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ÛN THE STATIONARY STATISTICAL SOLUTIONS OF THE NAVIER-STOKES 

EQUATIONS AND TURBULENCE 

By Ciprian FOIAS and Roger TEMAM. 

Abstract. 

This paper constitutes a continuation and an improvement of the study 

[11] on the stationary statistical solutions of the Navier~Stokes equations 

in bounded domains. Also it contains some new results pertaining to the 

asymptotic behaviour of the non stationary individual solutions or to the 

global behaviour of the stationary individual solutions. A discussion on the 

possible·meaning in the theory of the turbulence of the results we establish 

here, is also given. 
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§.1. Introduction. 

1. 1. Among the most tantalizing problems of the nowadays mathematical physics 

is that of the occurence of turbulent phenomena (quoted by P.D. Lax ~1] as one of 

the three typical pattern of the physical meaningful nonlinear problems) in the 

evolution of the solutions of equations of the Navier~Stokes type. Therefore it seems 
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wh()rth to look for a better understanding of the global and the asymptotic 

behaviour of the solutions of the initial value problem for the Navier-Stokes 

equations 

(l.1.1) n 

- vEu . i - a, P + g. x. l. 
l. 

~ cl. u. = 0 in Q x [0,00 ) , and L x. J 
1 J 

u. = 0 (i = 1,2, ••• ,n) on an x (0, 00 ) , 
l. 

(i = 1,2, ••• ,n) , 

where n is a bounded dornain in !Rn (n = 2 ,3), v>O and g = {g1, ••• ,gn} 

represent the kinematic viscosity, resp. the external body forces and p the 

pressure. We will assume that 

Our belief is that an efficient way of answering to the above expressed axis is 

to study ~he statistical solutions of the Navier-Stokes equations, especially 

the stationary ones. 

Heuristically these solutions can be d·efined as follows (see for instance 

[23], Ch.I, §.6) : The equations (1.1.1) are viewed as an evolution equation 

(1.1.2) du+ A(u) = 0 
dt 

in a suitable real infinite dimensional Hilbert space H, where A(u) is a 

specific continuous (non linear) map from a subspace H1 c H (dense in H and 

endowed with a supplementary stronger norm) into its dual H-l:;, H (for details, 

see n° 2.3 below). Roughly speaking, a stationary statistical solution of (1.1.1-2) 

is a Borel probability measure µ in H ~ carried by H1 which is invariant 

under the infinitezimal translation 

along the vector field A(u) 1 
(u e:. H ) 

computation leads easily to the equation 

in -1 H • A simple non rigorous 
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(1.1.3) J <A(u),~'(u)> dµ(u) = 0 

for an enough large class of adequate functionals ~ on H, where ~'(u) 

denotes the Fréchet derivatives of ~ , while <.,.> denotes the duality between 

H-l and H1 • (For the rigourous definitions see n°2-4 below). Though probability 

measures on H which actually are stationary statistical solutions of (1.1.1-2) 

explicitely occur in [17] , [31], and [32}, their first rigourous and systematic 

study is (as far as we are aware) contained in [11]. The present paper continues 

this study, substantially improving parts of [11] and exhibiting new properties 

of these solutions, concerning their generation as ergodic means (§.3) and the 

structure of their supports (§§.4-5). 

(announced in [15J) 
1.2. The main new resultsVof the paper are contained in §§.5-6, where we 

prove that for two-dimensional fluids (i.e. for n=2) all stationary statistical 

solutions are carried by the stationary individual solutions (settling thus a 

question raised, fourteen years ago, by G. Prodi [31]) and that "in general" the 

number of the latter ones is finite. 

We also give some three-dimensional versions of these results which seem to 

redeem Leray's point of view on the occurence of turbulence. 

1.3. The justification of the preceding statement as well as a discussion 

of the possible meaning and for the corresp-onding consequences, of our results 

for the theory of turbulence, will be given in §.7 ; this paragraph should also 

be considered as a postface to this paper. 
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2.10 Let .il be a bounded domain ir. Rn (n=2 or 3) with 

a c2 ... boundary ;)_f)_ and let H, rep. H1 , be the closure in 

(L 2 (Jl) )n, resp (H 1(...0.) )n, of 

H ;:: ( v: v € ( C 00 (Jl.) ) n , div v = ~ d J. :vJ. = 0 J . 
o L . O • 1 J:::: 

'fhe spaces H, resp. H1 are endowed with the scalar products 

f 
41 

(u,v) = ( ~ ,· 
....n.. 1-;/ 

u j v j) dz. , resp. (( u, v)):.::: [( j_ )k~· ·dv)d:i: 
-''2.. tf:,K:=./ (/ A.,/ :.;> 

1 L 
and the corresponding norms /u/= (u,u)~, resp. flull = ((u,u)~ 

Let A be the F'riedrichs' extension of -Ll 11{0 • Then 

(2.1.,1) 

(2.1.2) DA = H 1 0, ( H 
2 

( ..n.) )'" and c 11 
. llü If ( H 2 (Jl. ) ) n 

4 

~ I Au I !:S. c1. 1 \ u Il ( H 2 (Il) ) n ( u G l);_) , 

whcre represents the domain of the operator 0 

(as well as the different constants C C l,. C' 1 .; , ) ' J' 1 
J ' 

in the sequel) is a constant depending only on ..D. . 
( 2.1. l) is a direct consequence of the de finition of ;11. and !\, 

while (2.1.2) results easï·y frn'n the Catt::c,briga.-Solonni 1<ov-Vo­

rovich-Yudovich theorem ([6]>[4d; see [42], § 2.J). 

By Rellich•s l0mma, 

an orthororm~l b~sis 

We hrlVe 

-1 
A is co~pact, hence there exists 

in H such that 
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where,as already stated above. cz ,is a constant depending only 

on .f1. • This can be easily obtained by a method of Agmon ( see û l, ) , 
using, {2.1.2); as sample. see 

n=2 is proved. 

[. nJ , § 7 , where the case 

In the sequel Pm (m=l,2, •• ) will always denote the ortho-

gonal projection of H onto the space spanned by w1,w2,••,wm. 

2.2., For u,v,w E H" we set 

b(u,v,w) = 

which is a biline~r continuous functional on Hl such that 

b(u,v,w) = -b(u,w,v); 

this is readily verified, first on Ho• 

Moreover we have the following useful inequalities 

lb(u,v,w)l '!'Ef. c:i A~ l · ( A~vl • \ !\.r'wl 

• ( for all u € ])Aôi. , V E- ]) A(; 

and 

n=3. in case 

ex + f> + -;r- = 1 + é with 

(and in this case the constant 

D < ~ :E: ¼, in case n=2 

depcnds also on€ )o 

Let us sketch the proof of (2.2.J) in case n=2. 

(For the analogous proof of (2.2.;) in case n=3, see V.2 ] , Chap. I ) 

To this aim we notice that by (2.l.1-2) and the Sobolev•s 

embedding theorem H1 (.J2.) C. L '1 (_Q_) (for all \~9 < Ô(:;) ), 

the maps 

(resp. 

continuous from 

are continuous from 

DA) into Lq { .Il); plainly they are also 

H = DAo (resp. DAv~ ) into 1 2(.J2). Thus for 



- 6 -

q ~ 2, we infer by interpolation ( see [ 24] , 

that these maps are also continuous from DAfl/;J... 

into L\" (fl_) (for any O ~ 0~1 ) with T= Ye = 2q· 

( 2 0 +q -q e ) -;1 Therefore for o< ' f 'd and t as in 

(2.2.J), taking q= 2+ &- 1 we will have 

/ b(u I vt W) / ~- ~ // U1ç //L:hl (_/2) // dk. 1· l~,i:;11_,(-Q f f 11 /~ r:i1yJ2) ~ 

~ c
3 

I AO(u/· fA,f!>vl -IA;rwl 
for any u é DA ex , V E DA~ , w 6 DA'l"- • 

In the case n = 2 we can supplement (2.2.J) with the 

following 

( 1 b(u,v,w) 1 !!f 

I . uf w \ ½ 

Where 

c<, + ~ 1- (3, + /3.,2. f J; + ~ = 2 and 

max { o(1 , IY..t , j, , ch) = 1 in case ~ 1 + f:2.. = 1 

These inequalities result directly from the following wel.1-

-known inequalities: 

fi '-'j /~.-r (.S2,) 
~ ;2 tly /u / 1/:2. Il tr // ½. fa/ tt==-{t-f;J~ €/f:L 

/=/ ::, 

Il J. tl.' //. Il li Il 1/:i. / Ali I 1/2. fa- !2... 
~ C.r tt = ( ~ J_;,,,, E ,4 ~ 

A: ï L~) 

11 éj ï/ L°°(J2) ~ ç. kt/½. /Attl//.2 ~ u~ r~;_: € ~ _; 

) 
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for the first two,see and [ 13] , 

respectively, while for the last one see (2.1e2) and [1J,§.lJ, 

Moreover in case n=J, we canuse instead of the last 

inequality the following 

lftA.J· Il 5 ~ /u / 19. / Atl/
3
/L/ ,/tYi- 11-= (<J-J.;t ~--¼ 

(see [ 1] , §.13 ) ' obtaining readily 

fui '4 /A u/J/'7 //V/1/wl (t1~ fq J V(= H: w?f/) 

/u/ 14 /Al//31Y /v/· //tvll (t<é-.l)i., v&l-1,, w~ 1/:) 

la/. //V//· /w///r/Atv/4' /4"{'-/-/.1 vtll~ wc ~} 

/a/ /vl ~ /,AJ//~o/ ~,y// (Il?~ v~ 14/ trt'"/--1-:,! 

Let H-1 be the dual of H1 and for u E- Hl 

into H-1 let denote Cf(u) by <'(',u) • We ernbed H 

through the identification <'.'h,u) = (h,u) -1 (for hEH, uGH ). 

Plainly, the operator A can be extended by continuity to a 

t . t f H1 1·nto H- 1 con inuous opera or rom (actually, onto). Fer 

u,v é H1 , let B(u,v) G- H-l be defined by 

(2.2.6) <B(u,v) ,#) = b(u,v,w) for all w G Hl. 

We remark that 

yields 

(2.2.3) (with the choice ci.= ½, ~ =;, f-=O) 

2.3. The precise form of the operator A(u) in 

(1.1.c1) is 

A{u) = v Au+ B(u,u) - f 

where f .is the orthogonal projection on H 
?t 

of the m - valued 

function g occuring in {1.1.1). Plainly A(u) applies DA 

into H and Hi into H- 1 • In case we want to emphasize the 

dependence of A(u) on t > O and f EH, we will write A(u;f, Y) 

instead of A(u). 
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We shall be concerned with the initial value problem 

ôW 
ctt + A(u) = 0 for t > O , u(O)=u 0 E: H. 

By a solution (or an individual solution) of 

(2.).2) we mean a function u(t) from [o, oo) te H which 

is weakly continuous at any t 0 6. [o, oo} and strongly conti-

nuous from the right at any to t-0 E[o, Of,? ) , 17 {wher.e $ c=. (o.<::..?) 

depends on the solution and meas P'=o), and which satisfies 

(2.3.3) u(t) G H~ a.e. on (o, 00) and Stna(r)/l~d, <::.= (t-é-(o,ooJ/, 

:t O .1 s+ 
(2.J.4) ½ tu(t) 1 2 + y S /(u(r)f(l.clr -!E: j_ /u.(ioJI + r/+1<1(-cJ)dr 

-Cc, (frJY afl t- é (ot'ac) q,n,d' t €- L01 r J'. 17) 

(2.3.5) u(t) = u
0
+ [-t:u1(r)c/r u'(r) ~ 11 (o,,t; f-FIJ {-f-~ { 0 1=-'~ 

i) J 

( 2. 3" 6) u l ( t) + A ( u ( t)) = O a. e. on ( O, o0 ) • 

where (2.3.5-6} are considered relations in H-l (see 03] 

Ch .. r. § 6 and especially [ 12] , §.n.1 ) . It can be 

proved (as i.n '[ 23], Chap.It §.6 or r:12], ~.II.l ) that 

for any u
0 

E H there exists at least one solution of (2.J.,2). 

Moreover if the n=2, one easily verifies that this solution 

is unique (see for instance G3] Chap,l,§.6). 
f 

A time-independent solution u(t)=u
0 

(or rather 

called a stationary (individual) solution: that is, u
0 

ù ) is 
0 

H 

a stationa.ry solution of (2.}o2) if u
0 

G Hl and A(u 0 ) = 0 

(in H~l)o Plainly 

(2.,2.2-J) yield 

is 

2.4. In order to define the stationar,.
1
, 0 tati"st 1·c~1 1 t' ··· ,:>~-· ~ ,o .. so u.1ons 

of (2.J.2) let us agree to call test functional any real functio-
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nal ~(u) on H enjoying the following propert.iesi 

1° For any u €Hl, the Fréchet derivative 

of c/> , ta ken in H along H"1 exists ( tha t is 

..1_ / cp(tt-f Y)- tp(tt) - ( ÇD(t/}_, V')/~ 0 fty //E If~, IV/~ 0 ), 
/V/ 

20 <p' (u) é H1 for all u E H.1 and, as function from 

H:l into Ha , cp 1 is continuous and bounded. 

Let now jl denote a Borel probability measure on J{ 

such that 

(2.4.1) 

(where 

any test 

(2.4.2) 

"u Il is take11 = oo for u E H '-.. H1 ) • 'rhen,, for 

functional (/, the function 
< A(u)) cp'(u) > == V ((u J </>'(u) )) + < .JJ/àr t,(};, c:p1/w J > 

- é /; q:/(,,;j) 

is continuous on H{ and satisfies (by (2.2.3)) 

[<A(u.J> cp1(u))I ~ v {(Ul/· \{tfl(u)I/ + c
3 

/u/1/.2. IAl/.2u/1;'2-){UI/· 
/ · I • f/~ ( 2.. 

• llt:/)1/dll + If I · 1 c/) 'fuJ/ ~ ( Y lltt.t/ + c3 >., I tf// -4-s 

4-< >-~V;i. l f /) J:({1. Il q/(v) Il 

Thus by (2.4.1), the integral 

f < Afu)~ <j/(u))df1(t1} 

makes sense. By definition a stationarv statistjcal solution 

of (2.J.2) is any Borel probability ~easure 

satisfying (2.4.1.) such that 

(2.4.J) f<A(u)~ cjfu) > dj1(t1)= 0 

for any test functional ç!> , and 

f [Y/lu /(!l..- (~ u)] ,<l;«f«) ~ 0 

{l't :-::; /U(~<tE_} 

on H 

for any O ~ f=; -.:::::: .E..:2.. .!É CY:> (süe [11] , § 6). The equation 

(2~4.J) J.s the rigorous form of the e~uation (1 .. i.3) 
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introduced in an heuristic manner in the § 1, while (2.6.4) 

is a strengtened energy inequality, which has the following 

direct consequences ( see D.1 J , §. 6 ) : 

(204.5) J /ful/~~µ(u) ~ >,r:2. .1;1 lf/fl 

( 2 • 4 • 6) Au/; fl C { I u / y-l A; 1 If/}, 

where supp f'- denotes the support of µ (i.e. the smallest 

closed set F in H such that f-,(F)=l). 

2.5. In case n=2 • then, as already said above, the indi­

vidual solution u{t) of (2.3.2) is uniquely determined by 

its initial data u{O) = u
0

; moreover it is easy to verify that, 

if S(t
0

) u
0 

denotes the value u(t
0

) at th~ time 

u(t), then S(t 0 ) is.a continuous map from H into 

for instance; [12] , §.III.2 }o We showed in 

t
0 
,-o of 

H1. (.see 

C11J ,§.6 
that a Borel probabi1ity measure /J- on H is a stationarv 

statistical soluti.on of (2.J.2) if and onlv if it is invariant 

with resuect to the functional flow 

that is, if 

{ 
f (&(f)-'tv) == f {o;) 

Borel subsets OJ of H. 

t 

Moreover any such JJ- has i ts support compact in H1 ( see [11) §. 6 • 

); in p~rticular one can prove that 

(2.5.2) supp p c { l{uf( =:=-c
7 

y-t lf/,e.:x-f' (c<f y-J> /f/f)} 
where ( as already stated in Sec .. 2 .1), c7_J' are some 

constants depending only on .f2 . 
206. In case n=3. a similar functional flow might not 

exist; therefore in this case a more laborious discussion is 

necessary in order to clarify our definition of the stationary 
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statistical solutions. 

Let us begin this discussion by agreeing to call regular 

on [o.T] (T > O) any individual solution u(t) such that 

u ( t ) G C ( [ 0 , ·-r ] ; H-1 ) • 

One can verify that u(t) is regular on [o, T] if and only 

if u(t) E L°'° (O,T; H1 ) and that if u(t) is regular on [o,T] 

then any individual solution of (2.J.2) with the same initial 

date as u(t) coincides with u(t) on [o,TJ 
[12] §.III,1), 

(see for instance 

Thus 

we can define the map RS(t 0 ). on the set DRs(t 0 ) of those 

for which there exists an individual solution u(t), regular on [ 0 ,~J 
f 

such that u(O)=u
0

, by RS(t 0 )u 0 = u(t 0 ). One can also verify 

that DRS(to) is an open subset of H1 such that 

(2.6.1) { 
and that RS(t 0 ), as a map from DRS(to)• endowed with the topology 

of tt1, into 0, is continuous { see (32 J or [12 ] , §.III.1), 

Therefore for any Borel subset C,,J of H the set 

is also a Borel set in H. In [11] it Wp.S 

proved that if f is a Borel probability rneasure in H, the 

support of which is bounded in H1 , then f is a stationarv 

statistical solution of (2.J.2} if and only if 

{ fi ( l<Sft-)1..,) = j<(W) for d/ t ::J;O -,-,,,,( 

' all Borel subsets CtJ of H. 

In this case defines on su.ppp. a functional 
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flow with respect to which µ is invariant, 

2.7, Let us denote by S(f;Y), resp. 

the set of all stationary individual, resp. statistical, 

solutions of (2.J.2). In virtue of (2,J.7) it is plain that 

any Borel probability mesure carried by the set S(f;V) belongs 

to ~(f; v). Also in virtue of the relation 

<t>o) 

it is plain that 

( 2. 7. 2) "f S { .f j Y) =- S (?fl-f-, j y) 

Moreover, if for a Borel measure F on H and 

denote by f o 0-, the measure : W ~ f ( o-' ûJ 

i > O we 

) ( for 

all Borel sets 6J C: H ) , then i t follows readily tha t 

()'>o). 
In particular, we have 

( 2 • 7 .4) ;/'(fj Y) = ;/'(">"-.2:f j Î) 0 y-_l 
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§ 3. Generation of statioriarv statistical soltitions 

J.1. It is a classical fact that S(f;y) ~ çP (see 

for instance ), so that 

too. Therefore the problem concerning the existence of sta­

tionary statistical solutions has to be replaced by that of 

their occurence; namely we shall show that stationary statis­

tical solutions naturally occur in studying the asymptotic 

behaviour of any (non-stationary) individual solution. To 

this aim we shall agree on a precise meaning for a time average 

of an individual solution u(t) of (2.J.2). 

Let ~ denote the space of all ( real) functionals 

on H, weakly continuous on any (bounded) ball in H. Since 

(2.J.4) implies 

I u(t) 11 ..:::: e-Y',\i- l Uo I;:>.. + V- 2 ~1!).. If l!1.. ( f: 6 (o, oo)) 

it results that 

makes sense for any <Pé '(; . Using the fact that 

endowed with the weak topology of H, is a separable compact 

space, we can infer that for any sequence of t' s tending 
.ri,}~ to oô there exists a subsequence 1 LI i ,.,,._1 

such that 

for any 

~ m-t: . ( </> > = 
'J 

• or what is the same, 

l'/71 c.f ) exists 

for every <j:>& C(K 0 ) 
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(=the space of all continuous real functions on K0 ). 

Therefore, by the Riesz-Kakutani representation theorem 

we obtain a Borel probability measure f on K0 such that 

(J.1.4) 

But a subset K c K0 is a Borel set in K
0 

if and only 

if it is a Borel set in H (endowed with its norm topology). 

Thus we can consider that 1-'- is a Borel probability 

measure on H with supp p- c::.. Ko• Any suèh measure will 

be called a time average of the individual solution u( t) • 

J.2. Th~2I~fil• Any time average of an individual solution 

is a stationarv statistical solution. 

_f!:QQf!. Ad (2.4.1). Set cp(u) = H~ult!l. (where 

in = 1,2, •• ; see Sec. 2.1). Then <pé ~ thus 

i rt-i- 1- A 
f II P,,,_,, ld/'-dµ(u) = ~ - .) f( î u(-r)II r ,.. t--➔ o<J -ta-0 1')?11 

J 

for a sui table seqLlence { +-1-J ~ 
0 a-=, , tending to • From 

whence 

we infer easily 
i- -f J- (1 ~ .u fr J /j !l olr =:f 

0 

t . S J-(lu (-c-) l{:2.dr "!;: 

0 

Letting m ~ oo , we can apply Bo Levi's convergence 

theorem, since , obtaining 

Ad (2o4•.J). Let ? be a test functional and for 
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some k,rn(:.1,2,.. ) , set f (u) = <f:> ( --P--n1 u) and 

b(tt} = 6(~ ()} ~a, <jJ fv)) /u <:-fi)_ 

Then the functional 

@/«) = Y ((t/ 1 <p1/'V)J} + P~t)- é-:r; y://tt'J) 
belongs to '-G' , thus 

-t- . 

(J.2.J) j&/4)d;"/v}== ~ !. /~/«try)c/r. 5"-~oa ri- D 

It is easy to verify that, since Pm is a linear continuous 

map from H-l into Ht, the functio·n ·'jb' ( u( t)) is abso­

lutely continuous on any compact interval of [o,e>0} and 

so that 

Or, by 

where cj is a constant depending on _f)_ and also on 

1he relations (J.2.)-5) yield 
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so that, by (J.2o1-2) we obtain 

for k --=:> oo • It resul ts 

Letting m -::,. oo 

Sec. 2.4, of ep 
o bta in ( 2. 4. 3) • 

and using (2.4.1-2), the property 2°, in 
-theo rern 

and Lebesgue's dominated convergence?vre 

Ad (2.4.4). Let <j' ( ô ) be a non-decreasing twice 

continuously differentiable bounded function on [o, co ) • Let 

½-'o = 0 ,/ t _,, (/ """ f1 .-o. - - , < t~J- = t. be such that 
a-

the tjk 's do not belong to the exceptional set in (2.J.4). 

We have 
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-é-· 

~ ~ J yf/tt(r)/:} Z é-f; tt/'c-J)- Yj/U/7Jff2:Jc/r 
0 

continuous from the right in any 1)0int outsidethe exceptional 

set in (2,J .. 4). (Here above O .:::. rk < 1 l k =01 I) ~.' t·- / ;J 

are suitably chosen.) We can thus infer that 

+. 
(3.2.6) ~ d.. j~'(/u(r)/!2)J-&; utrJ)- 2,.,1//fvfz-Jl/:J..Jclr-~ 

~~a:, 7· 0 

for any k = 1, 2 _... • Let us suppose moreover that 9/I( <S" ) 

is bounded on [o, cx1 ) •. Then for a f:i.xed 1, { =1, 2,.. ) 

we will have 

+,, 
- Y If H U.("T:) u~ ]ot--c-~ c:: C 1 +-)~.) ¼ SJ 1( .r- Pn )utr)f !2.o{,:-,:, 

K "j C A'.-

:::; c(1.-r¼) ~p 

where ( see ( 3. .1)) the constant C depends on _Q t f. Y 

and Cf11 
, but not on i t k or j. For p = 1, 2 •.. le.t 

denote by o(iif> the set of those t E [o, \i,] for which 

u < t ). G J?r = { u G H1
~ = ut/., ,.t ~ r } and let 

sp,e ~ Ayt {-1 cr-Pe Ju (~: u E RF} 
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Then e1J1
,t 

(3.2.1) we get 

---;> 0 for e-7" C>ô and, by (J.1.1) and 

+ 
/· / ??1.ea<f (for t·J"cl;;J;) 

(3~·2.8) T • ...::::::. o/o1f C -

j.,l - -t-r 

~ ~,,e --1- c/...L t J //û(z:J//.1..of, ::!5 13.:2. 
~ t 0 ,'$t:1,a · ;f,j 

c// 
~ ~,,e --1- -j;,!l.. 

where 0 1 -c" are some constants independent of j.k,l,p. In 

C3o2.9) yields 

fr'( l fl a/:J._} [(f «)- v Il ta Il~ dl'lu)? 

? - c él+ 1 ){ ~l ,1-. c~--':J .. 

Letting first ;f ~ c,,o , secondly p _,,. oc and finally 

we obtain 

{J.2ol0) 
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In (J .. 2.10), 'f is any non-decreasing twice continuously 

differentiable function on [o, oo ) such that 

H /r,(o-)/ +-~ l1j01/o-)/ ..:C PO,, 
f o / oo) /4:,,; o,,:,J 

Consequently (3.2.10) will remain valid also in case y:>/ 

is any non-negative continuons function with compâct support 

in [o, D<> ); we can thèrefore easily infer (2.4.4) from (3.2010). 

This achives the proof of the theorem. 

3.3. For any set 

the set of all values u(t 0 ) of all solutions u(t) which have 

their initial date u 0 in û!> • It can be shown that wh<U1Aver 

Cc> is a Borel subset of H, the set o..,(t 0 ) is measurable with 

respect to any Bore 1 measure on H ( see [12 J , ~ ![ ,).. ) • This 

allows us to make the following definition: A Borel probability 

measure f on H will be called accretive if 

(3.3.1) p-(w(t)))~f--(ûJ ) (for all t ~ O and Borel sets 

a.,c H.,) 

Since for any set a., CH we have 

(3.3.2) tU (t1)(t2) C: uJ ( t1+t2) (t1.t2 ~ 0) 

it resul ts easily that if f- is accretive then actually 

p ( GO { t)) is a nondecreasing function of t G [ o, Oô ) , for 

any Borel subset W of H. 

In case n = 2 (see Sec. 2.5), then any stat~ary statisti­

cal solution is accretive, since 

for any t ~ O and Borel set CU C: H. 
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J.4. Theorem. -------.- Any time average of an i.IJ9ivi;dual 

solution is accretive. 

Proof. Let u.(t) be an individual solution, t 0 ? O 

and K a boundèd subset of H, closed in H-1 • For uG H 

and t ~ O let dt(u) denote the distance in H- 1 from u.. 

to K(t); for fixed t, dt (u,) is continuous in the topology 

induced on H by H-1• thus weakly continuous on the bounded 

sets of H. Moreover for every p = 1,2, •• , there exists a 

q (= 1.2 ••• } such that 

(The proof of this fact will be given in the next.section.) Thus 

if we set 

Cf {tl) = 

then 

1 1/ ~/rd~r :L 

,, f r'll)== 
1/ ~/qJ<i f~(tt} 

fi 

I y, (u(t+t 0 )) > f implies 'j>(u(t)) > 1.. 

1'r ~(uf~1. 
C ).,, 

if ~/4)<: h 

(for any t~O) 

But r,11 € ~ ; therefore, for a sui table sequence {'t:;:,J".'° 
<F if""l 

converging to o<> , we have 

and 
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where, in virtue of (J.4.2) 

We can conclude that 

Letting p ~ oo we finally obtain 

Let Cu be any Borel subset of H. Then there exists 

of bounded subsets of H, closed in 
<X> 

a sequence K1. , K2 > • • 

H-1 such that f ( W "­

as Borel measure on H- 1 , 

consequently 

u 
5==, 

K ~) 
J 

= 0, because 1-'-- regarded,, 

is regular (see (:8] , Chap,III, § .9 

f {w) ~ ~m f (Kt') ~ ¼ ll (K. /f 0 J) !5 JJ. (w(f-oJ) 
a-';>p.a " 1-CIIJ , . v r ~ 

where we used the obvious property Kj(tb) !:= Cv(-to) (J= J..,%),_r--J# 

This achives the proof of the theorem. 

Proof of (J.4.1). Suppose that the property (J,4,1) 

h 

does not hold. 'rhen there exist tk E [ o, c>Q ) ( k=l, 2.. ) such tha t 

since d f- ( u( t+t
0

)) and d
0 

( u( t)) are cent inuous ( be cause 
0 

u(t) is weakly continuous in H), we can suppose that u(t) is 
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strongly continuous from the right at each 

Therefore if V--k(t) = u(t+tk) for t E [o, oc ) then 

v-k(t) is an individual solution of (2.J.2) for any k=l,2, ••• 

Therefore, by (3.1.1) and (3.2.1), we have 
~ 

( ( '\)--k (t) f ~ f = ( f Uo f !l. + Y~.-.~~l. /f /~) '.2.. 

(3.5.2) i -1;-

j Slf t{; (r) Il ¼r .::: y-'p + v-.2. ;\: .1. If- J !). t 
\. 0 

(t~o) , 

for any k=l, 2,.. • Moreover for O t;;. t 1 !$:. t2 <: o..:> we have 

from Which we can infer that ~{ t) ( k=l, 2,.. ) are equiconti-

nuous (on any compact interval ç [o. c,.() ) ) as H- 1-valued 

functions. Since { u E H : \ u / ~_f'} is cœnpact in 

H-~, the Arzela-Ascoli theorem allows us to select a sub-

sequence { v-k.. ( t)}. converging in H-1, 
a- k,< k,,,_<'·-· 

uniforrnly on every compact interval C: [ o, c<J ) . Let "'r( t) = 

= ~ V'" l<J (t) for t ~o, where the limit is taken in H- 1• 
J➔ ca 

Since on bounded subsets of H, the strong topology of H-1 and 
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the weak topology of H coincide, .,.,..(t) is an H-valued 

weakly continuous function on [ o, txJ ) • Moreover in virtue 

of (3.5.2) we can also suppose that {vk. (t)} is weakly 
V r-"s 

convergent in L2(o,t:HL) for all t >O• Using these properties 

we can infer now, as in the proofs of the existence of indivi-

dual solutions ( see [ 23] ,Ch. I. § 6 ahd [12 J , § • II. 2 ) , 

that ,,-(t) is an individual solution of (2.3.2). 

Since 'lJi{O) = u(tk) and d0 (u(tk)) ~ o. it results 1l(o)G K. 

Therefore v(t 0 ) 6 K(t 0 ). Consequently, because vk(t 0 )~ v(t
0

) 

in H-1 we obtain (see (3.5.1)) :> 

that is, a contradiction. 

This concludes our proof. 

J.6. Let n = 3 and define t(u 0 ) by 

AUjJ { +0 : Uo f: lJRS{t-.-,)} t/ W.o 6 H~ 

0 

Thèn (see Sec. 2.6), t(u) is a. Borel function on H
7 

since 

{u: t( u) > t 0 '\ = DRs( :to) is open in H.1 ( for any t 0 '> 0) 

and thus a Borel set in H. 

Pronosition. ---~---------Let be an accretiv$ Borel nroba-

bilitï on H. Then 

(3.7.1) either 

In the last case, p. is invariant with resoect to {Rs(t)! • 
-t~o 

_f[Q2f!. Let us suppose that 
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I = 

and let t 0 b.e fixed, t 0 > 0. It is clear that 

({ H J-k -.J.. .J.__ <::. t-(u.)c::. S-k f U.. 6 : k. '-'o - k. 

and that, for j ~k+1., 

Therefore, by the fact that f is accretive, we obtain 

whence 

\ [ t{(d -t- 0 J-.1. o<f (u) = ~ ~ ~ I . 
v 

Integrating (3.7.3) with respect to t 0 € [o/T'J 

by the Fubini theorem
1 

, we obtain, 

T' 

'fI ~ f { f rttu)-t-o]-~{ (u}~ }df<(W)==-
0 ~EH~«0>~} 

-?nl-n{ 7'.-t(v)} 

f { f L"Ùu;-fi:, T'dt;, }o/fr,,J = 

:::: /'/ .. ~ t--:;~~ 7' J clfl ((/) -/- / <X) c/;t ru} 
{«tFH: t-(t/J>'T'} . 'f((E-rl~ t-fqJ~ 7'1) 

which plainly implies that f,l C { UG- H: t-(~) :E: 7' 1-)=o<# It resul ts 

readily that t(u) = <>o1 fJ...-a.e.: plainly, the last conclusion 

is equivalent to the second alternative in (3.7.1). 
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In order to prove the second sta tement, let CtJ be a 

Borel subset of H and let 

Then 1 
( 3. 7 .4) flw)~ f ( RS(t,)ôj

0
) =: p-(6J0 (tV ~ f (uJo) ~ f (1<S(t0 f c.v) 

and analogously 

Since 

is of null f.1..-measure, (3.7.4-5) imply that 

( 3. 7. 6) f-(w) ::: {-{ ( 1< S(t-o)-
1w) .. 

Because in (3e7.6) • t 0 > 0 and the Borel set w C H are 

arbitrary, we have thus proved that p.. is invariant with respect 

to { 1< se+) }t~o. 
B~m~r!s O In virtue of (2.ôol), the second alternative in 

(J.7.1) will occur whenever 

( 3. 7 • 7) S {{ u Il+ olf { u) ~ 00 .,. 

This fact was essentially already known by G. Prodi long time 

ago ( see [33] ) • 
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1 3.8. Let X c,:H (or X c. H ) bP. given. An individual solution u(t) is 

weakly, resp. strongly, asymtotically convergent in H (or in H1) to X if 

(3.8.1) 1
. 1 
l.ffi -

t-+«> t Jo
t 

for every neighbourhood G of X, in the weak, resp. strong topology of H 
1 (resp •. H ) • 

The set Xe H will be called an asymptotic attractor if 

(a) X is weakly closed in H; 

(aa) there exists a weak neighbourhood 

any individual solution u(t) starting from VX 

weakly asymptotically converges in H to X 

VX of X in H such that 

(i.e. such that u(O) e:. VX) 

(cma) if Y c X satisfies the properties (a) and (aa), then Y = X • 

3.9. !g~~E~~• Every asymptotic attractor is the weak closure of the support 

of an accretive stationary statbtical solution. 

fEQQ{• Since any individual solution u(t) satisfies 

(3.9.1) lim lu(t)l ~ !îl , 
t-+«> 1 

the set Y= xnfue. H lui~ v- 1 Àî1 lfl} will also enjoy (a), (cm). Thus by 

(aaa) we must have Y= X, i.e. 

'(3.9.2) 

Let K = { u e H : lu 1 ~ v-l >,î1 l f 1 +l} • K is a compact metrizable space in H 

endowed. with its weak topology, thus there exists a countable system 

{G
1

, G
2

, ••• , Gp, ••• } of weakly open sets in H such that G
1 

Îl K, G
2 

f\ K, ••• , 

G f\ K, p forma basis for the (weak) topology of K. Let us assume that for 

a fixed G. , we have 
J 

(3. 9. 3) 

for any individual solution u(t) •. Then it is plain that x-G. will enjoy 
J 

and (aa.; with vx,G = VX) , thus, 

Therefore for every jG: such that 
- - J ---

by (aaa), x,G. =X, i.e. G.n X= (/J. 
j J 

G. () X ,f:. (J there exists an individual 
J 

(a) 
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J 
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(3.9.4) !!'.: f J: 'Gj I'\ v/uj {,)) d, > o 

in virtue of (3. 9 .1) the lim in (3. 9. 4) wi 11 remain unchange if we replace G. 
J 

by G. (\ K • Thus we can inf er that 
J 

(3.9.5) 

t. 
1 J JP lim--

t. 
p-+«> JP o 

for an adequate sequence t. 
J 

< t. < • • • -+- w • By n°3 .1-5 we can even assume 
J2 

that 

(3. 9. 6) 

t. 
1 J JP lim ~ <j>(u.{,)) 

p-+«> JP o J 

for every real (functional <j> (weakly) continuous on K, where µj is an 

accretive stationary statistical solution. Since individual solutions are (weakly) 

ccntinuous, it is plain that (replacing, if necessary, u.(t)' by an adequate 
J 

time translation u. (t + t . ) ) we can assume uJ. (0) G. VX • Let now cp be any 
J OJ 

(weakly) continuous functional on K such that O :5- <j> ~ 1 , 4> (u) = 1 in a 

(weak) neighbourhood G Î\ K of X in K • Then by (3.8.1), (3.9.1) and (3.9.6) 

we have 

J
t. 

1 JP 
= lim r-- <j>(u.(.)) d. ~ 

p-+«> jp O J 

In this ·manner 

(3.9.7) 

for any (weakly) continuous functional <j> on K , 0 ~ <j> ~ 

neighbourhood of X in K • This implies obviously that 

is weakly closed, it is also strongly closed, thus we can 

(3.9.8) 

We will prove now that 

(3.9.9) 

s'Upp µ. C X • 
J 

(supp µ.)('\ H. 'f (/J 
. J J 

1 , <j> = 1 in a (weak) 

µ. (X) = 1 . Since X 
J 

infer that 
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where H. denotes the (weak) closure of G. n K. (Recall that we are considering 
J J 

the case G • (î X ,/: (/J ! ) 
J 

Indeed let ip. be a functional as is qi in (3.9.7) but with X replaced by 
J 

in its definition. Then as above we will infer from (3.9.5) (instead of (3.8.1)), R. 
J 

(3.9.1) and (3.9.6) that 

(3.9.10) Jip. dµ. ➔ X. • 
J . J J 

Again, since ip. , up toits design~d properties, is arbitrary, from (3.9.10) it 
J 

follows readily that 

µ. (H.) ,,_ X, , 
J J J 

whence also (3.9.9). Let us set 

(3.9.11) µ = L 
G.f\X,/:(/J 

J 

e:. µ. 
J J 

with L e:. = 1 , 
G. f) X ',/, (/J J 

J 

e:. >O (for G. (1 X 'f (/J) 
J J 

It is plain that µ. is an accretive stationary statistical solution, which by 

(3. 9. 8), satisfies supp ,µ c X • On the other hand (3. 9. 9) shows that 

(supp 11) fi H. 'f (/) for any j such that G. (\ X i: (/) • 
J J 

Since {H. (\ X : G. (\ X f: (/J} is a basis for the (weak) topology of X it results 
J J 

that supp µ is weakly dense in X. This achieves the proof. 

3.10. Q2.!.2.l!~!Y• Any asymptotic attractor bounded in H1 is the support of an 

invariant stationary statistical solution; in case n=2 , anx asymptotic attractor 

is bounded in Hl. 

f!.22~• If X is an asymptotic attractor, bounded in H1 , then (with the 

notations of n° 3.9) supp 11 will be bounded in H1 • In case n=2, even without 

any supplementary assumption on X, supp µ will be bounded in H1 (see n° 2.5). 

Thus in both cases, supp µ is compact in H, thus also a compact subset of K 

endowed with the weak topology of H. In particular this implies that supp µ is 

weakly cloded thus, by the preceding theorem, supp µ=X. 
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§ 4. l\nalvtic urouerties 

4.1. In order to unify the notation we shall set, in case 

n = 2, t(u 0 ) =oo and RS(t)u
0 

= S(t)u 0 for all u 0 6 H1 and 

t ~ 0; this is justified by the fact that in this case S( t) u0 E 

E C ( t_o,oo~ 

~we can state our next results in an unified manner~ 

for both cases n = 2 

4.2. Lemma. For -----

and n = J. 

u0 E H1 let 

( J, ) ( ) 3 { ( ,, -t ,-i~ 1 .. C 1 ~02.1 t 0 u 0 = y min r ~ J 

There exists a· constant c
11 

function (DA being normed by lA«/ ) and 

(4.2.2) 

DA - v-alued 

+ v-1/fJ for all O ~ t ~ c:i..1.. t 0 (u 0 ) 

(where c depend onl:y on J2 ) . 
11-1&t 

Proof. ------- Let H<C , resp. H
t.i 

<C 
, denote the conplexified 

space of H, resp. H±~ , that is the space of those 
n 

([. -v8.lùed 

resp. 

extend 

u. V. c.: H±.1.. 
J' J ç:;; 

(1. :::E. j s n). By linearity, A ,Pm and B 

to a selfadjoint operator in H , resp. to the«thonor-

mal nrojection of H on <Cw1+ • • + 

b ·1· t f H~ X .,t 1. 1.near opera or rom a: 1:.<C 

<Cwm and respectively to a 

b1to H;1.. .. 
Consider now in the following differential system 

(4.2.J) 
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which for small l~j has an analytic solution with values 

in Pm1:" and such tha t um ( 0) =Pmu0 • For 101 < "lf/~ ::,.nd 

:ç =).) ei8 we can easily infer from (4.2.J) that 

i cl /(,, (sç/&)(/.9. = i<e (( d;,_,.,(s}' u,,,,/s) )) =-; •· S.,''• .. ••.· <> ' 
~ ëli V',)71 !' ;, 

• .2.. ' . 1 

= - Re e'6 y / Â'I., (S)) - 'RP e"() ( Js{l{,,,(S) tf,.,,/JJ) At1j)) 

+ Re 12 /
0 

( fi A~mi (s)) ~ - ( Vû-:J 0) l A4.m (S) f 2 +. 

that is 

. • .. cl ~ . li fl.~ ~a. 27 cL A lltt_/~)f 6 
(11.Q.L;) dd //tt,m /S)/1 f (vC# oJ/n~/s)/ - v~tJ -t- :i_ J/ JcnJ()- .,,, :, 

whence 

Integrating this di~ferential inequality we obtain easily that. 

as long as 
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where c
11 

is a suitable constant depending only on c 3 , 

i.e. only on Jl. ; plainly we can suppose that cfc11 < Cio 

(see (2.6.1}}.The preceding conclusion (4.2.5-6) shows 

that um( 5) which was defined and analytic in a neighbour­

hood of 'S = o. actually extends to an analytic solution of 

(4o2c3) in a neighbourhood of 

(4.2.7} i1(u 0 ) = {sei 

=8c 11 ( Y~ cos 30) min [(.\ty-"- :_;;:
19
(\//10 /(1'], / 0/-" -X}. 

Also by (4.2.5-7) we can extract a subsequence '{Ut"h1.{~)}~ . 'J 1 =1 

such th.at i t converges in H<C ( by the vector version of the 

classical Vitali's theorem, which can be applied since 

.[ u E- Ht l\ u 1\ -s. f} is compact in He for any o~f"' oo). 

uniformly on every compact set included in the interior ,Ll(u 0 )
0 

of .L1 ( u0 ) t to an analytic H <C -valued function u0 ( '$ ) • 

But we can prove, as in [ 1q] , § 4, Sec. 2 ,c), that the 

sequence { um(t)} converges in H, uniformly on [o ,s(u 0 ;.o)] 

to RS(t) if o• We can therefore infer that u0 ( '$ ) is the 

analytic Hivalued extension to L).(u0 )
0 of 

uniqueness of u
0

( :S-) implies now that actually 

is convergent in H<C , uniformly on every compact subset of 

L\ {u
0

)
0

, to u
0

( ~). Therefore the samé is true for the following 

convergence in H <C 

where K = 1,2, •• is fixed. It results that for any compact 

set K C (u
0

)
0 we have, by (1-1-.2.4-7), 
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~ ~ JJA~(~)J
1

/)}ci!S)ol0-~ 
41(~-0 t< 

S((JJ 

-~ c.(K) ~ ,d<<-'/1[ J IA u.lWl(se{ 6J/~: rY/=l.);J.>.•-~.; Me 
0 

~ se''(; (s ~ o) k&>1€?cW I<} :::" 

~ c(K; Y, f)(':1..-1- fllf0 /!a_}.s 

where C(K), respo c(K; Y tf) are some adequate constants 

depending only on K, resp. Kt~ and f. Thus we infer that 

C4,2.8l N=~:t:_. { / Ar:,_ 1.,1o(s)(2-/s I dlt;)dJ) < = 

-[\ 21 00 
The sequence APku 0 { 5)l J k:.i being increasing it re-

sults that 

,f,;;m ( A 7-1 '--'o (ç) J-'--~ oC> tt. e .. on- (<. 
J:. ➔ o,o. 

It is easy to check that if for a 

.(. oo -Uvurt, v-0 E -¾ ~nd 

we have tm1 1 A~ "'ô f ✓-
k--

1 i m ( Av 
O 

- A P k v O l 2 
= 1 i m ( ( Av 

O 
l 2

- (A P k v O l 2 ) = 0 • 
lc-..a lc➔ oo 

In this manner (4.2.9) implies that u 0 (S") E DA a.e. in 

L'.l(u
0

)
0 

(since K is an arbitrary compact C:.L\(u
0

)
0

). 

Moreover (4.2.8) and (4.2.10) imply that 

[ 1 A,u
0
(S)} ~ () \ o( /S"\ M ~ 00 

K 
and consequently also that 
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).\Au0 ('s) - Afi.Uo (S )\ 2 f-sl d lSl a&= 
k 

5 [(Auo('-S)J 2- lAPkuo(S) \ 2 ]1sl d\'Slctff .. >O 
K k-->ao 

for any compact K c:::-4(u0 ) 0 • 

the convergence (4.2 ..• 11) implies that the function Au0 ('Ç) 

i.s also an analytic i\: -valued function on the who1e l.l ( u
0

) 
0

• 

Thus, in particular RS( t) u
0 

is a DA -6.nalytic function on 

(0, c
11 

t
0

(u
0

)] C (0, s(u
0

;0)) C A,(u0 ) 0 • 

In order to obtain the relation (4.2.2), let ui first re­

mark that the disk { S; \:; -t\~ ½t} is,for O<t~c 11.t 0 (u 0 ), 

contained in Li ( u ) 
0

, so that for such a t, by the Cauchy for­
o 

roula and (4.1.5), 

Using now the equation (2.3.6) (which is satisfied everywhere 

on (0, s(u 0 ;o)) because of the analyticity of '?,{t')J·Aq/t) t~1ere) 

and the relations (2o2«3) and (4.1.12) we obtain (again for 

O<t ~c
11 

t
0

(u
0

)) 

YI A«, (t-) J .S. 1 ~(+)/ + / B{t1.0Ci:), tl.0 (-t'))/ + If/ .=.ê: 

S': 1 ~(-t) \ + C~ 1/ Uc (t)U · 1 A 
31

"1 «oét)I + If l ~ 



'!f / ~{+) \ + f I A«o(t)I + 

+ c;-l{ U0 (t) {13 + lf-1,, 
..Q.V 

whence (4.2.2) results in virtue of (4.2.5). 

4.J. _ÇQEQ11~!::i:'-• For ufH 1 , RS(t)u is a DA-valued 

analytic function on (O,t(u)). In case n=2 .§::_nd u EH, then 

S( t)u is also a DA - valued analytic fu:r!.ction on ( O, o0). ;te, 
The first statement is a direct tonsequence of preceding 

lemma, while for the second one we use the fact that in case n=2 

we have (see Sec. 2.5 and 4.1) S(ttt 0 )u = RS(t)S(t
0

)u for 

any u E H and t t t 0 > 0. 

4.4. 

f1,-. we have 

(4.4.1) 

then -

where 

Theorem. If for a stationary statistical solution 

_.(,f-iere c
13 

is a sui table constant dependine: only on .il ) . 

Proofo 

(4.4 .. 4) 

then 

By Lemma 4.2, if \lu0 \l .S. b-,_ and. 

t1 = C 11 >13 min { ( y-l ;r,V:,,.. 1 f I )-3/7) h,-4}.., 
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with b2 as in (4.4.3), where C lj is cho.sen a suitable 

large constant. depending only c 1;t, thus only on .J1. • 

Since supp p..- is bounded in H1 t (V-- is invariant with respect 

to {Rs(t)} t9'0 (see Sec. 2.6), hence, by ( 4 • 4 • 5 ) , 

1 ~ fJ--( { « G ~ : l A« 1 '!;: b~} J = f (1<S(t1f~ { l(, E-~: lAu.\ !f ~_})~ 

~ f,l ( [ u. E- H1.: Il u I( ~ bj_}) = i .. 

We can now infer (4.4.J) because {u E. DA t \Au l :5 bA.}· is 

compact in H. 

4.5. As a direct consequence of the preceding theorem 

we obtain readily from (2.5.2) the following 

Corollarv. 
---------"'---

Let n = 2. Then any station8.ry statistic8l 

solution ~ has the support bounded in DA; rr-ore prec isely 

( LJ,. 5. ) supp r,t C { u E- ~: ( Au l ~ c,t v-l lt/ ey., (c;.rY-J>Jf ,~) 

{where c14-15 are some suitable constants depending only .Il). 
4.6. Another consequence (however less obvious) of 

Theorem 4.4 is the following 

Let f-- be a sta ti.onary sta tistical solu­

tion wi th a bounded support in Ht. Then for any t ~ O, we have 

(4.6_.1) RS( t) supp f = su.pp f .. 
Let ~ and t 1 be as in (4.4.1), resp. in 

(4.4.4): then it is sufficient to prove {4.6.1) for o~t~t1• 

Since, supp f is closed in H1 and, by 

Theorem 4.4, bounded in DA, suppf is compact in H1 o But RS(t) 

is for O ~t ~t 1 continuous from DRS( t) ( endowed by the 

H1-topology) into H1 • But, again in virtue of Theorem 4.ü, 
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DRS( t) ::, supp fL for 0 ~t ~ t1• We can therefore infer 

that RS(t) suppµ is compact in Hl' and so much the more 

closed in H, for any 0 ~ t :\1:: ti. Fix su.ch a t. By the inva-

riance of f-l we have f-(RS( t) supp ) = 1, thus RS(t)suppf::, 

:, supp f. • On the other hand if G = RS(t)- 1 (H.1, suppp., ) 

then G is open in DRS(t)• henceforth in H1• By the inva­

riance of p-- we have f-(G)=l, hence for K = (H'- .. G)('suppf'-= 

=(Hi-, G)" supp fA, , which is closed in H1 ,. we have f ( K) =1. 

But K, be ing closed in a compact subset of H1 ( name ly supp f<-) 

is compact in H~, and so much the more it is closed in H. 

Therefore K ::, supp f- ( since t'-'( K) =1). Consequently K=supp{'L 

wh:i.~h 0 1-viously implies that RS{t)supp r,- C suppf, • 

Theorem. Let t!. be a stationarv statistical 

soluti0n with a bounded sunport in H'. Thenon suppf the 

topologies induced by H, H' ~ DA coïncide. (Thus supp f­
is also compact in DA!) 

Proof. By Corollary 4.6 and Lemma 4.2 there exists 

an 1/ > O such that for any l,l E supp p.. , RS( t).u can 

be extended to an H <C -valued analytic function u ( '$ ) de­

fined on a whole si1Ûp L = {.) E-<C: l Tm:s l -< Q.,v an.cl 

for any SE Z and some constant c::< <. ô.o 

depending on f-'-, but independent of u é supp f and 5EZ,_ r 

plainly, we will have also that 

Therefore, if u.v E suppf-, we can infer, for w(t)= 'te(t)­

-v( t) and any t E (- O<;;), oo ) , that 

½ ~ {t w(t) Il 2+ y l Aw(t)l 2 = - b(u.(t) .w(t), Aw(tJ) -
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- b (w(t) ,v(t), Aw(t)) ·~ c
3 

\\ u{t)\( • { A31
f' w(t)j. IAw(t)! + 

+ c 3 . l!w(t)ll • IA31'i w(~)I • !Aw(t){ ~ c 3 -:;;1/!lol ({w(t) I{ ½ 

• l A w ( t) l 3 /~ + c 3 Â: 1/7' ex. Il w ( t) l[ • 1 Aw ( t) 1 ~ 

~ (tlw ( t) { I 2 + f l A w ( t) f 2 

where tf is a constant ( wi th respect to u, v E suppf< and 

- oo .::::: t <. o0 ). • Thus we can easily conclude, f irst 

/(w(-t) lf!l. ~ e2.t(t-t"o) If W(fe)Jf:.l. 

and then, secondly, 

:t s fA-wédl~ ~ y·-.t e~itCt·-t,.) llwCto)U2.. 

-to 

this last relation obviously implies 

St Aw(-i:) 1 2ct-,,- ~ ;y.,_ \ w( o )/ 
0 

where 

F( 'S ) = 

Then F( '$ ) is analytic in fs : l'S' 1-:tz} , \ F( S ) ) ~ 2o{ for /s-J~t, 
and 

(4 .. 7 .. 2) JF(t)( != d:11/.:i 'il/:,_ l w{o)(,(i,_ for o~t-:::;-11. 

Let ~ denote the maximum on the circle {<; ;. l~J = ½'l.} 

of the harmonie function w ( $' } in f S' : 1 S' l..:::. ,z , S1' Co1 1]} 

such that GJ( '5 )·= 0 on {s~/rl =·~} and G..l(S )=1 for .fE [0,1). 

Then the Nevanlinna 0 s classical maximum principle yields 

1 F(S)/ ~ [ht.qx.{1., (~)1-w}]*[?nû? {.t:, (;f;t/;2.J/6. lwto)/½.)~}] 
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for all "S 1 1 S / = ½ 7l • Thus (w i'ffl rwb:d:,~ c .. cr~fu,,,t-s ?11~)'1) 

(Aw(o)I = 
t..J/ :l. I W,(:z 

l F ' ( o) 1 ~ i- ' y,_ I w r oJ / =- ~ I w t o J 

whenever {w(o)l< t,-',z_.., 
for some positive constants 

• We can finally conclude that 

(depending on ..{2, Y,f; and 

in case n = J!) and W>o, we have 

IAu-Avl :!5 ~lu-v("-'/.:2. forall u,vE.-suppf-<-., 

It is plain that (4.7.J) is sufficient for the validity of 

the theorem. 

4.8. As a direct consequence of Corollary 3.16 and Theorem 4.7 we have the 

following 

·n 

Ç2r211§;Eï . u 

bounded in 2J A 

X is an asyrnptotic attractor bounded in Hu, then it is already 

and the topologies induced by H, H1 and ~A on X coincide, 

4.9. In the case n=2 , Theorem 4.7 and Corollary 4.8 concern any stationary 

statistical solution, resp. any asy.mptotic' att.ractor, •rn the case n=3 , these 

proposition concern only those stationary statistical solutions , resp. asymptotic 

attractors, which have bounded supports in H1 , resp. are bounded in n1 

Moreover as far as we are concerned the existence of nontrivial such entities is 

in this case (n=3) not known. However we have the following 

Pro2osition. Let n = 3 and let µ be a time average of an individual solution 

(see sec. 3.1-3). Then 

(4.9.1) 

(Thus, so much the more, 

(4.9.2) 

~t22f• Let u(t) 

~u(t ) lt < 00 (i.e. 
0 

be a fixed individual solution. For every t €:. (O,m) 
0 

u(t) e. H1) we have, by virtue of Lemma 4.2, 
0 

such that 
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for all t such that 

4 -1 t < t, t + c
1
' 1(1+Uu(t )U ) 

0 0 0 

where ci 1_12 are constants independent of t
0 

and t (but depending on Q., 

\> and f), We can easily infer that if for some p = 1,2, ••• we have 

(4.9.3) 

then 

(4.9,4) 

where 

(4.9,5) 2 -1 
1'. = C t (l+p ) 

p 11 

and c" is a constant independent of t and p. We set 12 0 

((. (t) = {o ~ t ~ t : p - 7 ~ 11 u(t H2 
< p} p O 0 

and 

i (t) = (ti. (t)+'i: 1 o ro, tj- • 
p p p -

Then 

(4.9.6) meas ci. (t) ',;, meas ~ (t) ~ meas l1. (t) - î • 
p p p p 

Taking into àccount (4.9,3-6) we obtain (for any m = 1,2, ••• ) 
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). 215 2 1/5 
+ 7 ( 1u.(O) 1

2 
+ ti) 

" 

«I' 

• meas( [o,t], Ü $ (t)} 
p=l p 

C ' '1 

v Àl 

c12 o:> 

= -t-L (l+p) meas $ (t) p 
12 = 

+ t (t-r=meas 

p=l p=l 

n 
C o.'l C 

1 1 t 

.;{. !2 L (l+p) meas a.p (t) 
12 co 

+ -r-[t - L (meas a (t) -.T )] 
p p 

p=l p=l 

where c 1 
' ' - ' • ' ' 12 are two suitable constants independent of t (depending however 

on n, v, f, u(O) and m). Using {3.2.1) we finally obtain 

Hm ! Jt IAP u (t) 1
215 d,: ,:s c" (2 + l!J.:. ) 

t-+«> t O m 12 i\ ""2 
l 

(4.9.7) 

But Hu) = jAP u 1215 is weakly continuous on any bounded set of R , so that 
m 

from (4.9.7) we can readily infer that 

(4.9.8) 
2 

J!APmu!
215 

dµ(u) ~ cï 2(2 + J!l..i> 
À 1" 

for every time average µ of u(t) and every m = 1,2, ••• (4. 9 .1) follows 

obviously from (4.9.8), by letting m ~ 0) • 

B~!!!§!!:~• The preceding proof shows that the integral in (4.9.1) is bounded by 
-1/2 -21 i-2 . a constant (for instance cï 2(2+À v f ; see (4.9.8)) which depends only 

on n, v and f but neither on the individual solution u(t) nor on its time 

average µ 

4.10. Finally let us also remark a useful proprety of S(f;v) which is a 
dirèct consequence of Lemma 4.2, the estimation (2.3,7) and the fa.et that 

RS(t)u = u > (t~O), for any 
0 0 

u ~ S(f ;v) , namely : 
0 

(4. 10.1) sup{ jAuj : u e:. S(t;v)} < 0) • 
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§.5. Structure of stationary statistical solutions. 

5 .1. We shall denote by 'Ja (f ;v) the set formed by all accretive stationary 

solutions; obviously 

(5. 1. 1) 4 (f;v) c '1'(f ;v) 
a 

and 0'a(f;v) = '°8(f;v) if n=2 • Let moreover K
0 

= {ue:. H: lui~ v-l À~
11f!} 

be endowed with the weak topology of H and let C(K) denote the space of all 
0 

real continuous functionson K
0

• Plainly we can identify in a natural way (as we 

did for instance in sec. 3.1), the sets ~(f;v) and 1 (f;v) with subsets of the 
a 

dual C (K
0

)' of C (K ) • Moreover we endow C (K ) ' , with its o (C (K ) ',c (K )) 
0 0 0 0 

topolcgy. 

and <:S (f ;v) 
- a 

are convèx compact subsets of C(K
0

)'. 

~EQQ~. That cg (f ;:v) and '8a (f ;v.) are convex is obvious. Since 

c!(f ;\I.) c M
1 

= { µ e:. C (K
0

) ' : Il JJ Il ~ l} and the latter is compact in C (K
0

) ' , i t 

remains to prove that <::f(f;v) and '-Sa(f;v). are closed. Using the fact that M1 
is metrizable, we can e:onsider the cases when JJj -+ JJ in M1 and 

{µ.}~
1

c<j'(f;v)· or c.1(f;v). In the first case, since for all fixed k, m= 1,2 ••. 
J J= a 

the restriction to K
0 

of the functionals <l>km(u) = <A(Pku), Pm <ti'(Pmu) belong 

also to C(K) for any test funct::.0.nal <I> , we can infer that 
0 

(5. 2 .1) f<A(Pku) ,Pm<!>' (Pmu)> dµ (u) = ;im f <A(Pku) ,Pm<fi' (Pmu)> dµ /u) ~ 
J~ 

On the other hand for k~m (see sec. 3.2; formula (3.2.5)) 

(5.2.2) 

where c3 is (as in sec. 3,2) a constant depending only on n and<!> • But,since 
2 (the restriction to K

0 
of) <fik(u) = l!Pkull also belongs to C(K

0
) we have 

(see (2,4.5)) 

whence (letting k ~ oo) 

(5.2.3) 
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Taking into account (5.2.1-3), (2.4.5), (2.4,3) (the last two for 

fact that 

cj>' (P □) , = P cf>:, _. <I Pmu j} om : 1111-1 

we obtain at once 

ll·) and the 
J 

whenever k~m • Letting k ~ oo and then m -+ oo we obtain th e relation 

(2.4,3) for l1 , The relation (2.4.4) for µ can be obtained easily using the 

functionals 

which belong to C(K) (k,i = 1,2, ••• ) in a manner similar to that in sec. 3.2. 
0 

It remains to prove that if {µ.}":' 
1

c '-f(f;v) then µ is accretive. By an 
J J= a 

argument similar to that at the end of sec. 3.4 we can infer that it is sufficient 

to prove 

(5.2.4) l1 (K(t)) ~ µ (K) (t~O) 

for any bounded 6Ubset of H, closed in -1 H •~ For p,q = 1,2, ••• , let us set 

-1 
where for a subset X c:. H and UE. H we denote by dX(u) the distance in H • 

from u to X. Obviously K is compact in H (thus also closed in H-1) ; 
p,q . -1 . 

consequently by [12], Lennna II.2.5, K (t) is closed in · H • Let t/Jr denote 
' p,q :+ 

the function (from [0,00 ) to . [o,oc)) defined by ~ ~ (1-k~) /- (k=l,2 •• ,) , and 

let 

Then 1r(dK (u)) 
p,q(t) 

00 

K = U K 
q . p=l P ,q 

and t/Jr (dK (u)) · (as function of u e: K
0

) 

q 

for every k = 1,2,., ,) so that we have 

I\ 

belong to ~ (K ) 
. · 0 
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~ lim sup µ.(K (t)) ~ lim sup[µ.(K )-µ({u~ H1 : llull .? p})] 
. j-+<x> J p 'q j-+<x> J q 

1.. <K) 1 - 2 
À-

1 1fl2 1· J,,. Cd c ))d c· > - L
2 

"- 2 
À-

1
1 1fl2 

~ 1m sup µ . - 2 v 
1 

· ~ 1m sup . 'I' . K u µ • u 
j-+<x> J q . p j-+<x> q' J p 

that is 

Letting 

· obtain 

r ~ 00 and taking into àccount that K (t) is closed in 
-1 

H we 
Psq 

(5.2.5) 1 -2 -1, 12 µ (K) ~ 2 v À l f + µ (K ( t)) . 
p p,q 

It is obvious that 

(5.2.6) K (t) ~ K 2(t) ~ ••• • 
P, 1 P, 

In virtue of [12], Lemrna i.5, we have also 

(5.2. 7) 

00 

(\ K (t) c K(t) • 
q=l p,q 

Making q --+ 00 in (5.2.5) and taking into account (5.2.6-7) we obtain 

1 -2 -11 12 µ (K) ~ 2 v À l f + µ (K(t)) , 
p 

whence (5. 2 .4) follows at once (by letting p -?- 00 ) • This finishes the proof. 

(5~3.1) supp µ is bounded in 
1 

H for any 

(5.3.2) supp µ c S (f ;v) for any µ e: <!(f ;v) 

µ e:. <-J'(f ;v) (resp. c.J (f;v)) 
a 

(resp. sf (f;v)) • 
a 

then 
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[In other word~ if every stationary statistical (resp. accretive stationary 

statistical) solution has a bounded support in H1 , then actually the supports 

are included in the set of the stationary individual solutions. Let us also 

emphasize that the assomption (5.3.1) always holds for the~ n = 2 , i.e. for 

plane fluids ; see (2.5.2).] 

~E22~• Under the assomption (5.3,i), all measures µ E:.sf(f;v) (resp. CS (f;v)) 
a 

are invariant with respect to {RS(t)} (see sec. 3.7-8). But then the extremal 
t90 

elements of 1(f;v) (resp. <-S (f;v)) are these measures µ e: '5(f;v) (resp. 
a 

c! (f;v)) 
a 

for which the functional flow {RS(t)} 
t:J.O 

is ergodic (see [7], p. ) . 
Let µ be such a measure. In virtue of sec. 4.2 and 4.6, for every u <s. supp -µ. 

we can extend RS(t)u to a [J)A -valued analytic function RS(>)u defined in a 
- q;_ 

strip cr;:; [1E: (C: lm'5! < TJ} (where 1) depends on .Q, v; f and 

b 1 = l II u li : u e. supp µJ , but is independent of u e: supp µ) satisfying also the 

following properties 

(5.3.3) 

(see sec, 4.4 and again the proof in sec. 4.2) and 

(5.3.4) RS (t)u E:. supp µ (- oo < t < oo) , 

By analyticity it follows at once 

RS(t)u = (RS(-t)lsupp µ)-lu 

so that {RS(t) supp µ} t forms a group of' homeomorphic maps of supp µ, 
-oo< <oo 

with respect to which µ is still invariant. We shall consider now some remarkable 

functions (the first one suggested by [3}, [4]), namely 

(5.3.5) t(t➔ = f (RS(t)u,u) dµ(u) 
supp µ 

(5.3.4) t 1(t) = f ((RS(t)u,u)) dµ(u) 
supp µ 

(-oo< t<oo) 

and 

(5.3.5) w(s,t) = f (B(RS(t)u,RS(t)u),u) 
supp µ 

(-oo<s 't<oo) • 

In virtue of the properties of RS(ç)u for u E supp µ , these functions are 
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analytic. Moreover, by the invariance property of µ we have 

, 
cp(-t) = 

Jsupp 
(RS(-t)u,u) dµ(u) 

µ 

= 
f.upp 

(RS (-t) RS ( t) u , RS ( t) u) dµ(u) 
µ 

= f supp 
(u,RS(t)u) dµ(u) = cp(t) 

µ 

(and analogously for ~1), that is 

(5.3.6) (-oo< t<oo) 

also lji(s-t,-t) = f supp 
(B(RS(s-t)u,RS(-t)u),u) dµ(u) 

µ 

= f supp 
(B(RS(s-t)RS(t)u,RS(-t)RS(t)u),RS(t)u) dµ(u) 

µ 

= f supp 
(B(RS(s)u;u),RS(t)u) dµ(u) 

µ 

= - f (B(RS(s)u,RS(t)u),u) dµ(u) = - lji(s,t) 
' supp µ 

(where we used (2.2.2) and (2.2.6)) 

(5 .3. 7) lji(s-t,t) - lji(s,t) = 0 (-oo<s; t<oo) . 

From (5.3.7) we infer, by recurrence, 

(5.3.8) lji(a,8) - 0 a = s-t, B = -t 

for all - 00 < s, t<00 • But (5 .3 .1) also yields ip;(s ,O) ; 0 , so that for t=O the 

relation (5.3.8) becomes 

(5.3.9) 
K (¾ ip) (s,O) [l+(-1/J = 0 

at 
(K = 0,1,2, ..• , -oo<s<oo) . 

In particular the relations (5.3.9) (for s=O) show that the analytic function 

ip(O,t) is odd. Thus 

lji(t,t) = -lji(O,-t) 

is also an odd function on the other hand (5.3.6) shows that the functions cp(t) 
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and ~1(t) are even. But, for t~O, we have 

- v$ 1(t) - $(t,t)] dt= Jt cf (d: RS(t)u,u) dµ(u)] dt 
o supp µ 

= cpp 
= f.upp 

[jt (:t RS(t)u,u)dt] dµ(u) 
µ 0 

(RS(t)u,u) dµ(u) - J!ul 2dµ(u) 
11 

where again we used the analytical properties of RS(t)u and sec. 4.4, but also 

the form (2.3.1), (2.3.6) of the Navier-Stokes equations. 

It results that 

(5 •. 3 .10) 

Since the function involved in (5.3,10) are analytic, some odd and other even, the 

equation (5,3.10) splits into its cdd and even part. This latter partis 

(-oo<t<oo) , 

(5.3.11) v f ((RS(t)u,u)) dp(u) = (f, Ju dµ(u)) 
supp µ 

For t=O, (5.3.11) yields 

(5.3.12) 

Moreover, from (5.3.11) it follows easily that 

(5.3.13) vf ((~ rRS(t)u dt,u))dµ(u) = (f, Ju dµ(u)) 
supp µ o 

Now because of the ergodicity we have on supp µ that for every V€. H1 

(5.3.14) ~ I: ((RS(t)u,v)) dt ~ «Jw dµ(w) ,v)) 

for. all u r-J E where E c supp µ, µ(E ) = 0 • But, for u e: supp µ , 
't' V V V 
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Hl 
ro 

is bounded in • Therefore if E = V E we can easily infer that for t 
j=l w. 

.1 

1 r RS(T)ti fw dµ(w) weakly in Hl for all Jl'\E 
t 

~ u e: supp . 
0 

Thus from (S.3.13) we obtain by Lebesgue's dominated convergence theorem 

(5.3.15) vl!Jw dµ(w))l
2 

= v J ((Jw dµ(w) ,u) dµ(u) = (f, Jw dµ(w)) • 

Substracting (5.3.15) form (5.3.12) we obtain 

J 2 J 2 llull dµ = Il w dµ(w)JI , i.e. J llu - J w dµ(w) Il 2 
dµ (u) = 0 • 

This shows that µ is the Dirac measure concentrated in u = fw dµ(w) ; 
. 0 

consequently (see sec. 4.6, for instance) u (;t. S{f;v) (i.e. is an individual 
0 

-

stationary solution. The theorem follows now directly from the general barycentric 

representation theorem of Choquet (see [7], p. ). 

5.4. !~~2E~~· If the assumption (5.3.1) holds for c!a(f;v) (in particular if 

n=2, i.e. if the fluid is two dimensional), then: 

ro 

(i) Every as:ymptotic attractor is included in the set S(f;v) of the stationary 

individual solutions. 

(ii) Every individual solution is weakly asymptotically convergent in H to 

S (f; v) • 

(iii) Every weakly almost periodic individual solution (in particular every 

periodic or quasi-periodic solution) is stationary (i.e. time-independant). 

(An individual solution u(t) is called weakly almost periodic if it is 

defined on all (- 00 , 00 ) and for every ve H, the function · (u(t),v) is a real 

almost periodic function ; see [2]). 

fEQ2f• If Xe H is an symptotic attractor then, by Theorem 3,9, X is the 

weak closure of supp µ,µ<,;,ci (f;v) , thus, by Theorem 5.3, X is included in 
a 

the weak closure of S(f;v) , which being compact in H (see, for instance, (2.3,7)) 

is also weakly closed, thus X c S(f;v) • This proves the statement (i). 

Assume now that there exists an individual solution u(t) which is not 

asymptotically convergent to S(f;v) • Then, if 

from u e: H to S(f;v) , we have 

d(u) 

X= li~_.!up ½ J: d(u(,)) d, > 0. 

denotes the distance in -1 
H 
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Since d(u) e: 't%, from sec. 3.1, 3.2 and 3.4 it follows that there exists 

µ e <-J (f;v) Sê!Ch that 
a 

Jd(u) dµ(u) =X> 0 

which shows that supp µ cj, S(f;v) , in contradiction with Theorem 5.3 • This 

proves the statement (ii). 

Concerning (iii), the shortest proof runs as follows : let u(t) denote also 

the extension to the whole (-00,00) of our individual solution enjoying the 

property indicated before the proof. Then u(t) extends by continuity to a uniquely 

determined weakly continuous H-valued function U(e) defined on the Bohr compacti-
-\i\ 

fication !R of IR = (-00,00) (see for instance [2]). It is easy to check that if t 

measure µ on H is defined by 

(5.4.1) 

then (see [2]), 

(5.4.2) 

f~<u) dµ(u) = J :--1-l~(U(e)) de 
IR 

so that, in virtue of sec. 3.1, 3.2 and 3.4, we can infer that 

Therefore, by Theorem 5.3~ supp µ c S(f;v) , whence 

(5.4.3) f _ d(U(e)) de= 0. 
IR".YI 

>\/\ 
It follows that U(e) e::. S(f;v) for all e ,s. IR ; in particular u(O) E. S(f ;v) • 

But in this case u(t) = RS(t) u(O) = u(O) (te:. [O,oo)) so that u(t) =-u(O) is 

a stationary individual solution. This finishes the proof of the Theorem. 

5.5. Ç2r2!!~~Y· In case n=2 , every individual solution is strongly asymptoti­

cally convergent in H1 to S(f;v) 

Proof. In the case· n=2 , it is known (see [13]) that for every individual 

solution u(t) the following holds: 

lim sup lu(t)ij < 00 

t--+<» 

From Lemma 4,2 we can thus infer that 
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lim sup IA4~t~I::::::. y< 00 

t-+<>o 

Let us denote by d1 (u) the distance :itt H1 from u E- H to S(f; \>) (where we 

set d1(u) = 00 if ue. H\H1). Since instead of u(t) we can consider u(t+l) , 

we can assume from the beginning that u(O) e:: H
1 

; thus 

will make sense. It will be sufficient· to prove that 

(5.5.2) ô(t) -+- 0 for t ~ oo • 

To this purpose we notice that for u(t) there exists Vt<Z:. S(f;v) such that 

l!u(t) - vtll _1 = d(u(t)) (see the proof of the statement (ii) in sec. 5.4). 
H 

Therefore 

dl (u(t)) ~ !lu (t)-v t li ~ li u (t)-v t lll~i I A(u (t)-v JI 3/ 4 
H 

~ d(u(t)) 114 [!Au(t) j+sup{fAvl 

whence, by Corollary 4.3 and formula (5.5.1), (4.10.1), 

d ( (t)) Yl d(u(t)) l/4 
1 u ,$ (for t>l) 

where ~l is constant ~ith respect to the time t • 

We can infer now that 

3/4 v e;. S(f;v)}] 

where the latter term tends to O (for t ~ oo) , by Theorem 5 .4 (ii). Hence 

(5.5.2) is valid. 

5.6. As we already pointed out the results in sec. 5.3-5 are always valid 

in case n=2, i.e. for two dimensional fluids. In the m~re interesting case n=3 , 

i.e. that of three dimensional fluids (the real ones!) we will now show that the 

basic assumption (5.3.1) for cJ (f;v) is connected with the preservation of the 
a 

regularity for the individual solutions. Precisely, we have the following. 
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5.7. !h~2E~~• Let n=3 and assume that 

(5. 7 .1) t(u) = oo for every 1 u e:. R 

(see (3.6.1)). ~ 

(i) This assumption (5.3.1) holds for .:5 (f;v) • 
a 

(ii) Every individual solution is strongly asY!11ptotically convergent in H1 to 

S (f; v) • 

fE2Qf• Since the proo~tatement (ii) is similar to that of Corollary 5.6 

(once the statement (i) is proved) we shall omit it. In order to prove thè: statementj 

(i) we will firstly prove that (5.7.1) implies 

(5. 7. 2) 

for every fixed T, Re. (O,oo) • Let us assume the contrary.Then there exists 

uj<E H
1

, llujll~ R and tje:: (o,T) (j=l,2, ••• ) such that 

(5. 7. 3) ltRS(t.)u, I! ~ ro for j ~ ro • 
J J . 

ln virtue of Lemma 4.2, there exists t e:: (O,T) such that 
0 

(5.7.4) 

(5.7.5) 

sup{HRS(t)u, H : 0 ~ t -:5- t , j=l,2, ••• } < ro 
U J• O · 

sup{ IARS(t )u, I 
0 J 

j=l,2, •• ,} < ro • 

Plainly, we can also as~µme'" that t. ~ t 00 e [O,T] and that u. c,onverges 

weakly in H
1 to some u

00 
E:. H

1 
, !!~

00
11 ~ R • From (5.7.4) it folÎows t

00 
e: [t

0
,TJ • 

On the other hand, by an argument similar to that in sec. 3,5 [16], we can infer 

that a sub.sequence of {RS(t)u. }':' (which will again~enoted as the initial onè) is 
J J;l 

weakly convergént: in H , uniformly on every compact interval c [o,"") (in particular 

on [O,TJ) to an individual solution u(t) such that u(O) = u
00

• By the uniqueness 

theorem for the regular solution and the assumption (5.7.1) we have u(t) = RS(t)u 

.(for al t~) • But since by (5.7.5) {RS(t
0

).uj : j=l,2, ••• ) is bounded in ;})A 

it is relatively compact in H1 • This fact joint to the weak convergence in H 

of RS(t )u. to u(t ) yields that 
0 J 0 

(5,7.6) 

ro 
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Moreover for te [t
0

,TJ and v.(t) = RS(t)u. - u(t) we obtain easily (from 
J J ' 

(2.3.6), (2.2.3) and (2.2.5)) 

(5.7.7) = - <B(u,v.),Av.> - <B(v.,u),Av.> - <B(v.,v.),Av.> 
J J J J J J J 

~ (c3+c4)ll u!l]lv. 111/21Av.13/2 + c3 l!v, 113/2 jAv · 13/2 
J J J J 

2 2 ·4 
~ v!Avj 1 + é(v,u) llvj Il (l+jjvj Il ) 

where c(v,u
00

) is a constant depending on n (by the c3_4) , v and 

max{l!RS(t)u.Jj: t
0 
~ t ~ T} • Integrating (5.7.7) we obtain 

llv · (t) 11
4 !lv · (t ) 11

4 

J $ J O 
• exp[2c(v,u)(T-t

0
)] •(te [t

0
,T]) • 

1 + llv/t) 114 1 + llv/to) 114 
(5.7.8) 

Since t<» e:: [t
0

,T] , in (5.7.8) we can take t = tj for j large enough. 

Letting afterwards J -+ = , we obtain in virtue of (5. 7 .6) that for j ~ <» 

in contradiction with (5.7.3). Thus, we conclude that (5.7.2) is valid. 

We return.now to the proof of the statement (i). Let thus µ e::. 0'a(f;v) , and 

let p denote the upper bound in (5.7.2) corresponding to the choice T = 1 and 

(5. 7 .9) 

Let moreover u(t) be any individual solution starting from supp µ , i.e. such 

that u(O) E:. supp µ • Then from (2.3.4) and (2.4.6) it follows plainl,Y 

so that the set 

{t G: (0,1) : /lu(t) li~ R} 

is of positive measure. Thus we can chose a point t in this set at which u(t) is 
0 

strongly continuous (in H) from the right (see the definition of an individual 

solution in sec. 2,3). Then, since u(t+t
0

) (tor:~tq0)
0

\is.:::also'an individÙal 

solution (with'•in!tial·value u(t )) we have u(t+t ) = RS(t) u(t ) for all t~O 
0 0 0 



- 52 -

and consequently, by (5.7.2), 

~u(l)I = ~RS(l-t
0

) u(t
0

)~, P • 

It follows 

(5.7.10) (supp µ)(l)c {ue:.H 1 : llul'$: p}. 

Recalling that µ is accretive, -we have firstly 

µ({ue H1 : l!ull ~ p}) = 1 

and then, secondly 

supp µc {ue: H1 !lui!~ p}, 

achieving our proof. 
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§,6, Structure of!!:!:.~ of stationary individual solutions. 

6,1. We want now to describe the structure of the set S(f;v) of the 

stationary individual solutions, i.e. the set of u eH
1 such that 

(6. 1. 1) A(u) = V Au+ B(u,u) - f = 0. 

The main results are Theorems 6.3 and 6.8.1. 

We recall that for n = 2 or 3, by reiteration of the regularity results for the 

Stokes problem [6] [40] it can be shown (see for instance [41]) that any solution 

u G n1 of (6.1.1) actually belongs to DA; thus 

(6. 1.2) 

This resuit can be also deduced from Lemma 4.2 

and u
0 
~ RS(t)u

0
, so that u

0 
€DA. 

let u e: S(f;v) 
0 

then u ~ IH.1 
0 

6.2. Lemma. There exists a constant c1 depending only ~ Q and n (n=2,3) 

such that if 

(6.2.1) 

then the restriction of 

f!:22É· We first show that S(f;v) is hounded in DA, Let ·u belongs to S(f;v) ; 

taking the scalar product of (6.1.1) with Au, we obtain 

v!Au!2 = (f,Au) - b(u,u~Au) • 

If n=2 we apply (2.2.4) with a1 =Yi= Y2 = 0, 

For n=3, we deduce the same inequality from (2.2.3) written with 

~ = 0 and the inequality 
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Whence 

~ (from (2.3.7)) 

lfl3/2 t ~ 1 f 1 1 Au 1 + c - -3 / 2 1 Au l 
3 2 

\) 

~ ~ !Aul2 
+ ~lfl2 

+ ~IAuj2 
+ c' lfi

6 

\) 

so that. 

1 ç, 1 1f12 
IAu 1 ~ c3 7 (1 + -1::f-), 

\) 

with some suitable constant c
3 

depending only on n . 

Let now u, v €. S(f;v) , and let w = u - v. We take the scalar product 

in H of A(u) - A·(v) with ~w (~ = I - Pm) and we obtain (m an arbitrary 

integer) : 

For the first two terms we apply the first inequalitf (2.2.5) ; the third term is 

majorized with (2.2.3) (a= Y= i , S = ½ , IA318ul ~ clul
114 !A112ul 314 

{5 c'lull/4Jluf/4). 

We arrive to 

~ (from (2.3.7) and (6.2.2)) 

and thus, 
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(6.2.3) 

For 

(6.2.4) 

we obtain 

(6.2.5) 

Plainly (6.2,4) together with (2.1.4) show that if m satisfies (6.2.1) with a 

süitable constant 

S (f; v) • 

c1 depending only on n, then 

More generally, for any u, veS(f;v) 

P is injective on 
m 

C 2 2 3/ 2 

6 27n l!.f-(1 + l!.f-) J )Pm (u-v) 12 # (6.2.6) 
(w+l) v v 

m 6.3. !h~2!:~~· S(f;v) is homomorphie !E_~ compact~~ IR , m 

sufficently large~~ (6.2.1) is fulfilled. 

~E22f· S(f;v) is a compact set of H, and P S(f;v) , for m satisfying 
-1 m . 

(6.2 .1) ü('compact too. Hence P is continuous on the image and the result 
m 

follows. 

6.4. Before continuing, it will be usefull to establish a majoration. 

similar to (6.2.5) for the H2-norm. Let u, vs:. S(f ;v) and w = u - v • 

We have 

v Aw + B(w,u) + B(v,w) = 0 

and taking the scalar product in H with 

v IA ~wl 
2 ~ 1 (B(w,u), A ~w)J + 1 (B(vlw), A ~w)I 

~ cl .Pmwj ~121\Pmwl! 
1121lull 1

121 Auj 
1121 A ~wj 

+ cj ~wl 1/21 A ~wl l/2jjujl 1/21 A ~wj 

+ éJ'ifl112 !AV-111211Pmwll jA Qmwl 

we fimd 
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' ' ~ ~ IAPmwl IA ~wl (!Aul+I.Avl) 
1 . 

• C t 2 
+ À 1 / 2 1 A Qlnw 1 ( 1 Au 1 + 1 A V 1) . 

m+l 

By virtue of (2.1.5)_. and (6.2,2) we easily deduce that 

(6.4.1) 

provided 

(6.4.2) 
, ..,,.,2 2 2 

(mH)2/n 9 c8 ~ (1 + Jif-) 
\) \) 

6.5. We introduce the complexified space of H denoted He and let AC , 

B~, Pm,C , ••. , be the operators in He characterised as the linear extensions 

of the operator:;s A, B, P , •••• All the relations (2.2.3-4-5) are still valid 
1 m 

if we replace B by 8 Be , 

Let v ,P > 0 be fixed and let 
- 0 0 - ---

(6.5.1) 
2/ _ c9 lti+/-- _2 1/2 

(m+l) - _n~ - ( f> + o + . _( 1 f 1 +po) . ) 
v o· -2 

0 

a e $>A , IAca 1 .s p· , t~e _t:quation 
C_ o 

(6.5.2) ~ ACw + ~,C BC(w+a,w+a) =~,Cf., 

possesse~ ~ and only ~ solution w = w (a) , such that 
:m. ----

(6.5.3) 

~E~~f• (For simplicity we omit in this proof the subscripts C , and we 

note A, B, ~, ... , instead of AC' Be, -~,C''"). 

Let us consider the function 

from Q HCf\.!DA into itself, this space being equiped with the norm IAul • 

We infer from (2.2,5) 
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\ AF(w)\ ~ ~ (l~ j+ !B(a,a) I+ !B(a,w) j+ !B(w,a) j+ jB(w,w) j) 

' -}- ( 1 f l+cla l l/2l!a IIIAa 1.1/2+,cja 11/2 !Aa l l/2llwl+ clw 11/2 l!w 111/21\a 111/2 !Aa 11/2 
0 

+(Cl w 1 1 
/ 
2 

llw li I Aw 11 
/ 
2) 

(where · as always c, è', èi , are various constants depending only on Q ) •. 

Therefore us,;ing (2.1.4) 

(6.5.4) 

where c
12 

is, an appropriate constant 9 1 •. In a· similar manner, we write n1 :., .-,.-,c• 

Thus 

(6.5.5) 

~ f- <I al 
112 1Aaj 112

llw-w'·ll+lw-w' !'112!A(w:-w1
) 1112 llall 

\/0 . . . 

+I .. ,112,A( - :,)l.li2!111+! .'t,1/21A•t11/211,...· ''Il·)·.· w-w w .w . w ' w l . 'Ji/ W. w ' ' 

!Awj+!Aw'I) jAw-Aw~I 

·. IÀm+l 

IAF(w) ~ AF (w') 1 ~· ' è
13fTn ar;+·l\Aw·l +l'Aw f 1) jA(w-w ~) 1 • 

vc(m+l) 
0 

We take c\0 = (2c 12) ~ · ThenJ because of (6.5.4), if 

(6.5.6) 

the function 

.ll. 
. '.C. 

(l+m)2/n ?-- 'v~o (11:j+p) 
0 

F maps the following set W into itself 
0 
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With an appropriate constant c
14 

~ c
13 

, (6.5.5) implies 

{6.5.7) 

for each w, w e:. W • Chosing the constant 
0 

e
9 

~mà,ç(c
10

, c
14

) ,, we immediatëly 

see that if m satisfies (6,5.1) then F is a strict contraction from W into 

itself and thus there exists a unique w e W such that F (w) = w • . 
0 

This complete the proof of the Lemma. 

~~~~-~- .Under the assumptions ~ Lemma 1, ~ 

(6.5 ~8) . 

where · c15 ;;... 

a ~ w (a) 
m 

. C . 

(m+ 1) 1/n >, J1 
r V 

0 , 

c9 is a constant -- depending ~ EE,. Q 

from {a e:.5) Ac I IAca 1 < po} into 5lJ 
A 

C 

. ~~ the mapping_ 

.gi ven È1_ Lernma 1 

~E-22f. (In , this ·. pr.oof again we omit the . subscripts C), 

is 
-· -· 

0 

analytic~ 
·· r 

. · - -,- -- -····- . . 
········· ·-·-•.-·--.. · · · : · 

Fot m:· ·s.atisfyi,ng (6.5.1), . a, bG:-:f>À'.·; IAal.~.P
0 

and vi$.C,lvl r\>~, 
we consider the followirtg equation with unknow11 ' 'z e: -Q HC n .JJA : 

where w = wm(a) • For the mapping 
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and if 

2/ 2c18 
(m+l) n ~ 2 (po 

V 
0 

2 . 2 
c1oll f 1 +p ) 

+ - 0 ) 
. 2 . \) 

0 

we easily deduce from (6,5,10-11) that there exists a unique 

is solution of (6.5,9), i.e, G(z) = z, and such that 

z = z (a)b which 
m 

{6.5.13) 
2c [ c2 ·(1f 1/ l · . 

1 Az 1 ~ }8 Po + 10 . 2 __ o j j Ab 1 • 
0 \) 

0 

It follows from (6,5.11) that z is uniquely determined by (6,5.9), if t:e 

impose to z tQ satisfy further.nore (6,5 .13). We conclude that b i-+- z (a)b 
m 

defines a linear continuous mapping from Q He n j)A into itself {the space ~efog 

normed by !Au!), 

Now we will show that if m is sufficently large, then a ~ w = w (a) · 
m 

i~ Frechet differentiable in ~ A , at each a e:. lA , I.Aal < p
0 

, and that 

w' (a) = z (a) • In virtue of [28], this implies that w (a) 
m m m 

is analytic in -a • F.irst we observe that wè can prov:ë -without.--any difficul.ty 

(the technica are similar .to thos.e le.a ·ding ··to (6.5.1)) that 

(6.5.14) 
. c' 

jA w (a+b) - A w (a) 1 ~ ~ G + 
· m m " o 

0 

for every a, b €:. $A , jAal ~ p and m satisfying (6 .5, l) ~ ,For - m . satisfying 
~ 0 

(6 .• 5.1~ . and (6 __ '.5.1_2) ,let a,b ~ ;DA , !Aal .:: 
130 

, \A(a+b)!·~ _P
0 

; we set 

w1 = w (a+b)- _, w = w· (a) and z = z (a).b. Then m ·. m m 

1 v I IA(w
1

-w-z) 1 = 1 Q [È (b, b)+B (w
1

-w ,w
1 

-w)+B (b ,w
1 
-w) +B (w

1
-w, b) +B (a, w

1
-w-z)+B(w

1
-w-z, a : 

+B_(w ,w
1

-w-z)+B (w
1 

-w-z, w)] 1 

~ c lb 11/211.b~ IAb l 1/2+c lw1-wl l/2Jlw1-wll !A(wl-w) 11/2 

+c I wl--w 11/2 IA(wl-w) l 1/2ij bll +c lb 11/2 ~b lll/2 llwl ~w Il 

+c ( jw! 1/2 !Awl 1/2+ ja 11/2 IAa 11/2) ~wl-w-z Il 

2 2 
, é

19 
!Ab 1 +c

19 
!A(w1-w) I +2c 

19 
jAb I IA(w

1
-w) I 

1 
1/2 1/2 + c

19
( Awl+IAa!) ( lw1-w-zl IA(t ,y-w-z) 1 · 
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Using (2.1.5), (6.5.3) and (6.5.14) we obta.in 

(6.5.15) 

Thus taking in (6.5.8), cl5 = c9.~ 2cl8'èid'i 2é20(1+cio) , the relation (6~5.15) 
can be wri ten 

r. c21 If l+l 
IALwm(a+b).:.wm(a):-;7-m(a).b] l ~ v3 (p

0 
+ vo 0

) !Ab j2 

0 

as is verified as soon as m verifies (6.5.8). This implies that w'(a) exists 
m 

and is equal to z (a) , P.nd completes the proof of the Lemma. 
m 

Let .now . D (v , p ) c Cm+l be the open set 
m o o 

(6.S.16) 

where for · z; ={ z;
1

, ••• , z; } s Cm ,· we set 
. m 

(6.5. lJ) 

!&!!!!!HL~• Under ~ assumptions of Lernma ~, ~ define ~ !_lla_Eping 

O(v,z;) = 0 (v,i; ,v ,p) from D (v ,p) in Cm bv setting 
m oo moo - ::;..,/.,. -

l6.5.18) 0(v,z;) = P c[vAC p z;+BC(p z;+w (v,p r) ,P z;+w (v,P i;)) - f] m, m m m m m m m 

where represents the solution of (6.5 .2) given ~L~ .!_ for a = pm-ç. 

Then the function {\l_,z;} ~ 0(v,z;) is analytic. 

We have shown in Lemma 2 that w (v,a) is differentiable with 
. . m 

respect to a. It is much easier to show with similar methods that, under the 

assumptions of Lennna 2, w (v,a) is also differentiable with respect to v, 
m. 

·lvl > v
0 

• Hence, 0(v,i;;) is separately analytic in v and z; • It follows then 
. . 

from a classical theorem of Hartogs that e(v~i) is analytic in {v,,}. 
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6.6. ~~~~ (Representation ~ ptationary solutions). 

We assume that 

(6.6.1) 

where m satisfies to (6.5.8) and v > v
0 

• 

Then u e S ( v) if and only if 

where 

(6.6.3) 
. m 

S e:. D ( v , p ) [) \R and 0 ( v, ,; , v , p ) = 0 • moo - m oo 

m ·, 
~EQQ!• Let u E: S(f;v) and let ,; e:lR be defined by Pmu = ,;1w1 + ••• +~wm. 

Because of (6.2.2) !Aul < p
0

, and the assumptions (6.6.1) imply that 

(6.6.4) IA Pmul ~ !Au! <Po' 

(6.6.5) 
C 1/2 

< v1}~ (ltl+P!) ' 

0 

Applying the operator ~ to (6.1.1) we obtain the equation (6.5.2) with 

a= Pu= p,; and w =ou. Due to Lemma 6.5.1, and (6.6.5), we see that 
m m 1n 

ou= w (p ,;) • Introducing this value of w in (6.5.2) and applying P 
"'In m m m m 
to the relation that we:.·obta.in·;· we ·arrive to ijm·~v,1·,v~/t'

0
) ··= O • 

Conversely if u satisfies (6.6.2-3) then it is obvious that u e S(f;") 

since the mappings pm, wm , em are real (Le. pmq,' wm(v ,'JI) e H , Gm(·\?,'S") e-. H , 

l.• f "' m f } H î , m+ 1) 
'I' e lR , resp. t v, 'I' e R x , t ,o, '5 .1 e IR • 

Taking into account Lemma 6.6 and Lemmas 6,5.2-3, we obtain the following 

6.7. QQ!Qll§:!Y· .The~ S(v) = S(f;v) is for ~fi'ii:eit ·:v· (~ f e H) 

!. ~ analytica,1 ~ of finite dimension in H (*) 

Moreover, proving as in Lemma 6.5.3 tnat wm(~,Pm~) is analytic with 

(~) We use the usual definition of an analytical set see for instance [28], 
ch.V, 
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respect ta [v, "')j , <v, -S} € D (v , p ) , we can prove as well that 
l m o o u S(f;')) 

\) > v 
is a real analytical set (in H) of finite dimension which has only on~ irreductibl 

unbounded component ( of dimension 1). 

6.8. After Theorem 6.3, our main result on the structure of the set 

S(f;v) will be now the following. 

be fixcd. Then for every generic f (i.e. for Theorem 1. Let -v > 0 

each f E: H"-E , where of stationary 

solutions of Navier-Stokes equations (cf. (6.1.1)) is finite, 

In fact we will prove a more precise result. Before stating this result, 

let us make preliminary remarks. In order ta emphasize the dependance in f 

the solution w of (6.5.2), we will denote this solution w (\),a;f) or n 
w (a; f) instead of w (\),a) . For p > 0 

' 
let us define · fl 0 

by 
n n 

(6.8.1) 

where ~o =!min fci 0 ,vJ . With this choice of 

integer m such that 

f' , let m 
0 

be the first 

(6.8.2) 2/ c8 p 
(m+l) n ~ 

\> 4 

2 
fl2 2 

(1 + -) 
v4 

(see (6.4.2) and (6.5.8). 

We set then 

(6.8.3) 

and let B (r) be the subset of f E: B(P) such that S(v,f) is finite and m . 

such that for each ue= S(~,f) , the following condition holds 

If y e: $)A 

(6.8.4) v Av+ B(u,v) + ~(v,u) = 0 

and 

(6.8.5) 

where p n = P v, then v = 0. 
m m 

of 
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B (p) • Then 
m 

Theorem 2. 

of H. 

B (fJ)'\B (r) reg equiped with the strong topology 

Theorem 2 provides immediately a proof of Theorem l for which we can take 

a, 

E = LJ [B(k)'-B (k)] 
k=l reg 

For this reason the remaining part of this section is devoted to the proof of 

Theorem 2. 

6.9. We first prove that if the set S(~,f) is not finite for some 

t" e:. B (P) , then necessarily there exists u e.. S(f;v) 
0 

such th·at u=u ,v=v. 
0 , 0 

satisfy (6.8,4-5). 

V :f: 0 , 
0 

Assume that S(f;v) is not finite. Since it is a compact set of H, there 

exists a sequence u. g S(v) , (j=l,2, ••• ) with mutually different elements, 
J 

converges strongly in H to some element u such that u. 
J 

relations (6.8.2) and (6.4.1-2) give 

2 
jA(u.-u) 1 

J 0 

of 
0 

(6.9.1) ~ . -~ lfl2 lfl2 2 2 
~ [1 ·+ :c72 ..1.:-.L...4 ( 1 + .J..::..!_;4) J I AP (u. -u ) 1 

.. '\) 1' mJO 

2 2. 22 2 2 
~ [1 + c

7 
L

4 
(1 + L4) J À ju. -u 1 • 

V m J 0 

S(f;v) • The 

Thus if v. = (u.-u) ju.-u ,-l, the sequence {v.}':' 
1 

is bounded in .i"A_ ... __ 
J J O J O J J= . 

We can extract a subsequence (still denÔ.ted vj) which converges weakly in j)A 

to some element v
0

, i.e. Av. converges weakly in H to Av • By compacity, 
J 0 

v. converges to v strongly in H1 and H, and lv 1 = 1 • On the other hand 
J O 0 

(6.9.2) lv Av.·+ B(u ,v.) + B(v.,u )! = lu,-u l!B(v.,v.)I 
J O J J O J O J J 

-
112 

11 1 ~ c À, lu.-u Av. 
... J O J 



- 64 -

and this converges to zero since !Av j 1 · is bounded (cf. ( 6. 9 .1)) • We inf er 

from the 3rd and 5th inequâlities (2.2.5) that ip ~ B(u
0

,ip) and qi ~ B(q,,u
0

) 

are linear continuous mappings from n1 into H. Thus B(u ,v.) -,.. B(u ,v) , 
0 J O 0 

B(v. ,u ) -.,.. B(v ,u ) strongly in H , and, from (6.9.2) 'v A . converges 
J O O O J 

stvongly in li to 

v Av = - B(u ,v) - B(v ,u) 
0 0 0 0 0 

u = u , and v = v satisfy (6.8.5) too. 
0 0 

There remains to prove that 

Let r,;.et: IRm, (j=0,1,2, ••• ) 
J 

be fefined by Pu.= p 5 .. Then, in virtue 
m J m J 

of Section 6.6 

(6.9.3) 
-1 

= ju.-ù 1 
J 0 

where le::,! -... 0 as 
J 

j ~ oo·. Let us set 

m no E: IR be defined by 
0 

n, = (~.-~ )lu,-u 1-l and let 
J .J O J 0 

!P (n,-n )1 = !P (v.-v )! ~ o 
m ~ o m J o 

as j -+- co • Hence, letting j --,.. oo in (6.9.3), we obtain (6.8.5) with 

u = u , v = v , and this completes the proof of our assertion. 
0 0 

6.10. We now prove that B(p)' B (p) is closed in B(p) (for the strong 
m 

topology of H) • 

Let f. be a sequence of B(p),B (p) strongly convergent in 11 to some 
J m 

elemerit f • As a consequence of the results of Section 6.9, for each j there 

exists u.e. S(f .,v) and vj E: SlA , lv. 1 = 1 ' 
such that u = u. and V= V. 

J J J J J 
satisfy (6.8.4-5). Due to (6.2.2), we have 

(6.10,1) M = sup!Au, I < + oo. 
• J 
J 

Then, by extracting perhaps a subsequence, we can assume u. is weakly convergent 
J 

in !})A to some limit ·u
0

, i.e. Auj --+- Au
0 

weakly in H. On the other hand 

because of (2.2.2), (2.2.5) and (6.8,2) 
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2 vl Av.l = - (B(v.,u.),Av.) - (B(u.,v.),Av.) 
J J J J J J J 

Whence 

(6.10.2) 

~ ( by (6.10.1)) 

-1 2 
M = sup !Av.l ,$ (c' M., ) < + 00. 1 . J 

J 

After extraction of a subsequence, 

weakly in j)A to some limit v
0 

(i.e. 

we can also assume that v. converges 
J 

Av. ~ Av weakly in H). Now by 
J O 1 

compacity, u. (resp. v.) converges to u (resp. 
J J 0 

v ) strongly fo. H and 
0 

Using again (2.2.5) and (6,10.1-2), we can write 

IB(v.,u.) - B(v ,u )1-$ IB(v.-v ,u.)I + IB(v ,u.-u )1 J J o o J o J a J o 

Thus B(v. ,u.) --+ B(v ,u ) , strongly in H , and in the same manner we can 
J J O 0 

prove that B(u.,v.) -.:.,. B(u ,v) for the norm of H. This implies that 
J J O 0 

v Av. = - B(v. ,u.) - B(u. ,v.) 
J J J J J 

converges strongly in H toits limit ~ Av 
0 

v Av = - B(v ,u ) - B(u ,v ) 
o o a o o 

and consequently u , v satisfy (6.8.4). 
0 0 

Finally it is easy ta deduce from Lennnas 6.5.1-2, that 

(w (a,f))' = z (v,! a,f) , 
m a m ., 

H • 

is continuous from {a€. !))A, 1 al <p 
0

} x B(11) into the space of linear continuous 

operators on H (for instance we prove this fact for the mapping { a,f} ~ w(a,~ 

which is analytic on [a€: 3)AC, 1al<{J;) )<; lfE. He, lf(<p}, and we apply the 
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vectoriel f orm of ~·the classical theorem of Cauchy ; see [ Zt ] ) • 

Setting then f = f. , u = u. and v = v. 
J J J 

in (6.8.5), we can easily let 

j -+ <» , and conclude at the limit that u = u , v = v satisfy (6.8.5). 
0 0 

Hence f e: B(P)~ Bm(r) and this completes the proof of this second 

assertion (B(P)' B (P) is closed). 
m 

6.11. In order to achieve the proof of Theorem 2 it will be sufficent to 

show that the set B ( '(?) :::is dense in B(p) • But since 
-re.g-

is dense in B (p) and. s ince for m ~ max ÎN ,mp ! , we have 

B ( f) f\ PNH <:: B ( fl) () P H and B ( p) C B ( p) m m reg 

it will suffice to prove that for such an m, B(p) OP H is in the closure ,• m 
(in B(p)) of B (p) • 

m 

For proving that we first observe that since the mapping 

is continuous form. Jl>A into H , the set C!t -l Bm (p) is open in ;DA • On the 

other band, in virtue of section 6.6, u G. (!À..-
1(B(f) 0 P R] if and only if for 

m 
one g e:. B(r) 0 PH, we have 

m 

{6.11.1) P u = p i and O u = w (p "'Ç,g) , mm 'm. mm 

where "1 satisfies (6.6.4). Since ~,Cg= ~g = 0 t wm is independant of 

ge: B(p)(\ PH and the condition (6.6.5) becomes (see (6.5.1 )) 
m 

{6.11.2) g = P î" Ap i+B(p <5+w (p ~,g).p ~+w (p <$,g))J • ml m m m m ., m m m 

Hence the mapping u -+ i = TI u , where u and <.'f are linked by (6.11. 1), is 

an homeomorphism from ~- 1[B(f) () P H] on some open set G of l~.;:: \Rm, !Ap 1' l < P 3 m m o 
Furthermore if ci.t, denotes the mapping lt-l form G. into C9v-1[B(p) {"') P H] we 

m 
will have 
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(6 .11.3) 

and, by Lennna 5,5,2, 9..l, is analytic fLom G into 5)A, It is then clear that the 

function s ....+ ((l'l!.(ç) is differentiable with differential (apply the chain 

rule differentiation) 

(6.11.4) 

m 
(ç 6 G , n E.. IR ) , 

Let now ~ denote the analytic function ç 1---?- n from G into Rm 

where ri is determined by pi; = P a('U(ç)) , Because of (6.11.2) we have m m 

(6.11.5) 

and therefore 

(6.11.6) 

Now let G
1 

be the subset of points of G where the Jacobian det p'(ç) of 

<f> is O , We infer from the classical theorem of Sard (see [39] , p .13) that the 

Lebesgue measure in IRm . of 4>(G1) • :iis O , Consequently pm[p(G), ~(G
1

)] is 

dense in B(p) (\ PmH , and. the proof will be complete if we show that 

(6.11.7) 

If this inclusion is not true, Section 6,9 shows us the existence of 

ft:-pm[<P(G),HG 1)], ue.S(v.f) ·, VE:.g)A, v :/: 0, satisfying (6,8.4-5). Then 

(6,8,5) and (6,11.3) imply that _v = 'll'(ç),n, and because of (6,11.3-5) and 

(6.8.4) we have 

p <l>'(ç),n = v Av+ B(u,v) + Btv,u) = 0 
m 

and necessarily Çiê- G
1 

, f = pm (/>{ç) e. <j>(G
1

) which contradicts the definition 

of f. 

The proof of Theorem 2 is complete, 
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§.7. Connections with the theorz of turbulence, 

7.1. There are several distinct mathematical points of view on the 

turbulence. Sorne do not involve the Navier-Stokes equations (example : [25]; see 

also [26], [27 ]) others do involve the Navier-Stokes equations, but essentially 

without any boundary condition$ (as for instance in the case of the theory of 

homogeneous turbulence [sJ, [39] ) . Finally there are some points of view which 

are a priori suited also for the Navier-Stokes equations on bounded fixed domains. 

Since this is the boundary problem considered in the present paper we will try now 

to discuss some of these last points of view in the light of our previous results 

and methods. 

First of all these last points of view can be further divided into two groups. 

The first group contains those views which consider that the irregularity and the 

i:.andomness of the turbulent flows a:ce due to the same character of their initial 

states. The second group contains those views which consider that these irregularity 

and randomness are produced by the Navier-Stokes equations even if the initial 

states are neither irregular nor random. As we will show below the results of this 

paper are pertinent to this sècond group • (For the first group we refer to [17], 
[29], 110], [1(1, ... ) 

7.2. The oldest mathematical attempt is due to Reynolds [341, who proposed 

the study of the time averages 

1 Jt t U(t) dt 
,o 
I 

1 Jt n = 1- u.(t,x)dt}. 1 i.t J J= 
0 

of a flow u(t) = Cu(t,x)} ~ 
1 

(n=2 or 3), for convenient large t • Plainly, in 
'l. J= 

virtue of the results in sections 3.1-4, this study is equivalent to that of the 

means 

u = fu dµ(u) 

where l1 stands for an accretive stationary statistical solution. Thus the study 

of these statistical solutions will include any Reynolds type theory. 

Another old point of view on turbulence belongs to Leray [22}, for whom an 

individual solution u(t) is turbulent whenever it is not regular on any interval 

[o,T] C ro,ro} though . u(O) = u
0 

Eè: Hl • In. other words, turbulence in Lerav• s sense 

exists if and only if t (u ) < 00 (see sections 2. 6 and 3. 6) for some u e.. H1 • 
0 0 
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7.3. Other views on the occurence of turbulence was proposed by Landau (see for 

instance [20]) and Hopf [16]. Essentially these views can be reduced to 

the following for given v>O there exists an asymptotic attractor (see sec. 3.8) 

M~, uniquely determined, enjoying the following properties : 

(i) Mv is a finite dimensional manifold. 

(ii) Mv is the closure of its almost periodic trajectories (i.e. the closure 

in H of the union of the sets {U(t) : - 00 <t~=J, where U(t) is an almost 

periodic H-valued function ând ,U_(t+t
0

) is 5m: individual solution for any t
0 
a(- 00,<o) 

(iii) If dv = dim M~ > 0 there exists at least one non stationary individual 

solution lying. in M" • 

(iv) d v;tq) for v \t.o (this assumption corresponds to the development of 

more turbulence with the increase of the Reynolds number). 

We will refer in the sequel to this kind of behaviour as turbulence in the 

sense of Landau-Hopf. 

7.4. A related view on turbulence was proposed by Ruelle and Takens [35], [36], 
(37], which in our frame can be sumarized as follows : îor V>O enough small there 

exists an asymptotic attractor, A with a number of strange properties, among which 

we quote the following: A is the closure of its non-stationary periodic 

trajectories. This. behaviour will be called in the sequel, turbulence in the sense 

of Ruelle-Takens. 

7.5. It is well known that in the case n=2 (i.e. the case of plane fluids), 

turbuler:-ce in the sense of Leray does not occur. Our Theorems 5.4 (i), (iii) and 

5.7 plainly implies that in this case also turbulences in the sense of Landau-Hopf 

or Ruelle-Takens do not occur. 

These mathematical facts seem to confirm the experimental point of view that 

in laboratory no plane turbulence can occur. 

7.6. One of the hardest open problem in the study of the Navier-Stokes 

equations is. that of the existence of the turbulence in some of the above senses, 

for three dimensional fluids (i.e. the case n=3). There seems to exista strong 

believe that one of the turbulence in the sense of Landau-Hopf or RUelle-Takens 

does not exist in this case (see for instance [9]).. It is plain that our 

Theorem 5.4 (i), (iii) and 5.7 yields also the following In case n=3 , if 

turbulence in the serise of Landau-Hopf or in the sense of Ruelle-Takens does ne·t"· 

exist, then there exists also turbulence in the sense of Leraz. 
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7. 7. We wish now to discuss also another view on turbulence due to ·Bass · [4]. 
. n 

In order to present it, let us call pseudo-random an lR -valued bounded function 

cp(t) = (<P. (t))~ 
1 

(n=2 or 3) defined on [o,oc) satisfying the following conditions 
J J= 

(i) lim Tl JT <P. (t+T) <P. (t) dt = <t> •• (T) exists for any 't. E: [o, oo) and 
T-+«> o 1. J 1.J 

(ii) 
n 

(<I> •• (T)) . . l i. 0 on (O,oo) 
l.J l. ,J= 

(iii) <I> •• ( T) ~ O for T -+ 00 

l.J 

for any l~i,j~n. For Bass a flow u(t) = {u.(t,x)}~ 1 J J= 
is turbulent if the 

n · n 
IR -valued fonction t ~ {u. (t ,x ) }. 1 is pseudo-random for at least some x ~ n . 

J o J= a 
We will refer to such a flow as turpulence in the sense of Bass (Actu~lly the 

definition of Bass is more restringent, but for our purposes the above one is 

sufficient.) 

7.8. ProEosition. (i) In case · n=2, there exists no turbulence in the 

sense _of Bass. 

(ii) In case n=3 , if turbulence in the sense of Bass 

exists, there exists also turbulence in the sense of Leray. 

~EQ2f• Let us assume that turbulence in the sense of Leray does not exist. 

(In the case 

denotes the 

u(O) = 

(7.8.1) 

where 

(7.8.2) 

u E: 
0 

Indeed _ for 

n=2 this assumption is automatically satisfied.) Then if c1(T,R) 

supremum (5. 7 .2) we have for any individual solution u(t) . , such that 

H1 , . the foUowing global estimate 

llu(t)II ~ C/1,Ru ) 
. 0 

t e:. [9, 1] C(l,R -) • Moreover for 
u 

t E: [i ,ooJ we have (by (2.3.5)) 0 
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henceforth there exists t
0 

.s (t-1, t) such that llu(t
0

) li ~ Ru and consequently 
0 

llu(t)II = IIRS(t-t) u(t )li~ c
1

(1,R ) • Thus (7.8.1-2) is checked. Using Lemma 4.2 
0 0 U 

0 

we can now easily infer that 

(7.8.3) 

and 

(7.8.4) IAu(ttl) 1 ~ c2 (Ru ) (t?-0) 
0 

where c
2

(R) is a finite real function defined on [0, 00 ] 

Let now u (t) = {u . (t,x)} ~ 
1 

be an individual solution turbulent in the 
0 OJ J= 

sense of Bass and let x E. n be a point such that {u .(t,x )}~ 
1 

is pseudo-
o OJ O J= 

random (in the sense defined in sec. 7.7). This in particular means that 

1 JT lim T- u .(t+T,x) u .(t,x) dt= 8 .. (T) 
14°" l OJ O OJ O l.J 

exists for any TE"- [0,00] and l~i,j~n , or equivalently 

n 
(7.8.5) I\' (8 .. (T,T)-8 .. (T))C 11.I ~ L i.J l.J i J 

i ,j=l 

where 
n 

t;., 11 E: IR are arbitrary, ~ 0 for T ~ 00 and 

(7.8.6) 1 JT 8,,(,,T) = T u .(t+T,x) u .(t,x) dt 
l.J O Ol. 0 OJ 0 

n 
Let now t;,, n €.IR be fixed and let (p=l,2, ••• ) be such that 

(7.8.7) Il cS -t:, Il = E:2(p) ~ 0 for p -+ 00 
' 

xo p (H2 (ri)) 

where cS 
X 

0 

denotes the Dirac functional in x which obviously e:.(H
2 (n))' 

0 

Set h = P(t;,@ !::. ) , k = P(n Œ) Â ) , where as usual P den:otes the orthogonal 
p p p p 

projection of (L
2

(n))n on H and where, for instance, 

valued · function {t;,j ~p (x) }j=l ·, obviously·:belonging to 

1 JT 8 (T,T) = -T (u (t+T),h )(u (t),k) dt 
p _ l O p o p 

t; ® 1c. denotes the IRn-
2 p 

(L (rl))n, Finally let us se 
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Then (for T?:-1) 

• u .(t,x )Jç;. n· dtj 
OJ O l. J 

n 
+ 1 ~ { f3 • • (t, T) - S · • ( T)) s • n • 1 L_; l.J l.J l. J 

i ,j=l 

that is 

(7.8,8) 

where e3 (p) -:)o. 0 for p -►<- oo, and neither e3 nor. e1 do not depend on 

TE:- [o,oo] • On t)1e other hand, if for m,p = 1,2,... and te. [O,ro) fixed we set 

(7.8.9) <j>(u) = (RS(,r,) P u, h ) (u,k ) , 
m p p 

the functional ~ belongs to ~ (see sec. 3.1). Thus if tL is any time average of 

the individual solution u (t) 
o· 

(see sec. 3.1), there exists a sequence 

1 ~ T1 < T2 < , • • ---r oo such that 

T • 

(7.8.10) . J~(u) dµ(u) = ~im i. f J ~(u
0

(t)) dt • 
J-+oo J 0 

But, in virtue of sections 3.2-5, µ e:. <:f (f;v), so that, by Theorems 5,3 and 5.7, 
a 

supp µ c S(f,v) 

It results 

(7.8.11) J<l>(u) dµ(u) = J(P u,h )(u,k) dµ(u) • 
m p p 
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Since 

T. 
1 J J l-T 4>(u (t))dt - B C-r,T.)I 
j 1 0 p J 

where C is a constant with respect to j, p, m and , , whilé 
0 

(7 .8.12) C(,,m) = sup{ IA[RS(,)u - RS(,)Pmu! : !Auj ~ c2(Ru (O))} , 
0 

from (7.8.8-11 ), we can plainly infer 

!f(P u,h )(u,k) dµ(u) - ~ $ •• (,)~. n,l 
m p p L iJ 1 J 

i,j=l 

whence 

(7.8.D) 

for any , 1, , 2 e: [o,~ and 1$i, kn. In (7.8.13), p and m (= 1,2, ••• ) are 

atour disposal, Letting p, m ~ 00 , and using the fact that 

C (, ,m) ~ 0 for rn --~·\_,;x, (,>O) 

(which results readily from (5.7.4-5) and Corollary 1.9, (1.9.3) of [ ] , Ch.III), 

we obtain 

(7 .8 .14) $ •• (Tl) = 8 .. (,2) 
1J 1J 
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Since {u .(t,x )}~ 1 is pseudo-random we must have (see sec. 7.7.(iii)), 
OJ O J= 

/3 •• (T) ~ 0 for T -+o;,, thus, by (7.8,14), 
l.J 

(7.8.15) . n ( 13 • • ( T) ) • • 
1 

- 0 on ( 0 , 00 ) , 

l.J l.,J= 

in contradiction with the property (ii) in sec. 7.7. Thus, if turbulence in the 

sense of Leray does not exist, neither does exist turbulence in the sense of Bass. 

7.9. The results in §.5 explain why whenever Bifurcation Theory was successfully 

applied to produce periodic, or more general almost periodic, individual solutions 

for the Navier-Stokes equations (see for instance [18} and [38]), the boundary 

value problem involved was different of the classical Dirichlet type one we consi­

der,ed in this paper. Indeed for this classical boundary value problem our results 

show that, at least in case n=2 , no non stationary periodic or almost periodic 

individual solutions exjst. In particular this implies, via the Bifurcation Theory 

(see for instance [38]), a very peculiar spectral behaviour of the operator 

(7. 9 .1) A V = V Au ·+ B ( û , v) + B ( v, u) 
u 

in H, where u e.:JJA plays the role of a parameter. Therefore this raises the 

question if, again in case n=2, the set S(f,v) of all stationary individual 

solutions is nota singleton. This would constitute a substantial improvement of 

our results in §.6. However this seeros rather improbable to happen. 
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