relativement à la formule de Green (4.13)] au problème aux limites $\left\{A, B_j^i\right\}$, si A' est l'adjoint formel de A et si le système $\left\{B_j^i\right\}_{j=1}^m$ est adjoint au système $\left\{B_j^i\right\}_{j=1}^m$ relativement à A [et à la formule de Green (4.13)].

On voit que le système $\left\{ \begin{array}{l} B_j^! \right\}_{j=1}^m \quad \text{dépend du choix du système} \\ \left\{ \begin{array}{l} C_j \\ j \\ j=1 \end{array} \right. \\ \text{au système} \quad \left\{ \begin{array}{l} B_j^! \\ j \\ j=1 \end{array} \right. \\ \text{au système} \quad \left\{ \begin{array}{l} B_j^! \\ j \\ j=1 \end{array} \right. \\ \end{array}$

sur Γ entraîne N_j v = 0, j = 1,...,m et réciproquement.

Proposition 4.4.: Si deux systèmes normaux $\{N_j\}_{j=1}^m$ et $\{N_j\}_{j=1}^m$ sont équivalents et si μ_j est l'ordre de $\{N_j\}_{j=1}^m$ est l'ordre de

$$(4.14) N_{j}^{#} = \sum_{s=1}^{m} \wedge_{js} N_{s} j = 1,...,m$$

où pour $\mu_{j}^{\#}$ > μ_{s} , Λ_{js} est un opérateur différentiel tangentiel

à Γ d'ordre < $\mu_{j}^{\#}$ - μ_{s} , pour $\mu_{j}^{\#}$ = μ_{s} , Λ_{js} est une fonction $\neq 0$ de $C^{\infty}(\Gamma)$, et pour $\mu_{j}^{\#}$ < μ_{s} Λ_{js} $\equiv 0$.

Remarque 4.2. : Il est facile de vérifier qu'à chaque opérateur du premier système correspond un opérateur du même ordre dans l'autre système.

 $\begin{array}{c} \underline{\text{D\'emonstration}} \colon \text{ On complète } \left\{ \text{N}_j \right\}_{j=1}^m \quad \text{dans un système de Dirichlet} \\ \left\{ \text{A}_j \right\}_{j=1}^{2m} \; ; \; \text{on a, gr\^ace au th\'eor\`eme 4.1, c), la représentation} \\ \text{N}_j &= \sum\limits_{s=1}^{2m} \Lambda_{js} \, \, \text{A}_s \qquad j=1,\ldots,m \; . \end{array}$

On va démontrer que si \mathfrak{D}_s n'est pas un des $\left\{\mathbb{N}_j\right\}_{j=1}^{2m}$ alors $\bigwedge_{js} = 0$; supposons que \mathfrak{D}_s ne soit pas un des $\left\{\mathbb{N}_j\right\}_{j=1}^m$ et que $\bigwedge_{js} \neq 0$, alors il existe $g \in C^\infty(\Gamma)$ telle que $\bigwedge_{js} g \neq 0$. Grâce au théorème 4.1, b), il existe $v \in C^\infty(\overline{\Omega})$ telle que

$$\mathfrak{D}_{j} \quad v = 0 \qquad \qquad j \neq s$$

$$\mathfrak{D}_{s}$$
 $v = g$ et donc on a \mathbb{N}_{j} $v = \Lambda_{js}$ $g \neq 0$.

Mais comme N_j v=0, $j=1,\ldots,m$, on doit avoir $N_j^{\#}$ v=0, d'où la contradiction.

Proposition 4.5: Tous les systèmes adjoints au système $\begin{cases} B_j \\ j = 1 \end{cases}$ relativement à A [et à la formule de Green (4.13)] sont équiva-lents.

Supposons que $v \in C^{\infty}(\overline{\Omega})$ et $B_j^! v = 0$, j = 1, ..., m, alors par le corollaire 4.1 on a

$$(A u, v) = (u, A' v)$$

pour chaque $u\in C$ $(\overline{\Omega})$ telle que B_j u=0 sur r, $j=1,\ldots,m$. Mais il s'agit d'une condition nécessaire et suffisante pour que

$$B_{j}^{m} v = 0$$
 $j = 1, ..., m;$

donc les deux systèmes $\left\{B_{j}^{!}\right\}_{j=1}^{m}$ et $\left\{B_{j}^{!}\right\}_{j=1}^{m}$ sont équivalents. C.Q.F.D.

4 - Soit A un opérateur proprement elliptique dans $\overline{\Omega}$ d'ordre 2m et soit $\left\{B_{\mathbf{j}}\right\}_{\mathbf{j}=1}^{m}$ un système d'opérateurs-frontière qui $\underline{\text{recouvre}}$ A (v. exposé III.4); si de plus $\left\{B_{\mathbf{j}}\right\}_{\mathbf{j}=1}^{m}$ est un système normal, alors on peut parler d'un problème adjoint formel $\left\{A', B_{\mathbf{j}}\right\}$.

Il est trivial de vérifier que A' est proprement elliptique dans $\overline{\Omega}$; il est naturel de se demander si un système $\left\{B_{j}^{i}\right\}_{j=1}^{m}$ adjoint au système $\left\{B_{j}^{i}\right\}_{j=1}^{m}$ relativement à A [et à la formule de Green (4.13)] recouvre A' pour pouvoir appliquer au problème adjoint formel $\left\{A^{i},B_{j}^{i}\right\}$ les estimations a priori du théorème 3.5. On a le théorème suivant :

Théorème 4.3. Le système normal $\left\{B_{j}\right\}_{j=1}^{m}$ recouvre A si et seulement

 $\frac{\text{si chaque système normal}}{\{\beta_j^i\}_{j=1}^m} = \frac{\text{adjoint au système}}{\{\beta_j^i\}_{j=1}^m} = \frac{\{\beta_j^i\}_{j=1}^m}{\{\beta_j^i\}_{j=1}^m}$ relativement à A [et à la formule de Green (4.13)], recouvre A'. Avant de démontrer ce théorème il nous faut établir quelques résultats préliminaires et rappeler quelques notations.

Si $\xi \in \mathbb{R}^n$ -{0} est un vecteur tangent à Γ au point x, si $v \in \mathbb{R}^n$ -{0} est un vecteur normal à Γ au point x et si $\tau \in \mathbb{C}$,

on pose $A^{\circ}(\tau) = A^{\circ}(x; \xi + \tau \upsilon) = \sum_{|\alpha| = 2m} a_{\alpha}(x) (\xi + \tau \upsilon)^{\alpha}$ $= \sum_{i=0}^{2m} C_{2m-i}(x; \xi, \upsilon) \tau^{i}$ $A^{+}(\tau) = \prod_{k=1}^{m} (\tau - \lambda_{k}^{+}(x; \xi, \upsilon))$ $A^{-}(\tau) = \prod_{k=1}^{m} (\tau - \lambda_{k}^{-}(x; \xi, \upsilon))$

 $B_{j}^{\circ}(\tau) = \sum_{\mu \mid =m_{j}} b_{j,\mu}(\mathbf{x}) (\xi + \tau \upsilon)^{\mu} \qquad j = 1, \dots, m$

On a A^+ (τ) = $(-1)^m$ $A^ (x; -\xi, \nu; -\tau)$ et donc, comme on l'a déjà observé dans l'exposé III.4, si les polynômes B_j^o (τ) , $j=1,\ldots,m$ sont linéairement indépendants modulo $A^+(\tau)$ ils sont aussi linéairement indépendants modulo $A^-(\tau)$.

On pose $\overline{B}_{j} = \sum_{|\mu| \leq m_{j}} \overline{b}_{j\mu} (x) D^{\mu} \qquad j = 1, \dots, m$

et on a la proposition suivanté:

Proposition 4.6.: Le système $\left\{B_{j}\right\}_{j=1}^{m}$ recouvre A si et seule-

-ment si le système $\begin{cases} -\frac{1}{B_j} \end{cases}_{j=1}^m$ recouvre A'. Il suffit d'observer que A' = A.

Proposition 4.7.: Si le système normal $\left\{ B_{j} \right\}_{j=1}^{m}$ recouvre A,

alors chaque système normal équivalent recouvre A.

 $\frac{\text{D\'{e}monstration}}{\text{D\'{e}monstration}}: \text{Si } \begin{cases} \frac{-\pi}{B} \\ \text{B} \end{cases} \text{ est un syst\`{e}me normal \'{e}quivalent au}$ système normal $\left\{B_{j}\right\}_{j=1}^{m}$, on peut lui donner la représentation (4.14). Soit \bigwedge_{js}^{o} la partie homogène de degré $m_{j}^{\#}$ - m_{s} de l'opérateur Λ_{js} et $\Lambda_{js}^{\circ}(\xi)$ le polynôme correspondant (il s'agit d'un polynôme en ξ parceque Λ_{js} est un opérateur différentiel tangentiel à Γ !); on a alors les formules

$$B_{j}^{\# \circ}(\tau) = \sum_{s=1}^{m} \Lambda_{js}^{\circ}(\xi) B_{s}^{\circ}(\tau) \quad j = 1,...,m$$

où la matrice $\| \bigwedge_{i,s}^{o} (\xi) \|_{j,s=1,\ldots,m}$ est inversible car il s'agit d'une matrice triangulaire dont les éléments de la diagonale principale sont des fonctions $\neq 0$ de $C^{\infty}(\Gamma)$.

Puisque $\left\{B_{j}\right\}_{j=1}^{m}$ recouvre A on a: $\sum_{j=1}^{m} \lambda_{j} \quad B_{j} \quad (\tau) = \sum_{j=1}^{m} \lambda_{j} \quad \sum_{s=1}^{m} \Lambda_{js} \quad (\xi) \quad B_{s} \quad (\tau)$ $= \sum_{s=1}^{m} B_{s}(\tau) \sum_{j=1}^{m} \lambda_{j} \wedge j_{s}(\xi)$ mod. $A^+(\tau)$

si et seulement si $\sum_{j=1}^{m} \lambda_j \wedge_{js}^{o} (\xi) = 0$, s = 1,...,m mais alors $\lambda_1 = \dots = \lambda_m = 0$.

C.Q.F.D.

Démonstration du théorème 4.3.: Grâce aux propositions 4.5. et 4.7. il suffit de démontrer qu'un système $\left\{B_j^i\right\}_{j=1}^m$ adjoint au système $\left\{B_j^i\right\}_{j=1}^m$ relativement à A [et à la formule de Green (4.13.) recouvre A'; et grâce à la proposition 4.6 il suffit de démontrer que $\left\{B_j^i\right\}_{j=1}^m$ recouvre A.

Le problème étant de caractère local on peut par cartes locales se réduire au cas de la demi-boule $\sum \subset \mathbb{R}^n_+$ et on peut alors se servir de la formule explicite (4.10).

Dans le cas de $P=(x,0)\in\partial_1\Sigma$ on a $\xi=(\xi_1,\dots,\xi_{n-1},0)$ et $\upsilon=(0,\dots,0,\upsilon_n)$; soit alors P fixé et soient aussi fixés ξ avec $|\xi|=1$ et $\upsilon=(0,\dots,0,-1)$.

Considérons les polynômes suivants (cf.(4.10)):

 $\mathcal{D}_{\rho}^{\circ}(\tau)$ = polynôme caractéristique de l'opérateur \mathcal{D}_{ρ} ; $\overline{\mathcal{D}_{2m-\rho+1}^{\circ}}(\tau)$ = polynôme caractéristique de l'opérateur $\overline{\mathcal{D}_{2m-\rho+1}^{\circ}}$; $N_{2m-s+1}^{\circ}(\tau)$ = polynôme caractéristique de l'opérateur N_{2m-s+1} .

Rappelons aussi les formules (voir proposition 4.3)

$$D_{t}^{n-1} = \sum_{s=1}^{h} \Lambda_{hs} \mathcal{D}_{s}$$
 (4.15)
$$\mathcal{D}_{\rho} = \sum_{n=1}^{\rho} \Lambda_{\rho n}^{\#} D_{t}^{n-1}$$
 (4.16)

$$\mathfrak{D}_{\rho} = \sum_{n=1}^{p} \Lambda_{\rho_n}^{\#} \mathfrak{D}_{t}^{n-1}$$
 (4.16)

si l'on pose ensuite

Λ hs (ξ) = polynôme caractéristique de l'opérateur différentiel tangentiel à Γ \bigwedge

 $\Lambda_{on}^{\#o}(\xi)$ = polynôme caractéristique de l'opérateur différentiel tangentiel à $\Gamma \wedge_{on}^{\#}$;

on a les formules suivantes:

(4.17)
$$\mathcal{D}_{\rho}^{\circ}(\tau) = \sum_{n=1}^{\rho} \Lambda_{\rho n}^{+++}(\xi) (-1)^{n-1} \quad \tau^{n-1} \quad \rho = 1, \dots, 2m$$

(4.18)
$$(-1)^{h-1} \tau^{h-1} = \sum_{s=1}^{n} \bigwedge_{hs}^{o}(\xi) \mathcal{D}_{s}^{o}(\tau)$$
 h =1,...,2m

(4.19)
$$\sum_{s=n}^{\rho} \Lambda_{\rho s}^{\# \circ}(\xi) \Lambda_{sn}^{\circ}(\xi) = \delta_{\rho n} \qquad 1 \leq n \leq \rho \leq 2m ;$$

en observant que $\Lambda_{s\rho}^{\circ}$ (ξ) = $(-1)^{s-\rho} \Lambda_{s\rho}^{\circ}$ (ξ) on a aussi

(4.20)
$$\mathcal{D}^{\dagger}_{2m-\rho+1}(\tau) = \sum_{s=\rho}^{2m} (-1)^{s-\rho} \bigwedge_{s\rho}^{\circ}(\xi) \mathbb{I}_{2m-s+1}(\tau) , \rho = 1, \dots, 2m .$$

Il est évident que <u>le système</u> $\left\{ \begin{array}{l} \overline{B_{j}^{!}} \\ \overline{j} \\ \end{array} \right\}_{j=1}^{2m}$ <u>recouvre</u> A <u>si et seule-</u>

ment si l'hypothèse suivante

(a) Soient $\lambda_1, \dots, \lambda_{2m}$ des nombres complexes, avec $\lambda_{\rho} = 0$ si ρ est tel que \mathcal{D}_{ρ} est un des B_{j} , $j=1,\ldots,m$ et tels que

$$\sum_{\rho=1}^{2m} \frac{1}{\rho} \mathcal{D}^{\dagger}_{2m-\rho+1} \qquad (\tau) \equiv 0 \qquad \text{mod. } A^{\dagger}(\tau)$$

entraîne $\lambda_{\rho} = 0$, $\rho = 1, \dots, 2m$.

Si l'on pose

(4.21)
$$\omega_{n-1} = \sum_{s=1}^{n} \lambda_{s} (-1)^{n-s} \Lambda_{ns}^{\circ}(\xi)$$
 $n = 1, ..., 2m$

$$(4.22) \quad \mathcal{D}_{\rho}^{\circ}(\omega) = \sum_{n=1}^{\rho} \Lambda_{\rho n}^{\# \circ}(\xi) (-1)^{n-1} \omega_{n-1} \qquad \rho = 1, \dots, 2m$$

alors on a grâce à (4.19)

$$\mathcal{D}_{\rho}^{\circ}(\omega) = \sum_{n=1}^{\rho} \Lambda_{\rho n}^{\#\circ}(\xi) (-1)^{n-1} \sum_{s=1}^{n} \lambda_{s}(-1)^{n-s} \Lambda_{ns}^{\circ}(\xi)$$

$$= \sum_{s=1}^{\rho} \lambda_{s}(-1)^{s-1} \sum_{n=s}^{\rho} \Lambda_{\rho n}^{\#\circ}(\xi) \Lambda_{ns}^{\circ}(\xi)$$

$$= \lambda_{\rho} (-1)^{\rho-1} \qquad \rho = 1, \dots, 2m$$

et grâce à (4.20)

$$\sum_{\rho=1}^{2m} \lambda_{\rho} \quad \mathcal{D}_{2m-\rho+1}^{\circ} (\tau) = \sum_{\rho=1}^{2m} \lambda_{\rho} \sum_{s=\rho}^{\infty} (-1)^{s-\rho} \bigwedge_{s\rho}^{\circ} (\xi) .$$

$$\sum_{N=s+1}^{\infty} \lambda_{\rho} = \sum_{s=1}^{2m} \lambda_{\rho} \sum_{s=\rho}^{\infty} (-1)^{s-\rho} \bigwedge_{s\rho}^{\circ} (\xi) .$$

Grâce au fait que $\bigwedge_{SS}^{o}(\xi) = \bigwedge_{SS}(x,0)$ est une fonction $\neq 0$ de $C^{\infty}(\partial_{1}\Sigma)$, il découle que $\lambda_{\rho} = 0$, $\rho = 1, \ldots, 2m$ si et seulement si $\omega_{n-1} = 0$, $n = 1, \ldots, 2m$.

On a donc démontré que <u>l'hypothèse</u> (α) entraîne $\lambda_{\rho} = 0$, $\rho = 1$,

..., 2m , si et seulement si l'hypothèse suivante

(b) Soient $\omega_0, \dots, \omega_{2m-1}$ des nombres complexes, avec

$$\sum_{s=1}^{2m} \omega_{s-1} = 0 \qquad \text{mod. A}^{+}(\tau)$$

et si ρ est tel que \mathcal{D}_{ρ} soit un des B_{j} , $j=1,\ldots,m$; alors

$$\mathcal{D}_{\rho}^{\circ}(\omega) = \sum_{n=1}^{\rho} \wedge \wedge_{\rho n}^{\# \circ} (\xi) (-1)^{n-1} \omega_{n-1} = 0$$

entraîne $\omega_{s-1} = 0$, $s = 1, \dots, 2m$.

Rappelons la formule suivante, où P = (x, 0) $\in \partial_1$ \sum , ξ =(ξ ',0)

$$A^{\circ}(\tau) = \sum_{\substack{|\alpha|=2m\\ i=0}}^{\alpha} a_{\alpha}(P) \xi^{\alpha'}(-1) \tau^{i}$$

$$= \sum_{i=0}^{2m} C_{2m-i}(P; \xi^{i}, -1) \tau^{i}$$

où
$$C_{2m-i} = C_{2m-i}(P;\xi',-1) = \sum_{\substack{\alpha' \mid = 2m-i \\ \alpha = (\alpha',i)}} a_{\alpha}(P) \xi^{\alpha'}(-1)^{i}, i = 0,...,2m$$

Si l'on écrit d'une façon explicite, alors on a aussi (cf.(4.9)) :

$$\sum_{s=1}^{\infty} \omega_{s-1} \sum_{2m-s+1}^{\infty} (\tau) = \sum_{s=1}^{\infty} \omega_{s-1} \left| \alpha^{i} \right|_{=2m-i} = \alpha_{\alpha}(P) \xi^{i} \alpha^{i} (-1)^{i} \tau^{i-s}$$

$$= \sum_{s=1}^{\infty} \omega_{s-1} \sum_{i=s}^{\infty} C_{2m-i} \tau^{i-s}$$

$$= \sum_{s=1}^{\infty} \omega_{s-1} \sum_{i=s}^{\infty} C_{2m-i} \tau^{i-s}$$

$$= \sum_{i=1}^{\infty} C_{2m-i} \sum_{s=1}^{\infty} \omega_{s-1} \tau^{i-s}$$

$$= R(\tau, \omega)$$

Considérons maintenant le polynôme dans les variables complexes z et τ :

$$R(\tau,z) = \sum_{i=1}^{2m} C_{2m-i} \sum_{s=1}^{i} \tau^{i-s} z^{s-1} = \frac{A(\tau) - A(z)}{\tau^{1-s}};$$

il est facile de démontrer par récurrence la formule de dérivation

$$(\tau - z) \frac{\partial^{n} R(\tau, z)}{\partial \tau^{n}} = \frac{d^{n} A^{\circ}(\tau)}{d \tau^{n}} - n \frac{\partial^{n-1} R(\tau, z)}{\partial \tau^{n-1}} ; (n \ge 1)$$

si $\tau(P; \xi',-1)$ est une racine de A (τ) avec multiplicité > n,

alors on a

$$\frac{\partial^{n} R(\tau, z)}{\partial \tau^{n}} \Big|_{\tau = \tau(P; \xi', -1)} = \frac{n! A^{\circ}(z)}{(z - \tau(P; \xi', -1))^{n+1}}$$

Soient $\tau_1^+, \ldots, \tau_k^+$ les racines de $A^+(\tau)$ avec multiplicité $\theta_1, \ldots, \theta_k$, $1 \le k \le m$, $\theta_1^- + \ldots + \theta_k^- = m$; il découle alors que pour chaque racine τ_1^+ avec multiplicité θ_1^- , $i = 1, \ldots, k$, on a pour $0 \le n \le \theta_1^- - 1$:

Si l'on a

$$\sum_{s=1}^{2m} \omega_{s-1} \sum_{2m-s+1}^{\infty} (\tau) = R(\tau) \equiv 0 \quad \text{mod } A^{+}(\tau)$$

c.à.d. si l'on a

$$R(\tau,\omega) = Q(\tau,\omega) A^{+}(\tau)$$

alors on obtient pour $0 \le n \le \theta_i-1$, i = 1, ..., k:

$$\frac{\partial^{n} R(\tau, \omega)}{\partial \tau^{n}} \Big|_{\tau=\tau_{1}^{+}} = \frac{\partial^{n}}{\partial \tau^{n}} (A^{+}(\tau) Q(\tau, \omega)) \Big|_{\tau=\tau_{1}^{+}} = 0$$

car $A^{+}(\tau)$ contient le terme $(\tau - \tau_{i}^{+})^{\theta_{i}}$ avec $\theta_{i} > n$.

Considérons les polynômes suivants pour $0 \leqslant n \leqslant \theta_{i}$ -l ,

i = 1, ..., k:

(4.25)
$$P_{i n}(z) = C_{0}(z-\tau_{i}^{+})^{\theta_{i}-n-1} \begin{cases} k \\ \exists (z-\tau_{j}^{+})^{\theta_{j}} A^{-}(z); \\ j=1 \\ i\neq j \end{cases}$$

il s'agit de m polynômes linéairement indépendants de degré > m et ≤ 2m-1 .

Si l'on remplace z^{s-1} par ω_{s-1} dans les formules (4.23) et (4.25), alors on a l'identité suivante :

 $\frac{\partial^{n} R(\tau, \omega)}{\partial \tau^{\hat{n}}} = n! P_{\hat{i} n}(\omega) \qquad 0 \leq n \leq \theta_{\hat{i}} - 1, \quad i = 1, \dots, k ;$ on déduit donc de (4.24) que $R(\tau, \omega) \equiv 0 \mod A^{+}(\tau)$ entraîne $P_{\hat{i} n}(\omega) = 0 , \quad 0 \leq n \leq \theta_{\hat{i}} - 1, \quad i = 1, \dots, k \text{ et réciproquement}$ $P_{\hat{i} n}(\omega) = 0 , \quad 0 \leq n \leq \theta_{\hat{i}} - 1, \quad i = 1, \dots, k \text{ et reciproquement}$ $P_{\hat{i} n}(\omega) = 0 , \quad 0 \leq n \leq \theta_{\hat{i}} - 1, \quad i = 1, \dots, k \text{ entraîne } R(\tau, \omega) = 0 ,$ $\mod A^{+}(\tau) .$

On a donc démontré que <u>l'hypothèse</u> (β) <u>entraîne</u> $\omega_{s-1} = 0$ s = 1, ..., 2m <u>si et seulement si l'hypothèse suivante</u>

(Y) Soient $\omega_0, \dots, \omega_{2m-1}$ des nombres complexes, avec

$$P_{i n}(\omega) = 0$$
 $0 \le n \le \theta_{i-1}$, $i = 1, ..., k$

$$B_{j}^{\circ}(\omega) = 0 \qquad j = 1, \dots, m$$

entraîne $\omega_{s-1} = 0$, $s = 1, \dots, 2m$.

Les polynômes $P_{in}(\tau)$ et $B_{j}(\tau)$ sont au nombre de 2m de degré \leq 2m-l et donc <u>ils sont linéairement indépendants si et seulement si le déterminant d'ordre 2m des coefficients est</u> \neq 0, où, ce qui revient au même, <u>si et seulement si l'hypothèse</u> (γ) entraîne $\omega_{s-1} = 0$, $s = 1, \dots, 2m$.

Démontrons enfin que <u>les polynômes</u> $P_{i n}(\tau)$, $B_{j}(\tau)$, i=1,...,k, $n=0,...,\theta_{i-1}$, j=1,...,m <u>sont linéairement indépendants si et seulement si les polynômes</u> $B_{j}(\tau)$ <u>recouvrent</u> $A(\tau)$.

Supposons que les polynômes $B_j^{\circ}(\tau)$, j =1,...,m, recouvrent $A^{\circ}(\tau)$, c.à.d. qu'ils soient linéairement indépendants modulo $A^{-}(\tau)$. Si $\sum_{j=1}^{m}$ n_j $B_j^{\circ}(\tau)$ + $\sum_{i=1}^{n}$ $\sum_{n=0}^{n}$ λ_i n_i P_i n_i n_i n_i n_i alors on a

par la définition des P_{in} (τ):

$$\sum_{j=1}^{m} n_{j} B_{j}^{\circ}(\tau) \equiv 0 \quad \text{mod. A}^{-}(\tau)$$

mais les $P_{i n}$ (τ) sont linéairement indépendants et donc $\lambda_{i n} = 0$, $i = 1, \dots, k$, $n = 0, \dots, \theta_{i} - 1$. Donc les polynômes $B_{j}^{o}(\tau)$, $P_{i n}^{o}(\tau)$

sont linéairement indépendants.

Supposons que les polynômes $B_j^{\circ}(\tau)$, j =1,...,m, ne recouverent pas $A^{\circ}(\tau)$, i.e. qu'ils soient linéairement dépendants modulo $A^{\circ}(\tau)$. Il existe alors un polynôme $H(\tau)$ et des constantes η_j , j =1,...,m, non toutes = 0, telles que

$$\sum_{j=1}^{m} n_{j} B_{j}^{\circ}(\tau) + H(\tau) A^{-}(\tau) = 0;$$

le degré de H(τ) est évidemment \leq m-l et donc puisque les polynnômes $\frac{P_{i n}(\tau)}{A^{-}(\tau)}$, $i = 1, \dots, k$, $n = 0, \dots, \theta_{i} - 1$, sont linéairement indépendants, de degré \leq m et au nombre de m, alors il existe des constantes $\lambda_{i n}$, $i = 1, \dots, k$, $n = 0, \dots, \theta_{i} - 1$ non toutes = 0 telles que k = 0

telles que $H(\tau) = \sum_{i=1}^{k} \sum_{n=0}^{\theta_{i}-1} \lambda_{i} n \frac{P_{i} n(\tau)}{A^{-}(\tau)};$

on a done $\sum_{j=1}^{m} \eta_{j} B_{j}^{\circ}(\tau) + H(\tau) A^{-}(\tau) =$ $= \sum_{j=1}^{m} \eta_{j} B_{j}^{\circ}(\tau) + \sum_{j=1}^{m} \sum_{n=0}^{\infty} \lambda_{j} n P_{j} n (\tau) = 0$

ce qui entraîne que les polynômes $P_{i n}(\tau)$, $B_{j}(\tau)$, $i=1,\ldots,k$ n =0,..., θ_{i} -1 , j =1,..., m , ne sont pas linéairement indépendants.

5 - Voici pour terminer une variante des formules de Green. Posons $A = \sum_{|\alpha|, |\beta| \le m} (-1)^{|\alpha|} D^{\alpha} (a_{\alpha\beta}(x) D^{\beta});$

à un tel opérateur elliptique dans $\overline{\Omega}$ on peut associer une forme sesquilinéaire

$$\begin{array}{lll} \text{(u,v)} & & & \\ & &$$

où l'ordre de l'opérateur S; est 2m-j-l.

En effet par cartes locales on peut se réduire au cas de la demi-boule Σ dans \mathbb{R}^n_+ et alors on a la formule suivante, obtenue par intégration par parties avec le même raisonnement qu'au \mathbb{R}^n_+ 0 à \mathbb{R}^n_+ et alors on a la formule suivante, obtenue par intégration par parties avec le même raisonnement qu'au \mathbb{R}^n_+ 0 à \mathbb{R}^n_+ 0 et sont nulles dans un voisinage de \mathbb{R}^n_+ \mathbb{R}^n_+ 2, où \mathbb{R}^n_+ 0 et sont nulles dans un voisinage de \mathbb{R}^n_+ \mathbb{R}^n_+ 2.

$$\int_{\Sigma} A u \overline{v} dx dt = \int_{\alpha} \int_{\beta \leq m} \int_{\Sigma} a_{\alpha\beta}(x,t) D^{\beta}u \overline{D^{\alpha}v} dx dt + \int_{j=1}^{\infty} \int_{z_{j}} \left[S_{j} u\right]_{t=0} \overline{D_{t}^{j-1} v} dx$$

οù

$$S_{j}u = \sum_{|\alpha|, |\beta| \leq m} (-1)^{|\alpha|-j-1} D_{x}^{\alpha'} D_{t}^{\alpha_{n}-j-1} (a_{\alpha\beta}(x,t) D^{\beta}u)$$

$$\alpha_{n} \geq j+1$$

V - REALISATIONS D'UN OPERATEUR ELLIPTIQUE DANS $L_{_{\mathcal{D}}}$.

l - Soit Ω un ouvert borné de \mathbb{R}^n , de frontière Γ variété indéfiniment différentiable de dimension n-1, Ω étant d'un seul côté de Γ . Nous considérons un opérateur A "proprement elliptique" (exposé \mathbb{H}) d'ordre 2m, à coefficients $C^{\infty}(\overline{\Omega})$, et un système d'"opérateurs frontières" $B_1, \ldots B_m$ d'ordre $\leq 2m-1$ à coefficients $C^{\infty}(\Gamma)$ qui recouvre A (exposé \mathbb{H}). Définition 5.1.: Dans $L_p(\Omega)$, A_p est l'opérateur linéaire de

 $D(A_{p}) = \left\{ u \in W_{p}^{2m}(\Omega) ; B_{j} u = 0 \quad j = 1, 2, \dots m \right\}$ $\underline{defini \ par} \quad A_{p} u = A u \quad \underline{pour} \quad u \in D(A_{p}).$ (1)

domaine

On appelle l'opérateur A_p réalisation de l'opérateur A dans $L_p(\Omega)$ sous les conditions aux limites homogènes B_j u=0, $j=1,2,\ldots m$; c'est un opérateur non borné dans $L_p(\Omega)$.

On désigne par $N(A_p)$ le noyau de A_p et par $R(A_p)$ son image.

Nous développons pour commencer quelques conséquences des estimations a priori (exposé III) : nous pouvons les écrire

⁽¹⁾ Voir l'exposé I pour la signification de B_j u.

sous la forme suivante :

 $\|u\|_{2m,p} \leqslant C_{o} (\|A_{p} u\|_{o,p} + \|u\|_{o,p}) \text{ pour } u \in D(A_{p}) (5.1)$ $\|u\|_{2m+k,p} \leqslant C_{k} \|u\|_{o,p}, k = 0,1,2,... \text{ pour } u \in N(A_{p})(5.2)$

De l'inégalité (5.1) résulte que sur $D(A_p)$ la norme du graphe de A_p et la norme induite par $W_p^{2m}(\Omega)$ sont équivalentes; Nous supposerons toujours dans la suite que $D(A_p)$ est muni de la norme du graphe, alors, grâce aux hypothèses de régularité sur Ω , l'injection de $D(A_p)$ dans $L_p(\Omega)$ est compacte.

De l'inégalité (5.2) résulte l'inclusion $N(A_p)\subset C^\infty(\overline{\Omega})$. $\underline{Théorème~5.1}: (i) A_p \underline{est~un~opérateur~fermé,~à~domaine~dense}$ $\underline{dans}~L_p(\Omega).~(ii)~N(A_p)~\underline{ne~dépend~pas~de}~p~;~\underline{c'est~le~sous-espace}$

 $N = \left\{ u \in C^{\infty}(\overline{\Omega}) ; A u = 0 , B_{j} u = 0 \right\}$ (iii) $N = \frac{\text{est de dimension finie}}{\text{est fermé dans}}$ $L_{p}(\Omega) .$

Démonstration :

(i) A est fermé : cela résulte de l'inégalité (5.1) et de la continuité de l'application :

$$W_p^{2m}(\Omega) \longrightarrow L_p(\Gamma)$$

$$u \longrightarrow B_j u$$

L'inclusion $\mathcal{D}(\Omega) \subset D(A_p)$ prouve la densité de $D(A_p)$.

(ii) L'inclusion N < N(A_p) est évidente, l'inclusion réciproque est conséquence de la suivante N(A_p) < C (Ω) .

Les points (iii) et (iv) résultent d'un lemme de caractère général :
Soit E un espace de Banach et H un opérateur non borné dans E ,
à domaine D(H) dense, et fermé.

Lemme 5.1: On suppose que l'injection de D(H) (muni de la norme du graphe de H) dans E est compacte, alors le noyau N(H) est de dimension finie et l'image R(H) est fermée dans E.

Démonstration: Dans N(H) la norme du graphe de H et la norme de E coincident; par conséquent N(H) est pour l'une de ces normes, un espace de Banach localement compact, donc est de dimension finie.

Soit Φ un supplémentaire topologique de N(H) dans D(H):

$$D(H) = N(H) \oplus \Phi$$

Alors, il existe une constante C telle que :

$$\|H\phi\| \geqslant C \|\phi\| \tag{5.3}$$

pour toute $\phi \in \Phi$ (| | désigne la norme de E) . En effet, dans le cas contraire, il existerait une suite $\{\phi_k\}_{k=1,2,\ldots} \subset \Phi$, telle que $\left\{ \|\phi_k\| = 1 \right\}$ $\|\phi_k\| \to 0 \quad \text{dans E pour } k \to +\infty .$

La suite $\left\{\phi\right\}_{k=1,2,\ldots}$ etant bornée dans D(H), on peut en extraire une suite encore notée $\left\{\phi_k\right\}_{k=1,2,\ldots}$ qui converge dans E vers une limite ϕ :

$$\begin{cases} \phi_k & \longrightarrow & \phi \\ \\ H\phi_k & \longrightarrow & 0 \end{cases} \text{ dans } E \text{ pour } k & \longrightarrow & +\infty \quad .$$

Comme H est un opérateur fermé, on a $\phi \in D(H)$ et $H\phi = 0$, i.e. $\phi \in N(H)$, puis :

 $\phi_k \xrightarrow{} \phi \qquad \text{dans D(H) pour } k \xrightarrow{} \xrightarrow{} + \infty \ .$ $\Phi \quad \text{etant fermé dans D(H) , on a } \phi \in \Phi \quad , \text{ et comme}$ $\|\phi\| = \lim_{k \to \infty} \|\phi_k\| = 1 \ , \text{ i.e. } \phi \neq 0 \ . \text{ Nous avons ainsi construit}$ $\text{un elément } \phi \neq 0 \ , \text{ appartenant a N(H) } \land \Phi \ , \text{ ce qui est impossible}.$

Il nous faut montrer que $f \in R(H)$. Pour cela, soit

$$u_k = n_k + \phi_k$$

la décomposition de u dans la somme directe

$$D(H) = N(H) \oplus \Phi$$

alors H u_k = H ϕ_k ---> f dans E; l'inégalité (5.3) montre que ϕ_k est une suite de Cauchy pour la norme de E , soit ϕ sa limite : ϕ_k ---> ϕ

H ϕ_k ——> f dans E pour k ——> + ∞ . H étant fermé, on en déduit que $\varphi \in D(H)$, H $\varphi = f$. C.Q.F.D.

2 - Le problème de l'existence est de déterminer $R(A_p)$. Nous commençons par une réduction de ce problème .

Le domaine de A_p est dense, et par conséquent A_p possède un adjoint A_p^* , opérateur non borné dans L_p , (Ω) $(\frac{1}{p}+\frac{1}{p}=1)$, de domaine $D(A_p^*)$;

 $D(A_p^*)$ est le sous-espace de L_{p} , (Ω) forme des v tels que

$$D(A_p) \longrightarrow \mathbb{C}$$

se prolonge à $L_p(\Omega)$ en une forme linéaire continue ; A_p^* est

defini par
$$(A_p u, v) = (u, A_p^* v)$$

pour $u \in D(A_p)$, $v \in D(A_p^*)$.

 A_p^* est un operateur fermé, à domaine dense

$$A_p^{**} = A_p$$

et si $\mathbb{N}(\mathbb{A}_p^*)$ désigne le noyau de \mathbb{A}_p^* , on a

$$R(A_p) = \left\{ f \in L_p(\Omega) ; (f,v) = 0 \quad \forall v \in N(A_p^*) \right\}$$

(voir en appendice)

A présent nous supposons que en plus des hypothèses faites au début de cet exposé, le système $B_1, \ldots B_m$ est <u>normal</u> (exposé IV). Soit A' l'adjoint formel de A et $B'_1, \ldots B'_m$ <u>un</u> système d'opérateurs-frontières <u>adjoint</u> au système $B_1, \ldots B_m$, <u>relativement</u> à A (exposé IV). Tout ce qui a été dit à propos du problème aux limites $\{A; B_1, \ldots B_m\}$, reste vrai pour $\{A'; B'_1, \ldots B'_m\}$. Nous noterons

$$N' = \left\{ v \in C^{\infty}(\overline{\Omega}) ; A'v = 0 , B'_{j}v = 0 , j=1,2,...m \right\}$$

Il est naturel de chercher les relations entre les opérateurs $A_p^{\, \star} \quad \text{et} \quad A_p^{\, \star} \quad .$

Nous montrerons que $A_p^* = A_p^*$; la démonstration de cette identité, dans le cas p = 2, fera l'objet de l'exposé VI, le cas

général p # 2 sera démontré dans l'exposé VII .

Cette identité fournit une réponse au problème de la caracté-

risation de $R(A_p)$:

$$R(A_p) = \left\{ L_p(\Omega) ; N' \right\}$$
 (1)

Un premier résultat est presque évident :

Lemme 5.2: Pour tout p, on a A'p,
A*p

En effet soit $v \in D(\mathbb{A}_p^r,)$, il est évident grâce aux formules de Green (exposé IV) que

$$D(A_{p}) \longrightarrow \mathbb{C}$$

$$u \longrightarrow (A_{p}u,v) = (u,A_{p}^{\dagger},v)$$

est linéaire continue sur $D(A_p)$ pour la norme induite par

$$L_{p}(\Omega)$$
, donc $v \in D(A_{p}^{*})$ et $A_{p}^{*}v = A_{p}^{!}$, v .

En particulier on en déduit $N' \subseteq N(A_p^*)$ et

$$R(A_p) = \{L_p(\Omega); N(A_p^*)\} \subseteq \{L_p(\Omega); N^*\}$$

Pour terminer cet exposé, nous démontrons le :

Lemme 5.3:
$$\left\{C^{\infty}(\overline{\Omega}); N'\right\}$$
 est dense dans $\left\{L_{p}(\Omega); N'\right\}$

Démonstration: Soit $v_1, \dots v_\ell$ une base orthonormée de N':

⁽¹⁾ Ici nous utilisons la notation suivante : Soit E un espace de Banach et E* son antidual, pour la forme sesquilinéaire u,v $\sim --->$ (u,v); pour F sous-espace vectoriel de E, on pose $\{E^*, F\} = \{v \in E^*; (u,v) = 0 \quad \forall \ u \in F\}$ c'est "l'antipolaire" de F dans l'antidualité entre E et E*.

$$P u = u - \sum_{j=1}^{\ell} (u, v_j) v_j$$

pour $u\in L_p(\Omega)$; P est linéaire continu dans $L_p(\Omega)$ et prend ses valeurs dans $\Big\{L_p(\Omega)$; N' $\Big\}$.

Soit alors $f \in \{L_p(\Omega) ; N'\}$ et f_k une suite de fonctions $C^\infty(\overline{\Omega})$ telles que $f_k \longrightarrow f$ dans $L_p(\Omega)$ pour $k \longrightarrow +\infty$. Pf $f_k = f_k - \sum\limits_{j=1}^\ell (f_k, v_j) \ v_j \in C^\infty(\overline{\Omega}) \cap \{L_p(\Omega) ; N'\}$ donc Pf $f_k \in \{C^\infty(\overline{\Omega}) ; N'\}$; pour terminer on remarque que Pf $f_k \longrightarrow Pf = f$ dans $L_p(\Omega)$ pour $k \longrightarrow +\infty$, car $(f, v_j) = 0$ $j=1,2,\ldots\ell$, fest donc limite dans $L_p(\Omega)$ de fonctions de $\{C^\infty(\overline{\Omega}) ; N'\}$ c.Q.F.D.

3 - Appendice : Opérateurs adjoints

Nous démontrons deux propriétés des opérateurs adjoints (non bornés), qui sont bien connues au moins dans l'espace de Hilbert,

Rappelons tout d'abord la définition de l'adjoint ; Soient

E et F deux espaces de Banach (d'antidual E* et F* respectivement) et soit H un opérateur linéaire défini dans D(H) (le domaine de H) sous-espace dense de E , et prenant ses valeurs

dans F; nous noterons R(H) son image.

H* est l'opérateur linéaire de domaine D(H*) sous-espace de F* formé des éléments v tels que la forme antilinéaire

soit continue pour la norme induite par E dans D(H) ; pour $v \, \in \, D(\, H^{\, \star}) \ , \ H^{\, \star} v \quad \text{est défini par l'identit\'e}$

$$(H u, v) = (u, H^*v)$$

pour tout $u \in D(H)$; H^* prend ses valeurs dans E^* .

Soit H un operateur non continu ou non borné opérant de E dans F. On dit que H est fermé si pour toute suite

$$\left\{u_{k}\right\}_{k=1,2,...}$$
 \subset D(H) telle que:

on a $u \in D(H)$ et Hu = v; dans ce cas D(H) est un espace de Banach pour la "norme du graphe" $u \longrightarrow \|u\|_{F} + \|Hu\|_{F}$

Théorème : On suppose que H est un opérateur non borné opérant

de E dans F, espaces de Banach réflexifs et que H est fermé

et à domaine dense; alors H* est fermé à domaine dense dans E*

et $H^{**} = H$.

Si nous mettons $E \times F$ et $F^* \times E^*$ en antidualité, relativement à la forme sesquilinéaire

$$\{u_1, u_2\}, \{v_1, v_2\} \longrightarrow (u_2, v_1) - (u_1, v_2)$$

nous avons alors

$$G(H^*) = \left\{ F^* \times E^*; G(H) \right\}$$

Il est facile de voir que le graphe d'un opérateur est fermé si et seulement si l'opérateur est fermé; par conséquent H* est un opérateur fermé.

Pour montrer que $D(H^*)$ est dense, il suffit de vérifier que si un élément $v \in F$ est tel que (v, w) = 0 pour tout $w \in D(H^*)$ alors v = 0 (F est réflexif). On a évidemment

$$(v, w) = (0, H^* w) = 0$$

pour $w \in D(H^*)$, donc $\{0,v\} \in \{E \times F ; G(H^*)\}$ i.e. $\left\{0,v\right\} \in G(H) \text{ car } G(H) \text{ est ferm\'e (on utilise le th\'eor\`eme des}$ "bipolaires", ou plutôt son analogue dans le cas des "antipolaires"); $v = H \cdot 0 = 0$

H * * est alors bien défini et

$$G(H^{**}) = \{E \times F : G(H^{*})\} = G(H)$$

donc $H^{**} = H$.

C.Q.F.D.

Théorème On fait les mêmes hypothèses que dans le théorème précédent; alors R(H) est fermé si et seulement si R(H**) est
fermé.

Demonstration: Nous montrons que lorsque R(H) est fermé, alors $R(H^*)$ l'est aussi; l'implication réciproque résultera de l'identité $H = H^{**}$.

 F_1 = R(H) est un espace de Banach; on peut considérer H comme composition j H₁ d'un opérateur non borné H₁ opérant de E sur F₁ et de l'injection canonique j de F₁ dans F; alors H* = H₁* j* et j* est surjective, donc R(H*) = R(H₁*); on s'est ainsi ramené à montrer que R(H₁*) est fermé avec H₁ surjective.

Nous supposons maintenant que R(H) = F. H étant fermé, c'est un homomorphisme de D(H) dans F (qui sont deux espaces de Banach); par conséquent il existe une constante C telle

que pour tout $v \in F$, il existe $u \in D(H)$ avec H u = v et $\|u\| \leqslant c \quad \|v\| .$

alors pour tout $w \in D(H^*)$ on a

$$|(v, w)| = |(Hu, w)| = |(u, H^*w)|$$
 $\leq ||u|| ||H^*w|| \leq C ||v|| ||H^*w||$

a'où $||w|| \leq C ||H^*w||$

pour tout $w \in D(H^*)$; ceci montre que H^* est un isomorphisme (topologique) de $D(H^*)$ sur $R(H^*)$ et par conséquent $R(H^*)$ est fermé.

C.Q.F.D.

Corollaire: Sous les mêmes hypothèses on a

$$R(H) = \left\{ F ; N(H^*) \right\}$$

$$R(H^*) = \left\{ E^*; N(H) \right\}$$

<u>Démonstration</u>: Vérifions la première identité : comme R(H) est fermé et F est réflexif, il suffit grâce au théorème des "bi-polaires" de vérifier l'identité $N(H^*) = \{F^*; R(H)\}$ qui est évidente.

VI - EXISTENCE DANS L2

l - Les notations sont celles de l'exposé précédent. Cet exposé est consacré à la démonstration du :

Théorème 6.1 :
$$R(A_2) = \{L_2(\Omega); N'\}$$

Nous savons déjà que $R(A_2)$ est un sous-espace fermé de $\left\{L_2(\Omega) \text{ ; N'}\right\} \text{ .}$

Pour $u,v \in H^{2m}(\Omega)$, nous notons:

$$[u, v] = (A'u, A'v) + \sum_{j=1}^{m} ((B'_j u, B'_j v))_j$$

$$((,))_j \text{ désignant le produit scalaire dans } H$$

$$2m-m'_j-1/2(\Gamma),$$

$$m'_j \text{ ordre de } B'_j .$$

u, v \longrightarrow [u, v] est évidemment une forme sesquilinéaire hermitienne continue sur $H^{2m}(\Omega)$; elle donne donc lieu à une inégalité du type Cauchy-Schwarz :

$$|[u, v]|^{2} \le [u, u] \cdot [v, v]$$
 (6.1)

Enfin nous avons l'inégalité de coercivité (exposé III) :

$$c^{-1} \|u\|_{2m}^{2} \leq [u, u] + \|u\|_{0}^{2}$$
 (6.2)

Cette inégalité montre que le produit scalaire ((,)) = ,[+] + + (,) peut être substitué au produit scalaire habituel de

 $\mbox{H}^{2m}(\Omega)$. Dans la suite nous supposons $\mbox{H}^{2m}(\Omega)$ muni de ce nouveau produit scalaire.

Lemme 6.1 : $H^{2m}(\Omega) = [H^{2m}(\Omega); N'] \oplus N'$

Démonstration : $\{H^{2m}(\Omega); N'\}$ est l'orthogonal de N' dans $H^{2m}(\Omega)$, car pour $u \in H^{2m}(\Omega)$ et $v \in N'$ on a :

$$((u, v)) = (u, v)$$
.

Lemme 6.2: Il existe une constante C > 0 telle que

$$c^{-1} \|v\|_{2m}^2 \le [v, v] \le c \|v\|_{2m}^2$$

pour tout $v \in \{H^{2m}(\Omega); N'\}$.

<u>Démonstration</u>: Seule la première inégalité est à démontrer. Si elle n'avait pas lieu, il existerait une suite

$$\{v_k\}_{k=1,2,...} \subset \{H^{2m}(\Omega); N'\}$$
, avec $\|v_k\|_{2m} = 1$ et

$$[v_k, v_k] \longrightarrow 0$$
 pour $k \longrightarrow +\infty$.

La complète continuité de l'injection de $\operatorname{H}^{2m}(\Omega)$ dans $\operatorname{L}_2(\Omega)$, montre qu'il existe une suite partielle, que nous noterons encore

$$\left\{\mathbf{v}_{k}\right\}_{k=1,2,\dots}$$
, et qui a les propriétés suivantes :

$$\|\mathbf{v}_{\mathbf{k}}\|_{2\mathbf{m}} = 1$$

$$v_k \longrightarrow v$$
 dans $L_2(\Omega)$ pour $k \longrightarrow + \infty$

$$\begin{bmatrix} v_k, v_k \end{bmatrix} \longrightarrow 0$$
 pour $k \longrightarrow +\infty$

avec $v \in L_2(\Omega)$.

L'inégalité (6.2) appliquée à $\mathbf{v}_k - \mathbf{v}_\ell$: $\mathbf{c}^{-1} \| \mathbf{v}_k - \mathbf{v}_\ell \|_{2m}^2 < \left[\mathbf{v}_k - \mathbf{v}_\ell , \mathbf{v}_k - \mathbf{v}_\ell \right] + \| \mathbf{v}_k - \mathbf{v}_\ell \|_{0}^2 \mathbf{v}$ et l'inégalité (6.1) montrent que $\left\{ \mathbf{v}_k \right\}$ est une suite de Cauchy dans $\mathbf{H}^{2m}(\Omega)$; on en déduit que $\mathbf{v} \in \mathbf{H}^{2m}(\Omega)$, $\mathbf{v}_k \longrightarrow \mathbf{v}$ dans $\mathbf{H}^{2m}(\Omega)$ pour $\mathbf{k} \longrightarrow +\infty$, donc $\mathbf{v} \in \left\{ \mathbf{H}^{2m}(\Omega) ; \mathbf{N}' \right\}$, $\| \mathbf{v} \|_{2m} = 1$ et $\left[\mathbf{v}, \mathbf{v} \right] = \lim_{k \to \infty} \left[\mathbf{v}_k, \mathbf{v}_k \right] = 0$, i.e. $\mathbf{v} \in \mathbf{N}'$, ce qui est en contradiction avec le lemme 6.1

Passons à la démonstration du théorème 6.1 . Soit f fixée dans $\{L_2(\Omega); N'\}$ Le lemme 6.2 montre que le produit scalaire u, v \longrightarrow [u, v] peut être substitué au produit scalaire u, v \longrightarrow ((u, v)) sur $\{H^{2m}(\Omega); N'\}$. Comme v \longrightarrow (f, v) est une forme antilinéaire continue sur $\{H^{2m}(\Omega); N'\}$ nous en déduisons qu'il existe $g \in \{H^{2m}(\Omega); N'\}$ (unique) tel que [g, v] = (f, v) pour toute $v \in \{H^{2m}(\Omega); N'\}$.

Nous allons vérifier que l'identité

$$[g, v] = (f, v) \tag{6.3}$$

est vraie pour toute $v \in H^{2m}(\Omega)$; en effet, d'après le lemme 6.1

on peut écrire $v = v_1 + v_2$ avec $v_1 \in \mathbb{N}'$ et $v_2 \in \{H^{2m}(\Omega); \mathbb{N}'\}$. Il vient :

$$[g, v] = [g, v_2] = (f, v_2) = (f, v)$$
 car $[g, v_1] = 0$ $(v_1 \in N')$ et $(f, v_1) = 0$ $(f \in \{H^{2m}(\Omega); N'\})$.

Admettons provisoirement le :

Théorème 6.2 : Soit $f \in L_2(\Omega)$ et u une solution du problème variationnel : $u \in H^{2m}(\Omega)$ et [u, v] = (f, v) pour toute $v \in H^{2m}(\Omega)$, alors $u \in H^{4m}(\Omega)$.

Ce théorème s'applique à g , nous avons donc :

$$g \in H^{4m}(\Omega)$$

La relation (6.3) écrite pour $v \in \mathcal{D}(\Omega)$ est

$$(A'g,A'v) = (f,v)$$

nous avons donc AA'g = f. Posons u = A'g:

$$\begin{cases} u \in H^{2m}(\Omega) \\ Au = f \end{cases}$$

et $(u,A^{\dagger}v) + \sum_{j=1}^{m} ((B_{j}^{\dagger}g,B_{j}^{\dagger}v))_{j} = (Au,v)$ pour toute $v \in H^{2m}(\Omega)$

En particulier lorsque
$$v \in D(A_2^1)$$
 on a

$$(u,A^{\dagger}v) = (Au,v)$$

mais l'application de la formule de Green (exposé IV) montre que

$$(A u,v) - (u,A'v) = \sum_{j=1}^{m} \int_{\Gamma} B_{j}u \frac{\overline{C_{j}'v}}{C_{j}'v} d\sigma$$

$$\text{donc on a } \sum_{j=1}^{m} \int_{\Gamma} B_{j}u \frac{\overline{C_{j}'v}}{C_{j}'v} d\sigma = 0 \text{, pour toute } v \in H^{2m}(\Omega)$$

$$\text{avec } B_{j}'v = 0 \text{ , } j=1,2,...m \text{.}$$

Lorsque la fonction v varie en étant assujettie à ces conditions $\left\{ \text{C}_{j}^{*}v\right\} _{j=1}^{m}$ parcourt un sous-espace dense de $\left(\text{L}_{2}(\Gamma)\right) ^{m}$, donc

nous avons

$$\sum_{j=1}^{m} \int_{\Gamma} B_{j}u h_{j} d\sigma = 0$$
pour toute famille $\{h_{j}\}_{j=1}^{m} \subseteq (L_{2}(\Gamma))^{m}$, i.e. $B_{j}u = 0$ pour $j=1,2,...m$.

En résumé nous avons $u \in D(A_2)$ avec $A_2u = f$ ce qui montre que $R(A_2) \supset \{L_2(\Omega); N'\}$ - sous réserve de vérifier le Théorème 6.2 . Avant de faire cette vérification, nous démontrons le : $\frac{\text{Corollaire 6.1}}{\text{Corollaire 6.1}} : A_2^* = A_2^* \quad \text{et} \quad A_2^{**} = A_2$

Ces deux identités sont équivalentes. Vérifions la première : Nous avons établi l'identité : $R(A_2) = \{L_2(\Omega); N'\}$. Echangeant les rôles de $\{A; B_1, \ldots B_m\}$ et $\{A'; B_1', \ldots B_m'\}$ nous avons aussi $R(A_2') = \{L_2(\Omega); N\}$. $R(A_2)$ étant fermé, nous avons aussi

$$R(A_2) = \left\{ L_2(\Omega); N(A_2^*) \right\}$$
et
$$R(A_2^*) = \left\{ L_2(\Omega); N \right\}$$

Nous en déduisons que $N(A_2^*)=N'$ et $R(A_2^*)=R(A_2^!)$. Grâce au lemme 5.2 il suffit de vérifier que $D(A_2^*)\subseteq D(A_2^!)$. Pour cela soit $u\in D(A_2^*)$ alors

$$A_2^* u = f \in R(A_2^*) = R(A_2^!)$$

il existe donc $u_0 \in D(A_2^i)$ tel que $A_2^i u_0 = f$ et $u - u_0 \in N(A_2^*) = N^i \in D(A_2^i)$, donc écrivant $u = (u - u_0) + u_0$ nous voyons que $u \in D(A_2^i)$.

C.Q.F.D.

2 - La fin de cet exposé est consacrée à la vérification du théorème 6.2, qui résulte de plusieurs lemmes.

Lemme 6.3: Sous les hypothèses du théorème 6.2 on a $u \in H^{4m}(\Omega)$ loc 0n remarque que u est solution dans Ω de l'équation elliptique d'ordre 4m: AA'u = f avec $f \in L_2(\Omega)$; le lemme exprime un résultat de <u>régularité à l'intérieur</u>, qui est classique.

Lemme 6.4: Si une fonction $v \in H^{S}(\mathbb{R}^{n}_{+})$ (s entier > 0) a toutes ses dérivées d'ordre k (k > s) dans $H^{S-k+1}(\mathbb{R}^{n}_{+})$ alors $v \in H^{S+1}(\mathbb{R}^{n}_{+})$.

Démonstration : De manière générale, nous posons :

$$X_{s,k}(\Omega) = \left\{ v \in H^{s}(\Omega) ; D^{\alpha}v \in H^{s-k+1}(\Omega) \text{ pour } |\alpha| = k \right\}$$

Nous montrerons que :

(i)
$$X_{s,k}(R^n) \subset H^{s+1}(R^n)$$

(ii) il existe un opérateur de "prolongement" P de $X_{s,k}(R_+^n)$ dans $X_{s,k}(R_+^n)$ linéaire continu, tel que $Pv|_{R_+^n} = v$ pour toute $v \in X_{s,k}(R_+^n)$.

Le point (i) est évident par transformation de Fourier; vérifions (ii) : en régularisant les fonctions de $X_{s,k}(R_+^n)$ à l'aide de fonctions de $\mathcal{D}(R_-^n)$, on vérifie que $C^{\infty}(R_+^n) \cap X_{s,k}(R_+^n)$ est dense dans $X_{s,k}(R_+^n)$, il suffit donc de définir Pv pour v indéfiniment dérivable dans R_+^n . On peut (par exemple) poser :

$$(\text{Pv}) (x_1, \dots x_n) = \begin{cases} v(x_1, \dots x_n) & x_n > 0 \\ \\ \sum_{j=1}^{\ell} \lambda_j v(x_1, \dots, x_{n-1}, -\frac{x_n}{j}) & x_n < 0 \end{cases}$$
 avec
$$\sum_{j=1}^{\ell} \lambda_j (-\frac{1}{j})^r = 1 \quad \text{pour } r = s-k, s-k+1, \dots k-1$$

Il est élémentaire de vérifier que l'opérateur P ainsi défini remplit les conditions requises.

Introduisons quelques notations :

$$\tau_{i,h} \quad v(x) = v(x_1, \dots x_{i-1}, x_{i+h}, x_{i+1}, \dots x_n) \quad , \quad i=1,2,\dots n$$

$$\Delta_{i,h} \quad v = \tau_{i,h} \quad v-v, \quad \rho_{i,h} \quad v = \frac{1}{h} \quad \Delta_{i,h} \quad v$$

$$\sum_{R} = \left\{ x \in \mathbb{R}^n \; ; \; |x| < R \; , \; x_n > 0 \right\}$$

$$H^{S} \left(\sum_{R}\right) = H^{S} \left(\sum_{R}\right) \quad \text{pour tout } \quad s \; .$$

 H_K^s (Σ_R) est le sous-espace de $H^s(\Sigma_R)$ formé des fonctions à support compact dans Σ_R , i.e. des fonctions nulles dans un voisinage de la partie courbée de $\partial \Sigma_R$.

Les lemmes qui suivent, sont relatifs à une forme sesquili- néaire sur le domaine \sum_{R} :

$$H_{K}^{2m} \left(\sum_{R} \right) \times H_{K}^{2m} \left(\sum_{R} \right) \longrightarrow \mathbb{C}$$

$$u , v \longrightarrow \{u, v\}$$

$$\{u, v\} = (A' u, A' v) + \sum_{j=1}^{m} \left((A'_{j} u, A'_{j} v) \right)_{j}$$

avec &' opérateur elliptique d'ordre 2m, à coefficients $C^{\infty}(\sum_{R})$, et \mathfrak{B}_{j}^{*} opérateur-frontière d'ordre m' à coefficients $C^{\infty}(\sum_{R} \cap R^{n-1}) \ , \ ((\ ,\))_{j} \ \text{ désignant le produit scalaire de }$ $H^{2m-m'}j^{-1/2}(R^{n-1}) \ .$

On suppose aussi que l'inégalité de coercivité (analogue à (6.2)) a lieu :

$$c^{-1} \|u\|_{2m}^{2} \le \{u,u\} + \|u\|_{0}^{2}$$
 (6.2)

pour $u \in H_K^{2m}(\Sigma_R)$.

Lemme 6.5: Soit $u \in H_K^{2m}(\Sigma_R)$, on suppose qu'il existe une cons-

tante C telle que :

$$\{\rho_{i,h} u,v\}$$
 $\leq C \|v\|_{2m}$

pour toute $v \in H_K^{2m}(\Sigma_R)$; alors $\frac{\partial u}{\partial x_i} \in H_K^{2m}(\Sigma_R)$.

<u>démonstration</u>: Posant $v = \rho_{i,h}$ u et utilisant l'inégalité

(6.2) nous obtenons (pour h assez petit)

$$C^{-1}\|\rho_{i,h} u\|_{2m}^{2} \le \{\rho_{i,h} u, \rho_{i,h} u\} + \|\rho_{i,h} u\|_{0}^{2}$$

$$\le C'\|\rho_{i,h} u\|_{2m} + \|\rho_{i,h} u\|_{0}^{2}$$

Nous en déduisons l'existence de constantes K_1 et K_2 indépendantes de h telles que :

$$\|\rho_{i,h} u\|_{2m}^{2} \leq K_{1} + K_{2} \|u\|_{1}^{2}$$

d'où

$$\frac{\partial u}{\partial x_i} \in H^{2m}(\Sigma_R)$$

C.Q.F.D.

Lemme 6.6 : On considère v telle que :

(i)
$$D_{\tau}^{k} v \in H_{K}^{s}(\Sigma_{R})$$
 pour $k \leq t$ (s entier > 0)

(ii)
$$D_n^{\ell} v = g + \sum_{|\alpha| < \ell = s} D^{\alpha} f_{\alpha}$$

 $\frac{\text{avec}}{\text{even}} \quad \ell \geqslant s + t \text{ , } g \in H_K^{\circ}(\Sigma_R) \text{ , } f_{\alpha} \in \mathcal{D}'(\Sigma_R) \text{ } \underline{\text{et}} \text{ } D_{\tau}^k \text{ } f_{\alpha} \in H_K^{\circ}(\Sigma_R)$

Alors $D_{\tau}^{k} v \in H_{K}^{s+1}(\Sigma_{R})$ pour $k \leq t-1$.

Ici et dans la suite de cet exposé, D_n désigne une dérivation par rapport à \mathbf{x}_n et D_{τ}^k n'importe quelle dérivation "tangentielle" c.à.d. une dérivation d'ordre k par rapport aux seules variables $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{n-1}$. Démonstration : Fixons $\mathbf{x} < \mathbf{t-1}$; pour montrer que

 D_{τ}^k $v\in H_K^{s+1}(\Sigma_R)$, il suffit grâce à l'hypothèse (i) et au lemme 6.4 de vérifier que toutes les dérivées d'ordre ℓ de D_{τ}^k v sont dans $H^{s+1-\ell}(\Sigma_R)$.

Soit D^{ℓ} une dérivation quelconque d'ordre ℓ ; deux cas se présentent :

- a) D\$\ell\$ contient une dérivation tangentielle : D\$\ell\$ = D\$^\ell\$-1D_\tau\$ alors D\$\ell\$(D_\tau^k v) = D\$^\ell\$-1(D_\tau^{k+1} v) et comme k+1 & t , on a $D_\tau^{k+1} v \in H^s(\Sigma_R) \ , \ d \circ \tilde{u} \ D^\ell$(D_\tau^k v) & \ell$ H$^{s+1-\ell}(\Sigma_R)$
- b) \textbf{D}^{ℓ} ne contient aucune dérivation tangentielle et s'écrit \textbf{D}_n^{ℓ} , alors

$$D_{n}^{\ell}(D_{\tau}^{k}v) = D_{\tau}^{k}(D_{n}^{\ell}v) = D_{\tau}^{k}g + \sum_{|\alpha| < \ell-s} D^{\alpha}(D_{\tau}^{k} f_{\alpha})$$

On a $D_{\tau}^k g \in H^{-k}(\Sigma_R) \subseteq H^{1-t}(\Sigma_R) \subseteq H^{s+1-\ell}(\Sigma_R)$ car $k \leqslant t-1$ et $s+t \leqslant \ell$, et on a par hypothèse $D_{\tau}^k f_{\alpha} \in H^0(\Sigma_R)$, donc $D^{\alpha}(D_{\tau}^k f_{\alpha}) \in H^{s+1-\ell}(\Sigma_R) \quad \text{pour} \quad |\alpha| \leqslant \ell-s-1 \; ; \; \text{en conséquence on a}$ $D_n^{\ell}(D_{\tau}^k v) \in H^{s+1-\ell}(\Sigma_R) .$

Le lemme est démontré.

Lemme 6.7: Si u et $v \in H^{2m+s}(\Sigma_R)$, a entier $0 \text{ et } \zeta \in C^{\infty}(\Sigma_R)$.

$$\left|\left\{\rho_{i,h} D_{\tau}^{s}(\zeta u), v\right\} + \left\{u, D_{\tau}^{s} \zeta \rho_{i,-h} v\right\}\right|$$

$$\leq C \left|\left|v\right|\right|_{2m} \sum_{t \leq s} \left|\left|D_{\tau}^{t} u\right|\right|_{2m}$$

$$(6.4)$$

où la constante ne dépend pas de u,v et h.

Nous admettons provisoirement ce dernier lemme et <u>nous démontrons</u> le Théorème 6.2 : Par application du lemme 6.3, nous avons $u \in H^{4m}_{loc}(\Omega)$, il nous reste donc à montrer que u est de classe H^{4m} au voisinage de chaque point de Γ . Par cartes locales, on est ramené au cas $\Omega = \sum_R$, $[\ , \]$ étant remplacée par $\{ \ , \ \}$: Soit $\mathbf{x}_0 \in \Gamma$, et soit U un voisinage de \mathbf{x}_0 dans $\overline{\Omega}$, qui soit difféomorphe à \sum_R , l'image de \mathbf{x}_0 of applique l'identité $[\mathbf{u},\mathbf{v}] = (\mathbf{f},\mathbf{v})$

avec $v \in H^{2m}(\Omega)$, v ayant son support dans U, et on effectue le changement de variables; alors dans les nouvelles coordonnées $u|_{\mathcal{U}}$ est solution de

$$\{u, v\} = (f, v)$$

pour toute $v \in H_K^{2m}(\Sigma_R)$, avec $f \in H^0(\Sigma_R)$ (1)

Il faut montrer que $u\in H^{4m}_{loc}(\Sigma_R)$ c'est-à-dire que $\zeta\;u\;\in H^{4m}(\Sigma_R)\quad \text{pour toute}\quad \zeta\;\in\; C^\infty_K(\Sigma_R) \ .$

a) Dans une première étape, nous montrerons par récurrence sur s , que $D_{\tau}^{S}(\zeta u) \in H^{2m}(\Sigma_{R})$ pour $\zeta \in C_{K}^{\infty}(\Sigma_{R})$, s=1,2,...2m . Nous supposons donc que $D_{\tau}^{t}(\zeta u) \in H^{2m}(\Sigma_{R})$ pour t=1,2,...s-1 et pour toute $\zeta \in C_{K}^{\infty}(\Sigma_{R})$ nous montrons que $D_{\tau}^{S}(\zeta u) \in H^{2m}(\Sigma_{R})$:

Par hypothèse nous avons $\sum_{t \leqslant s-1} \|D_{\tau}^{t}(\zeta u)\|_{2m} < + \infty$; l'application du lemme 6.7 donne :

$$\begin{split} & \left| \left\{ \rho_{\text{i},h} \ D_{\tau}^{\text{s-l}}(\zeta u), \ v \right\} \right| \ \leqslant \ \left| \left(f, \ D_{\tau}^{\text{s-l}} \ \zeta (\rho_{\text{i},-h} \ v) \right) \right| \ + \ C \ \left\| v \right\|_{2m} \\ & \text{d'où} \qquad \left| \left\{ \rho_{\text{i},h} \ D_{\tau}^{\text{s-l}} \ (\zeta u), \ v \right\} \right| \ \leqslant \ C_{\text{l}} \ \left\| v \right\|_{2m} \\ & \text{pour toute} \quad v \ \in H_{K}^{2m}(\widehat{\Sigma}_{R}) \ . \end{split}$$

La dernière inégalité, jointe au lemme 6.5 donne

$$\frac{\partial}{\partial x_i}$$
 $D_{\tau}^{s-1}(\zeta u) \in H^{2m}(\Sigma_R)$.

⁽¹⁾ On note encore u et f les images par le changement de variables de u $|_{\mathcal{U}}$ et f $|_{\mathcal{U}}$.

Ce raisonnement vaut pour i=1,2,...n=1 et montre que

$$D_{\tau}^{s}(\zeta u) \in H^{2m}(\Sigma_{R})$$

pour toute $\zeta \in C^{\infty}_{K}(\Sigma_{R})$; la récurrence se propage et nous avons

$$D_{\tau}^{s}(\zeta u) \in H^{2m}(\Sigma_{R})$$

pour s \leqslant 2m , $\zeta \in C_K^\infty(\side \sum_R)$ (c'est la "régularisation tangentielle")

b) La seconde étape consiste à démontrer par une nouvelle récurrence sur s que :

$$D_{\tau}^{k}(\zeta u) \in H^{2m+s}(\Sigma_{R}) \quad \text{pour } k < 2m-s$$

$$\text{et } \zeta \in C_{K}^{\infty}(\Sigma_{R})$$

$$(6.5)$$

avec s=1,2,...2m.

Nous supposons donc que (6.5) est démontré pour un s avec $0 \le s \le 2m-1$, et nous montrons que (6.5) est encore vrai avec s remplacé par s+1:

Pour commencer nous remarquons que u est solution de l'équation elliptique d'ordre 4m dans Σ_R : \mathcal{AA} , u=f (1) Nous avons donc \mathcal{AA} , $(\zeta u)=\zeta f+\xi u$, où ξ est un opérateur d'ordre 4m-1, dont les coefficients ont leurs supports dans un même compact de Σ_R (plus précisément dans le support de ζ). Il existe donc $\zeta_1 \in C_K^\infty(\Sigma_R)$ tel que $\xi u=\xi(\zeta_1 u)$. Soit a le (1) \mathcal{A} est l'adjoint formel de \mathcal{A} , .

coefficient de D $_n^{\mu_m}$ dans AA', l'ellipticité de AA' nous assure de ce que a ne s'annule pas dans Σ_R , et on a

a
$$D_n^{4m}(\zeta u) = AH(\zeta u) + G(\zeta u)$$

où g est un opérateur d'ordre 4m sans terme en D_n^{4m} . Nous avons donc

$$a D_n^{4m}(\zeta u) = \zeta f + \mathcal{E}(\zeta_1 u) + \mathcal{G}(\zeta u)$$
 (6.6)

Pour pouvoir appliquer le lemme 6.6, nous allons montrer que

$$a D_{n}^{4m} (\zeta u) = g + \sum_{|\alpha| < 2m-s} D^{\alpha} f_{\alpha}$$
 (6.7)

avec $g \in H^{\circ}(\Sigma_{R})$ et $D_{\tau}^{k} f_{\alpha} \in H^{\circ}(\Sigma_{R})$ pour $k \leq 2m-s-1$

Considérons successivement tous les termes composant la somme de droite dans (6.6), et montrons qu'ils admettent une décomposition du type (6.7):

(i)
$$\zeta f \in H^{\circ}(\Sigma_{R})$$

(ii) $\mathcal{E}(\zeta_1 u)$ est combinaison linéaire (à coefficients dans $C^\infty(\Sigma_R)$) de dérivées $D_n^\alpha D_\tau^\beta(\zeta_1 u)$ avec $\alpha+\beta <4m-1$.

Lorsque α < 2m+s , on a par hypothèse de récurrence

$$D_n^{\alpha}$$
 $D_{\tau}^{\beta}(\zeta_1 u) \in H^{0}(\Sigma_R)$

et lorsque $\alpha > 2m+s$ on écrit

$$D_{n}^{\alpha} D_{\tau}^{\beta} (\zeta_{1}u) = D_{n}^{\alpha-2m-s} D_{\tau}^{\beta} (D_{n}^{2m+s}(\zeta_{1}u))$$

c'est une dérivée d'ordre < 2m-s-l de $(D_n^{2m+s}(\zeta_1 u))$ qui est telle que $D_{\tau}^k(D_n^{2m+s}(\zeta_1 u)) \in H^O(\sum_R)$ pour k < 2m-s-l . (iii) $\mathcal{G}(\zeta u)$ est combinaison linéaire (à coefficients dans $C^\infty(\sum_R)$) de dérivées D_n^α D_{τ}^β (ζu) avec $\alpha + \beta \leqslant 4m$ et $\alpha \leqslant 4m-l$. Lorsque $\alpha \leqslant 2m+s$ on a D_n^α D_{τ}^β $(\zeta u) \in H^O(\sum_R)$; ensuite lorsque $\alpha > 2m+s$ et $\beta \geqslant 1$ on écrit :

$$D_{n}^{\alpha} D_{\tau}^{\beta} (\zeta u) = D_{n}^{\alpha-2m-s} D_{\tau}^{\beta-1} (D_{\tau} D_{n}^{2m+s}(\zeta u))$$

c'est une dérivée d'ordre < 2m-s-l de la fonction(D $_{\tau}$ D $_{n}^{2m+s}$ (ζu)) qui est telle que

$$D_{\tau}^{k} (D_{\tau} D_{n}^{2m+s}(\zeta u)) \in H^{0}(\Sigma_{R})$$

pour $k\leqslant 2m-s-1$; enfin lorsque $\alpha>2m+s$ et $\beta=0$ on a $D_n^{\alpha}D_{\tau}^{\beta}(\zeta u)=D_n^{\alpha}(\zeta u) \text{ et } 2m+s<4m-1 \text{ donc } D_n^{\alpha}D_{\tau}^{\beta}(\zeta u)=D_n^{\alpha-2m-s}(D_n^{2m+s}(\zeta u)) \text{ dérivée d'ordre } \leqslant 2m-s-1 \text{ de la fonction}$ $(D_n^{2m+s}(\zeta u)) \text{ qui est telle que } D_{\tau}^{k}(D_n^{2m+s}\zeta u)\in H^{0}(\Sigma_R) \text{ pour } k\leqslant 2m-s-1 \text{ .}$

Nous avons donc vérifié que l'identité (6.7) a lieu, et comme $a^{-1}\in C^\infty({\textstyle\sum_R})\quad \text{il est facile de vérifier qu'une identité analogue}$ a lieu pour $D_n^{4m}(\varsigma u)$.

Nous pouvons donc appliquer le lemme 6.6 avec $\,$ t, s, ℓ

remplacés par 2m-s, 2m+s et 4m respectivement (on a bien alors $s+t \leqslant \ell) \ ; \ \text{et nous obtenors} \quad D^k_\tau(\zeta u) \in H^{2m+s+1}(\sum_R) \quad \text{pour } k \leqslant 2m-s-1$ et $\zeta \in C^\infty_K(\sum_R)$.

La récurrence se propage, ce qui prouve (6.5) et le théorème 6.2.

Il nous reste à vérifier le lemme 6.7 : il nous faut majorer entre autres la somme :

$$(A' \rho_{i,h} D_{\tau}^{s}(\zeta u), A' v) + (A' u, A' D_{\tau}^{s} \zeta \rho_{i,-h} v)$$

c'est une somme de termes de la forme :

$$(a_{\alpha} D^{\alpha} \rho_{i,h} D^{s}_{\tau}(\zeta u), a_{\beta} D^{\beta} v) + (a_{\alpha} D^{\alpha} u, a_{\beta} D^{\beta} D^{s}_{\tau}(\zeta \rho_{i,-h} v))$$

avec $a_{\alpha}, a_{\beta} \in C^{\infty}(\overline{\Sigma_{R}})$ et $|\alpha|, |\beta| \leq 2m$.

Vu les propriétés des fonctions a_{α} , a_{β} , ζ et du support de ζ , on voit par application de la formule de Leibnitz qu'il suffit de vérifier que

$$|(D^{\alpha}(\rho_{i,h} D^{s}_{\tau} u), D^{\beta} v) + (D^{\alpha} u, D^{\beta} D^{s}_{\tau} (\rho_{i,-h} v))|$$
 $\leq C ||v||_{2m} \sum_{t \leq s} ||D^{t}_{\tau} u||_{2m}$

pour $v\in H^{2m}_K(\sum_R)$, et u telle que D^t_τ $u\in H^{2m}_K(\sum_R)$ pour $t\leqslant s$. Ceci résulte de l'identité évidente :

$$|(\rho_{i,h} f, g) + (f, \rho_{i,-h} g)| = 0$$

pour f, $g \in H_K^0(\Sigma_R)$.

La majoration des autres termes intervenant dans

VII - EXISTENCE DANS L

1 - Nous utilisons les notations des deux exposés précédents;

Théorème 7.1 : $R(A_p) = \{L_p(\Omega); N'\}$

<u>Démonstration</u>: Nous savons déjà que $R(A_p)$ est un sous-espace fermé de $\{L_p(\Omega); N'\}$ (exposé V) et que $\{C^{\bullet \circ}(\overline{\Omega}); N'\}$ est dense dans $\{L_p(\Omega); N'\}$ (exposé V). Il nous suffit de voir que

$$R(A_p) \supset \{C^{\infty}(\overline{\Omega}); N'\}$$
.

Soit $f \in \{C^{\infty}(\overline{\Omega}); N'\} \subset R(A_2)$ (exposé VI) alors il existe $u \in D(A_2)$ tel que A u = f; les résultats de régularité (exposé III) montrent que

$$u \in C^{\infty}(\overline{\Omega}) \subset W_{p}^{2m}(\Omega)$$

Comme $u \in D(A_2)$ on a B_j u = 0 , j=1,2,...m , d'où $u \in D(A_p)$ et $f = A_p$ $u \in R(A_p)$

Corollaire 7.1 : A_p est un opérateur à indice (1); $\frac{\text{C.Q.F.D.}}{\text{son indice est}}$ dim N - dim N', $\frac{\text{ne dépend pas de }}{\text{ne p}}$; nous le noterons $\chi(A;B_1,\ldots,B_m)$.

⁽¹⁾ Un opérateur linéaire ∧ opérant de l'espace vectoriel E dans l'espace vectoriel F est dit "opérateur à indice" si son noyau ∧-1(0) est de dimension finie et son image ∧(E) est de codimension (dans F) finie. On sait que si E et F sont deux espaces de Fréchet et si ∧ est continu, alors, s'il a un indice c'est un homomorphisme (strict); l'indice est

 $[\]chi(\Lambda) = \dim \Lambda^{1}(0) - \operatorname{codim} \Lambda(E)$.

<u>Démonstration</u>: $A_p u = f \in L_q(\Omega) \cap R(A_p)$

i.e. $f \in L_q(\Omega) \cap \{L_p(\Omega); N'\} \subset \{L_q(\Omega); N'\} = R(A_q)$

donc il existe $u_0 \in D(A_q)$ avec $A_q u_0 = f$. Soit r = inf(p, q) ,

Ω étant borné nous avons les inclusions

$$L_{p}(\Omega)$$
 , $L_{q}(\Omega) \subset L_{r}(\Omega)$

d'où $W_p^{2m}(\Omega)$, $W_a^{2m}(\Omega) \subset W_r^{2m}(\Omega)$

et $D(A_p)$, $D(A_q) \subset D(A_r)$

et $u - u_0 \in D(A_r)$ avec $A_r(u-u_0) = 0$.

Nous avons donc $u-u_0 \in \mathbb{N} \subset D(\mathbb{A}_q)$ et $u = (u-u_0) + u_0 \in D(\mathbb{A}_q)$ C.Q.F.D.

Remarque 7.1 : Ces théorèmes sont vrais, avec les modifications évidentes, lorsqu'on remplace A par A'

Théorème 7.3: $A_p^* = A_p^*$, et $A_p^{**} = A_p$

<u>Démonstration</u>: Pour tout p les deux identités sont équivalentes,

car $A_p^{**} = A_p$; il suffit donc de démontrer la première pour

1 et la seconde pour <math>2 . (i.e. <math>1 < p' < 2).

Les deux problèmes aux limites $\{A; B_1, ... B_m\}$ et $\{A'; B_1', ... B_m'\}$

ayant des propriétés analogues, il suffit en fait de vérifier que

 $A_{p'}^{\dagger} = A_{p}^{*}$ pour 1 < p < 2 , la démonstration de l'autre identité pour 1 < p' < 2 étant analogue.

Grâce au lemme 5.2, il reste à vérifier que

Soit $v \in D(A_p^*)$, alors

$$u \longrightarrow (A_p u, v) = (u, A_p^* v)$$

est linéaire continue sur $D(A_p)$ pour la norme induite par $L_p(\Omega)$, donc aussi sur $D(A_2)$ pour la norme induite par $L_2(\Omega)$ (car $D(A_2) \subset D(A_p) \text{ et } A_p^* \text{ } v \in L_{p^*}(\Omega) \subset L_2(\Omega)) \text{ . En conséquence}$ $v \in D(A_2) = D(A_2)$

et
$$A_2^*$$
 $v = A_2^*$ $v = A_p^*$ $v \in L_{p^*}(\Omega)$, donc (Théorème 7.2) $v \in D(A_p^*, \Omega)$
 $C \cdot Q \cdot F \cdot D \cdot D$

2 -Combinant ces derniers théorèmes avec les résultats de régularité de l'exposé III nous obtenons le :

Théorème 7.4 : Le problème

$$u \in W_{p}^{2m+k}(\Omega)$$

$$A u = f \underline{dans} \Omega$$

$$B_{j} u = 0 \underline{sur} \Gamma$$

avec $f \in W_p^k(\Omega)$ (k=0,1,...) possède une solution si et seulement si f est orthogonale à N'; la solution g est unique à un

élément de N près.

Ceci résoud un problème aux limites homogène, c'est-à-dire avec conditions aux limites homogènes.

On pourrait considérer A comme opérateur $A_{p,k}$ non borné dans $W_p^k(\Omega)$ de domaine $\left\{u \in W_p^{2m+k}(\Omega) \; ; \; B_j \; u = 0 \; , \; j=1,\ldots m\right\}$; l'opérateur ainsi obtenu est un opérateur à indice lequel indice est égal $\chi(A;B_1,\ldots,B_m)$ et ne dépend donc ni de p ni de k.

Considérons à présent un problème aux limites non homogènes: On donne f $\in W_p^k(\Omega)$ et $g_j \in W_p^{2m+k-m}j^{-1/p}(\Gamma)$, $j=1,2,\ldots m$, et on cherche

$$\begin{cases} u \in W_p^{2m+k}(\Omega) \\ A u = f & \text{dans } \Omega \end{cases}$$

$$B_j u = B_j \quad \text{sur } \Gamma$$

Il existe (exposé IV) $w \in W_p^{2m+k}(\Omega)$ avec B_j $w=g_j$, $j=1,2,\ldots m$. Nous allons chercher u sous la forme v+w; alors v est solution du problème :

$$\begin{cases} v \in W_p^{2m+k}(\Omega) \\ Av = f - Aw & \text{dans } \Omega \\ B_j & v = 0 & \text{sur } \Gamma \end{cases}$$

Ce problème possède une solution si et seulement si (f - Aw, v) = 0

pour toute
$$v \in N'$$
; $(f-Aw, v) = (f,v) + \sum_{j=1}^{m} \int_{\Gamma} B_{j}w \frac{C_{j}^{i}v}{C_{j}^{j}v} d\sigma$

$$= (f,v) + \sum_{j=1}^{m} \int_{\Gamma} g_{j} \frac{C_{j}^{i}v}{C_{j}^{i}v} d\sigma$$

et nous avons le

Théorème 7.5 : Le problème :

$$u \in W_p^{2m+k}(\Omega)$$

A u = f dans Ω

$$B_j u = g_j \underline{sur} \Gamma j=1,2,...m$$

possède une solution pour $f \in W_p^k(\Omega)$ et $g_j \in W_p^{2m+k-m}j^{-1/p}(\Gamma)$

j=1,2,...m si et seulement si

$$(f,v) + \sum_{j=1}^{m} \int_{\Gamma} g_{j} \overline{C_{j}^{i}v} d\sigma = 0$$

pour tout v

N'. La solution est unique à un élément de N près.

- 3 Plusieurs questions naturelles se posent à présent :
- (i) Quand avons-nous $N = \{0\}$? Dans ce cas il y a unicité de la solution donnée dans le Théorème 7.5.
- (ii) Quand avons-nous N' = $\{0\}$? Dans ce cas il y a existence de la solution du problème non homogène considéré au Théorème 7.5, pour tout $f \in W_p^k(\Omega)$ et $g_j \in W_p^{2m+k-1/p}(\Gamma)$, $j=1,2,\ldots m$.

(iii) Quand avons-nous dim N = dim N' ? Dans ce cas A_p est un opérateur de "Riesz-Fredholm".

Nous allons répondre partiellement à ces questions.

(i) Nous pouvons écrire l'opérateur A sous la forme :

$$A = \sum_{|\alpha|, |\beta| \le m} (-1)^{|\alpha|} D^{\alpha}(e_{\alpha\beta}(x) D^{\beta})$$

et soit

$$u, v \longrightarrow a(u, v) = \sum_{|\alpha|, |\beta| \le m} (a_{\alpha\beta} D^{\beta}u, D^{\alpha}v)$$

la forme sesquilinéaire (forme de Dirichlet) associée à l'opérateur A , définie sur $\operatorname{H}^m(\Omega)$ x $\operatorname{H}^m(\Omega)$.

Pour $u,v \in C^{\infty}(\overline{\Omega})$ nous avons les formules de Green suivantes (1):

$$(Au,v) - a(u,v) = \sum_{j=1}^{m} \int_{\Gamma} S_{j}u \gamma_{j-1}v d\sigma \qquad (2)$$

où les S_j sont des "opérateurs-frontières" à coefficients $C^\infty(\Gamma)$, d'ordre 2m-j.

Soit $\{1,\ldots m\}=\{j_1,\ldots j_k\}\cup\{j_{k+1},\ldots j_m\}$ une partition de l'ensemble $\{1,\ldots m\}$ nous allons donner une condition suffisante pour qu'il y ait unicité (i.e. N = 0) pour le problème aux limites

$$\{A; \gamma_{j_1-1}, \dots \gamma_{j_k-1}, s_{j_{k+1}} \dots s_{j_m}\}$$
 (3)

⁽¹⁾ Voir exposé IV, 5.

⁽²⁾ Rappelons que $\gamma_j v = \frac{\partial^j v}{\partial n^j}$, n normale à Γ , intérieure à Ω .

⁽³⁾ Les résultats seront valables pour tout système $\{B_j\}_{j=1}^m$ équivalent (exp.IV) à $\{\gamma_{j_1-1}, \dots S_{j_m}\}$.

Lorsque k = m ce problème est le "problème de Dirichlet" relatif à A , lorsque k = 0 , c'est le "problème de Neumann".

Soit
$$V = \{v \in H^m(\Omega); \gamma_{j_1-1}v = 0, \dots, \gamma_{j_k-1}v = 0\}$$
,

c'est un sous-espace fermé de $H^m(\Omega)$;

 $V = H_0^m(\Omega)$ dans le cas du problème de Dirichlet

 $V = H^{m}(\Omega)$ dans le cas du problème de Neumann.

Proposition 7.1: On suppose que la forme a(u,v) est "V-elliptique" c'est-à-dire qu'il existe une constante C> 0 telle que

$$|a(v,v)| \geqslant C ||v||_m^2 \quad \underline{pour} \quad v \in V$$
;

alors la seule solution du problème :

$$\begin{cases} u \in C^{\infty}(\overline{\Omega}) \\ Au = 0 \\ \gamma_{j_{i}-1}u = 0 \\ \vdots = 1,2,...k \\ S_{j_{i}}u = 0 \\ \vdots = k+1,...m \end{cases}$$

est $u \equiv 0$.

En d'autres termes, lorsque a est V-elliptique, on a N = $\{0\}$ pour le problème aux limites $\{A; \gamma_{j_1-1}, \dots, \gamma_{j_k-1}, S_{j_k}, \dots, S_{j_m}\}$ Démonstration : Soit $u \in \mathbb{N}$, calculons a(u,u) à l'aide de la formule de Green : il vient

$$a(u,u) = (Au,u) - \sum_{i=1}^{k} \int_{\Gamma} S_{i} u \frac{1}{\gamma_{j-1} u} d\sigma - \sum_{i=k+1}^{m} \int_{\Gamma} S_{i} u \frac{1}{\gamma_{j-1} u} d\sigma$$

$$= 0$$

La V-ellipticité, implique que u = 0

C.Q.F.D.

Remarque 7.2 : Ce résultat est du type variationnel; la méthode s'applique à tous les problèmes aux limites que l'on peut résoudre par une méthode variationnelle, c'est pourquoi nous n'insistons pas sur ce point de vue (voir l'Introduction).

Remarque 7.3: On sait que si A est fortement-elliptique" i.e.

Re
$$\sum_{|\alpha|, |\beta|=m} a_{\alpha\beta}(x) \xi^{\alpha+\beta} \geqslant C |\xi|^{2m} (C>0, \xi \in \mathbb{R}^n, x \in \Omega)$$

alors la forme a(u,v) + λ (u,v) est $H_0^m(\Omega)$ elliptique pour λ assez grand (inégalité de Gårding).

- (ii) La question ii) pose un problème de même nature que la question i); une réponse partielle est donc fournie par la proposition 7.1.
- (iii) Voici un critère très simple qui permet d'affirmer que $\chi(A; B_1, \dots, B_m) = 0$ Proposition 7.2: On suppose que $D(A_2) = C(D(A_2^i))^{(1)} \frac{\text{alors}}{\text{alors}} \chi(A, B_1, \dots, B_m) = 0$ Démonstration: A' est l'adjoint formel de A; on note A' l'opérateur A' où l'on a remplacé les coefficients par leurs conjugués

 (1) $C(D(A_2^i))$ désigne l'ensemble des conjugués complexes des fonctions

complexes. De même on note $\overline{B_j^*}$ les opérateurs B_j^* où l'on a remplacé les coefficients par leurs conjugués complexes.

Soit $\overline{A_2'}$ la réalisation de $\overline{A'}$ dans $L_2(\Omega)$ sous les conditions aux limites $\overline{B_2'}u=0$, $j=1,2,\ldots m$; il est facile de voir que $\overline{D(\overline{A_2'})}=C(\overline{D(A_2')})$ et par conséquent, on a $\overline{D(A_2)}=\overline{D(\overline{A_2'})}$. Comme $A-\overline{A'}$ est un opérateur $\overline{d'}$ ordre $\leq 2m-1$, $A_2-\overline{A_2'}$ est un opérateur compact de $\overline{D(A_2)}$ dans $L_2(\Omega)$; on en déduit

$$\chi(A_2) = \chi(\overline{A_2^*})$$

Il est facile de voir que $\chi(\overline{\mathbb{A}_2^{\dagger}}) = \chi(\mathbb{A}_2^{\dagger})$ et par conséquent on a :

$$\chi(A_2) = \chi(A_2^*)$$

mais comme $A_2^{\dagger} = A_2^*$, on a $\chi(A_2) = -\chi(A_2^{\dagger})$

$$\chi(A_2) = 0$$

C.Q.F.D.

Remarque 7.4 : Comme $D(A_2)$ ne dépend que de 2m et des conditions aux limites, la condition $D(A_2) = C(D(A_2^*))$ ne dépend que des conditions aux limites et pas de A . En particulier dans le cas du problème de Dirichlet on a

$$D(A_2) = C(D(A_2^{\bullet})) = H^{2m}(\Omega) \cap H^{m}(\Omega)$$

et l'indice du problème de Dirichlet est nul quel que soit l'opérateur A ; l'unicité du problème de Dirichlet pour A (dim $N = \{0\}$)

implique qu'il y a unicité pour le problème de Dirichlet pour A' $(\text{dim N'} = \{0\}) \text{ , donc aussi qu'il y a existence et unicité pour ces deux problèmes. Lorsque } A \text{ est fortement elliptique, } A_p + \lambda \\ \text{est un isomorphisme de } \mathbb{W}_p^{2m}(\Omega) \cap \mathbb{W}_p^m(\Omega) \text{ sur } \mathbb{L}_p(\Omega) \text{ pour } \lambda \text{ assez grand.}$

Remarque 7.5: Lorsque le problème aux limites $\{A; B_1, \dots B_m\}$ est formellement autoadjoint, i.e. A = A' et $\{B_j\}^m$ peut être pris comme système d'opérateurs-frontières adjoint à lui-même relativement à A, alors on a évidemment dim $N = \dim N'$ puisque N = N'. C'est toujours le cas pour les problèmes considérés plus haut :

$$\{A; -\gamma_{j_1-1}, \dots -\gamma_{j_k-1}; S_{j_{k+1}}, \dots S_{j_m}\}$$

relatifs à un opérateur A formellement autoadjoint.

Remarque 7.6 : On sait que l'indice d'un opérateur n'est pas modifié lorsqu'on ajoute un opérateur compact; par conséquent nous ne modifions pas l'indice de la "réalisation dans L_p " de l'opérateur A, par addition d'un opérateur C d'ordre $\leq 2m-1$; en particulier $\chi(A_p + \lambda I) = \chi(A_p) \qquad \text{pour tout} \quad \lambda \ll C.$

VIII APPLICATION DE LA TRANSPOSITION ET DE L'INTERPOLATION.

Dans ce numéro on déduit des résultats d'existence obtenus précédemment, de nouveaux résultats d'existence pour des données (aux limites) g plus générales. Les raisonnements d'analyse fonctionnelle que nous ferons, utiliseront en particulier la théorie de l'interpolation dont nous rappelons pour commencer quelques résultats.

l - <u>L'interpolation</u>: Nous désignerons par & la catégorie dont les objets sont les espaces de Banach (complexes) et les morphismes sont les applications linéaires continues.

Nous appellerons "Couple d'interpolation" un couple (A_0 , A_1) d'espaces de Banach, tel qu'il existe un espace vectoriel topologique localement convexe séparé $\mathcal A$ avec $A_i \subset \mathcal A$ i=0,1 (algébriquement et topologiquement); on peut alors définir $A_0 \cap A_1$ et $A_0 + A_1$, et munir ces espaces des normes

et a
$$\longrightarrow$$
 inf $\{\|a\|_{A_0} + \|a\|_{A_1} \}$

$$a \longrightarrow \inf \{\|a\|_{A_0} + \|a\|_{A_1} \}$$

$$a \subset A_0, a_1 \subset A_1$$

$$a \to a_1 = a$$

respectivement: $A_0 \cap A_1$ et $A_0 + A_1$ sont deux espaces de Banach.

Soit & la catégorie dont les objets sont les couples d'interpolation et dont les morphismes sont définis ainsi : soient (A_0,A_1) et (B_0,B_1) deux couples d'interpolation, on appelle morphisme de (A_0,A_1) dans (B_0,B_1) , une $u\in \operatorname{Hom}(A_0+A_1;B_0+B_1)$ telle que la restriction de u à A_i soit linéaire continue de A_i dans B_i , i=0,1. Par restriction à $A_0\cap A_1$, u définit une application linéaire continue de $A_0\cap A_1$ dans $A_0\cap A_1$.

 (A_0, A_1) \longrightarrow $A_0 \cap A_1$ et (A_0, A_1) \longrightarrow $A_0 + A_1$

sont deux foncteurs covariants particuliers de la catégorie ${\mathscr C}$ dans la catégorie ${\mathscr G}$.

Une méthode d'interpolation est la donnée d'un foncteur d'interpolation covariant Φ de la catégorie \mathcal{C} dans la catégorie \mathcal{B} , plus fin que le foncteur $(A_0,A_1) \longrightarrow A_0 \cap A_1$ et moins fin que le foncteur $(A_0,A_1) \longrightarrow A_0 \cap A_1$.

Exemples:

1) Pour tout σ avec $0 < \sigma < 1$ et tout p avec $1 , il existe un"foncteur d'interpolation" noté <math>\Phi_{p,\sigma}$ avec (1)

⁽¹⁾ C'est la "méthode d'interpolation réelle", habituellement notée $(A_0,A_1) \xrightarrow{} S(p,\theta;A_0,A_1) = T(p,\alpha;A_0,A_1)$ avec $\sigma = 1-\theta$, $\alpha+1/=\theta$

$$\Phi_{p,\sigma} (W_p^{s+1}(\Omega), W_p^s(\Omega)) = W_p^{s+\sigma}(\Omega)$$
 (8.2)

$$\Phi_{p,\sigma} (W_p^{s+1}(\Gamma), W_p^s(\Gamma)) = W_p^{s+\sigma}(\Gamma)$$
 (8.2)

pour tout s réel (de signe quelconque et tel que s+ σ ne soit pas entier, pour p \neq 2)

2) Pour tout couple d'entiers ℓ , m avec $0 < \ell < m$ il existe $\Phi_{\ell,m}$ tel que (2)

$$\Phi_{\ell,m} \left(W_{p}^{s+m}(\Omega) , W_{p}^{s}(\Omega) \right) = W_{p}^{s+\ell}(\Omega)$$
 (8.3)

$$\Phi_{\ell,m} (W_p^{s+m}(\Gamma), W_p^s(\Gamma)) = W_p^{s+\ell}(\Gamma)$$
 (8.3)

pour tout s réel (de signe quelconque) et l < p < ∞.

espaces de Sobolev au cas où l'exposant est entier.

Remarque 8.1: Il existe bien d'autres exemples de foncteurs ...

Remarque 8.2: Une conséquence importante de l'identité (8.2) est la propriété d'interpolation suivante : si $u \in \text{Hom}(W_p^k(\Omega); W_p^\ell(\Omega))$ et si la restriction de u à $W_p^{k+1}(\Omega)$ est un élément de $\text{Hom}(W_p^{k+1}(\Omega); W_p^{\ell+1}(\Omega))$ alors la restriction de u à $W_p^{k+\sigma}(\Omega)$ est un élément de $\text{Hom}(W_p^{k+\sigma}(\Omega); W_p^{\ell+\sigma}(\Omega))$ pour tout $\sigma \in]0,1[$; cette remarque réduit la démonstration de la plupart des propriétés des

Considérons à présent $(B_0,B_1) \in C$ et soit N un sous-espace

⁽²⁾ C'est la "méthode d'interpolation complexe", habituellement notée $(A_0, A_1) \sim [A_0, A_1]_{\theta} = [A_0, A_1; \delta(\theta)]$ avec $1-\theta = \ell/m$.

vectoriel fermé de B_o \cap B₁; les inclusions suivantes montrent que $(B_{o}/_{N}, \ B_{1}/_{N}) \in \mathcal{C}:$

$$(B_0 \cap B_1)_{/N} \subset B_{i/N} \subset (B_0 + B_1)_{/N}$$
 i=0,1.

Soit I l'application canonique de Bo+Bl dans (Bo+Bl), , il est évident que

$$II \in Hom((B_o,B_1), (B_o/N, B_1/N))$$

et par conséquent $\Pi \in \text{Hom}(\Phi(B_0, B_1), \Phi(B_0/_N, B_1/_N))$.

Comme II applique $\Phi(B_0,B_1)$ sur $\Phi(B_0,B_1)/N$, on en déduit l'inclusion

$$\Phi(B_o,B_1)_N \subset \Phi(B_o_N,B_1)$$
.

$$\Phi(B_0, B_1)/_N = \Phi(B_0/_N, B_1/_N)$$
 (8.4)

démonstration: On construit un inverse R à droite de Π :

soit $z_1, \dots z_n$ une base de N et $z'_1, \dots z'_n$ des éléments de $(B_0+B_1)'$ tels que $\langle z_i, z'_j \rangle = \delta_{i,j}$ $i,j=1,2\dots n$ (le crochet désigne la dualité entre (B_0+B_1) et $(B_0+B_1)'$). Pour $b' \in (B_0+B_1)/N$ nous posons

R b' = b -
$$\sum_{i=1}^{n} < b, z_{i} > z_{i}$$

où b est un élément quelconque de b°. Il est évident que R b° ne dépend pas du choix particulier de b \in b°, on peut donc choisir b dépendant continûment (non linéairement) de b°, et alors

$$R \in Hom((B_0/N, B_1/N), (B_0, B_1))$$

d'où R \in Hom($\phi(B_0/_N, B_1/_N)$, $\phi(B_0, B_1)$); comme NoR = 1, ceci montre que N applique $\phi(B_0, B_1)$ sur $\phi(B_0/_N; B_1/_N)$.

C.Q.F.D.

Nous utiliserons également le

$$\Phi(\{B_{O},N'\};\{B_{1},N'\}) = \{\Phi(B_{O},B_{1});N'\}$$
 (8.5)

Ici (comme dans les exposés précédents), on a

 $\{B_i;N'\} = \{b \in B_i ; (b,z') = 0 \text{ pour tout } z' \in N'\}$ les parenthèses désignant l'antidualité entre B_0+B_1 et son anti-dual.

2 - Application de l'interpolation (I) :

Les notations sont les mêmes que dans les trois exposés précédents. Théorème 8.1 : Ap est un isomorphisme de $W_p^{2m+r}(\Omega; \{B_j\}_{j=1}^m)/N$ sur $\{W_p^r(\Omega); N'\}$ pour tout r réel $\geqslant 0$.

<u>Démonstration</u>: Nous avons déjà obtenu ce résultat pour rentier. Par interpolation nuus en déduisons que pour k < r < k+1, Ap est un isomorphisme de X/N sur $\{W_p^r(\Omega); N'\}$ avec

$$X = \Phi_{p,\sigma} (W_p^{2m+k+1}(\Omega; \{B_j\}_{j=1}^m), W_p^{2m+k}(\Omega; \{B_j\}_{j=1}^m))$$

et $\sigma = r-k$ (nous avons utilisé la proposition 8.1 et son corollaire et l'identité (8.2)) .

Il nous faut interpréter l'espace X ; l'inclusion suivante est évidente :

$$X \subset W_p^{2m+r}(\Omega; \{B_j\}_{j=1}^m)$$

Pour montrer l'inclusion réciproque, fixons $u \in W_p^{2m+r}(\Omega; \{B_j\}_{j=1}^m)$, alors $A_p u = f \in \{W_p^r(\Omega); N'\}$, et par conséquent, il existe $u_0 \in X$, unique à un élément de N près, tel que $A_p u_0 = f$. Il est évident que $u-u_0 \in W_p^{2m}(\Omega; \{B_j\}_{j=1}^m) = D(A_p)$ et que $A_p(u-u_0) = 0$, i.e. $u-u_0 \in N$; comme on a $N \subset W_p^{2m+k+1}(\Omega; \{B_j\}_{j=1}^m) \subset X$, on en déduit que $u \in X$ et donc $W_p^{2m+r}(\Omega; \{B_j\}_{j=1}^m) \subset X$.

⁽¹⁾ de manière générale on pose $w_p^{2m+r}(\Omega; \{B_j\}_{j=1}^m) = \{u \in W_p^{2m+r}(\Omega); B_j u = 0, j=1,2...m\}$, r > 0.

Le théorème 8.1 résoud un problème aux limites homogènes pour le problème aux limites non homogènes on a le résultat suivant (de régularité) :

Théorème 8.2 : Le problème

$$u \in W_p^{2m}(\Omega)$$

 $Au = f \quad \underline{dans} \quad \Omega$

$$B_j u = g_j \underline{sur} \Gamma$$
, $j=1,2...m$

possède une solution pour $f \in W_p^r(\Omega)$ et $g_j \in W_p^{2m+r-m}j^{-1/p}(\Gamma)$

j=1,2...m , si et seulement si

$$(\mathbf{f},\mathbf{v}) + \sum_{j=1}^{m} \int_{\Gamma} g_{j} \overline{C'_{j}\mathbf{v}} d\sigma = 0$$
 (8.6)

pour tout $v \in \mathbb{N}$ (r réel > 0 ; r-1/p non entier pour p \neq 2)

La solution est unique à un élément de \mathbb{N} près et est dans l'es-

 $\frac{\text{pace}}{\text{p}} W_{\text{p}}^{2\text{m+r}}(\Omega)$.

La démonstration (qui utilise le théorème 1.1) est analogue à celle du théorème 7.5.

3- Transposition: L'analogue du théorème 8.1 a lieu pour A'p:

c'est un isomorphisme de $W_{p}^{2m+r}(\Omega; \{B^{i}\}_{j=1}^{m})/N$, sur $\{W_{p}^{r}, (\Omega); N\}$.

Posons

$$W_{p'}^{2m+r}(\Omega; \{B_{j}^{i}\}_{j=1}^{m}; A') = \{u \in W_{p'}^{2m+r}(\Omega; \{B_{j}^{i}\}_{j=1}^{m}); A'u \in W_{p}^{r}(\Omega)\}$$

Par restriction, il est évident que A_p^{r} , est un isomorphisme de $W_p^{2m+r}(\Omega; \{B_j^{t}\}_{j=1}^m; A^{t})/N$, sur $\{W_p^{r}, (\Omega); N\}$.

Transposons cet isomorphisme : Si L est une forme antilineaire continue sur $W_p^{2m+r}(\Omega; \{B_j^i\}_{j=1}^m, A^i)/N$, il existe $u^i \in W_p^{-r}(\Omega)/N$ unique telle que

$$\langle u^{\bullet}, \overline{A^{\dagger} v^{\circ}} \rangle = L(v^{\bullet})$$
 (8.7)

pour toute $v^* \in W_{p^*}^{2m+r}(\Omega; \{B_j^*\}_{j=1}^m; A^*)/N^*$.

Pour utiliser ce résultat, il nous faut choisir L sous une forme particulière - le choix arbitraire que nous allons faire n'est justifié que par le résultat que nous obtiendrons.

Soit K un espace (de Banach pour fixer les idées) normal de distributions dans Ω tel que

$$W_{p'}^{2m+r}(\Omega; \{B_{j}^{!}\}_{j=1}^{m}; A') \subset K \subset L_{p'}(\Omega)$$
(8.8)

et soit H l'antidual de K, on a

$$L_{p}(\Omega) \subset H < \mathfrak{D}'(\Omega) \tag{8.8}$$

et pour f \in H , v \longrightarrow < f, \overline{v} > est une forme antilinéaire continue sur $W_{p^{i}}^{2m+r}(\Omega; \{B_{j}^{i}\}_{j=1}^{m}; A^{i})$.

Fixons
$$f \in H$$
 et $g_j \in W_p^{-r-m}j^{-1/p}(\Gamma)$, $j=1,2...m$,
$$v \longrightarrow \langle f, \overline{v} \rangle + \sum_{j=1}^m \langle g_j, \overline{c_j^*v} \rangle$$

est une forme antilinéaire continue sur $W_{p'}^{2m+r}(\Omega; \{B_j^i\}_{j=1}^m; A')$ (car C_j^i est d'ordre $2m-m_j-l$, j=1,2...m). Elle définira par passage au quotient une forme antilinéaire continue sur $W_{p'}^{2m+r}(\Omega; \{B_j^i\}_{j=1}^m; A')/N$, si elle est identiquement nulle sur N', i.e. si $\sum_{j=1}^m (A_j^i)/N + \sum_{j=1}^m (A_j^i)/N + \sum_{j=1}^$

Supposant que (8.9) a lieu, nous poserons

$$L(v^*) = \langle f, \overline{v} \rangle + \sum_{j=1}^{m} \langle g_j, \overline{C_j^! v} \rangle$$
 (8.10)

où v est une fonction quelconque de la classe v.

Nous avons donc obtenu ceci : il existe $u \in W_p^{-r}(\Omega)$ unique, à un élément de N près, telle que

$$\langle u, \overline{A'v} \rangle = \langle f, \overline{v} \rangle + \sum_{j=1}^{m} \langle g_j, \overline{C'_j v} \rangle$$
 (8.11)

pour toute $v \in W_{p^*}^{2m+r}(\Omega; \{B_j^!\}_{j=1}^m; A^*)$.

Cette dernière identité appliquée à $v\in C_0^\infty(\Omega)$, montre que

$$Au = f (8.12)$$

Il nous faut aussi interpréter les conditions aux limites que u satisfait, et qui sont implicitement contenues dans l'identité (8.11). Posons la

<u>Définition 8.1</u>: $D_{A,H}^{-r,p}(\Omega)$ <u>est l'espace des</u> $u \in W_p^{-r}(\Omega)$ <u>telles que</u> $Au \in H^{(1)}$.

⁽¹⁾ C'est un espace de Banach pour la norme $u \longrightarrow \|u\|_{-r,p} + Au\|_{H}$

La solution u que nous avons trouvée est dans $D_{A,H}^{-r,p}(\Omega)$, il faut étudier les traces des fonctions de $D_{A,H}^{-r,p}(\Omega)$. Supposons que K soit <u>réflexif</u> alors nous avons le :

Lemme 8.1: $C^{\infty}(\overline{\Omega})$ est dense dans $D_{A,H}^{-r,p}(\Omega)$

<u>Démonstration</u>: On va vérifier qu'une forme antilinéaire continue sur $D_{A,H}^{-r,p}(\Omega)$, qui s'annulle sur $C^{\infty}(\overline{\Omega})$ est $\equiv 0$. Une telle forme u \longrightarrow M(u) peut s'écrire

$$M(u) = \langle g, Au \rangle + \langle h, u \rangle$$

avec $g \in K$ et $h \in \overset{\circ}{W}_{p}^{r}$, (Ω) (nous avons utilisé ici la réflexivité de K). Grâce à nos hypothèses sur A, il existe un ouvert Θ "très régulier" (exp. I) voisinage de $\overline{\Omega}$, tel qu'il existe un prolongement \mathcal{A} de A à $\overline{\mathcal{G}}$, qui soit encore elliptique d'ordre \mathbb{C} à coefficients $C^{\infty}(\overline{\mathcal{G}})$. Soit $U \in C^{\infty}(\overline{\mathcal{G}})$, alors on a $u = U/\overline{\Omega} \in C^{\infty}(\overline{\Omega})$ et M(u) = 0.

Si l'on désigne par \widehat{g} (resp^t \widehat{h}) le prolongement de g (resp. h) par 0 dans $\mathcal{O}_{-} \Omega$, on a $\widehat{g} \in L_p$, (\mathcal{O}) et $\widehat{h} \in \overset{\circ}{W}_p^r$, (\mathcal{O}), et $M(u) = \langle \widehat{g}, \overline{\mathcal{A}U} \rangle_{\mathcal{O}} + \langle \widehat{h}, \overline{U} \rangle_{\mathcal{O}}$ d'où $(\widehat{g}, \mathcal{A}U)_{\mathcal{O}} + (\widehat{h}, U)_{\mathcal{O}} = 0$ (8.14)

pour toute $V \subset C^{\infty}(\overline{\mathcal{O}})$.

L'application de (8.14) à $U \in C_0^{\infty}(\Theta)$ montre que $\mathcal{A}'\widetilde{g} = -\widetilde{h}$ dans Θ . Nous allons vérifier qu'il existe $w \in W_{p'}^{2m+r}(\Theta) \cap W_{p'}^{m}$, (\mathcal{O}) telle que $\mathcal{A}'w = -\widetilde{h}$; on cherche par exemple $w \in W_{p'}^{2m+r}(\Theta; \left\{\gamma_{j-1}\right\}_{j=1}^{m})$ telle que $\mathcal{A}'w = -\widetilde{h}$. Pour cela nous appliquons le théorème 8.1; une telle w existe si et seulement si $\widetilde{h} \in \left\{W_{p'}^{r}(\Theta); \mathcal{A}\right\}$ où \mathcal{A} désigne l'espace des fonctions $z \in C^{\infty}(\overline{\Theta})$ telles que $\mathcal{A}z = 0$ et $\gamma_{j-1}z = 0$, j=1,2...m; nous allons vérifier que cette condition est remplie : soit $\theta \in C_0^{\infty}(\Theta)$, une fonction \overline{z} for $\overline{\Omega}$, on a pour $\overline{z} \in \mathcal{A}(\widetilde{h},z)_{\Theta} = (\widetilde{\theta h},z)_{\Theta} = (\widetilde{h},\theta z)_{\Theta} = -(\widehat{h},\theta z)_{\Theta}$ et comme $\theta z \in C_0^{\infty}(\Theta)$ on a

$$(\widehat{h},z)_{\mathcal{O}} = -(\widehat{g},\mathcal{A}(\theta z))_{\mathcal{O}} = 0$$

car $\mathcal{A}(\theta z) = \mathcal{A}z = 0$ dans $\overline{\Omega}$ qui est le support de \widetilde{g} . L'existence de w est donc prouvée.

Considérons $w-\widetilde{g}$, nous avons

$$\begin{cases} w - \widetilde{g} \in L_{p}, (\mathcal{O}) \\ \mathcal{A}'(w - \widetilde{g}) = 0 \end{cases}$$

De l'hypoellipticité de \mathcal{A} , il résulte que

$$w - \widetilde{g} \in C^{\infty}(\partial)$$

et par conséquent, puisque $w \in W_{p^{!}}^{2m+r}(\mathcal{O})$ et puisque \widetilde{g} est nulle hors de $\widetilde{\Omega}$ nous avons $\widetilde{g} \in W_{p^{!}}^{2m+r}(\mathcal{O})$ d'où $g \in W_{p^{!}}^{2m+r}(\Omega)^{\binom{1}{i}}$ $A'g = -h \tag{8.15}$

Nous allons calculer $\langle g, \overline{Au} \rangle_{\Omega}$ pour $u \in D_A^{-r}, P(\Omega)$: il existe une suite $\{g_k\}_{k=1,2...} \subset C_0^{\infty}(\Omega)$ telle que $g_k \longrightarrow g$ dans $W_p^{2m+r}(\Omega)$ pour $k \longrightarrow +\infty$, on a donc $\langle g, \overline{Au} \rangle_{\Omega} = \lim_{k \to \infty} \langle g_k, \overline{u} \rangle_{\Omega} = \langle A, g, \overline{u} \rangle_{\Omega}$ car $u \in W_p^{-r}(\Omega)$ et $A, g_k \longrightarrow A, g$ dans $W_p^{r}(\Omega)$ pour $k \longrightarrow \infty$.

On peut donc écrire

 $M(u) = \langle A'g, \overline{u} \rangle_{\Omega} + \langle h, \overline{u} \rangle_{\Omega} = 0$ $pour toute \quad u \in D_{A,H}^{-r,p}(\Omega) \quad , \text{ i.e. } M \equiv 0 \quad . \qquad \qquad C.Q.F.D.$ $\underline{Lemme \ 8.2} : \underline{Pour} \quad r \geqslant 0 \quad (r+1/p) \quad \underline{non \ entier \ pour} \quad p \neq 2) \quad \underline{il}$ $existe \quad une \quad application \quad linéaire \quad continue:$

⁽¹⁾ Il est évident que $g \in W_p^{2m+r}(\Omega)$; il faut encore vérifier que $\gamma_{j-1}g|_{\Gamma}=0$ pour $j<\frac{p_{j-1}p_{j-1}}{2m+r-1/p_{j-1}}$ (cf. Théorème 1.1): Soit τ \widetilde{g} la fonction obtenue en translatant \widetilde{g} suivant la normale à Γ en $x(x \in \Gamma)$, dans un voisinage de x (ceci est possible, vu la régularité de Γ); il est facile de voir que $\gamma_j(\tau_{\epsilon}g)|_{\Gamma}=0$, d'où le résultat.

Théorème 8.3: Pour r > 0 (et r+1/p non entier lorsque $p \neq 2$)

l'application $u \leadsto \left\{B_{j}u\right\}_{j=1}^{m}$ qui est définie pour $u \in C^{\infty}(\overline{\Omega})$,

se prolonge en une application linéaire continue, encore notée $u \leadsto \left\{B_{j}u\right\}_{j=1}^{m}$ de $D_{A,H}^{-r,p}(\Omega)$ dans $\lim_{j \to 1} W_{p}^{-r-m}j^{-1/p}(\Gamma)$. De plus pour $u \in D_{A,H}^{-r,p}(\Omega)$ et $v \in W_{p}^{2m+r}(\Omega; \left\{B'_{j}\right\}_{j=1}^{m}; A')$ on a la

"formule de Green"

$$\langle Au, \overline{v} \rangle_{\Omega} - \langle u, \overline{A'v} \rangle_{\Omega} = -\sum_{j=1}^{m} \langle B_{j}u, \overline{C_{j}^{\dagger}v} \rangle_{\Gamma}$$

Démonstration : Soit Ψ ~~~> v l'application construite au lemme 8.2, on note

$$\chi(u, \Psi) = \langle Au, \overline{v} \rangle_{\Omega} - \langle u, \overline{A'v} \rangle_{\Omega}$$

C'est une forme sesquilinéaire continue sur

$$D_{A,H}^{-r,p}(\Omega) \times \prod_{j=1}^{m} W_{p'}^{r+m}j^{+1/p}(\Gamma)$$

car on a les majorations suivantes :

$$|\chi(u, \psi)| \le ||Au||_{H} ||v||_{K} + ||u||_{-r,p} ||A'v||_{r,p}$$

On en déduit l'existence d'une application linéaire continue

$$\mathbf{u} \longrightarrow \{\phi_{\mathbf{j}}\}_{\mathbf{j}=1}^{m} \text{ de } \mathbf{D}_{A,H}^{-\mathbf{r},p}(\Omega) \text{ dans } \prod_{\mathbf{j}=1}^{m} \mathbf{W}_{\mathbf{p}}^{-\mathbf{r}-\mathbf{m}}\mathbf{j}^{-1/p}(\Gamma)$$

telle que $\chi(u, \Psi) = \sum_{j=1}^{\gamma} \langle \phi_j, \overline{\psi}_j \rangle_{\Gamma}$ pour tout Ψ .

Lorsque $u \in C^{\infty}(\vec{\Omega})$ on a

$$(Au,v)_{\Omega} - (u,A'v)_{\Omega} = -\sum_{j=1}^{m} \int_{\Gamma} B_{j}u \frac{\overline{C'_{j}v}}{C'_{j}v} d\sigma$$

pour $v \in W_{p_i}^{2m+r}(\Omega; \{B_j^i\}_{j=1}^m; A^i)$ et par conséquent on a

$$\sum_{j=1}^{m} \langle \phi_{j}, \overline{\psi_{j}} \rangle_{\Gamma} = - \sum_{j=1}^{m} \langle B_{j} u, \overline{\psi_{j}} \rangle_{\Gamma}$$

d'où $\phi_j = B_j u$ pour $u \in C^{\infty}(\overline{\Omega})$. Comme $C^{\infty}(\overline{\Omega})$ est dense dans

$$D_{A,H}^{-r,p}(\Omega)$$
, et comme $u \longrightarrow \{\phi_j\}_{j=1}^m$ est continue de $D_{A,H}^{-r,p}(\Omega)$

dans $\Pi = W_p^{-r-m} j^{-1/p}(\Gamma)$, la première partie du théorème est dé-

montrée. Pour démontrer la formule de Green il suffit d'effectuer un prolongement par continuité.

A présent nous pouvons achever d'interpréter (8;11) :

Comme $u \in D_{A,H}^{-r,p}(\Omega)$, nous avons:

$$\langle u, \overline{A^{\dagger}v} \rangle_{\Omega} - \langle f, \overline{v} \rangle_{\Omega} = \sum_{j=1}^{m} \langle g_{j}, \overline{C^{\dagger}jv} \rangle_{\Gamma} = \sum_{j=1}^{m} \langle B_{j}u, \overline{C^{\dagger}jv} \rangle_{\Gamma}$$

pour toute $v \in W_{p'}^{2m+r}(\Omega; \{B_j^i\}_{j=1}^m; A')$, donc (grâce au lemme 8.2, qui montre que $\{C_j^iv\}_{j=1}^m$ parcourt $\prod_{j=1}^{m} W_{p'}^{r+m}j^{+1/p}(\Gamma)$ lorsque v parcourt $W_{p'}^{2m+r}(\Omega; \{B_j^i\}_{j=1}^m; A'))$ nous avons $B_ju = g_j$, j=1,2...m.

Pour énoncer le résultat obtenu, nous désignons par \mathcal{N}^* le sous-espace (de dimension finie égale à celle de N') de l'antidual de H x $(\mathcal{D}'(\Gamma))^m$, formé des formes linéaires (f; $\{g_j\}_{j=1}^m$) \xrightarrow{m} \xrightarrow{m} < < f, $\overrightarrow{v}>_{\Omega}$ + $\sum_{j=1}^{\infty}$ < g $_j$, $\xrightarrow{C_j \overrightarrow{v}>_{\Gamma}}$ avec $v \in \mathbb{N}^*$.

Théorème 8.4 : Si K est un espace (de Banach) réflexif et normal de distributions dans Ω , tel que

$$W_{p}^{2m+r}(\Omega; \{B_{j}^{!}\}_{j=1}^{m}; A^{!}) \subset K \subset L_{p}^{!}(\Omega)$$

Remarque 8.3: Comme Γ est compact, les distributions sur Γ sont toutes d'ordre fini et $\mathfrak{D}^*(\Gamma) = \bigcup_{s < o} W_p^s(\Gamma)$ et le théorème 8.4 permet de résoudre le problème aux limites avec données aux limites g_j dans $\mathfrak{D}^*(\Gamma)$.

Dans la suite nous fixerons un choix explicite de l'espace K :

l°) En général on peut évidemment prendre K = L $_{\rm p}$, (Ω) d'où H = L $_{\rm p}$ (Ω); nous posons par définition

$$D_A^{-r,p}(\Omega) = D_{A,H}^{-r,p}(\Omega) = \left\{ u \in W_p^{-r}(\Omega); Au \in L_p(\Omega) \right\}$$

2°) Dans le cas du problème de Dirichlet (B = γ_{j-1} , j=1,2...m) on peut prendre K = W_n , (Ω) car, on a

$$W_{p'}^{2m+r}(\Omega; \{B_{j}^{!}\}_{j=1}^{m}) = W_{p'}^{2m+r}(\Omega) \cap W_{p'}^{m}(\Omega)$$
.

Nous posons par définition (puisque $H = W_p^{-m}(\Omega)$)

$$W_A^{-r,p}(\Omega) = D_{A,H}^{-r,p}(\Omega) = \left\{ u \in W_p^{-r}(\Omega) ; Au \in W_p^{-m}(\Omega) \right\}$$

Nous allons détailler les conséquences du théorème 8.4 dans ces deux cas.

Remarque 8.4: Bien d'autres choix de K sont possibles, selon les conditions aux limites considérées; dans le cas général on peut prendre $K = W_p^{1/p}(\Omega)$ ou encore $L_q(\Omega)$, q étant choisi tel que l'inclusion $W_p^{2m+r}(\Omega) \subset L_q(\Omega)^{(1)}$; dans le cas particulier du problème de Dirichlet on peut encore prendre $K = W_p^{m+1/p}(\Omega)$. On ignore quel est le choix optimum (c.à.d. K le plus petit possible)

4 - Application de l'interpolation (II)

A présent, remarquant que $W_p^{2m}(\Omega) = D_A^{2m,p}(\Omega)$, nous savons

⁽¹⁾ L'exposant q est fourni par le théorème de Sobolev.

que
$$\left\{A;B_1,\ldots B_m\right\}$$
 est un isomorphisme de
$$D_A^{\circ,p}(\Omega)/N \quad \text{sur} \quad \left\{L_p(\Omega) \times \prod_{\substack{j=1\\ j=1}}^{m} W_p^{-m}j^{-1/p}(\Gamma); \mathcal{P}^i\right\} \quad \text{et de}$$

$$D_A^{2m,p}(\Omega)/N \quad \text{sur} \quad \left\{L_p(\Omega) \times \prod_{\substack{j=1\\ j=1}}^{m} W_p^{2m-m}j^{-1/p}(\Gamma); \mathcal{P}^i\right\} \quad .$$

res: $\{A; B_1, \dots B_m\}$ est un isomorphisme de X/N sur $\{L_p(\Omega) \times \prod_{j=1}^m W_p^{k-m} j^{-1/p}(\Gamma); \mathcal{N}\} \text{ avec } X = \Phi_{k,2m}(D_A^{2m,p}(\Omega), D_A^{0,p}(\Omega))$ (k entier, 0 < k < 2m).

Par interpolation nous en déduisons des résultats intermédiai-

De l'inclusion évidente $X \subset D_A^{k,p}(\Omega)$ résulte le $\frac{\text{Théorème 8.5}: \text{Pour k entier, 0 < k < 2m et}}{m}$ (f; $\{g_j\}_{j=1}^m$) $\in \{L_p(\Omega) \times \prod_{j=1}^m \mathbb{W}_p^{k-m} j^{-1/p}(\Gamma); \mathbb{P}_p^n\}$ il existe $u \in D_A^{k,p}(\Omega)$ unique à un élément de N près, telle que Au = f, et $B_ju = g_j$, $j=1,2,\ldots,m$.

Pour compléter ce résultat nous allons montrer que $X=D_A^{k,\hat{p}}(\Omega)$.

a) supposons pour commencer que $k\geqslant m$. Pour $u\in D_A^{k,p}(\Omega)$ on a $Au=f\in L_p(\Omega)\ ,\ h_j=\gamma_{j-1}u\in W_p^{k-j+1-1/p}(\Gamma)\ ,\ j=1,2...m\ et$ $(f,v)+\sum\limits_{j=1}^m < h_j,\ \overline{T_jv}>=0\ \ pour\ toute\ \ v\in \mathfrak{A}^*=\left\{v\in C^\infty(\overline{\Omega})\ ;\ A^*v=0\ ,\ \gamma_{j-1}v=0\ ,\ j=1,2...m\right\}.$

Soit alors $u_0 \in X$, une solution du problème $Au_0 = f$,

 $\begin{array}{l} \gamma_{j-1}u_o = h_j \quad , \; j=1,2\ldots m \quad (\text{voir ci-dessus}); \; \text{on a} \\ \\ u - u_o \in D_A^{k,p}(\Omega) \subset D_A^{o,p}(\Omega) \quad \text{et} \quad A(u-u_o) = 0, \\ \\ \gamma_{j-1}(u-u_o) = 0 \quad , \\ \\ j=1,2\ldots m \quad , \; \text{donc (théorème 8.4), on a} \\ \\ u - u_o \in \mathcal{R} = \left\{ v \in C^{\infty}(\overline{\Omega}); \; Av = 0, \\ \\ \gamma_{j-1}v = 0 \quad , \; j=1,2\ldots m \right\} \\ \\ \text{en résumé nous avons } u = u_o + (u-u_o) \in X + \mathcal{U} \subset X \quad \text{d'où} \\ \\ D_A^{k,p}(\Omega) \subset X \quad . \end{array}$

b) Considérons à présent le cas où k < m . Pour $u \in D_A^{k,p}(\Omega)$ nous avons $\phi_j = \gamma_{j-1}u \in W_p^{k-j+1-1/p}(\Gamma)$, j=1,2...k . At et al ayant la même signification qu'au point a), nous introduisons une base $v_1, \ldots v_{\nu}$ de Al telle que $(v_i, v_j) = \delta_i$, j et nous posons $g = -\sum_{i=1}^{\nu} \left(\sum_{j=1}^{k} \int_{\Gamma} \phi_j \frac{T_j v_i}{T_j v_i} \ d\sigma\right) v_i$

alors $g \in L_p(\Omega)$ et $(g,v) = -\sum_{j=1}^k \int_{\Gamma} \phi_j \frac{T_j v}{T_j v} d\sigma$ pour toute $v \in \mathcal{U}$. Posons $\phi_j = 0$ pour $j=k+1,\ldots m$, nous avons alors

 $g \in L_{p}(\Omega), \phi_{j} \in W_{p}^{k-j+1-1/p}(\Gamma), j=1,2...m$ et $(g,v) + \sum_{j=1}^{m} \int_{\Gamma} \phi_{j} \overline{T_{j}} v d\sigma = 0$

pour toute $v \in \mathcal{U}$, et par conséquent il existe $u_o \in X$ telle que $Au_o = g$ et $\gamma_{j-1}u_o = \phi_j$, j=1,2...m.

Pour $v = u - u_0$ nous avons $v \in D_A^{k,p}(\Omega) \cap W_p^{k}(\Omega)$; posons

 $\tau_j = \gamma_{j-1} v \ , \ j=k+1, \ldots m \ ; \ a \ priori \ nous \ savons \ seulement \ que$ $\tau_j \in \mathbb{W}_p^{-j+1-1/p}(\Gamma) \ , \ j=k+1, \ldots m \ , \ et \ nous \ allons \ montrer \ que$ $\tau_j \in \mathbb{W}_p^{k-j+1-1/p}(\Gamma) \ . \ Pour \ cela \ nous \ utiliserons \ un \ lemme \ de \ dé-monstration \ analogue \ à \ celle \ du \ lemme \ 8.2 \ :$

Lemme 8.3 : Il existe une application linéaire continue

$$\Psi = \{\psi_{j}\}_{j=1}^{m} \xrightarrow{\qquad \qquad } W \xrightarrow{de} \prod_{j=k+1}^{m} W_{p}^{-k+j-1/p}(\Gamma) \xrightarrow{dans} W_{p}^{2m-k}(\Omega) \cap W_{p}^{m}(\Omega), \underbrace{telle \ que} T_{j}W = \psi_{j}, \underbrace{j=k+1, \ldots m}.$$

Posons alors $\chi(v, \Psi) = \langle Av, \overline{w} \rangle - \langle v, \overline{A'w} \rangle$; c'est une forme sesquilinéaire continue sur

$$\{D_A^{k,p}(\Omega) \cap \mathbb{V}_p^k(\Omega)\} \times \prod_{\substack{j=k+1\\j=k+1}} \mathbb{W}_p^{j-k-1/p'(\Gamma)}$$
 qui peut donc s'écrire $\chi(v,\Psi) = \sum\limits_{\substack{j=k+1\\j=k+1}}^m \langle \sigma_j, \overline{\psi}_j \rangle$ avec $\sigma_j \in \mathbb{W}_p^{k-j+1-1/p}(\Gamma)$, $j=k+1,\ldots m$.

Il est facile de vérifier que $\chi(v,\Psi)$ ne dépend pas du choix particulier de l'application $\Psi \xrightarrow{} w$ dans le lemme 8.3; pour $\Psi \in (C^\infty(\Gamma))^{m-k}$, on peut supposer que $w \in C^\infty(\overline{\Omega})$, et par consé-

quent on a
$$\chi(v, \Psi) = -\sum_{j=k+\frac{1}{m}}^{m} \langle \gamma_{j-1}v, \overline{\psi_{j}} \rangle$$

$$d \circ \tilde{u} \qquad \sum_{j=k+1}^{m} \langle \sigma_{j}, \overline{\psi_{j}} \rangle = -\sum_{j=k+1}^{m} \langle \gamma_{j-1}v, \overline{\psi_{j}} \rangle$$

pour toute $\Psi \in (C^{\infty}(\Gamma))^{m-k}$, i.e. $\gamma_{j-1}v = -\sigma_{j}$. Nous avons donc montré que $\gamma_{j-1}v \in W_p^{k-j+1-1/p}(\Gamma)$, $j=k+1,\ldots m$ et $\gamma_{j-1}u \in V_p$

$$\in W_p^{k-j+l-1/p}(r)$$
, $j=1,2...m$.

Il est évident que

$$(Au,v) + \sum_{j=1}^{m} \langle \gamma_{j-1} u, \overline{T_{j}} v \rangle = 0$$

pour toute $v \in W'$, donc il existe $u_1 \in X$ telle que $Au_1 = Au$ et $\gamma_{j-1}u_1 = \gamma_{j-1}u$, j=1,2...m et il est facile de voir comme au point a) que $u-u_1 \in \mathcal{U} \subset X$, d'où $u \in X$, ce qui prouve l'inclusion $D_A^{k,p}(\Omega) \subset X$ et le :

Théorème 8.5': Pour k entier avec $0 \le k \le 2m$, $\{A; B_1, \dots, B_m\}$ est un isomorphisme de

$$D_{A}^{k,p}(\Omega)/N = \sup \{L_{p}(\Omega) \times \prod_{j=1}^{m} W_{p}^{k-m} j^{-1/p}(\Gamma); \mathcal{N}'\}$$

Remarque 8.5 : Une nouvelle application de l'interpolation (utilisant cette fois le foncteur $\Phi_{p,\sigma}$ pour interpoler entre $D_A^{k+1,p}(\Omega)$ et $D_A^{k,p}(\Omega)$) permettrait d'obtenir le résultat analogue pour $D_A^{s,p}(\Omega)$ avec s réel, 0 < s < 2m (s-1/p non entier pour $p \neq 2$) : $\{A;B_1,\ldots,B_m\}$ est un isomorphisme de $D_A^{s,p}(\Omega)/N$ sur $\{L_p(\Omega) \times \prod_{j=1}^m W_p^{s-m}j^{-1/p}(\Gamma); \mathcal{F}^{r}\}$.

5 - Résultats particuliers au problème de Dirichlet.

Dans toute la suite, le système d'opérateurs-frontières considéré est $\left\{\gamma_{j-1}\right\}_{j=1}^m$.

Théorème 8.6 : A est un isomorphisme de $\widetilde{W}_{p}^{m}(\Omega)/N$ sur $\{W_{p}^{m}(\Omega); N^{n}\}$.

Remarque 8.6: On peut observer que A considéré comme opérateur non borné dans $W_p^{-m}(\Omega)$ de domaine $W_p^{0m}(\Omega)$, a pour indice dim N - dim N' = 0 grâce à la proposition 7.2.

 $\begin{array}{c} \underline{\text{D\'emonstration}} \ : \ \text{Nous d\'emontrons pour commencer la surjectivit\'e} \ : \\ \\ \text{Soit} \quad f \in \text{W}_p^{-m}(\Omega) \ , \ \text{telle que} \ (f,v) = 0 \ \text{pour toute} \ v \in \text{N'} \ , \ \text{il} \\ \\ \text{faut trouver} \quad u \in \text{W}_p^m(\Omega) \ \text{telle que} \ \text{Au} = f \ . \end{array}$

Considérons un ouvert \mathcal{O} "très régulier", voisinage de $\overline{\Omega}$ tel qu'il existe un prolongement \mathcal{A} de Λ à $\overline{\mathcal{O}}$, qui soit encore elliptique d'ordre 2m, à coefficients $C^{\infty}(\overline{\mathcal{O}})$. Soit $F \in W_p^{-m}(\mathcal{O})$ une distribution telle que $F|_{\Omega} = f^{(1)}$; posons $\mathfrak{A}' = \{v \in C^{\infty}(\overline{\mathcal{O}}) : \mathcal{A}'v = 0$, $\gamma_{j-1}v = 0$, j=1,2...m sur $\mathfrak{D}\mathcal{O}$ et soit $v_1,...v_v$ une base de \mathcal{U}' telle que $(v_1,v_j) = \delta_{1,j}$. F n'est pas orthogonale à \mathcal{U}' , on la remplace par

$$F + G = F - \sum_{i=1}^{\nu} (F_{\lambda} v_{i}) v_{i}$$

alors $G \in C^{\infty}(\overline{\Theta})$ et $F + G \in \{W_p^{-m}(\mathfrak{G}); \mathfrak{A}^i\}$. Le théorème 8.4 appliqué avec $K = W_p^{0,m}(\Theta)$ montre qu'il existe $U \in W^{0,p}(\Theta)$ telle que

⁽¹⁾ On peut construire F en écrivant $f = \sum_{\beta < m} D^{\beta} f_{\beta}$ avec $f_{\beta} \in L_{(\Omega)}$ et en posant $F = \sum_{\beta < m} D^{\beta} f_{\beta}$, f_{β} désignant le prolongement de f_{β} par zéro dans $\partial -\Omega$.

$$\begin{cases} A U = F + G & dans \Theta \\ \gamma_{j-1} U = O & j=1,2...m & sur \Theta\Theta . \end{cases}$$

Nous admettrons provisoirement le (1)

pour tout v & N' .

<u>Lemme 8.4</u>: Si $U \in L_p(\mathfrak{G})$ et $\mathcal{A}_{\mathcal{V}} \in W_p^{-m}(\mathfrak{G})$ alors U est localement dans $W_p^m(\mathfrak{G})$ (2)

Posons $\mathbf{u}_{o} = \mathbf{U}|_{\Omega}$, $\mathbf{g} = \mathbf{G}|_{\Omega}$, alors $\mathbf{u}_{o} \in \mathbf{W}_{\mathbf{p}}^{\mathbf{m}}(\Omega)$, $\mathbf{g} \in \mathbf{C}^{\infty}(\overline{\Omega})$ et nous avons $\mathbf{A}\mathbf{u}_{o} = \mathbf{f} + \mathbf{g}$ dans Ω . Si $\phi_{\mathbf{j}} = \gamma_{\mathbf{j}-1} \mathbf{u}_{o}$, $\mathbf{j}=1,2...m$, il nous faut encore trouver $\mathbf{u}_{1} \in \mathbf{W}_{\mathbf{p}}^{\mathbf{m}}(\Omega)$ solution de $\mathbf{A}\mathbf{u}_{1} = -\mathbf{g}$, $\gamma_{\mathbf{j}-1} \mathbf{u}_{1} = -\phi_{\mathbf{j}}$, $\mathbf{j}=1,2...m$. On vérifie aisément que $(-\mathbf{g}, \{-\phi_{\mathbf{j}}\}_{\mathbf{j}=1}^{m}) \in \{\mathbf{C}^{\infty}(\overline{\Omega}) \times \prod_{\mathbf{j}=1}^{m} \mathbf{W}_{\mathbf{p}}^{\mathbf{m}-\mathbf{j}+1-1/p}(\mathbf{r}); \mathcal{N}^{\mathbf{p}}\}$ car $(\mathbf{g}, \overline{\mathbf{v}}) + \sum_{\mathbf{j}=1}^{m} (\phi_{\mathbf{j}}, \overline{\mathbf{T}_{\mathbf{j}}}\mathbf{v}) = (\mathbf{f}+\mathbf{g}, \overline{\mathbf{v}}) + \sum_{\mathbf{j}=1}^{m} (\phi_{\mathbf{j}}, \overline{\mathbf{T}_{\mathbf{j}}}\mathbf{v}) = 0$

Nous utiliserons un résultat intermédiaire entre les deux théorèmes d'existence suivants que nous avons déjà établis :

⁽¹⁾ Ce lemme est un résultat de régularité à l'intérieur classique lorsque p = 2 . (2) i.e. $\theta U \in W_p^m(\Theta)$ pour toute $\theta \in C_0^\infty(\Theta)$.

$$W_{A}^{\circ,p}(\Omega)/N$$
 sur $\{W_{p}^{-m}(\Omega) \times \prod_{j=1}^{m} W_{p}^{-j+1-1/p}(\Gamma); \mathcal{N}'\}$

donc aussi de X/N sur

$$\{\Phi_{m,2m} (L_p(\Omega); W_p^{-m}(\Omega)) \times \prod_{j=1}^m W_p^{m-j+1-1/p}(\Gamma); \mathcal{N}'\}$$

avec

$$X = \Phi_{m,2m} (W_p^{2m}(\Omega); W_A^{O,p}(\Omega)) \subset W_p^m(\Omega).$$

On en déduit que u_1 existe; $u=u_0+u_1$ est une solution du problème $u \in \mathring{\mathbb{W}}_p^m(\Omega)$, Au=f .

Pour achever de démontrer le théorème, il faut montrer que le noyau de A comme opérateur de $\overset{\circ}{W}_p^m(\Omega)$ dans $W_p^{-m}(\Omega)$ est N : en effet pour $u \in \overset{\circ}{W}_p^m(\Omega)$, telle que Au = O, on a $u \in W_A^{O,p}(\Omega)$, Au = O, $\gamma_{j-1}u = 0$, j=1,2...m i.e. $u \in \mathbb{N}$ (cf. Théorème 8.4 avec K = $\overset{\circ}{W}_p^m(\Omega)$).

Nous savons à présent que $\{A;\gamma_0,\gamma_1,\ldots\gamma_{m-1}\}$ est un isomorphisme de

$$W_{p}^{m}(\Omega)/N = W_{A}^{m,p}(\Omega)/N \quad \text{sur} \quad \{W_{p}^{-m}(\Omega) \times \prod_{j=1}^{m} W_{p}^{m-j+1-1/p}(\Gamma); \mathcal{N}^{i}\}$$
et de

$$W_{A}^{-m,p}(\Omega)/N$$
 sur $\{W_{p}^{-m}(\Omega) \times \prod_{j=1}^{m} W_{p}^{-m-j+1-1/p}(\Gamma); e^{N^{n}}\}$.

Utilisant l'interpolation, on peut en déduire à l'aide de raisonnements analogues à ceux développés dans le § précédent, le résultat suivant :

Théorème 8.7.: Pour -m \leq s \leq m (s-1/p non entier lorsque p \neq 2),

 $\{A; \gamma_0, \dots \gamma_{m-1}\}$ est un isomorphisme de

$$W_{A}^{s,p}(\Omega)/N = \sup_{j=1}^{m} \{W_{p}^{-m}(\Omega) \times \prod_{j=1}^{m} W_{p}^{s-j+1-1/p}(\Gamma); \mathcal{N}^{*}\}$$

Pour terminer nous démontrons le lemme 8.4 :

Soit donc $U \in L_p(\mathfrak{G})$ telle que $\mathcal{A}U = F \in W_p^{-m}(\mathfrak{G})$.

On va montrer qu'il existe $V \in W_p^m(\mathfrak{S})$ telle que

$$\mathcal{A}(U-V) \subseteq C^{\infty}(\bar{O})$$

d'où U-V \leq C $^{\infty}(\mathfrak{S})$ par l'hypoellipticité de \mathcal{A} , ce qui montrera que U est localement dans $W_{\mathfrak{D}}^{\mathfrak{m}}(\mathfrak{S})$.

On peut écrire $F = \sum_{\beta \mid \leq m} D^{\beta} f_{\beta}$ avec $f_{\beta} \in L_{p}(0)$.

Soit $v_1, \dots v_{\nu}$ la base orthonormée de \mathcal{U} introduite précédemment;

alors
$$g_{\beta} = f_{\beta} - \sum_{i=1}^{\nu} (f_{\beta}, v_i) v_i \in \{L_p(0); \mathcal{U}\}$$

par conséquent (voir exposé VII) il existe $z_{\beta} \in \mathbb{V}_p^{2m}(\mathfrak{G})$ (non unique) telle que

$$\begin{cases} Az_{\beta} = g_{\beta} & \text{dans } \Phi \\ Y_{j-1} z_{\beta} = 0 & \text{sur } \Phi & \text{j=1,...m} \end{cases}$$

Considérons la fonction $Z_0 = \sum_{\beta \in \mathbb{Z}_{\beta}} \mathbb{Z}_{\beta} \in \mathbb{W}_p^m(\mathfrak{S})$. On a

$$\mathcal{A}U - \mathcal{A}Z_0 = F - \mathcal{A}Z_0 = \sum_{\beta \mid \beta \mid \leq m} (D^{\beta}f_{\beta} - \mathcal{A}D^{\beta}Z_{\beta}) =$$

évidemment:

$$= \sum_{\beta \in \mathbb{Z}_{m}} (D^{\beta} A z_{\beta} - AD^{\beta} z_{\beta}) = F_{1} \in W_{p}^{-m+1}(e)$$

car $z_{\beta} \in W_p^{2m}(\Theta)$. Recommençant le raisonnement précédent avec F remplacée par F_1 , on construit $Z_1 \in W_p^{m+1}(\Theta)$ avec $F_1 - AZ_1 \in W_p^{-m+2}(\Theta)$, i.e. $AU - A(Z_0 + Z_1) \in W_p^{-m+2}(\Theta)$, et ainsi de suite. On obtient à la fin $AU - AZ \in L_p(\Theta)$ avec

$$Z = Z_o + Z_1 + \dots Z_{m-1} \in W_p^m(\Theta)$$
.

Considérons maintenant une solution Z_m du problème

$$\begin{cases} Z_{m} \in W_{p}^{2m}(\Theta) \\ AZ_{m} = A(U-Z) + \sum_{i=1}^{N} (A(U-Z), v_{i}) v_{i} & \text{dans } \Theta \end{cases}$$

$$\begin{cases} \gamma_{j-1} Z_{m} = 0 & \text{j=1,2,...m sur } \Theta \end{cases}$$

alors $V = Z + Z_m \in W_p^m(\mathfrak{S})$ et répond à la question.

IX - QUELQUES ELEMENTS DE THEORIE SPECTRALE

l - Nous noterons $\rho(A_p)$ <u>la résolvante</u> de A_p , c'est-à-dire l'ensemble des nombres complexes λ , tels que

$$(-A_p + \lambda I)^{-1} = R(\lambda; A_p)$$

existe et soit linéaire continu dans $L_p(\Omega)$; $\sigma(A_p)$ désigne le spectre de A_p , c'est le complémentaire de $\rho(A_p)$.

Commençons par quelques remarques presque évidentes : $\rho\left(A_p\right) \ \ \text{est 1'ensemble des nombres complexes } \lambda \quad \text{tels que}$

$$\mathbb{N}(-\mathbb{A}_{p} + \lambda \mathbf{I}) = \{0\}$$

et $R(-A_p + \lambda I) = L_p(\Omega)$ i.e.

$$N(-A^{\circ}_{p}, + \overline{\lambda}I) = \{0\}$$

 $\rho\left(\mathbb{A}_p\right)$ ne dépend donc pas de p , ce qui réduit son étude à celle de $\rho\left(\mathbb{A}_2\right)$.

Supposons $\rho(A_2) \neq \emptyset$, alors pour $\lambda_0 \in \rho(A_2)$, $R(\lambda_0,A_2)$ est un opérateur linéaire continu de $L_2(\Omega)$ dans $D(A_2) \in H^{2m}(\Omega)$; c'est donc un opérateur compact dans $L_2(\Omega)$ (même résultat dans $L_p(\Omega)$).

⁽¹⁾ Rappelons que sous nos hypothèses l'injection de $H^{2m}(\Omega)$ dans $L_2(\Omega)$ est compacte.

Proposons-nous de résoudre l'équation

$$\begin{cases} u \in D(A_2) \\ -A_2 u + \lambda u = f \end{cases}$$

avec $f \in L_2(\Omega)$ et $\lambda \neq \lambda_0$.

Il vient

$$-A_2u + \lambda_0u = f + (\lambda_0 - \lambda)u$$

d'où
$$u = R(\lambda_0, A_2)f + (\lambda_0 - \lambda) R(\lambda_0, A_2) u$$

et
$$\frac{1}{\lambda_0 - \lambda} u - R(\lambda_0, A_2) u = \frac{1}{\lambda_0 - \lambda} R(\lambda_0, A_2) f$$

Si et seulement si $\frac{1}{\lambda_0 - \lambda} \in \rho(R(\lambda_0, A_2))$, alors l'équation possède la solution

$$u = R \left(\frac{1}{\lambda_0 - \lambda}; R(\lambda_0, A_2)\right) \frac{1}{\lambda_0 - \lambda} R(\lambda_0, A_2) f$$

Ceci montre que

$$\rho\left(\mathbb{A}_{2}\right) = \left\{\lambda \neq \lambda_{0} \; ; \; \frac{1}{\lambda_{0} - \lambda} \; \in \; \rho\left(\mathbb{R}\left(\lambda_{0}, \mathbb{A}_{2}\right)\right)\right\} \; \cup \; \left\{\lambda_{0}\right\}$$

et

$$R(\lambda, A_2) = R\left(\frac{1}{\lambda_0 - \lambda}; R(\lambda_0, A_2)\right) \frac{1}{\lambda_0 - \lambda} R(\lambda_0, A_2)$$

pour $\lambda \neq \lambda_{o}$.

Les résultats classiques sur la résolvante d'un opérateur compact sont applicables à $R(\lambda_0,A_2)$: le spectre de $R(\lambda_0,A_2)$ est discret, borné, et 0 est le seul point d'accumulation fini possible; en conséquence le spectre de A_2 est discret et n'a

aucun point d'accumulation fini. En résumé nous avons le :

Théorème 9.1: Le spectre de A ne dépend pas de p; c'est ou bien le plan complexe tout entier, ou bien un ensemble discret sans point d'accumulation fini.

Remarque 9.1 : On pourrait de même considérer $\sigma(A_{p,k})$ $(A_{p,k})$ défini p.24) et vérifier que cet ensemble ne dépend ni de p ni de k, donc que $\sigma(A_{p,k}) = \sigma(A_2)$ $1 , <math>k=0,1,\ldots$

Un problème important est donc celui de savoir quand $\rho(A_2) \neq \emptyset \text{ . Pour donner une solution (partielle) à ce problème}$ nous utiliserons le :

Théorème 9.2 : Les conditions suivantes sont suffisantes pour que

l'inégalité

$$\|u\|_{0,p} \le \frac{C}{|\lambda|} \|(-A_p + \lambda)u\|_{0,p}$$
 (9.1)

ait lieu pour tout λ de module assez grand sur la demi-droite arg λ = θ :

(i)
$$(-1)^m \xrightarrow{A^{\circ}(x;\xi)} \neq e^{i\theta} \quad \text{pour tout } \xi \quad \text{réel} \neq 0 \quad \text{et}$$

$$x \in \overline{\Omega}.$$

(1) A désigne la partie homogène de degré 2m de A.

(ii) En tout point x ∈ Γ soit n <u>la normale à</u> Γ <u>intérieure</u>

<u>à</u> Ω <u>et</u> $\xi \neq 0$ <u>un vecteur tangent</u>, <u>et soient</u> $\tau_k^+(\xi;\lambda)$, $k=1,2,\ldots m$,

<u>les racines du polynôme en</u> τ : $(-1)^m$ $\Lambda^\circ(x;\xi+\tau n)$ $-\lambda$, <u>qui ont partie imaginaire positive</u>, λ <u>étant quelconque sur la demi-droite</u>

arg $\lambda = \theta$; <u>alors les polynômes en</u> τ : $B_j^\circ(x;\xi+\tau n)$ <u>sont linéairement indépendants modulo</u> $\prod_{k=1}^m (\tau-\tau_k^+(\xi;\lambda))$. (2)

Démonstration : L'inégalité (9.1) résulte des inégalités a priori (exposé III) correspondant à un problème aux limites elliptique dans un domaine à n+1 dimensions.

Posons $G = \Omega \times]-\infty, +\infty[$

$$L(x;D_x,D_t) = A(x;D_x) - (-1)^m e^{i\theta} D_t^{2m}$$

La condition (i) assure l'ellipticité de L dans G; la condition (ii) signifie que les "opérateurs-frontières" B; , considérés comme "opérateurs-frontières" sur DG (indépendants de t), recouverent l'opérateur L . Il existe donc une constante C telle que

$$\|v\|_{2m,p} \le C (\|Lv\|_{0,p} + \|v\|_{0,p})$$
 (9.2)

pour toute fonction $v \in W_p^{2m}(G)$, à support dans $\widetilde{\Omega}$ x[-1,+1], et telle que $B_j v = 0$ j=1,2...m (1)

L'application de (9.2) à des fonctions de type particulier,

⁽¹⁾ B. est considéré comme "opérateur-frontière" sur 2G = B_j(x,t;D_x,D_t) = B_j(x;D_x) pour tout t.
(2) B_j désigne la partie homogène de degré m_j de B_j.

fournit l'inégalité (9.1) : soit $\zeta = \zeta(t)$ une fonction de t seulement, indéfiniment dérivable, nulle hors de [-1,+1] et \equiv 1 dans $\left[-\frac{1}{2}, +\frac{1}{2}\right]$ et soit $u \in D(A_p)$, nous considérons vde la forme $v(x,t) = \zeta(t) e^{i\mu t} u(x)$ avec μ réel; nous

avons alors :

$$Lv(x,t) = \zeta(t) e^{i\mu t} (A-\mu^{2m} e^{i\theta}) u$$

$$- (-1)^{m} e^{i\theta} \begin{bmatrix} \sum_{j=0}^{2m-1} {2m \choose 2m+j-1} \zeta^{(j+1)} (t) (i\mu)^{2m-j-1} \end{bmatrix} e^{i\mu t} u$$

d'où par application de (9.2):

$$\|e^{i\mu t} u(x)\|_{W_{p}^{2m}(\Omega x] - \frac{1}{2}, + \frac{1}{2}[)} \leq \|\zeta e^{i\mu t} u(x)\|_{W_{p}^{2m}(\Omega x] - 1, +1[)}$$
(9.3)

$$< c_1 \left\{ \| (A - \mu^{2m} e^{i\theta}) u \|_{0,p} + \sum_{j=0}^{2m-1} |\mu|^{2m-j-1} \|u\|_{0,p} \right\}$$

Calculons le premier membre de cette dernière inégalité :

$$\|e^{i\mu t} u(x)\|_{p}^{p}$$

$$\|e^{2m} u(x)\|_{p}^{p}$$

$$\|e^{2m} u(x)\|_{p}^{p}$$

$$\|e^{2m} u(x)\|_{p}^{p}$$

$$\|e^{2m} u(x)\|_{p}^{p}$$

$$\|e^{2m} u(x)\|_{p}^{p}$$

$$\|e^{2m} u(x)\|_{p}^{p}$$

$$|e^{2m} u(x)\|$$

Il vient

$$|u|^{(2m-j)} ||u||_{j,p} < ||e^{i\mu t} u(x)||_{W_p^{2m}(\Omega x] - \frac{1}{2}, + \frac{1}{2}[)}$$

pour j=0,1,...2m, et

$$\sum_{j=0}^{2m} |u|^{2m-j} ||u||_{j,p} \leq$$

$$c_{2} \left\{ ||(A-\mu^{2m} e^{i\theta})u||_{0,p} + \sum_{j=0}^{2m-1} ||\mu|^{2m-j-1} ||u||_{j,p} \right\}$$
(9.4)

L'inégalité (9.4) est vraie pour tout μ, donc en particulier pour |μ| assez grand, et nous obtenons l'inégalité

$$\sum_{j=0}^{2m} |\mu|^{2m-j} \|u\|_{j,p} \leq c_3 \|(A-\mu^{2m} e^{i\theta})u\|_{0,p}$$
 (9.5).

En remplaçant dans (9.5) $\mu^{2m} e^{i\theta}$ par λ nous obtenons (9.1),

et même l'inégalité un peu plus précise

$$\sum_{j=0}^{2m} |\lambda|^{1-\frac{j}{2m}} \|u\|_{j,p} \leq c_3 \|(A-\lambda)u\|_{0,p}$$
 (9.1)

pour $|\lambda|$ assez grand et arg $\lambda = \theta$.

C.Q.F.D.

Théorème 9.2': Sous les conditions (i) et (ii) du théorème 9.1,

 $\rho(A_p)$ contient tous les nombres λ de module assez grand sur la

demi-droite $arg\lambda = \theta$ et pour ces λ on a la majoration

$$\|R(\lambda; A_p)\| < \frac{C}{|\lambda|}$$

<u>Démonstration</u>: l'inégalité (9.1) montre que

$$N(-A_{p} + \lambda I) = \{0\}$$

pour λ de module assez grand sur la demi-droite $arg\lambda = \theta$; il faut donc vérifier que

$$\mathbb{N}\left(-\mathbb{A}_{\mathcal{D}}^{\dagger}, + \overline{\lambda}\mathbb{I}\right) = \left\{0\right\}$$

pour les mêmes λ, et pour cela il suffit que les conditions (i)

et (ii) aient lieu avec A remplacé par A', B_j par B'_j et

θ par -θ. Comme A'° = ° la condition (i) a lieu. La condi
tion (ii) signifie que les opérateurs B'_j recouvrent l'opérateur

L' ce qui résulte du fait que {L;B₁,...B_m} et {L';B'₁,...B'_m}

sont formellement adjoints (cf. exposé IV).

La majoration de $R(\lambda; A_p)$ résulte immédiatement de l'inégalité (9.1).

Remarque 9.2 : Ces résultats donnent une nouvelle réponse aux questions (i) et (ii) de l'exposé VII.

Remarque 9.3: Les conditions du théorème 9.2 sont vérifiées avec $\frac{\Pi}{2} < \theta < \frac{3\Pi}{2}$ dans le cas où l'opérateur est fortement elliptique et les conditions aux limites sont les conditions de Dirichle Elles sont également vérifiées avec $\frac{\Pi}{2} < \theta < \frac{3\Pi}{2}$ dans le cas du problème de Dirichlet pour un opérateur A "faiblement positif

semi-défini" i.e. si

 $(-1)^m$ Re $A^{\circ}(x,\xi) \geqslant 0$

pour tout $x \in \overline{\Omega}$ et ξ réel.

2 - Soit λ_0 tel que $N(-A_p + \lambda_0 I) \neq \{0\}$; $N(-A_p + \lambda_0 I)$ est le sous-espace propre de A_p correspondant à la valeur propre λ_0 , ce sous-espace qui est de dimension finie ne dépend pas de p et est formé de fonctions $C^{\infty}(\overline{\Omega})$. Lorsque $\rho(A_p) \neq \emptyset$, l'ensemble des valeurs propres est discret.

Un problème intéressant est le suivant : l'ensemble des forctions propres de $\rm A_p$, est-il total dans $\rm L_p(\Omega)$ (et dans $\rm D(A_p))$?

Nous nous bornerons à considérer le cas du problème aux limites formellement autoadjoint; la réponse presque évidente, est donnée par le :

Théorème 9.3: On suppose que le problème aux limites considéré $\{A;B_1,\dots B_m\} \quad \underline{\text{est formellement autoadjoint; alors l'ensemble des }}$ fonctions propres de A_p $\underline{\text{est total dans}} \quad L_p(\Omega)$.

<u>Démonstration</u>: Commençons par le cas p=2: le problème étant formellement autoadjoint, on a $A_2=A_2^*$ et par conséquent (exp. VI) $A_2=A_2^*$, et A_2 est autoadjoint dans $L_2(\Omega)$. Le spectre de A_2

est donc nécessairement réel, i.e. $\rho(A_2) \neq \emptyset$ et le spectre de l'opérateur autoadjoint A_2 est discret grâce au théorème 9.1, ce qui démontre le théorème pour p=2.

Le cas général p # 2 en résulte grâce à la

Proposition 9.1 : Si pour un po avec l < po < ∞ , les fonctions propres de Apo sont totales dans Lp(Ω), alors elles sont totales dans tout Lp(Ω) avec l \infty.

<u>Démonstration</u>: Nous notons S l'espace engendré (algébriquement) par les fonctions propres de A_{p_0} ; S est un sous-espace de $C^\infty(\overline{\Omega})$ et S est dense dans $L_{p_0}(\Omega)$ par hypothèse.

On en déduit immédiatement que S est dense dans tout $L_p(\Omega)$ avec l p_o ; nous allons montrer que S est dense dans tout $L_p(\Omega)$ avec

En effet, lorsque p remplit ces conditions, on a par application du théorème de Sobolev l'inclusion :

$$M_{\mathbf{p}_{0}}^{\mathbf{p}_{0}}(\Omega) \subset \Gamma^{\mathbf{p}}(\Omega)$$

d'où:

avec une topologie plus fine, $D(A_{p_o})$ étant dense dans $L_p(\Omega)$. Il suffit donc de vérifier que S est dense dans $D(A_{p_o})$: soit $u \in D(A_{p_o})$ et soit $\lambda_o \in \rho(A_{p_o})$, nous posons $f = (-A_{p_o} + \lambda_o I) \ u$

Par hypothèse, il existe une suite $\{f_k\}_{k=0,1,...}$ $\subset S$, telle que $f_k \longrightarrow f$ dans $L_{p_0}(\Omega)$ pour $k \longrightarrow +\infty$, donc $u_k = R(\lambda_0, A_{p_0})f_k \longrightarrow R(\lambda_0, A_{p_0})f = u$

dans $D(A_{p_0})$ pour $k \longrightarrow +\infty$. Comme S est invariant par A_{p_0} , on a $u_k \in S$ et par conséquent S est dense dans $D(A_{p_0})$.

On peut recommencer le raisonnement précédent avec p_0 remplacé par p_1 , puis un nombre fini de fois, ce qui démontrera la proposition pour tout $p \geqslant p_0^{-(1)}$.

Remarque 8.4 : Nous avons démontré que sous les conditions de la proposition 9.1 , les fonctions propres forment un ensemble total dans $D(A_p)$ pour tout p avec 1 .

Un autre problème intéressant, et que nous n'étudierons pas, est celui de la distribution des valeurs propres dans le plan complexe, lorsque le spectre est discret.

⁽¹⁾ L'emploi du théorèms de Sobolev n'est pas indispensable; il suffit d'avoir une inclusion du type $W_{p_0}^{2m}(\Omega)\subset L_p(\Omega)$ pour un $p>p_0$

3 - Pour terminer nous allons donner un exemple d'utilisation des théorèmes 9.2 et 9.2' dans l'étude de l'équation parabolique $\frac{\partial}{\partial t} - A(x,D_x)$, ce qui montrera l'intérêt que revêt l'étude du spectre de A.

Rappelons tout d'abord un Résultat de la théorie des semigroupes : soit H un opérateur linéaire non borné de domaine
D(H) dans l'espace de Banach E; on suppose que

- (i) H est fermé et à domaine dense.
- (ii) Il existe $\omega > \frac{\Pi}{2}$ tel que l'ensemble $\{\lambda; |\arg\lambda| < \omega\}$ soit contenu en entier dans $\rho(H)$ (la résolvante de H) et il existe $M \text{ tel que } \|(-H + \lambda)^{-1}\| < \frac{M}{|\lambda|} \text{ pour tout } \lambda \text{ tel que } |\arg\lambda| < \omega \text{.}$

Dans ces conditions on sait que H est le générateur infinitésimal d'un semi-groupe t \longrightarrow etH borné dans E et tel que $\frac{d}{dt} e^{tH} = H e^{tH} \in \mathcal{L}(E,E) \quad \text{pour tout } t > 0 \text{ ; de plus pour } u_0 \in D(H)$ le problème

$$\begin{cases} u(t) \in C(0,T;D(H)) & (1) \\ u(0) = u_0 \\ \frac{\partial u}{\partial t} = H u(t) & pour 0 < t < T \end{cases}$$

admet la solution unique $u(t) = e^{tH} u_0$.

⁽¹⁾ c'est-à-dire, u continue dans [0,T] à valeurs dans D(H).

Considérons alors un système d'opérateurs $\{A;B_1,\dots B_m\}$ tel que les conditions (i) et (ii) du théorème 9.2 aient lieu pour tout $|\theta| \leqslant \omega$ ($\omega > \frac{\pi}{2}$); en remplaçant éventuellement A par A + ξ (ξ réel positif suffisamment grand), les conditions pour que A_p soit le générateur infinitésimal d'un semi-groupe sont vérifiées et le problème

u(t) continue à valeurs dans
$$W_p^{2m}(\Omega; \{B_j\}_{j=1}^m)$$

 $u(0) = u_0$
 $\frac{\partial u}{\partial t} - A(x; D_x) u = 0 0 < t < T , x \in \Omega$

admet une solution unique pour $u_o \in W_p^{2m}(\Omega; \{B_j\}_{j=1}^m)$.

Ceci est un simple exemple; on peut également résoudre l'équation avec second membre non homogène. Nous ne détaillons pas plus cette étude.

Remarque 9.5 : Les conditions que nous avons données sont celles pour que H soit le générateur infinitésimal d'un semi-groupe holomorphe; ces conditions plus restrictives que celles du théorème de Hille-Yosida ont l'avantage de ne pas faire intervenir les puissances de $(-A+\lambda)^{-1}$.