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PREFACE 

The "raison d'être" of these notes is to present in a unified form that part of the 

theory of exponential sums which is related to the conjecture of Littlewood, i. e. the 

problem of finding lower bounds for llexp(in1x) + ... + exp(i~x)/1
1

, n
1

, •.• , nN distinct 

integers, depending only on N. (The promissed second volume of l 14 / would contain a 

chapter treating similar matters , but it has not appeared yet). 

Except for theorems (3.4), (5.2) and formula (2. 17), which as far as the author 

knows have not appeared before in the literature, all the other results can be found in 

the :references given in the bibliography. 

After the brief introductory chapter I we devote chapte:rs II and m to the study 

of the LP, p > 1 , ami the L 1 Norms of exponential sums. Chapter IV contains some 

results concerning the minimum of real exponential sums and some special exponential sums 

are examined in the last Chapter V. 

The author would like to express his thanks to the members of "L'équipe d'analyse 

harmonique" of the Department of Mathematics of the 11Université de Paris Sud, Centre 

d 1 Orsay 11 and in particular to J. -P. Kahane, Y. Meyer, A. Tonge and N. Varopoulos for 

their helpful comments and encouragement. He would also like to thank Mme Dumas Who 

typed (avec beaucoup de gentillesse) these notes. 

October 197 6 

Université de Paris Sud 
Centre Scientifique d'Orsay 
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NOTATIONS 

Throughout these notes : 

(i) We shall use the same letter C for all positive absolute constants that we 

encounter 

(ii) Integrals without limits of integration will always be understood to be taken over 

[ii,21r] with respect to the normalized Lebesgue measure ( J .. ~ J. J:" ... ). 
,.. 

(iii)If f is an integrable 2'11-periodic-function then f(m), m integer, will 

denote its m 1 th Fourier coefficient ( = J. J:" f ( t) e -imt dt J. 

(iv) For any 211-periodic measurable function llfllp, p ~ 1 will denote its p-th 

1
21T 1/p 

norm (= {ti 
O 

Ir I P} ). 

(v) Unless otherwise specified, n1, n2 , ... nN will denote distinct positive integers. 

In chapter II 

(vi) All unspecified summation5will be understood to De extended over the set of all 

suffices whose sum is zero ( l: ar b 
5 

• • • = l: ar b s ... ) . 
r+s+ ... =0 



2. 

I. EXPONENTIAL SUMS IN HARMONIC ANALYSIS AND NUMBER THEORY 

In th1s introauctory chapter we g1ve some examples of important theorems in Harmo
nie analys1s and Numoer theory which are equivalent to theorems about exponential sums. 

1. INTRODUCTION. "Exponential sums" are defined as finite sums f of distinct integral 

powers of the exponential function exp(ix): 

N 
(1. 1) f(x) = :E exp(inkx), n1, .•. , ~ distinct integers, x real. 

k=1 

There are properties of exponential sums which are shared by largeP classes of 

trigonometric polynomials. Such classes of trigonometric polynomials are those with (i) 

non-neg:ative coeffidents, (ii) coefficients of absolute value 1, (iii) coefficients of absolute 

value· net less than 1 and others. Thus for instance theorem III 3 . 5, which is one of our 

maiR results, holds good for the class (iü). 

OUF· main interest in these notes will be to find estimates of the various LP norms 

of exponential sums depending only on the number of summands N. This will be done in 

the chapters which follow (II - V). 

In the following sectionswe cite very briefly some important application in which 

different estimates, e. g. local estima tes of the modulus of exponential sums, play a 

predominant role. 

2. EXPONENTIAL SUMS IN HARMONIC ANAL YSIS. 

The exponential sums are special trigonometric polynomials, namely those with 
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coefficients O and 1 only. The last statement can be written as 

Here and in the sequel g(m) means the mth Fourier coefficient of g. 

( 1 . 2) implies f * f = f i. e. , as we usually say, f is "idempotent". The convolu-

tion" f * g is defined by 

( 1 . 3) 1 J277 
1 (f * g}(x) == 21T 

O 

f(t) g(x-t) dt, f,g € L (0 , 27T ). 

Using the Riemann-Lebesgue lemma (f € L 1(0,27T) implies f(n) ➔ 0) we can easily 

see that conversely : "Idempotent functions in L 
1 
( O, 2 7T ) are exponential sums" . 

At this point we mention an interesting theorem of Helson ( [19]) characterizing the 

class of "infinite" exponential sums 

00 

:E exp(inkx), ... < n_ 
1 

< n
0 

< n
1 

< 
k=-oo 

. . . , integers, as the class of idempotent 

measures m on [o , 21r] (i. e. m * m = m) if and only if the sequence coih-

cides, except for at most a finite number of indices, with an arithmetic progression. 

The theorem of Helson pro~ides an example of the occurence of exponential sums in 

Harmonie Analysis. More important examples are related to the special exponential sum, 

usually referred to as the "Dirichlet kernel", 

N 
DN(x) = E exp(ikx). 

k=-N 
( 1.4) 

The importance of DN is due to the well-known formula 

(1. 5) 

where SN is the N-th partial sum of the Fourier series of f. 

One of the main problems in harmonie analysis, raised by Luzin in 1916 and solved 
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by Carleson in 1966, was that of the almost everywhere convergence of Fourier series of 

square integrable functions. A few years before Carleson' s affirmative answer to this 

question ( [1]) A. Calderon proved ( [40], XIIT, 1.22) that the almost everywhere conver

gence of Fourier series in L 2 is equivalent to the uniform boundedness of the integral 

( 1. 6) 
21T 21T 

JO JO Dmin(N(x),N(y))(x-y) dx dy 

for all positive integral valued step functions N(x), i. e. a property of the special 

exponential sum ( 1 .4). Carleson' s proof follows quite different lines, and a later proof by 

C. Fefferman ( Ùo] ) although doser to the above mentioned approach cannot be considered 

as a direct proof of the uniform boundedness of ( 1 . 6) (needless to say that such a direct 

proof would be quite wellcome .) 

3. EXPONENTIAL SUMS IN NUMBER THE ORY. 

Exponential sums play a very important role in other branches of mathematics and 

in particular in number theory. In principle this is not surprising, since an exponential sum 

is completely determined by a set of integers { nk}. Thus, some statements about sets of 

integers (in particular the 11additive 11 prope:r,ties of such sequences) can be translated into 

statements about exponential sums and then proved by analytical methods. In general these 

analytical methods belong to harmonie analysis or analytic function theory. 

We give now an important theorem in number theoPy whose pPoof is based on properties 

of a special exponential sum. 

In 1937 I. Vinogradov proved that an sufficiently large odd integers can be represen

ted as sun6 of three primes ( the question of whether or not all (sufficiently) large even 
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integers can be represented as sums of two primes, the so-called Goldbach conjecture, is 

still open). 

Let n be an odd integer and consider the exponential sum 

(1.7) f(x) = t exp(ipx). 
p<n,p prime 

À 

The coefficient f3(n) of inx in f3(x), as can easily be seen, equals the 

number of representations of n as a sum of three primes. It follows that Vinogradov' s 

theorem is equivalent to the assertion : 

/\ -21T • 
(1.8) f\n) = 2~ j

0 

t3(t) e-mt dt> O, 

n sufficiently large odd integer, that is to a property of the special exponential sum ( 1 . 7). 

( 1 . 8) has been deduced from the fact (loosely speaking) that the exponential sum ( 1 . 7) is 

"sufficiently smaller than n" in absolute value (n being a trivial estimate) except for those 

x which are "sufficiently close 11 to rationals with "small" denominators (see [9] for the 

complete proof). 

The theorems of Carleson and Vinogradov are two of the most difficult ones in harmo-

nie analysis and number theory, and as we saw they are equivalent to proper'ties of some 

spec:ial exponential sums. One is tempted to say : "innocent-looking 11 properties, but our 

experience up to now has shown that it was only after a good deal of ingenious work that we 

were able to handle them directly or indirectly. 



II. Lp NORMS. 

In this chapter we examine the LP norms, 1 < p < oo, of exponential sums. 
The main result is a theorem due to Gabriel which generalizes a previous one of Hardy 
and Littlewood on the rearrangement of Fourier coefficients. 

1 • INTRODUCTION. 

Lp norms are convenient measures of the average size of functions. For a 

21r-periodic (measurable) function f they are defined by 

(2. 1) lkllP = {J lr(x) IP dx} 1/p' p > o 
llfll = ess sup if(x) I. 

00 
X 

Here and in the sequel we adopt the convention : if there are no limits of integration 

the symbol J (.) will mean 2~ J:\. ) dx. 
Estimates of the average size of our object of investigation, i. e. exponential sums, 

are not only of interest in themselves but they also provide the key to the solution of some 

problems. Here is a classical example. 

Let f( t) = sgn DN ( t), where DN is the Dirichlet kernel defined in the previous 

chapter. If the Nth partial sum of the Fourier series of an integrable function g is denoted 

by SN then we have : ,g 



(2 .2) 

As we shall see in the next chapter the second member of (2.2) is of the order of 

log N, as N ➔ oo, and so we conclude : "The partial sums of the Fourier series of functions 

bounded by 1 can be as large as we please 11 • 

The same example and standard arguments of harmonie analysis show the "existence 

of a continuous function whose Fourier series diverges at a given point 11
• ( Gi-o], VIII, 1. 1 ). 

In the present chapter we examine Lp norms with p > 1 • The case p = 1 will 

be examined in chapter m. 

Of particular importance are estimates depending only on the number N of summands. 

For the L2 00 

and the L norm of the exponential sum f(x) = exp(in 1x) + ... + exp(i~x) 

we have 

(2.3) lltll =N. 
00 

We do not have such simple formulae for the other norms. but in the special case of 

an even exponent we have the exact estimate : 

(2.4) 
N N Il r. exp(inkx)ll 2q :5 Il !; exp(ikx)ll2 , n 1, ... , nN distinct integers, q = 1, 2, ... 

k=1 · k=1 q 

It is not hard to obtain explicit estimates of the second member of (2. 4) and we shall 

do it later. Since the second rnember of (2. 4) does not change when we replace the exponentials 

exp(ikx) by exp{i(ak+b)x }, a, b integers, we can restate (2.4) as follows: 

"The L 2q, q = 1, 2, ... , norms of exponential sums with the same number of 

summands is maximized when the frequencies are arranged in arithmetric progression 11 • 
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2. EVEN EXPONENTS. 

We state and prove now an inequality much stronger than (2. 4) and postpone some 

comments until after the proof. We introduce first some notation. 

Given a finite sequence { an} of non-negative numbers we define the sequences 

a~ and + an as the (unique} rearrangements of { an} such that 

(2. 5) 

+ >+ >+ .>+ >+ > a o - a - 1 - a 1 - a -2 - a2 - .... 

Loosely speaking the { a~} and { +an} are the non-increasing "symmetric" 

rearrangements of { an} ' the a~ slightly overweighted to the right, the + an to the 

left. Note that always a~ = + a -k. 

When the largest value in { an} occurs an odd number of times and every other 

value an even number of times then + ak = a~. In this case we write ak = a~ = + ak and 

call the sequence symmetrical We note that symmetrical dœs not necessarily means ak = a -k. 

On the other hand even if ak = a -k the sequence { an} need not be symmetrical (it must 

also satisfy the condition a
0 

è: ak). Loosely speaking we can say that symmetrical sequences 

are those which admit a completely symmetric non-increasing rearrangement. 

THEOREM 2. 1 • "M.. { ar} , { b 
5

} , { et} , • . . are k finite sequences of non

negative numbers, then 

One can easily see that the first member of (2. 6) , equals 
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Jlra 12 lrb 1
2 lrc 1

2 
.... , where f

3
(t) = "; ar exp(irt), fb(t) = "; br exp(irt), ... 

Hence (2 .4) is the special case of (2. 6) : a = b = c = ... = 1 or O according r r r 

as r belongs or not to { n1, ... nN}. 

(2. 7) 

Proof .· The proof consists of four steps. 

In the first step we show that (2. 6) is a consequence of 

++ * * E ar b
5 

et dê ... :S I; ar b5 et ct, 
Here { ar,} and { bs} are arbitrary sequences of non negative numbers, but 

{et}, {de}, ... are assumed in addition to be symmetrieal. 

The summation in (2. 7) is extended over the set of aQ.Q, suffices such that their sum 

is zero. We adopt this convention throughout the rest of this chapter. 

In the second step it is shown that (2. 7) is a consequence of its special case 

corresponding to three sequences only ( { ar} and { b
5

} are arbitrary and { et} sym

metrical). 

In the third step we show that we may even assume that the ar, s, b 
5

' s and et I s 

are O or 1. 

This special case of (2.7) (three sequences only consisting of zero's and one's) 

is proved in the fourth and last step. 

Step 1. We recall our convention on summation and write : 

, C =!:et c_t, 
n 1 2 

Obviously Bm = B -m, C = C , ..• n -n and (by Schwarz' s inequality) 

Bm :S B
0

, en :S C
0

, . • . It follows that the sequences { Bm}, {en}, ... are symmetrical. 
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On observing that for any permutation cp of the indices we have (trivial proof) 

(2. 8) + + 
a =a (), r cp r 

T + 
a = a ( ) r <P r 

and using (2. 7) we obtain 

(2. 9) 

whe:re 

and 

=:E 
r+n+ ... =m 

a C* r n 

-a - ~ a+ +a 
n - ~ • ... r1 r2 r 1+r2=m 

S !) a+ + a B* C* . . . (by (2 . 7)) 
r

1 
r 2 m n 

=EX s* 
m -m m 

We observe that { ar} is a symmetrical sequence. Indeed 

= r, +a a+ 
r 1+r 2=r r1 r2 

= :E a+ +a 
r1 r2 r 1+r2=r 

and by Schwarz l s inequality a s a . r o 

-
= a r 

(recall that a+= +a ) 
r -r 

Moreover ar is non-increasing for r;;?: O. To see this we write for simplicity 

a = a+ = + a and argue as follows : 
r r r 

If n > 0 then 

a-a =:Eaa -Eaa n n+ 1 r r-n r r-n-1 r :r 

=a(a -a 1)+{a 1(a -a)+ o -n -n- 1-n -n a 1(a 1 - a 2 )} + ... - - -n - -n 
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Since a -a 1 >0 -k-n -k-n-, (recall that n > O, k ~ 0) and ak a a_k the last 

sum is not less than 

= (a -a1 )(a -a 1) + (a1-a2)(a1. - a 2 ) + ... + (ak - ak 1 )(ak - a k 1) + •.. o -n -n- -n - -n + -n - -n-

which is obviously non-negative. 

Trivial modifications of the last argument show that for any symmetrical sequences 

{ a } , {b } the sequence :E a* b* is symmetrical and non-increasing for m ~ O. 
r s r+s=m r s 

Using this fact and a trivial induction we obtain the following 

LEMMA 2. 1. "Given any finite number of symmetrical sequences { ar}, {b
5

}, {et}, ... 

. . , the sequence { :E a* b* c* ... } is symmetrical and non-increasing for ~O 11 • r s t r+s+ ... =m 

Let now cp be a permutation of the indices such that s; = B cp(m). The fact that 

{ xm} is symmetrical and non-increasing fo:r:1 m ~ O allows us to continue (2. 9) as follows : 

(2.10) :E a,,, a_..., b b et c -t 
.. 1 .. 2 8 1 -s2 1 2 

$ :Z X B* 
m m m 

=:EX 1 B 
m cp- (m) m 

='Eb b X 
s 1 -s2 cp -1 (-m) 

$ 1' b+ +b x* 
s

1 
s

2 
m 

= :E b+ +b X 
s 1 s2 m 

= :E a+ +a b+ 
r 1 r2 s1 
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The second equality above follows from the symmetry of { xm} and the fact that 

<P (m) = - <P (-m) (a consequence of the symmetry of { Bn}) and the third from the fact that 

* X = X • The second inequality is a consequence of (2 . 7). m m 

* Repeating the same argument we can replace in the second member of (2. 10) en by 

e; + et • eontinuing this way we obtain after a fini te number of steps the desired inequality 
1 2 

(2. 6). 

Step 2. We now assume that 

(2. 11) 

and we shall prove (2. 7) by induction on the number k of symmetrical sequences in it. 

(2. 11) is the case k = 1 • Assuming the result for k- 1 and writing 

we have 

P = !: a b , 
m r+s=m r s 

l'.; ar bs et de .... = E p met de ... 

< l'.; +c p+ d* 
- t m e 
= l'.; +p Q 

m m m 

which is the desired inequality. 

The first inequality above follows from our induction hypothesis, the second inequality 

from the symmetry of {et} , the second inequality again from our induction hypothesis, and 

the last but one equality from the fact that Qm = a;, which is a consequence of lemma 2 • 1 • 
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Step 3. A simple continuity argument shows that the a , b , et in (2. 11) can be 
-- r s 

taken non-negative rationals. Multiplying now by a suitable integer we may further assume 

that they are non-negative integers. 

We write now the sequence { ar} as a sum of sequences { a~} , {a~}, 
consisting of zeros and ones only 

a =a' +a"+ r r r · · · 

by setting 

a'= r {
o if a11 = o , 

1 if ar > O 
a"=(a -a')' r r r 

We define similarly the sequences : b~ , b; , ... 

It is easy. to show that 

C l çll 
t' t'"'" 

Assuming that (2. 11) is true when the sequences { ar} , { bs} , { et} consist of 

zeros and ones only and adding the inequalities which result from it when we replace { ar} , 

{ b
5

}, { et} by { a~k)} , { b~e)} , { ci°)} for all possible values of k , e , n , we obtain 

the general case of ( 2 . 11 ) . 

Step 4. It remains to prove (2. 11) when the { ar} , { bs} , { et} consist of zeros 

and ones only. 

We write 

f(x) = :E a exp(irx) , 
r r 

g(x) = I: b exp(isx) , 
s s 

R' 

h(x) = I: exp(itx) 
t 

f+{x) = !; a+ exp(irx) = l: exp(irx) , R s R' S R+ 1 
r r r=-R 

s 
+ g{x) = t +b exp(isx) = t exp{isx) , S s S 1 s S+ 1 

s s S=-S 1 

T 
h*(x) = l: 1,* exp(itx) = l) exp(itx) 

t t=-T 
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and we have to prove 

(2. 12) j f g h :5 J f++ g h*. 

Since h is an exponential sum the left-hand side of (2. 12) is not greater than the 

sum of all the Fourier coefficients of f(x) g(x), i. e. 

J f g h::; f(O) g(O) = (R + 1 + R 1 }(S + 1 + S 1 ). 

If T > max { R+S 1 , R' +S} then f+ + g is a trigonometric polynomial of degree 

s T, which implies that the right-hand member of (2. 12) is equal to (R+ 1+R' )(S+ 1+S') and 

hence (2. 12) holds. 

If R 1 = O or S 1 = O then (2. 12) reduces to a special case of the inequality 

(2.13) Jfg :5 Jf+ +g, f, g exponential sums. 

(2 • 13) is an immediate consequence of the obvious fact that J f+ + g equals the 

minimum of the number of non-zero coefficients of f and g respectively. 

It follows that we may assume 

(2. 14) R' > O, S 1 > O, max(R+S1 , R'+S) = M> T. 

We shall use induction on M. We assume that (2. 12) is valid when 

max{ R'+S , R+S'} < M. 

Let u be the greatest index such that au -/: 0 and v the smallest such that 

bv ,/, O. We set 

F(x) = f(x) - exp(iux) G(x) = g(x) - exp(ivx) 

and have 

R 
p+(x) = ~ exp(irx) = f+(-x) - exp(-iR'x) 

r=-(R' -1) 
S'-1 

+G(x) = !; exp(isx) = +g(-x) - exp(iS 'x). 
S=-S 
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Since max{ R+(S '-1) , (R' -1 )+S} = M - 1 , our induction hypothesis implies 

(2. 15) J F G h :5 J F+(x) +G(x) h*(x) dx 

= JF+(-x) +G(-x) h*(-x) dx 

= J f+ +g h* -J h*(x){f+(x)exp(-iS 1x) ++g{x)exp(iR'x) 

+ exp G(R'-S') x] }<lx 
= J f+ + g h* - (2T + 1). 

The second equality follows from the symmetry of h and the third from the fact 

that the expression in curly brackets is a connected exponential sum containing h* ( this is 

an immediate consequence of (2.14)). 

We observe now that 

f g h = F G h + h{ exp(ivx)F(x) + exp(iux) G(x) + exp G(u+v) x]} 

and that the expression in curly brackets is an exponential sum. We conclude that the 

contribution of h{ .... } in the integral Jf g h is at most 2T+ 1 (= the number of non 

zero coefficients of h). Hence 

(2. 16) J f g h s J F G h + (2T + 1 ) . 

Combining (2. 15) and (2. 16) we obtain (2. 12). 

3 . COMMENTS ON THEOREM 2 . 1 . (i) The remarkable theorem proved in 2 is due to Gabriel 

( [12] ). Here we have reproduced his proof with some modifications taken from ( [1s] ). 

To a large extent the structure of Gabriel' s proof is modeled on that of Hardy and 

Littlewood in ( G5] ), where they give the important special case of (2. 7) corresponding to 

symmetrical sequences { ar}, { b
8

}, {et}, ... 

It appears however that the argument used in ( [15]) was not conclusive. The passage 
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from the case of 3 sequences to the general case is based on the assertion: 11P m = ;~s=m arbs 

is symmetrical when the sequences { ar} and { b
5

} are symmetrical". The example : 

P =0 if m 

m f: O, ±1, ±2, ±3, ±4. Since the largest value 2 in {Pm} appears an even number of 

times {Pm} is not symmetrical. This problem does not arise in Gabriel I s version of the 

proof (seP also [1s], p. 274 footnote a). 

(li) For the case of two equal sequences in (2 .6) see also ( [j]) and ( [6] ), where 

this special case is attributed to Pisot and Schoenberg . 

(iii) The above mentioned paper of Gabriel also contains a partial converse of theorem 

(2. 1) which we state without proof. 

THEOREM 2.2. If { ar} is a sequence of non-negative numbers with finitel;x 

many non-zero terms and 

then a = À a* .for some integer À , i. e. the r for which a.,, ~ 0 form an arithmetic - r r ,.. 

progression containing O. 

(iv) Easier proofs of (2. 4) can be obtained if we allow a constant factor in the second 

member ( [i 1] , see also Il 4). Part of the difficulty of the present proof is to show that this 

constant can be taken equal to 1 . 

( v) An estimate for l loN 112k, k = 1 , 2, . . . would be very useful in connection with 

formula (2 .4 ). In the next section we shall obtain such estimates for more general exponents 
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and in the next chapter we shall prove an exact formula for I bN 111 . 

An exact, but rather complicated, formula for lloNIJ2k can also be given. Indeed 

JbNl~t is obtained from (2. 17) if we put n = 2k and m = O. Denoting, as usual, by 

A 

f(m) the Fourier coefficients of f we have : 

Â A n) A -(2N+1) k ·n /\ -k(2N+1~ 
D~(m) = Cn-~)-( ( mn-1 )+ ... +(-1) ( )( mn-1 )+ ... , m~O 

1 k 
(2. 17) 

where : Am = nN + n - 1 - m and the summation stops at the first k such that : 

A - (k+ 1 )(2N+ 1) < n - 1 , i. e. nN - m < (k+ 1 )(2N+ 1). m 

Proof. We shall use induction on n. Let first n = 1 . If m > N then 

/\ 
nN - m = N - m < O and hence (2. 17) gives DN(m) = O as should be expected. If 

ms n then the summation stops at the first term (since 2N+ 1 < N-m) and hence (2. 17) 

A 
gives DN(m) = ( 0m) = 1, again as should be expected. 

Assume now that (2. 17) has been proved for n. Using the well known formula 

( €: 1) + (:) = ( k; 1 J 
we obtain : 

/".. N /\.. 

o~+ 
1 
(m) = E D~ (m+k) 

k=-N 
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Since Am +N+ 1 = nN + n - 1 - m + N + 1 = (n+ 1 )N + (n+ 1 ) - 1 - m the proof of (2. 17) 

is complete. 

4. ARBITRARY EXPONENTS. 

We examine now Lp norms of exponential sums when the exponent p is not 

necessarily an even integer. 

We assume first that p > 2 . It is very easy to extend (2. 4) in this case if we allow 

a constant factor in the second member . 

or 

(2. 18) 

N 
Let f be an exponential sum with N terms and let f(x) = :r exp(imx). We have 

m=1 

1 f J 

2 
$ NP- 2 JI f J 

2 = NP- 1 . 

If 
N 

/ x 1 < 3
77N then I F(x) 1 ~ 1 Li cos mx / 

m= 1 
and hence: 

p >2. 

Here and in the sequel C will denote an absolute positive constant (not always the 

same). In (2. 18) C can be taken, say, less than 4 by the argument we used in order to 

obtain (2 . 18). We already know that if p = 2q, q = 1 , 2, ... , then C can be taken equal 

to 1. When p tends to infinity then both I If l lp and I IFI lp tend to N (= l lrll
00 

= 1 IF! !
00

) 

and hence the least value of C in (2. 18) tends to 1 as p ~ oo. 

The problem of finding the best value for the constant C in (2. 18) was cited in 

( [17] ) as an open one. It appears to be still open. 
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We observe that in the other direction there are exponential sums f such tnat 

l ltl IP is considerably smaller than I IFl!p. If for instance 

f(x) = 1 + 2 cos 10x + 2 cos 102x + ... + 2 cos 10Nx 

then I If 11
4 

s; C N 1 /
2 

while I bN 11
4 

>-. N3 / 4 • This property of f is shared by the so-

called lacunary exponential sums which we shall examine in ITI. 3 . 

We pass now to the case p < 2 • Let again f be an exponential sum with N terms 

N 
and F(x) = ~ exp(imx). We have 

m=1 

and hence 

(2. 19) p < 2. 

We observe now that 

1 1 
r

exp(iNx)-1 / < . {N 2_} F(x) = . _ mm , , 
IX 

1 
, X e -

1 xi s; rr • 

Using this inequality we have 

(2.20) 

( the use of the absolute constant C is justified since p < 2). 

Combining (2. 19) and (2. 20) we obtain 

(2. 21) llfll ~ C(p-1)l1FII , p p 
1<p<2. 

As in the case of (2. 18) the best constant in (2. 21 ) is not known. Certainly the 

constant C(p-1) we obtained is very far from the best (if nothing else because it gives a 

1 
bound less than 1 when p < 1 + 112 , while, as we shall see in the next chapter, even 

CN 
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the L 1 norm of an exponential sum with N terms tends to infinity with N). 

The same example as before, N f(x) = 1 +2 cos 10x + .. +2cos 10 x, shows that I If i lp 

teven I Jf J 11) can be of order of 1/2 
N (see III.3 for the proof). 

The very crude arguments we used in order to obtain (2 . 18) and (2 . 21 ) cannot give 

best constants (compare for instance with the fine Gabriel-Hardy-Littlewood argument used 

in II. 2). However the inequalities we reached raise a number of interesting questions (for a 

rather long list of such questions see G1J ). We have already mentioned two of them (the best 

constants in (2. 18) and (2 .21 )). A rather strong conjecture (suggested by the case of an even 

exponent) is that in both cases the best constant is 1 . 

We mention here that in (2. 18) and (2. 21) if we replace f by a symmetrical trigono-

metric polynomial and F by the polynomial f* corresponding to the non-increasing 

rearrangement of the absolute values of the coefficients of f then the constants cannot be 

taken equal to 1. The function f(x) = 1 - j cos x + j cos 2 x - J cos 3 x + j cos 4 x , for 

instance, shows that (i) f ~ O (hence lltll1 = 1) and that (ii) j is a simple root of f* 

(hence llr*I! > J f* = 1 ). This example is due to Lehmer ( ~5] ). For these problems see 

( l23]) and ( GZ6] ). 

Returning to exponential sums we mention finally that, despite a considerable effort 

made by several mathematicians during the last 30 years in order to settle at least the limiting 

case p = 1 , it appears that much remains to be done. This limiting case will be examined 

in detail in the next chapter. 



III. L 1 NORM. 

In this chapter we examine the problem of finding a lower bound for the L 
1 norm 

of exponential sums which depends on the number of terms N only. The main r~sult is 
theorem 3. 5 which gives such a lower bound of the order of (log N/log log N) 1/2. 

1 • INTRODUCTION. 

(3. 1) 

Let be N (..;::. 3) distinct positive integers and write : 

N 
f (x) = r: exp(inkx) 

k=1 

N 
g(x) = 1 + 2 !: cos nkx 

k=1 

The restrictions that N 2:: 3 and that 

N 
FN(x) = E exp(ikx) 

k=1 

N 
DN(x) = 1 + 2 E cos kx. 

k=1 

are positive are made for 

technical purposes only. (After some trivial modifications almost all the results we shall 

present here remain valid for general exponential sums). In most of the cases (but not 

always) it will be of no importance whether we deal with f or with the "Cosine" sums g. 

The latter are real even functions and it is sometimes more convenient to work with them. 

From what was said in II 4 one is led to the question of the validity of the inequalities : 

(3 .2) / If 111 2:: C 1 /F N 111 

It is obvious that the two inequalities in (3. 2) are equivalent. However we cannot 

exclude a priori the possibility that the constant C can be taken 1 in the second inequality 
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but not in the first. 

(3 . 2) appeared for the first time in ( [17] ) and later in a collection of research 

problems by J. Littlewood. Usually it is referred to as "Littlewood' s conjecture" . 

N N 
If in (3 .2) we replace f by a + 2 !) a: cos n and FN by a + 2 !: a* cos nx 

o n= 1 n x o n= 1 n 

(a
0 

è!: a1 ~ a2 ~ . . . is the non-increasing rearrangement of a
0

, J a 1 J, ... J 8N 1) then 

(3 .2) may be false ( L23] ). 

2. THE DIRICHLET KERNEL ON. 

(3 .3) 

An equivalent form of (3 .2) is 

To see this we examine in detail the so called Lebesgue constant 1/oN 111 . We have 

f loN 111 = J l 1 + 2 cos x + ... + 2 cos Nx J dx 

1 J1f 1 ~ jf O ( 1 + 2 cos X + ... + 2 cos N X) sin (N + 2) X dx 

= ! {-2- + ~ 2 + ~ 2 } 
Jt 2N+ 1 k=1 2N+ 1 + 2k k=1 2N+ 1-2k 

~ C log N 

from which the equivalence of (3. 2) and (3 . 3) follows. 

Much more accurate estimates of l loN 111 are known. ON, being a sum of 

consecutive terms of a geometric progression, can be given by the explicit formula 

sin(N + J) x 
ON(x)=----

. X 
sm 2 

(3 .4) 



(3. 5) 

(3 .6) 

(3.7) 

Hence: 

Using (3 . 4) we can prove easily ( G.ioJ , Il, 12 . 1 ) 

lbNll1 =~log N + 0(1) as N -t oo. 
7T 

An exact formula for lloN Il 1 has been obtained by L. Féjer ( [11]) : 

Il Il 1 2 N 1 1rk 
DN 1 = 2N+ 1 + 11 k,:

1 
k tan 2N+ 1 • 

Another exact formula, due to Szego ( G6] ) , is 

Here is Szego' s proof of (3. 7): 

Expanding I sin x I in a series of cosines we have : 

00 

[ sin x 1 = ~ - 1 t cos 2kx 
17 17 

k=1 4k
2- 1 

= !.sin x 1 - l.sin O 1 

4 00 

= - !; 
1T k=1 

1 - cos 2kx 

4k
2 - 1 

j sin( 2N+ 1 )x 1 = 1 ; 1 - cos 2k(2N+ 1 )x 
17 k=1 4k

2-1 

23. 

= :! ; ( 1-cos 2x)+(cos 2x-cos 4x)+ •.. +(cos [2k(2N+ 1 )-2]x - cos 2k(2N+ 1) x) 

1T k=1 4k 2-1 

=(t sinx) ; sin x + sin Jx + ..• +sin [2k(2N+ 1) - 1]x. 

~ k=1 4k - 1 

It follows : 

'DN(2x) 1 = (sgn sin x) {i ; sin x + sin 3x +.·::/sin bk(2N+1) - 1]x 
k=1 4k - 1 

from which we obtain (3 • 7) by termwise integration. 

An immediate corollary of (3 • 7) is 
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(3. 8) 

that is "the Lebesgue constants form an increasing sequence". This property of the IJoNll1 's 

is due to T . H. Gronwall ( Ù 3] ) , but his proof was more complicated than that of Szego. 

A simple change of variables shows that the estimate (3 . 3) remains valid for any 

exponential sum whose frequencies form an arithmetic progression (here and in the sequel 

"arithmetic progression" means "unbroken part of an infinite arithmetic progression"). The 

L 
1 Norm of exponential sums corresponding to arithmetic progressions shows some sort of 

"stability", which sometimes yields a satisfactory estimate for the L 1 Norm of other 

exponential sums. This is a consequence of the fact that such exponential sums are Fourier

Stieltjes series of measures and hence conversion factors (multipliers) for L 1 
( Gt-o], 

IV, 11 ) . More precisely we have : 

N 
THEOREM 3. 1. Let f(x) = ~ exp(inkx), where { nk} is an arithmetic progres

k=1 

sion, and let h(x) be another exponential sum with no frequencies in the infini te arithme-

tic progression containing { nk}. Then 

(3. 9) 

Proof. Without loss of generality we may assume that n
1 

= a, n2 = 2a, ... , 

nN = Na, for some integer a. We have : 

a 2TT 
~ f (x + b - ) = a f(x) 

b=1 a 

m 2TT 
r; h(x + b - ) = 0. 

b=1 a 

These equalities follow, say, from the fact that for each frequency m of f or h, 

exp im(x + b 2: ) , b = 1 , . . . a, correspond to the vertices of a regular polygon. Using 

the above relation and the periodicity of f + h we obtain 
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allïll1 = 11:r(f+h)(. + b !17)111 

~ ; lkf+h)(. + b 217)1!1 
b=1 a 

= allf + hll1 

which proves (3 . 9). 

3. LACUNARY SEQUENCES. 

The ease with which we were able to obtain such exact estimates for I JoN I J 1 is due 

to the special form of the Dirichlet kernel. If we try for instance to repeat the argument 

which gave us l loN 111 ~ C log N for the exponential sum f in (3 . 1), we obtain 

(3. 10) 

(3. 10), which is a special case of a more general inequality of Hardy and Littlewood 

( Gt.o] , VII, 8. 7), is in many cases not satisfactory. Assume for example that 

f(x) = 1 + 2 { cos 3x + ... +cos 3Nx}. We shall see later that l]fJI ~ C N l/ 2 while the 
1 

second member of (3 . 9), as a function of N, remains bounded. The same is true for a 

large class of exponential sums. We examine them in some detail. 

Jlf1J1 is the constant term of f2(x) i(x) and hence it is equal to the number of 

distinct quadruples (nk, ne,, nm, nt) which satisfy the equation 

(3. 11) k,e,m,n=l,2, ... ,N. 

A glance at (3. 11) shows that this number is less than N3 (in fact it is less than 

j (N3 + 1), as an application of II(2.4) shows). Using now Holder's inequality we obtain: 
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and hence 

(3. 12) 

Of course there is nothing special about the exponent 4 . Any even exponent can serve 

the same purpose as well. We insist however on even exponents since otherwise we do not 

know of any simple arithmetic characterization of the Norms. 

It follows from (3. 12) that the smaller the number of relations of the form (3 . 11) the 

n 
better estimate for l !f 111 we get. If for instance { ~} is lacunary, i. e. ~~ 1 ~ q > 1 , 

q = 1 , 2, . . . N-1 , and if b is the smaller integer such that qb > 3 then 

(3.13) 

To see this we observe that { nk} is the union of the b disjoint sequences 

{nm, nm+b' ... } , m = 1, ... , b, each of which has no more than 

satisfy the relations 

N 1 + 5 elements which 

nm+(k+ 1 )b > 
3 n ' m+kb 

k=O, 1, ... 

It follows that for each of these sequences (3. 11) has only trivial solutions (k = m, 

e = t or k = t, e = m) and hence the corresponding exponential sums fm satisfy the 

inequality 

b 
Observing now that if 1

4 :::; b3 
!; ifm 1

4 
and using (3. 12) we obtain (3. 13). 

m=1 

We note that there are sequences other than lacunary for which the number of solutions 
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of (3. 11) is as small as C N2 . If { nk} is lacunary and { mk} is such that 

~ = nk mod A, for some integer A > ~, then { mk} is an example of such a sequence. 

The above technique of dealing with lacunary sequences is very common not only in 

harmonie analysis ( Gt-o] , V, 6) but also in other branches of mathematics, e. g. in 

probability ( Ll2] ) . Unfortunately it leaves much to be desired in some important cases. 

Thus, for example, in the case of the Dirichlet kernel it gives the poor estimate J lnN 111 ~ C. 

However, if a sequence contains a long enough lacunary subsequence (although it need not be 

lacunary itself) then a relatively satisfactory estimate for the L 1 Norm can be derived 

( e. g. (log N} 1 
/

2 for the Dirichlet kernel). This is a corollary of an elegant theorem due 

to Paley (40, XII, 7 .8). 

m. 1 
THEOREM 3 .2. If !~ ~ q > 1 then 

J 

{ 1 l 2}
1
/

2 
Il ix i2x inxll (3.14) ~ am. ::; C a

0 
+ a 1e + a2e + ..• + ane 11. 

J J 

In particular if the sequence { ~} contains a lacunary subsequence of length M, 

then the L 
1 Norm of f ( defined in (3. 1)} exceeds a positive constant multiple of M 1 /

2
. 

(We remark that here it is very important that the frequencies appearing in f be non

negative). 

Proof. The proof is based on the fact that F(z) = a
0 

+ a
1
z + ... + anzn, 1 z 1 < 1, 

00 

can be written as a product F 1 (z) F 2(z) where F 1 (z) = ~ bn zn, 
n=O 

00 

F 2(z) = E c zn, 
n=Ü n 

lz I< 1, are analytic and IIF1II; = IIF)J; = l!Fll1 (for a function G(z), analytic in 

1 z 1 < 1, lbJJP is defined as the p th Norm of its boundary limit G(eix)). In all 

cases we shall consider here, e. g. when G is a polynomial, the existence of boundary 
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limits will offer no difficulty and soit will be taken for granted). 

This well-known factorization ( Q.o], VII, 7 .22) is due to F. Riesz and can be proved 

as follows : If F(z) has roots on I z J = 1, we consider the function F(rz), r < 1, 

which certainly has no roots on I z J = 1 except for a finite number of r 1 s. Thus, using 

a simple limiting argument, we may assume that F(z) /:. 0, 1 z 1 = 1 . If F(z) /:. 0 on 

J z l < 1 we very simply take F 
2 

= F 
1 

= F 1 
/

2 (any analytic branch of F 1 
/

2
). Otherwise 

let z 1, z2 , ••. , zm (m :::; n) be the roots of F in l z 1 < 1 {multiple roots will be 

repeated according to their multiplicity). For each zk we consider the Mobius transfor

mation which sends zk to O and maps the unit circle onto itself. We call B(z) the 

product of these transformations. Obviously I B(z) 1 = 1 on I z 1 = 1 and the function 

F(z) { B(z) }- 1 = G(z) is analytic and zero-free on l z 1::; 1. It is clear now that the 

functions F 
1 

= G 1 /
2 

, F 
2 

= B G 1 
/ 2 ( any analytic branch of the square root) have the 

desired properties. 

From the representation F = F 
1 
F 2 we get 

la 1 n. 
J 

n. 1 J-
= i ~ bk c -k 

k=O nj 

and hence 

(3. 15) 
00 

1 a 1
2 

:::; 2( ~ n. 
J 0 
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We observe that the second terms inside the curly brackets have sum (over j) less 

00 2 Il 00 l 2 '! Il than I; 1 bk 1 = 1 IF 
1 

. The first terms also have sum less than C I: ck 1 = CI F 111 . 
0 0 

This follows from the fact that the union of the intervals [nrnj-1 , n;J covers any 

integer at most K times, where K de pends only on q. To see this it suffices to 

observe that 

if 
log( 1 - I) 

k-j > - 2 = K 
log q 

and hence the sequence LP. - n. 
1 

, n .] is a union of no more than K disjoint subsequen-
J J- J 

ces of intervals. Adding now the inequalities (3. 15) we obtain 

~ lo:n_ 12 
$ 2IIFll1(K+1) IIFll1 

J J 

which implies (3 . 14) with C = o(-2..
1 

log 2
1

), as q ➔ 1 +. 
q- q-

REMARKS. (i) The analyticity of F was crucial in the above proof. This is the 

reason why the hypothesis nj ==-0 was needed. 

(ii) It is to be noted also that the lacunarity of { nj} was used in a way different 

from the usual one (see e. g. the proof of 3 . 13). 

In the case of real trigonometric polynomials there is a substitute for theorem (3 . 2) 

which neither implies nor is implied by it. 

R ( ) ~ b . nj+ 1 >_ q > 1 ' THEO EM 3. 3. If F x = t:.. <i<: cos kx + k sm kx and j = 1 , .. 
k=1 nj 

.. , N-1, then 

(3. 16) 

Theorem (3.3) is due to Zygmund and its proof can be found in ( [jo], XII, 7 .6). The 

assumptio11 of lacunarity can be relaxed a little (it suffices to assume the usual condition on 
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the number of solutions of (3 . 11 ) . 

The results we have proved up to now, although interesting in themselves, leave 

essentially intact the general case of the problem raised in III. 1 . For instance, if a sequence 

of non negative nk's is such that most of its terll}51ie in an interval (A,(1+e:)A), where 

e is a small positive number, we cannot expect very much from theorems (3. 2) and (3 . 3). 

However, borrowing again an argument from the theory of lacunary series, we can 

show that it is only a small proportion of terms in { nk} which prevents us from obtaining 

easily a lower bound of the order of (log N)1/ 2 for li ~ exp(inkx)ll1. The argument 
k=1 

we have in mind is the use of the so-called "Riesz products" and the precise formulation of 

this result is the following : 

THEOREM 3 .4. Given f as in (3. 1) and e: > 0 we can subtract less than O(Ne) 

terms from { 1\} so that the L 1 Norm of the exponential sum corresponding to the 

remaining sequence exceeds C(e:)(log N) 112 . 

Here C(e:) means a positive constant depending only on e:. 

Proof. We shall construct a subsequence { m1, ... , mr} of { n1, ... °N} such that: 

(i) lo: 3 log N - 1 < r $ lo: J log N 

(ii) For all k, 1 :5' k::::: N, all sequences of distinct indices j 1, ... , jt' 

1 < t $ r and all choices of signs + we have m. -:/:· + m. + m. + ..• + m .. 
- K - J1 - J2 - - Jt 

To avoid trivialities we assume, as we may, that N is large enough to have 

(e:/log 3) log N > 1. 

We take for the moment the existence of such a sequence for granted and argue as 

follows: 
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The number of integers of the form + m. + m. + . . . + m. is at most 
- J1 - J2 - - Jt 

2r (r"'2r-1 ( r ) 22 < 3r < 3(e:/log 3) log N = NE 
+ 1) +. · .+ r-2 · 

We delete the integers of this form from the sequence { nk} and call h the 

exponential sum corresponding to the remaining sequence. It suffices to prove that 

To this end we use the "Riesz product" 

r . 
P(x) = n (1 + 1

1

12 cos mtx) 
t=1 r 

and observe that P(x), written in full as a trigonometric polynomial, will have in common 

with h only the r frequencies m1 , m2 , ... , mr and the corresponding coefficients 

will be equal to :iJ2. 
r 

It follows that 

(3. 17) J . 1 1/2 
h(-x) P(x) dx = .2:.. . r 2 = Cr . 

Vr 
Since I P(x) 1 s ~ (1 + !)1/ 2 = (1 + !)1'/2 s C, (3. 17) 

t=1 r r 
implies the desired 

inequality J /hll1 >- cr 
1 
/
2

. 

It remains to prove the existence of the subsequence { m1, ... , mr}. 

We take m1 = n1 and suppose that m1, ••• , m
8 

have been chosen so that (ii) holds 

with r = s. Let s be the set of integers of the form + m. + m. + .•. + m. , t s s 
- J1 - J2 - - Jt 

and s the union of the sets : {m 1, ... ,m
8

}, { x : 2xE:S}, S, S+m1, S-m 1, S+m2 , 

S-m 2 , ... , S+m
8

, S-m
8

• As usual A+x means the set { a+x : aE:A}. 

The number of elements in S is at most 

s s 
2s + ( 1) 2s-1 + ... + ( s- 1 ) 2 < 3s 

and hence S contains less than s + 2. 38 + 2s. 3
5 s 10

8+ 1 
elements. 
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s+ 1 { } _ If 10 < N then we can choose m
5
+ 1 € n1 , ... , ~ - S and it is trivial 

to verify that { m1 , ... , m
8
+ 1} satisfies (ii). So the construction can be continued as 

long as the condition 105 + 1 < N is satisfied. It follows that condition (i) can certainly be 

satisfied if e: is small enough. Since such an assumption on e: is obviously harmless 

the proof is complete. 

RElVIARK. The construction used in the above proof is rather crude. As we shall see 

in the next section a more careful choice of the subsequence { mk} and a much more 

careful choice of the factor P(x) in (3. 17) will allow us to obtain a satisfactory estimate 

for llfll1 . 

4. THE GENERAL CASE. 

IN 1960 P. Cohen introduced a method of estimating the L 1 Norm of exponential sums 

which gives positive results without any condition whatsoever on the sequence of frequencies 

in them. 

Using a refinement of this method we shall prove in this section the following 

THEOREM 3. 5. _If n1, ... , ~ .~ N (> 2) distinct integers then 

(3.18) llexp(in1x) + ... + exp(inxx)// 1 ~ C(log N/log log N)1/ 2 . 

Proof. To avoid some trivial verifications we shall assume that N is large 

5 
( > e 10 , say, will suffice). This assumption obviously does not affect the validity of (3. 18). 

One characteristic point of the proof is the selection of a suitable subsequence { mk} of 

{ nk}. The selection begins with the largest frequency in { nk} and continues downwards. 
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Thus it seems appropriate (again without loss of generality) to assume, and we shall do so, 

that 

n1 > n2 > ... >~>o. 

We write : f(x) = exp(in 1x) + ... + exp(i~x). 

We shall construct a sequence g,(x) = exp(in 1x), g2 (x), •.• , gr(x) of trigonometric 

polynomials such that 

(3. 19) 

where 

Ik = Ji(-x) gk(x) dx. 

Assuming for the moment that this construction has been carried out up to an 

r ~ C(log N/log log N) and observing that 11 = 1 we have 

l!tll1 >-Ir 

= ( 1 - } ) I + Cr1 - 1 / 2 
r r-1 

-1/2{ ( 1) ( 1)r-2} ( 1r-1 =Cr 1 + 1-- + ... + 1-- + 1 - - . r r r 

~ C r1/2 

~ C(log N/log log N) 1 /Z. 

The last but one inequality follows from the fact that (1 - if converges to 

as r? 00, and hence it remains greater than a fixed positive constant, 

-1 e , 

Thus our task has been reduced to the construction of a sequence g1, ••• , gr of 

trigonometric polynomials satisfying (3 . 19) up to an r of the order of log N /log log N. 

We shall need two lemmas. 
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2 2 
LEMMA3.1.If r2:100, r r - 2 :::;; Q :5 2 , then 

(3 .20) 
1
1 _ ! _ P+iQ (P+iQ)2 1 1 ('Y'! ?p)1/2 < 1 -y-+ 4 +~ ... +... - . 

r r r 4r 

The assumption r ~ 100 is made for technical purposes only. It could be weakened 

but this would be of no importance to the proof of theorem (3.5). 

LEMMA 3. 2. Let S be a set of positive integers containing n1 and let N(p), 

pE:S, be the number of values k such that nk ~ p. !t r is a positive integer such 

that 

(3. 21) r 4 !; N(p) $ N 
pE:S 

then there are r integers m1 =? ~ > ... ~ mr among the n 1, .•. , °N such that 

(3 .22) 

and 

(3 .23) with q(t) $ t4 ~ N(p). 
pE:S 

We take first these two lemmas for granted and complete the proof of theorem (3. 5). 

We write r for the integral part of 16(log N/log log N) and observe that if N 

is large enough, r ~ 100. Under this restriction we shall show that there are sets 

Sk and functions gk which, for k :5 r, satisfy the following recursive relations : 

sk+1=SkUTkURk S1={n1}. 

where 

Tk = { m;k), ... , m~k)} is constructed as in lemma 3 .2 with S = Sk. 

R { ( (k) (k)) ( (k) (k)) • cg ·< · < e o < · · e < } k = p + mi - mj + ms - me . pc... k' ISJ, s , 1,J,s, ..: r , 



and 

where 

f\(x) = exp(im;k)x) + exp(im~k)x) + ... + exp(im~k)x) 

P + iQ = I; exp{i(m(k) - m~k))x}. 
k k e<j e J 
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The only requirement, according to lemma 3 . 2, which is needed for the construction 

of Sk+ 1, gk+ 1 from sk, gk is that (3. 21) holds with s = sk. This is trivially 

true for s 11 if N is large enough. (3.23), the definition of sk+ 1, and the trivial 

relations 

N(p + mik) - mt) + m~k) - m~k)) $ N(p), i $ j, s < e, 0 < i,j,s,e Sr 

N(mt)) = q(k)(j), where q(k) is as in (3.23) with s = sk, 

imply 

!: N(p) s { 'Z N(p)}{ 1 + (14 + ... + r 4) + ~ r 4} s r 5 'Z N(p) 
p€Sk+1 p€Sk p€Sk 

and hence 

!: N(p) s r5(k-1) 
p€Sk 

Thus, if k s r, the assumption on r guarantees the validity of (3. 21 ) and 

consequently the existence of gk. 

It is clear that r, P k, Qk satisfy the hypothesis of lemma 3. 1 and that 
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ihk(x) 1
2 = r + 2Pk. We also have Jg1(x) J :5 1 and by induction /gk(x) / :5 1. 

Observing now that the frequencies appearing in P k + iQk and (P k + iQk)2 do not 

appear in f(x) gk(-x) we obtain (3.19). 

find 

Since 

Thus, modulo lemmas (3 . 1 ) and (3 . 2), the proof of theorem (3 . 5) is complete. 

Proof of lemma (3. 1). Computing the square root of the absolute value in (3. 20) we 

2 22 2~ 2 2 ] ( 1 _ ! _ Pr - P ) + g_ 0 2 _ 2r 4 ( 1 _ l _ Pr -P ) + r 4 ( 1 _ ~? = 
r r4 r8 r r4 r 

2 Q2 
= A + 8 B. 

r 

d 2 2 2 
dP (Pr - P ) = r - 2P è':: 0 

we have 

(3 .24) 

The last inequality and the hypotheses on r , P , Q imply 

B :::; r 4 [o . 2 5 - 2 ( 1 - o . o 1 - o . 2 5) + 1. o 12] :::; o 

A ~ 1 - 0.01 - 0. 25 ~ 0. 

Collecting the above results we see that it suffices to show 

5/2 1/2 3 2 2 r (r + 2P) :5 4r + 4(Pr - P ) . 

If P :5 0 the right hand side of (3 . 24) exceeds 4r 3 - 2r 3 - r 2 ~ r 3 which 

2 2 2 2 r 2 
obviously implies (3 .24). If P ~ 0 then Pr - P = P(r -P) ~ P 2 and (3 .24) 

reduces to the trivial inequality 

2 (4r + 2P) ~ r(r + 2P). 

Proof of lemma (3.2). We take m1 = n1 and assume that m1, ... mt have been 



constructed in such a way that (3. 22) and (3 . 23) hold for all pE:S, i s j, 
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k< e 

0 < i,j,k, e :5 t. It will be enough to show that if t < r then we can find a mt+ 1 in 

such a way that (3 .22) and (3 .23) hold with O < i,j,k,e St+ 1. 

To prove this assertion it suffices to show that the ineligible choices for mt+ 1 , 

i.e. those for which (3.22), with O < i,j,k,e s t+1, fails, are at most 

(t+1)3 E N(p). 
p€S 

Indeed, if this is the case, then (note that E N (p) ;:;:: 1 ) 
p€S 

q(t) + (t+1)3 E N(p) + 1 :5 {t4 + (t+1)3} E N(p)+ 1 
pE:S pE:S 

< (t+ 1 )4 lJ N(p) 
p€S 

s r 4 E N(p) 
pE:S 

and hence there exists a y = q( t+ 1), with 

q(t) <y= q(t+1) s (t+1)4 E N(p) s N , 
pE:S 

suchthat(3.23)and(3.22)holdwith mt+l =ny, O<i,j,k,8 st+1. 

It remains to show that the ineligible choices for mt+ 1 are at most 

(t+ 1 )3 E N(p). 
p€S 

For fixed p and n
8 

> p it can easily be seen that there are at most 

t2(t-1) + 2t2 + t < (t+ 1)3 expressions of the form p - n + m. - m.+ m. - me, i s j, 
S 1 J K 

k < e, 0 < i,j,k, e $ t+1 containing mt+ 1 (once, twice or at most three times) and 

that the vanishing of such an expression uniquely determines mt+ 1 in terms of the 

remaining variables appearing in this expression. (Note that if mt+ 1 does not exist or, 

if it cancels in such an expression, then, by hypothesis, the letter cannot vanish). 

' 
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Since there are at most N(p) possible choices for ns, for a fixed p, we 

shall have at most (t+ 1 )3N(p) ineligible choices for mt+ 1 for each p, and hence 

at most (t+ 1)3 ~ N(p) for all p. 
pE.:S 

5. COMMENTS ON THEOREM 3. 5. 

(i) The proof given in III.4 is taken from ( [29] ). (3. 18) with exponent 1/8 was 

proved by P. Cohen ( IJJ ). This was the first positive result concerning Littlewood's 

conjecture ( up to that time it was not known even if l lt 111 tends to infinity with N). 

A few months la ter H. Davenport ( (§] ) , following Cohen I s method, reduced the exponent 

to 1 / 4. A new element in Davenport' s paper was the use of an inequality similar to (3. 20), 

on which the important estimate I gk I s 1 is based. Davenport' s inequality was ( we use 

the same notation as in lemma 3 • 1 ) 

(3. 25) l 1 - ~ - P + iQ 1 + ~ (r + 2P) 1/ 2 :s; 1. 
r r 3 r,.,1 ,:,, 

Any attempt to improve on the exponent 1 / 4 by changing the factors 1 1 1 
2's':sl2 r r r 

leads nowhere. In fact if E > 0 we find that for some a ~ 0 

(3 .26) J 1 - ~ - p + iQ i + 1 (r + 2P )1 / 2 S 1 
I"E 2 E 1 3E 

I' +2 I' ~ 

Repeating the proof ( using now (3 . 26) instead of (3 • 25)) we again obtain the same estimate 

C(log N/log log N) l/ 4 (see next remark). We observe that the exponent d of the coeffi

cient r -d of P+iQ is always greater than 2 ( d = 2 + ;) and this for a very good 

reason: if 
. p + iQ 

d = 2 then the point z = 2 , for P = O, may be at a distance 
r 

greater than 1 from the point 
a 1--
E' r 

and this makes (3 . 26) impossible. However, 



since z lies (almost) in the right half of the unit dise, the point 2 
z - z ' 

p == o, will be close enough to 1 so that an inequality of the form (3. 25), 
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even with 

with 2 z-z 

instead of P + ;a , may be possible . That this is really the case is the content of lemma 
r 

(3 . 1) The changes needed for the rest of the proof are more or less automatic and lead 

finally to the improved estimate C(log N/log log N) 1/ 2 . 

(ii) (3 .20) and (3 .25) are of the form 

(3. 27) 

1 

11 - n~ - { terms in (P + iQl , t = 1, 2, ... , k} 1 +-½, (r + 2P)
2 

$ 1. 
,. Cr 

The argument used in this paper yields 

(3. 28) [[f/1
1 

> C(log N/k log log N)(a+ 1-b)/a. 

It is very easy to see that always (a+ 1-b)/a;:::: 1, and hence the best bound we can 

expect from th1s argument will be greater than C(log N/log log N). 

t p +iQ 
(iii) Assume that the terms (P + iQ) in (3.27) forma polynomial in z = 2 . 

r 

We further assume that the coefficients of this polynomial are independent of r and the 

coefficient of z is positive On examining (3 . 27) for the real values of z we find 

1 that always (a+1-b)/a:::; 2 . Hence no further improvement can be obtained from Cohen's 

* method. 

However it is to be noted that although these assumptions are satisfied in the case 

of (3 . 20) they are not in that of (3. 25 ). 

(iv) With slight modifications in the proof we can show that (3. 18) remains valid if 

N N 
we replace 1:E exp(inkx) by I) ak exp(inkx), provided that j ak 1 ~ 1. Indeed if 

k=1 k=1 

* This remark was communicated to the author by P. Cohen. 
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1 1 
(k) 

sgny= y /y and b. =n (k) , 
J q {j) 

in the recursive definition of { gk} we obtain 

Is = (1 - ~) Is-1 + ~ ~ 1 a (k) . 1 
4r J q (J) 

> ( 1 - ! ) I 
1 

+ C r - 1 / 2 , 
r s-

which is sufficient for the proof. 

( v) Our main effort in the proof of theorem (3 . 5) was to construct a function gr, 

with ! gr 1 :$ 1, such that the integral S f(x) gr(-x) dx is large. The function gr was 

constructed, in a rather complicated way, from some trigonometric polynomials closely 

related to the even powers of f. It is not hard to obtain an exact formula for IJfJJ1 by 

using even powers of f. 

N 
Assume for simplicity that f is the cosine sum 1 + 2 E cos nkx and write 

k=1 

F(x) = f(x)/(2N+1). We shall have 

(3. 29) 1 f j = (2N+ 1) 1 F 1 

= (2N+1) { 1 - (1-F 2)} 
112 

{ 1 2 1( 1/2) l 2 2 1(1/
2

) l 2 k } =(2N+1) 1- 2(1-F )- 2 (1-F) - ... - k. (1-F) - .... 

Of course there are other formulas for giving If I in terms of the powers of f. 

If e. g. Km is what is usually called an approximate identity (i. e. Km ~ 0, 

J~.,Km = 1, Km(t) = Km(-t), rn1;,,, Km(t) ~ O, as m t., !or every a> 0) then 

(3. 30) 1 f(x) 1 = lim 2 f(x) Jf(x) Km(t) dt. 
m~oo o 

It is not hard to see that (3 .29) corresponds to the choice : Km(t) = am(1-t2)m 
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for a suitable am if ! t / :5 1 and O otherwise. In general if we chose for Kn an 

even polynomial we obtain l lt 111 from (3. 30) as a limit of linear combinations of the even 

Norms of f. Coming back to (3.29) and writing 

N 
(DN(t) = 1 + 2 t cos kx) we have 

k=1 

J 2 G 2 (1-F )= J(1-G) 

s (1-F
2

)
2 

= J<1-2F
2

) + f F4 

$ }1-2G
2

) + J G
4 

= J (1-G
2

)
2 

(The above inequality follows from II(2 .4 )) . 

Were it true in genernl that J (1-F 2)k ,; J (1-G
2)k then the strong conjecture 

l lt l l 1 ~ J JoN J j 1 would be a consequence of (3 . 29). However this is false. To see this we 

argue as follows* : 

The roots of DN are all simple as can easily be seen from the explicit formula 

(3. 4). If f has a double root b, then the integral of ( 1-F 2 )k over a neighborhood of 

b exceeds J ( 1-G2 )k provided that k is large enough. The example 

f(x) = 1 + 2{ cos x + cos 3x + cos 7x + cos 9x + cos 13x + cos 19x + cos 40 x} 

shows that such an f exists (it has the double root x = j). 

(vi) We use the same notation as in the previous remark. The best choice for a 

function g so that I g 1 ,; 1 and } (x) g(-x) dx is large if of course g(x) = sgn f(x). 

sgn f(x) can be expressed in terms of the odd powers of f(x) (using 3.30 for instance). 

But, as in the case of I f(x) 1, it seems that no representation is known which can give 

positive results for our purposes. 

We note in passing that Littlewood ( ~7 J , problem 22) asks for a lower bound of the 

(*) This argument was orally communicated to the author by Y. Domar. 
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N 
number of real roots of f(x) ( = 1 + 2 t cos nkx), and adds : "Possibly N- 1 , or not 

k=1 

much less". It appears that the problem is still open. Progress in this direction would 

possibly provide useful information on the problems treated in these Notes. 

(vii) Let f be an integrable function such that I f(nk) 1 ~ 1, k = 1, 2, ... , N, 

and J f(m) J :5 ~ otherwise. It is easy to see that we can choose ~ ~ 0, depending 

only on N, so that the proof of theorem 3 . 5 holds good and yields : //r // 1 ~ bN , where 

J. -P. Kahane has used this fact to show the existence of a sequence { en} such 

that en~ O, as n ➔ oo, and for all permutations cp the sequence ccp(n) is not the 

sequence of Fourier coefficients of an integrable function ( ~ 1] ) . 
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IV. ONE SIDED L NORMS . 

In this chapter we examine the lower bound of the absolute value of the minimum 
of real exponential sums and its relation to the lower bound of the L 1 Norm of exponential 
sums. 

1 . INTRODUCTION. 

00 • 
The L Norm of an exponential sum f having N terms presents no problem 

at all. In fact !]fil = f(0) = N. 
00 

The problem becomes more interesting ü we examine more general trigonometric 

polynomials. If, for instance, we consider polynomials whose non-zero coefficients are 

complex numbers of absolute value 1 then the Hardy Littlewood example 

N oo 2 
:E exp(ik log k) exp(i k x) shows that the L Norm can be of the same order as the L 

k=1 

Norm N 1/ 2 ( G7] see also tnJ for some related results). Although we shall not 

examine this aspect of the problem we mention a nice example, found independently by 

H. Shapiro and W. Rudin ( G5J , G:J ), of trigonometric polynomials P n , Qn of degree 

N = 2n - 1 whose non-zero coefficients are 1 or -1 and whose L 
00 

Norm is less than 

C N 1/ 2 (= dlP )12 = dla)l 2). P n and Qn' usually referred to as the Rudin-Shapiro 

polynomials, are defined recursively as follows : 

p =Q = 1 
0 0 
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P 
1
(x) = P (x) + exp(i2nx) Q (x) 

M n n 

Qn+ 1(x) = P n(x) - exp(i2nx) Qn(x). 

On observing that I P n 1
2 + 1 Qn 1

2 = 2( / P 
0

_ 1 1
2 + 1 Qn_ 1 1

2
) we immediately 

obtain the desired properties of P n and Qn. 

Throughout this chapter f will denote the cosine sum 

and for any real 21r-periodic function g, we define 

(4 .2) M(g) = J inf g(x) 1 • 

We always have llflt,o = N. On observing that llflL = max f(x) it is natural to 

ask: What about M(f) ? 

The problem of showing that M(f) tends to infinity with N was raised by 

Ankeny and Chowla ( GJ). More generally, as in the case of the L 1 Norm, we may ask 

for a lower bound of M(f) depending on N only. In the following sections we examine 

this problem in detail. 

2. THE MINIMUM OF REAL EXPONENTIAL SUMS. 

Let g be any real polynomial without constant term. We have ( b6] ) 

(4.3) llgll 1 = J g 

:5 j I g + M(g) 1 + M(g) = 2M(g). 

Thus any lower bound for llgll1 automatically yields a lower bound for M(g). 

Using (4.3) and III.5 {iv) we obtain: 
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THEOREM 4. 1 . Let g be a real trigonometric polynomial with N non-zero 

coefficients of absolute value ~ 1 . 1/2 Then M(g) ~ C(log N/log log N) . 

In some special cases it is easy to obtain satisfactory lower bounds for M(g) 

witbout any appeal to theorem 3 . 5, e. g. when we can find by other means a lower bound 

for l)gll1 by other means. We give a few examples of this sort. 

If g is the sum of N sines then M(g) ~(i N) 112 . For, g is odd and hence 

M(g) = llg(,;?: llgll2 = (~ N) 112. 

If f (recall our convention (4. 1)) has only odd frequencies then M(f) = - f( 1T) = N. 

If the frequencies { nk} of f satisfy the condition : nN s 2n1 , then 

27T 1 1 N 
f(

3
n

1 
) S (- 2) + ... + (- 2) = - 2. This example shows that a suitable translation (say by 

2°N\ of the sequence { nk} makes the problem of M(f) trivial while any translation is 

of no importance at all for the problem of l!f Il 1 • 

It is not hard to see that M(f) can be as small as CN 1/ 2 . Since for any N 

there is N 1 such that N = ;(N~ - N 1 ) + O(N 
1 
/
2

) we may assume that N is of the 

1 2 
form 2(N1 - N 1). Let g(x) = exp(in 1x} + ... + exp(i°N x), 0 < n1 < ... < °N , and 

1 1 

write 
2f(x) = 1 g(x) 1

2 - N = ~ exp{i(n. -n.) x} 
k~j K J 

= 2 !,; cos(nk - n.) x. 
k>j J 

Since f is a cosine sum with 1( 2 1 1/2 N = 2 N 
1 

- N 1) and M(f) ~ 2 N 1 ~ C N our assertion 

is proved. 

It is not known if there exists an f with M(f) of order smaller than N 112 . 

The last example and theorem (4. 1) show that the order of the smallest M(f), when f 

ranges over all cosine sums with N terms, is greater than (log N/log log N) 112 and 
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1/2 less than N . This result, despite the very large gap between (log N/log log N) 1/ 2 

and N 1 /
2

, appears to be the best known result up to now. 

Although we do not know if M(f) > C N 1/ 2 for every f it is easy to show that 

there is always a subset of { nk} such that M(g) > C N 
1
/

2
, where g is the cosine 

sum corresponding to that subset . This is an immediate consequence of the following asser-

tion : There is a choice of signs ± such that 

(4.4) !I ± cos n1x ± ... ± cos ~xJl1 ~ C N 
1
/

2
• 

Indeed ± cos n1x ± ... ± cos ~x is the difference of two cosine sums correspon

ding to subsets of { nk} and (4.4) implies that at least one of them has L 1 Norm which 

exceeds CN 112 (hence the same is true for the absolute value of its minimum). 

The method of proof of (3. 13) (convexity of the LP Norms) shows that (4.4) is a 

consequence of the assertion: 11There is a choice of signs ± such that 

(4.5), as well as (4.4), is a well known result in the theory of Rademacher series 

(see, e. g. 1221) and we prove it by the so called 11randomization" method. Taking into 

account some obvious cancellations we have 

(4 .6) ~ J± cos n1x + ... +cos nNx 1
4 = 2N{ ~ (cos nkx)

4 
+ 6 k'~j (cos nkx)

2
(cos n{)

2
} 

C 2N {Li ( )2}2 ::; • 1 cos nkx 
k 

::; C.2N N2 , 

where the summation on the left is taken over the 2N possible choices of signs ±. 

Integrating now both members of (4.6) we see that the average of 11:t cos n
1
x + •.. +cos ~xi!! 

is less than C N
2 

which obviously implies ( 4. 5). 
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For a result more precise than (4 .4) see ( G8] ). 

3. AN ALTERNATIVE APPROACH TO THEOREM (4.1). 

K. F. Roth gave a proof of theorem ( 4. 1 ) , for the case of cosine sums, which 

does not de pend on theorem (3. 5) ( G 1] ) . His method, interesting in itself, is di.fferent 

from that of Cohen, used in the proof of theorem (3.5) (in any case it is not clear what, 

if any, is the relation between the two proofs). We shall give in this section an outline 

of Roth' s proof. 

We introduce first some notation. We re.call the definitions ( 4. 1) and ( 4. 2) and write 

A = { n 1 , .•• , 11:N} and use the capital letters B , D, E , . . . for sets of positive integers . 

We further write A*= AU (-A) and similarly for B*, D*, ... (as·usual 

-A = { x : -n € A}). For any set of integers Y we put fy(x) = z; exp(imx). Thus 
mE:Y 

in particular f A* = 2f. We write also M = 2M(f) for simplicity. Finally for any sets 

Y and Z, 1 Y J will denote the cardinality of Y and Y +Z the set { y+z : yE:Y 

and zE:Z}. 

Our objective is to show that M '.;;,, C(log N/log log N) 1/
2

• To this end it obviously 

suffices to show that 

(4. 7) 

(4. 8) 

2 
(8M)16M > N. 

Roth I s argument is indirect. Assume that ( 4. 7) is false and call t the largest 
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The proof is now divided into two steps. In the first we use (4. 8) to show the 

existence of a set E of positive integers such that 

(i) E is symmetric with centre of symetry a positive integer e not belonging 

to E, i.e. for every x € E we,have 2e - x€E. 

(iii) For any subset D of E such that ID 1 ~ 2M2 + 1 there is a set B, 

depending in general on D, such that I B 1 = 2M2 and D + B* c A. 

In the second step it is shown that if a set E satisfies (i), (ii) and (iii) then the 

same is true for the set e + E, k and hence for the sets 2e + E, ... , 2 e + E ' .... 
Since (iii) implies that A contains elements greater than e we conclude that A 

must contain elements greater than 2ke for any k. This contradicts the finiteness 

of A and completes the proof. 

0utline of step 2. The verification of (iii) is the only non trivial point, and this 

can be achieved by a counting argument. More precisely : given D c E with 

]o I s 2M2+1 we must find a set B such that ls* J = 2M2 and e + D + B* c A. 

To do this we count the ineligible elements of E - e, i. e. those y € E - e for 

which e + D + y <i A. It turns out that they are less than I E l - 2M2 and this 

guarantees the existence of B. This counting is a more or less routine matter if we 

observe the following property of the set E : 

"For any y€E there are at most 2M2- 1 elements of y+E not belonging to A". 

Were this property false, then, using (iii), one could find two sets B , D satis

fying the hypotheses but not the conclusion of the following simple consequence of the 



definition of M ( and hence finish step 2). 

LEMMA 4. 1 . If a c A, D n A = t/) and a - D c A, then I B 1 < 2M
2

• 

Proof. Recalling our definitions we have 

1B 1
2 {J fA*}

2 
(4.9) - 2 = (fa-f O)(1 + -

M M 

j 1 1
2 fA* 

< fB - fD ( 1 + M ) 

= 2 IB I+ iJ lr8 1
2 rA* + kJlr0 l

2rA* -k Jr8 r0 rA* - iJ î 8 r0rA* 

~ 2 IB I+ i 1B 12 + i la 12 -i 1B 12 -l la 12 = 2 IB 1 

from which ! B 1 < 2~ follows immediately. 

50. 

The first inequality in ( 4. 9) follows from the Cauchy -Schwarz inequality and the 

fA* 
fact that ü M > 0. The last inequality is a consequence of the relations 

j fa 10 fA* = J f 8 f0 fA* = 1B 1
2 

which follow immediately from our hypothesis B-D c A. 

Outline of step 1. For the construction of a set having the properties (i), (li) and 

(iii) we shall need another simple consequence of the definition of M. 

LEMMA 4.2. If B c A and !B J-, 2M
2 ~ j lr8 1

2 fA;, l~J2-

Proof. We have 

2Jlr8 12 !A= Jlr8 1
2 rA* = J 118 l2(fA* +M)- M ls 1 

.: i {jt8 <rAéMl - M 1B 1 

= 1 B J 2 - M I a 1 ~ 1 ~~2 • 

The first inequality follows from the Cauchy-Schwarz inequality and the fact that 

f A* + M ~ 0. The last inequality is a consequence of our hypothesis I a 1 ~ 2M2 . 
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We observe that M(fA) = M(f2A), where 2A = { 2a : aE:A}, so that we may 

assume that A contains only even integers. This assumption is made because in the 

course of the proof we need the fact that all the frequencies of If A 1
2

, i. e. the 

are even. 

We set p
0 

= o, E
0 

= A, G
0 

= { 0}. Lemma 4.2 yields 

J I fE j 2 f A ~ f; 
0 

Since the integral on the left is a sum of no more than N of the Fourier 

coefficients of I fE 1
2

, there is a positive integer h1 such that (recall that 
0 

has only even frequencies) 
,,,,,,,............_ 

1 fE 1
2 

(2h1) :?! ~ • 
0 

On observing that I fE 1
2 

= N + :B exp { i(nk -nx) x} we conclude that the set 
o k~À 

E 1 = {nk: ne,- nk = 2h1 for some e} has at least 4~ elements. We set p 1 = h1, 

G1 = {-h,h} and observe that if a€E 1, bE:G1 then p1 +a+ b equals a or a+2h
1

. 

In either case p 1 + a + b belongs to A, by the definition of E 1 , and hence 

Applying again lemma 4. 2 we obtain 

~ N 
2(8M)3 . ..,............ 

The first inequality follows from the fact that I fE l 2(k) $ N for all k, the 
1 

second from lemma 4. 2 and the fact I G 1-G 1 1 s I G 1 1
2 = 4 and the last from ( 4. 8) 
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(assuming t ~ 2). 

As before the above inequality allows us to define a subset E2 of A and a numbei 

h2 such that where 

( 4 . 8) enables us to continue this construction for t steps . This leads to a triple 

l j t (p, E 1 , G) where p is a positive integer, G is a set such that G = -G and I G = 2 , 

E' c A and IE 1 
1 =:! N2t_ 1. Moreover wè have p +V+ G c A. 

2(8M) 

The set E' constructed this way satisfies the properties (ii) and (iii) (with s* = C 

for every D c V) but not necessarily (i). However, again because of (4.8), 

)E 1 1 > ~t-l > 8MN
3/4, 

2(8M) 
which means that (ii) is satisfied with a large margin. Using 

this fact and an argument similar to the one used before ( this time we choose a large coeffi-

cient of f~ 1 ) in order to define E 1 , E2 , . . . we can find a subset E of E which 

satisfies the desired condition (i), (ii) and (iii). 

Remark. It is interesting to observe that the definition of M was used only in order 

to prove the lemmas 4. 1 and 4. 2, on which the rest of the proof is based. 

4. A RELATION BETWEEN IIFll1 AND M(Re F). 

The result of this section applies not only to exponential sums but also to trigonome

tric polynomials having coefficients not less than one in absolute value ( compare III 5 (iv)). 

Our exposition follows ( Go] ) . 

Let F(x) = c 1exp(in 1x) + ... + ~exp(i~x) = f(x) + ig(x), Ici 1 ~ 1, i = 1, 2, ... l' 

If we impose no condition on the sequence n1 , ... , nN of distinct positive 



53. 

integers then the best lower bounds of l!Fll1 and M(f) that we know are of the order of 

(log N/log log N) 112 (see theorems 3. 5 and 4. 1). 

In our next theorem we show that 

(4.10) M log M + l!Fll1 ~ C log N. 

It follows that either IIFll1 C log N or M > C log N/log log N. Were it true 

that l!F!l1 < CM then we could deduce that M > C log N/log log N. We shall return to 

this point later (V .2, remark (il)). 

( 4 . 10) is an immediate corollary of the following more general theorem whose proof, 

although very simple, is based on rather deep results of Fourier analysis. 

THEOREM 4 . 2 . If ck denotes the sequence I ck 1, k = 1 , ..• , N, rearranged 

in non increasing order then 

(4. 11) 

n1 nN 
G(z) = 2M + c1z + .•. + cNz 

Proof. The function 

is holomorphie and its real part is not less than M on the circle k 1 = 1 . It follows 

that its real part is greater than O in I z J < 1 and hence we have 

G(z) = le I exp(iq), jq 1 = !Arg G I s ;, lz l s 1. 

The function f log I G 1 - qg = Re(F log G) is harmonie and has the value O at 

the origin. An application of the mean value property for harmonie functions yields 

Jnog le 1 = Jq g < cl!Fll1. 

Writing f- = max( 0 , -f), log+ 1 f 1 = max( 0 , log If 1 ) , observing that 

log+ l f I S log I G I and remembering that log / cl is harmonie with value 



log(2M) at the origin we obtain 

J 1 1 1 loft 1 1 1 ,; J 11 1 log I G 1 

,; cllFll1 + 2 J Oog le 1 

:s; cllFll1 + 2M J log le 1 
= cllFll1 + 2M log 2M 

~ cd!Fll1 + M log M + C). 

Using now the inequality (see remark iii) 

(4. 12) 

we obtain (4. 11). 
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(4. 10) follows immediately from (4. 11) if we observe that ! ~ 1 ~ 1 implies that 

the left hand side of ( 4. 12) exceeds C log N. 

Remarks (i). The argument used in the above proof is essentially the same as the 

one leading to a classical inequality of M. Riesz for the conjugate function ( IA.o] VII, 2. 10). 

(ii) A general remark concerning the above proof is that it is not based on the L 2 

Parceval formula (which appear to be the case in the proof of theorem 3. 5 and in the argument 

of Roth given in II. 3) but on inequalities property belonging to the space L lo~/L, that is 

a space much closer to L 1 than the space L 2 . This is probably the reason that we have 

now reached ( although in a conditional form) a lower bound of the order of log N and not 

(log N) 1/ 2 . 

(iii) (4. 12) is due to Hardy and Littlewood ( [161) . A proof of this inequality can be 

found in ( Gi,o] , XII, Ex. 8i ) (the result we are looking for is not stated explicitly but is 

contained in the last line of the hint given there). It can also be considered as the limiting 

case of a better known inequality concerning rearrangements of Fourier coefficients of 
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functions in LP ( Gio], XII, 5. 10) and proved by the so-called extrapolation method 

( [40] , XII, 4 . 4 1 ) . 



V. SEQUENCES GROWING SLOWER THAN POWERS. 

In this chapter we examine briefly the problems of I If// 1 and M(f) when the 

sequence { nk} satisfies the condition nk < kA. 

I INTRODUCTION. 

The difficulty of the problems treated in the previous chapters is due to a large 

extent to the arbitrariness of the sequence { nk} . We have seen for instance that in the 

case of arithmetic progressions or lacunary sequences it was relatively easy to obtain good 

estimates for the various Lp Norms of the corresponding exponential sums. 

Arithmetic progressions, after a trivial change of variables, correspond to the most 

"dense" sequences { nk}, while lacunary sequences correspond to "sparse" sequences. 

There are results on some intermediate cases scattered in the literature. In the following 

sections we isolate and examine briefly one of these cases. For some other cases see ( G4] ) 
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2. L 1 NORM. 

Let O < n
1 

< ... < ~ < . . . be an infini te sequence of positive integers. In 

1954 R. Salem { L34J ) proved the following 

{5. 1) 

THEOREM 5. 1 . If 

lim sup 
N➔co 

a nk < k , where a is a constant, then 

---
1

...,,1-.1~2 JI cos n1x + ... +cos "Nx I dx > O. 
(log N) 

This result means that if { nk} grows slower than ka then there is an infinite 

00 

number of partial sums of the (infini te) exponential sum l'.) cos nkx for which the estimate 
1 

(log N/log log N) 
1
/

2 
can be slightly improved by dropping the factor log log N. 

Outline of the proof. The main idea is to use the following result of Menchoff ( ~s] ) : 

"Let qk' k= 1, 2, ••• be an orthonormal system on (0 , 21T ). The condition 

N 
implies that E ck qk converges almost everywhere and this 

k=1 

result cannot be improved" . 

2 
The last clause means that given any function q(k) such that q(k) = 0(log k) 

then there is an orthonormal system qk and a sequence ck such that l; 1 ck l 2q(k) < oo 

N 
and !; ck qk tliverges on a set of positive measure. 

k=1 

For any orthonormal system qk Salem considers the two dimensional orthogonal 

system { qk(x)(cos nkt)(ip(t))
1
/

2
} where <J,(t)(= efJ (t)) = 1 + sup { cos n1x + .•. +cos nkx} 

n 1::;S;k:S::n 

and applies Bessel' s inequality to a suitably chosen function P(x, t). The result is an 

inequality which is equivalent (by duality) to : 

(5.3) J ~ 1 k§l "k Qk 1

2 

,;; C(k~l J"k 12) log mn ::',,;~ (jlcos n1x + ... +cos '\X ~
2 

for any sequence { ck}. 
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Assuming now that (5 . 2) is false and using the hypothesis mk < ka we see that 

the second member of (5.3) is dominated by: C(Ii lcn 1
2) (log n)2p(n), where p(n) t 0 

as n -t oo • However from this form of (5 . 3) one can conclude that the condition 

1 12 2 t i ck (log k) p(k) < oc 

N * 
implies the almost everywhere convergence of !; ck <pk • This contradicts Menchoff' s 

k=1 

theorem and completes the proof. 

It is interesting to observe that if we consider exponential sums instead of cosine 

sums in tœorem 5. 1 then we can restrict ourselves to finite sequences and drop the 

hypothesis nk < ka. Moreover the proof will be an almost immediate corollary of Paley' s 

theorem (III. th. 3. 2). More precisely we have 

THEOREM 5.2. If O < n1 < ... < nN' then 

(5.4) 

Proof. If { nk} contains a lacunary subsequence of length log N then (5.4) 

follows immediately from Paley' s theorem. This is not in general true. However we can 

always find a number k, and a subsequence {m1, ~' ... } of { n1, ... °N} such 

that either { ~-mk-1' ~-~_ 2, ... , ~-m 1} or { rnk+l-mk, ... , ~-mk} contains 

a lacunary subsequence of length greater than C log N. Assuming this and using Paley' s 

theorem we see that either llexp(in1x) + ... + exp(inkx)!l1 or llexp(in1x) + ... + exp(inNx)ll 1 

* This follows from a standard argument in harmonie analysis. For many operations T n 
defined on normed classes of functions the convergence almost everywhere of Ti will 

follow from the condition that l ls~p T nf I J s Cl lt 11. 

** As I learned from a conversation with N. Varopoulos this result was known to A. Beurling. 
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1/2 exceeds C(log N) . 

In order to prove the existence of nk we write A = { n 1 , . . . ~} , 1 B I for 

the cardinality of any set B, and argue as follows : 

We partition the interval I
0 

= fu1 , ~] into 2, 4, 8, ... equal closed intervals 

( The se intervals are disjoint except when the y are adjacent in this case the y have exactly 

one point in common). We stop for the first time when k is the first integer such that 

the 2k equal subintervals contain less than ~ elements of A. We observe that we 

need at least two steps before reaching this stage. In the previous stage there is an inter

val containing more than ~ - 1 elements of A and hence we can choose an interval I 1 

of the kfh partition such that ~ s l11n A 1 < ~- The union of 11 and its two 

neighbours contain at most 3f elements of A. Hence we can choose an element m
1
E:A 

whose distance from 11 is greater than 111 [ . We repeat now this construction starting 

from 11 and continue in the same way. We obtain a sequence 1
0

, 11, 12 , 

and a sequence of points m
1

, m2 , ... of A such that : 1
0 
~ 11 > ... , 

of intervals 

distance { mk , Ik} ~ Jrk 1, and lik n A 1 ~ ~. 
1 7 thatf 

8 

if n = lJo! 8 log Nj . It is clear now ;either to the left 

It follows that 

or to the right of 

m there are C log N elements of A whose distances from mn, as can easily be 
n 

seen, form a lacunary sequence. 

REMARKS. (i) Both theorems 5. 1 and 5. 2 remain valid if we replace the cosine or 

exponential sums by real or analytic polynomials with coefficients not less than 1 in 

absolute value. 

(ii) It is not clear if theorem 5. 1, without the hypothesis nk <ka, can be derived 
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from theorem 5 . 2 . This would obviously be the case if the second inequality in 

(5.5) dicos n1x + ... +cos ~xll1 :5 Il sin n1x + ... +sin ~xll 1 s dicos n1x + ... +cos ~I 
were true. It is a simple consequence of a théorem of Zygmund ( Gt.oJ VII, 2. 9) that (5. 5) 

is true if we replace the constants by C log N to the right and C(log N f 1 to the left. It 

appears that, a part from some trivial cases (e. g. lacunary 

sequences {nk}, nk = 1 (mod. 4) etc), this is allthat we know about the constants in 

(5 . 5). For some related problems concerning (5. 5) with cosine and sine polynomials having 

positive coefficients (not necessarily equal to 1) see ( [20] ) and ( [27 J , p. 11). 

We note in passing that if (5. 5) were true then we could conclude from (4. 10) that 

M > C log N 
log log N . 

3. ONE SIDED L 
00 

NORMS OF COSINE SUMS. 

Salem 1s theorem and (4.3) imply that if 0 < n1 < n2 < ... a 
and nk < k then 

there are infinitely many partial sums SN(x) = cos n1x + ... +cos 1Nx such that 

M(SN) > C(log N) 1/ 2 . Much better results can be obtained if we assume in addition that a 

is close enough to 1 . This will be a consequence of the following 

and assume that bk ~ 0 and Sk(x) ~ O fo all k. There is an absolute constant 

a
0 

(= 0,308 ... ) such that for every d € (0 , a
0

) we have 

(5.6) 
N b 
""' k < c b 
&., 1-d - a - d o' 

k=1 nk o 

Theorem 5. 3 is due to Selberg ( Ù;] ; see also fa] and [4]). 
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Fourier series with positive partial sums have been examined, from a different 

point of view, by other authors (see e. g. !;o] ,, XIII, § 4). Selberg's proof is based on 

an interesting argument which has also been used in order to characterize those series of 

00 

the form E ~ cos nx whose partial sums are uniformly bounded below ( Wo1 IV, 2). 
n=1 n 

We take theorem 5. 3 temporarily for granted. Let { nk} be the sequence defined 

at the begining of this section and let us apply (5.6) with b
0 

= M = sup M(Sk) (so 
k=:1, .•• N 

that the hypothesis of the theorem is satisfied) and bn = 1 if n € { n 1, •.. , °N}, bn = 0 

otherwise. We obtain 

(5. 7) 

Thus the supremum of M(Sk), k=1, ... ,N, exceeds N 1-0:( 1-d). We 

observe that the exponent 1-a(1-d) can be equal to any number less than a
0

, provided 

that a is close enough to 1 • 

Proof of theorem 5. 3. We define first the number a
0

• We write 

q(t) = r31712 
cos/ dx, OS t :5 1 

Jo X 

and observe that q(O) < O, q(1) = oo We shall show that q 1 (t) < O, 0 :5 t < 1, and so 

q will have exactly one root a
0 

such that O < a
0 

< 1. Moreover it will be clear that if 

0 < t < a then 
0 

lq1(t) 1 < C. 

in [9 , 2] we obtain 

Observl ·ng that cos x · d · f t· f -- 1s -a ecreasmg une 10n o x 
xt 
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\

311-/2 1 ,.17 /2 1 J1 J1T /2 1 COS X 
q' (x) = log x cost x ~ \ log x = ( + ) log x --t- 2:::: 

t, 0 X '~0 0 ' 1 X 

J1 1 J'TT /2 
2:::: cos 1 { 

0 

log x - . 
1 

log x} > cos 1 { 1 - (i - 1 ) } > 0. 

We observe that if 0 < d < a
0 

then q(d) < O. 

We define now the functions h
0

, h 1, ... , ~ on [o , 1/] by setting : 

h = O, 
0 

~(x) = x -d on Lü , ~~] and zero elsewhere, 

Our hypotheses imply 

N 
(5.8) 0 :s; S

0
h

0 
+ S 1h 1 + ... +SN~= b

0
(h 1 + ... + ~) + m:

1 
bm(hm + ... + hN). 

Integrating (5 . 8) over [Q , ~rr] we obtain 

0:s;b dx + i:b J
·Jrr /2 N J

0

3rr /2m 
0 , o xd m=1 m 

N b 
= C b + ( I; 1~d) q(d) 

0 
m=1 m 

cos mx dx 
d 

X 

from which (5. 6) follows immediately. 

1 

a -d 
0 

RE MARK. If d :s; 0 then (5 . 8) is still valid, provided that we remove the factor 

from the second member. 
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