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ON THE STATIONARY STATISTICAL SOLUTIONS OF THE NAVIER-STOKES

EQUATIONS AND TURPBULENCE

By Ciprian FOIAS and Roger TEMAM.

Abstract.

. This paper,constitutes a continuation and an improvement of'the“étudy
{ﬁi] on the stationary statistical solutions of the Navier-Stokes equations
in bounded domains. Also it contains some new results pertaining to the
asymptotic behaviour of the non stationary individual solutions or to the
global behaviour of the stationary individual solutions. A discussion on the
possible ‘meaning in the theory of the turbulence of the results we establish

here, is also given,
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§.1. Introduction.

1.1, Among the most tantalizing‘problems of the nowadays mathematical physics
is that of the occurence of turbulent phenomena (quotea by P.D., Lax &1] " as one of
the three typical pattern of the physical meaningful nonlinear problems) in the

evolution of the solutions of equations of the Navier-Stokes type. Therefore it seems -



whorth to look for a better understanding of the global and the asymptotic
behaviour of the solutions of the initial value problem for the Navier-Stokes

equations

n
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where © is a bounded domain in R“ (=23, v0 and g =‘{g1,...,gn}
represent the kinematic viscosity, resp. the external body forces and p the

pressure. We will assume that
2
ge L EN”

Our belief is that an efficient way of answering to the above expressed axis is
to study the statistical solutions of the Navier~Stokes equations, especially

the stationary ones.

Heuristically these solutions can be defined as foilows (see for instance
[ﬁS], Ch.I, §.6) : The equations (1.1.1) are viewed as an evolution equation
(1.1.2) U, A@) =0
dt
in a suitable real infinite dimensional Hilbert space H , where A(u) is a
specifie continuous (non linear) map from a subspace ch: H (dense in H and
endowved with a supplementary stronger norm) into its dual lern H (for details,
see n° 2.3 below). Roughly speaking, a stationary statistical solution of (1.1.1~2)
is a Borel probability measure u in H , carried by Hl which is invariant

under the infinitezimal translation

TE} tu > TSt u=u-A(u) 3t

along the vector field A(u) hxe.Hl)‘ in H-l . A simple non rigorous

computation leads easily to the equation



(1.1.3) J <A(u),4¢"'(u)> du(u) =0

for an enough large class of adequate functionals ¢ on H , where ¢'(u)
denotes the Fréchet derivatives of ¢ , while <,,.> denotes the duality between
H_l and H} . (For the rigourous definitions see n°2-4 below). Though probability
measures on H which actually are stationary statistical solutions of (1.1.1-2)
explicitely occur in [lf] s [3(], and [321, their first rigourous and systematic
study is (as far as we are aware) contained in [11]. The present paper continues
this study, substantially improving parts of [ll] and exhibiting new properties
of these solutions, concerning their generation as ergodic means (§.3) and the
structure of their supports (§§.4-5).

(announced in [15})

1.2. The main new results\of the paper are contained in §§.5-6, where we
prove that for two-dimensional fluids (i.e. for n=2) all stationary statistical
solutions are carried by the stationary individual solutions (settling thus a
question raised, fourteen years ago, by G. Prodi [31]) and that "in general" the
number of the latter ones is finite.

We also give some three-dimensional versions of these results which seem to

redeem Leray's point of view on the occurence of turbulence.

1.3. The justification of the preceding statement as well as a discussion
of the possible meaning and for the corresponding consequences, of our results
for the theory of turbulence, will be given in §.7 ; this paragraph should also

be considered as a postface to this paper.
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2.1, Let {) be a bounded domain in rR" (n=2 or 3) with
a C° -boundary QJQ. and let H, rep. H', be the closure in
(Lz(ﬂn“ resp (#1(0))7,
= fvive (62 ()" divv== 3.v =07,

The spaces H, resp. H* are endowed with the scalar products

(w,v) = / ( i uj vi)dx , resp ((u, v>>--/(z %Y - v)a’.z

13 Sz T caind
, , 1
and the corresponding nornms !u[: (u,u)?, resp. ({yff = ((u, u}iz

Let A be the Friedrichs® extension of —~A[H,. Then

(2.1.1)  Dgr =HL and ([u(}"*a,\/-\ia_l‘ (ueDit )
(2.1.2) Dy = yt f\(Hz(SQJ}n and “UI}(H? jL\)n4d:

:EEVIAU} =y tlﬁl{(ﬁ2(;1})n (ug ),

where D represents the domain of the operator T1 =nd ¢y
(as well as the different constants s c§~. 03'. ete.,ovcuring
in the sequei)bs a constant depending only on {2 . The relation

(2.1.1) is a direct consequence of the definition of ut and A,
while (2.1.2) results easi'y from +he Cattn brxﬂawSolonn ikov-Vo-
rovich-Yudovich theorem ([6] )Léﬁ; see  La2d , § 2.3).

By Rellich's lemma, A“l is compact, hence there exists
an orthonorral hasis {\&amﬁ::; in  'H ‘'such that
(2.1.3) adwp =2, W (m=1,2,..,) and G<>x.15)*15 cee .
Ne have

2 |
(2.1.4). Dy Z M (= 1,2, )



where,as already stated above, ¢p .is a constant depending only
on (] . This can be easily cobtained by a method of Agmon (seelil, )
using . {2.1.2)s as éample, see L11] , § 7 , where the case‘
n=2 is proved.
- In the sequel Pp (m=1,2,.. ) will always denote the ortho-
gonal projection of H onto the space spanned by ‘ﬁl,WE;‘,,wm .
2.2. For u,v.w & H* we set

n
2 % %% M Jde

i

(2.2.1) b(u,v,w) = S (
s}

which is a bilinear continuous functional on H* such that
(2.2.2) blu,v,w) = “b(u,w,v)}
this‘ is readily verified, first on Hg.

Moreover we have the following useful inequalities
(totwveml = ¢ | 2%l [aPvi. | 2wl
(for all u € Dy ,» Ve D,a ,k‘w‘e Dar )

2.3} whe: = 0ol = 3 =[p=41 n
(&ﬂ%)ﬂ here O = ol X L = =4 and
- .

X+ (&+ X =% in case n=3,
d4‘p+3°==1+£ with O < &=21,  in case n=2
.(and in this case the constant < depends also'on € ).

Let us sketch the proof of (2.2.3) in case n=2,
(For the analogous proof of (2.2.3) in case n$3, see [12}, Chap.1 )
To this aim we notice that by (2.1.1-2) and the Sobolev‘s
embedding theorem (D) o i g (£ (for all \=q < oo g

a7 o
the maps u:(u;)f”, > uj s u hanékcg are continuous. from

EDAVL (resp. Da)} into L? (£); plainly they are also

continuous from H = Dpo (resp.,DAwL ) into LzﬁﬁL}. Thus for



q;;Z, we infer by interpolation (see [24] , )
that these maps are also continuous from Dpba (resp.'DﬁfﬁMz
into LV (fL) (for any 0= 6=5 ) with T= ¥g = 24

(26 +q -qg @ )7! Therefore for &, F,a# and € as in

(2.2.3), taking gq= 2+ £~1 we will have

bl v, w)| = ﬁ e ll, 5 ) v, H s i ll, 5

= ¢ [A] |AP]) 1A%]
for any uéDyx , VY € Dip, W € Dy~ .

In the case n = 2 we can supplement (2.2.3) with the

’”/fz)

N

following
({b(u,v,w)} = | a | 3 .‘Ad-z“\% lAP"\/l%'IA’S"\/li
A 1 2 A Wl F (for all u € Dp¥ A Dava
(2.204) 4 vV € DpBi N DpBr 4, W € Dp% M Dpsa )

M+&f@+@f$+&=2 and
kmax{o(l.w’z.){.)g_z} =1 in case f&,+/§1=1

These inequalities result directly from the following well-

-known inequalities:

11y ) = 35 1IN o n (g T,

L 2

‘,/ /él/) = < //L{//,/vé//‘}l////‘2 for  e= (v, Ji‘ 6@4)
//cg',///_mﬂz) < ¢ jt % 1Aul? e Kg}j €5

Where {0(13011)/6‘)(33,) M)X;}: {O)é7l}21fﬁ[)/8)'$§
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for the first two,see L1903 . and 133 ,
respectively, while for the last one see (2.1.2) and EIJ,S.IB,
Moreover in case n=3, we can use instead of the last

inequality the following

bl = oo 10t AL S ae g2,

=

(see [ 13, 8.13 )s obtaining readily
(1t % 4™ Wl pl - (ae Dy, ve H et

ja1 % 1Al W) Il (uedy, veHiwe #Y
1 -y fod % 1dny# (wer, vet Fwel)
& Jot G1Av/ % ywy wetfve B, w€ T

(2.2.5) 16(« v, w)l = C.;'<

Let H-1 be the dual of H! and for ?eHTl «e Hi
let denote ¢@(u) by <¢,uy . We embed H into H-1
b

*

through the identification (h,u> = (h,u) (for h&H, u€éH"
Plainly, the operator A can be extended by confinuity to a
continuous operator from H! into H™! (actually, onto). Fer
w,v € HY, 1let B(u,v) & H™' be defined by
(2.2.6) <B(u,v),W > = blu,v,w) for all w € H1,
We remark that (2.2.3) (with the choice « = 3, p =7,3-.g‘=0)
yields
(2.2.7) B(H!, D, ) < H.

2.3 The precise form of the operator A(u) in
(1.1.) is
(2.3.1) A(u) = » Au + B(u,u) - f (u & Dy)
where f .is the orthogonal projection on H of the Kﬁl valued
function g occuring in (1.1.1). Plainly A(u) applies Dy
into. H and H? into H~l. In case we want to emphasize the
dependence of A(u) on ¥ >0 and f € H, we will write A(u;f,»)

instead of A(u).
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We shall be concerned with the initial value problem

(2;302) ":{é’j“" + A(u) = 0 for t ™0 v U(O)xuoe He

By a solution (or an individual solution ) of

(2.3.2) we mean a function u(t) from [o, ©0) tc H which
is weakly continuous at any t, € [o, ¢©) and strongly conti-
nuous from the right at any to t, €[o,0@ )NT (where ¥ < (0,%)
depends on the solution and meas £ =0), and which satisfies
(2.363) u(t) € ¥ a.e. on (o, @) and S “ﬁﬁﬁ%ﬂ%‘ﬁaa (te (o)),
3y b fu(e) | 2+ v § HatPe = £ 1xc )™ 5(’"”‘”"‘"

o Cfor @l t e (0,00) cmd”z’ ([0;7(']\797
(2:3.5)  u(t) = ugt f wieddr | wfe)e LElo b 1) (€€ (200,
(2.3.6)  ul(t) + A(u(t)) =0 a.e. on (0,00),
where (2.3.5-6) are considered relations in H”i (see 231 .,
Ch.‘I. ‘§ 6 and eSpeciallyk Lizj , é}IIJ.}. It can be
proved (as in L 231, chap.1, §.6 or T123, &.11.1 ) that
for any u, € H there exists at least one solution of (2.3;2};
Moreovér if the n=2, one easily verifies that this Sdl&%idﬂ
is unigue (see for instance 23 1 Chap.1,§.6).

A time~independent solution u(t)ﬂuo {or rather Qo) is
called a stationary (individual) solution; that is, U H is
a stationary solution of (2.3.2) if u, & Hl and A&(u,) =0
(in H-1), Plainly
(2.2.2-3) yield
(2:3.7) Wug || = N2 v~ 1],

2.4. In order to define the stationary statisticzl solutions

of (2.3.2) 1let us agree to call test functional 2any real functio-
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nal gﬁ(u} on H enjoying the following properties:
19 For any u € Hl, the Frechet derivative  &'(u)

of qé , taken in H along HK' exists (that is

L lurv)— ) = (Pl )] ~= & for ve 12,

v/
20 qb'(u) & HY for all u €H* and, as function from
H? into H?, ' is continuous and bounded.
Let now /u, denote a Borel probability measure on H
such that
(2.4.1) Shaiy® dple) < ==
(where (lu |l is taken =oo for u & HN\ H})., Then,for

any test functional gé,the function . .
(2uh.2) <A, pru> = v A4, Pru) ) + < Blecu], Prul > —
— (F P
is continucus on H? and satisfies (by (2.2.3))
[ CAlW), Pa)>] = v iul- Bl + ¢ lal”> LA™ ul ™ jjull-
B+ 151 L] = (il + €5 X7 >+
£ 5B 0gl) gep @I (for all «e H*)
Thus by (2.4.1), the integral

[« Ay, Plu)>epre)

makes sense. By definition a stationary statistical solution

of (2.3.2) 1is any Borel probability measure /4 on H
satisfying (2.4.1.) such that
(2.4.3) [<A(n), Ple) > dple)=09
for any test functional 75 . and
(2eb.04) f[y et f(* — (5, a)]a;a/c/j = O
{e =luftag ]

for any 0 = E/ d‘:fx = o {see L1173 § 6)s The equation

(2.4.3) is the rigorous form of the equation (1M‘1.5)



..}.O..

introduced in an heuristic manner in the § 1, while (2,6.,4)

is a strengtened energy inequality, which has the felloWing
direct consequences (see i1, s.6 )t

(204.5) fhay®ep) < v &3¢ £/

(2.4.6) /da:/&/é/g < o lal=vtAT E ]

where supp K denotes the support of M (i.e. the smallest
closed set ’F‘ in H such that /c(F}xl).

| 2+5. In case n=2 , then, as already said above, thekindi-
vidual solution wu(t) of (2.3.2) 1is uniquely determined by

its initial data u{0) = u,; moreover it is easy to verify that,

0
if S(to) u, denotes the value u(to) at the time t, 0 of
u(t), then S(t,) is a continuous map from H into HY . (see

for instance; C121 s §.I11.2 }o We showed in 113 ;§l6 .

that 2 Borel probability measure fL on H 1is a stationary

~statistical solution of (2.3+2) if and only if it is invariant

with respect to the functional flow { S (t-}}%?o .
" t

that is, if

(2.5.1) /“(‘S(f)”@):ﬂ(w) for afl tz O andall

Borel subsets & of H,
Moreover any such H has its éupport compact in H! (see [11s$.5,
}3 in particular one can prove that |

(2.5.2)  sueppe = { Hull = ¢ v [ £l exp (¢ 777 /£1%)
where (as already stated in Sec. 2.1), <y p are some
constants depending only on .

2,6, In case n=3, a similar functional flow might not
exist; therefore in this case a more laborious discussion is

necessary in order to clarify our definition of the stationary
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statistical solutions.

Let us begin this discussion by agreeing to call regular
on [0,7] (7> 0) any individual solution wu(t) such that
wt)e C (Lo, T 3 HY.

One can verify that u(t) 1is regular on [L),‘Tj  if and only
if u(t) € [%° (0,T 5 HY) and that if wu(t) is regular on {O;T}
then any individual solution of (2.3.2) with the same initial
date as u(t) coincides with u(t) on {O,T] (see for instance

f127 s.111.1), Thus

we can define the map RS(t,), on the set Drs(ts) of those ucé4H1

for which there exists an individual solution u(t), regular on [I;%]
such that u(O}:uo . by RS(to}uo = u(%a}. One can also verify

that Dgg(t,) 1s an open subset of H? such that

U, € . « 74 ‘

oo o 3 i { RN VN "¢/

[>]

(2.6.1)
\

and that Rs(to), as a map from DRS(tO)* endowed with the topology

of HY, into H‘, is continuocus (see (321 or L2 ] s §.IT1I.1) .

Therefore for any Borel subset <& of H the set
oy , '
y = D L &
RS(6) e = {Ue Bpg, )oy RS()u e @)

is also a Borel set in H. In L1113 , §~6 it was

proved that if ﬁ- is a Borel probability measure in H , the

support of which is bounded in H?, then fi is a stationarv

gstatistical solution of (2.3.2) if and only if

(2.642) {/J(ﬁ‘s{f)}ﬁ,): M(e) for 2l ¢ ZO0 ana
L all Borel subsets <« of H.

In this case ~{RS{t)}%:’O defines on supp i a functional
g .
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flow with respect to which M  1is invariant,

2.7. Let us denote by S(f;¥), resp. :f(f;)’)
the set of all stationary individual, resp. statistical,
solutions of (2.3¢2). In virtue of (2.3.7) it is plain that
any Borel probability mesure carried by the set S(f;V ) belongs
to F(f; v ). Also in virtue of the relation
(2.7.1) Y2 Al £v) = AlYus yif, ¢¥) (y>o0)
it is plain that
(2.7.2) ¥ See;v) = Sy ,0”) (¥>9).
Moreover, if for a Borel measure [ on H and Y > 0 we
denote by /L’Toa""’ the measure : w MF( ¥ w Y(for
all Borel sets < < H ), then it follows readily that

(2.7.3) Fg;v)e ¥ T 5Y) ()’>o).

In particular, we have

(2:7.4) £ v) = S 2Ei2)° !

i
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553. Generation of stationary statistical solutions

3.1. It is a classical fact that S(f3;») # & (see
for instance L2370 , ch. I, § 6, ), so that tfkf;uz)ga g{
too. Therefore the problem concerning the existence of sta-
tionary statistical solutions has to be replaced by that of
their occurence; namely we shall show that stationary statis-
tical solutibns naturally occur in studying the asymptotic

behaviour of any (non-stationary) individual solution. To

this aim we shall agree on a precise meaning for a time average
of an individual solution wu(t) of {(2.3.2). |

Let G ‘denote the space of all (real) functionals
on H, weakly‘continuous on any (bounded) ball in H. Since
(Z.B'Q)Fimplies

(3:1.1)  luP = M u P v ENEISIT (te(oe)

it results that

(3.1.‘2) 772, (¢j—"—‘ %éf¢/%/r/)dr (telo,00))
" makes sense for any PE B . Using the fact that H

K, = {u«e t ; | (u|r = Juol®+ Y2272 Hﬁfl}

endowed with the weak topology of H, is a separable compact
space, we can infer that for any sequence of t? s tending

. o
to o0 - there exists a subsequence 4Tfj}§ﬂ%

‘such that

{(3.1.3) ' | Aim 7?2%/ ( gé y = 2 (:¢ ) exists
for any 'géef € , or what is the same, for every géé—Cf(K;)



- 14 =

( = the space of all continuous real functions on K,).
Therefore, by the Riesz-Kakutani representation theorem

we obtain a Borel probability measure f‘ on K4 such that
(3.1.4) 72 (D) = o,
$r= J Pl (PpeB)

But a subset K< K, is a Borel set in K/ if and only

if it is a Borel set in H (endowed with its norm topology).
Thus we can consider that M 1is a Borel probability
measure on H with supp @t T Ko+ Any such measure will

be called a time average of the individual solution u(t).

— - - -

m=1,2,.. ; see Sec. 2.1). Then ¢H€ € , thus

£,
(Bt = i g §7 (el o
> °

o a)
for a suitable sequence {%}}j ¢ tending to « From
=/

(2e3484) we infer easily

- i—~
(3.2.1) (iR, u@l2de = (¢ ue)lPdr =
2]

(24
- ~4 2 ~2 -1 2 .
whence
JUppali ) = »-2 1 16> (=12, ).
Letting m —» oo , we can apply B. Levi's convergence

theorem, since ’lf;1éiﬂa'/” ((U-“ﬂ , obtaining

(3.2.2) Snaq@apw) = va 3% (5>

Ad (2.4.3)., Let §5 be a test functional and for
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some k,m(=1,2,.. ), set )5 (u) = qﬁ( B, u) =and
blu)= 6(Bu, Ru, p)) (UL E FT).

Then the functional

i) = »(u, Pra))) + blw)— (£, w74l
belongs to ¥ , thus

. I—é.
(3:2:3)  [Bfajefure) = Lo é_ St
7T

It is easy to verify that, since P is a linear continuous

map from H™!  into H*, the function 4 (u(t)) 1is abso-

lutely continuous on any compact interval of [0,00) and
jg/ yiact) » LUt platt)) >=0O ae o (0,00)
so that

(3.2.4)

£,
$ P Atutt)), ptuiey)>ole = W“o/—;%/ﬂz/‘*// y
o ’ .

Z
+
¢ 2
Or, by (2.2.2-3), we obtain

(3.2.5) [ <AW), pld>— @) =bluu, i)~ blu)| =
é» “o(Pﬁu, Ylu), u~ /Za)/+ [bu~Pu, W’/U/,a)ls
K/ ) ) . L
< 2 (j%j,l A7) ¢, llullfu=-Bul= 2¢g A (s21¢01)-

el Rl < a5 0 3B e wem g =

«,

/,
= 2.9; ;}A?

X ey (we Y

where ci is a constant depending on 2. and also on 45

The relations (3.2.3-~5) yield
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] f CAle), plle)> d,q/a)/'é 2 :1,::” (?éjf' nan el le) +

ﬂF//{Q%w éé'gféa:)/27éxﬁ7%7/:£

L‘)oo

P

7

< 2¢ ﬂ;/f 9/;/9- [ St ln) + /m / / u/c o/zj

so that, by (3.2.1-2) we obtain

—_— O

/e
tef b H2 4

| [ <A, gty dpt)| = —=5z5— " &

for k —>oco . It results
f< Alu), ¢/ (Ej/>d/z/a/ o.

Letting m~» o2  and using (2.4.1-2), the property 29, in
the o rerz
Sece 2.4, of qé and Lebesgue's dominated convergenceﬁﬁé
obtain (2014'.3).
Ad  (2.4.4). Let 7>(6') be a non-decreasing twice

continuously differentiable bounded function on [p, oo ). Let

‘tb =0 < t. £ - - . < %t . = tj be such that

¢ # Fh,

the t}k 's do not belong to the exceptional set in (2.3.4).

We have

- a . _
P ClulepP) - gt = 2 [C1ec 1) = (140 9] -

b1 2 7.
B il G ones B G fute e, WL Il VG N

/<::

i

/, Krs

o) / 2] (o, wlrl) — o preadehp® J ol

I\%

I
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,6, .
— 2 O/ ;"//af(zv/“’) LOF, ale)) — vygusesp?] et

as m?(x (t_fkf»; — 'z‘;;,q }=> 0, because {u(%}lﬁ' is

continuous from the right in any point outsidethe exceptional
set in (2.3.4). (Here above O < %\:?7 Jk=901,.., %'"{,

are suitably chosen.) We can thus infer that

; Z 1;" 72 %]0/#%
(3.2.6) Lemr = S o tnl) ) [ wic))— ol Ruldl >
“/ME’P(:)Q ;' &
Z = 3 /) y/’%(r,y@jﬁ/é“ =0
-}a’fmfﬁf_; = J o e [l 4
g F 0
for any k = 1,2,«44 » Let us suppose moreover that ?‘9/’( G )

is boundsd on fo, @ Yy, Then for a fixed Z(m,z,., )

we will have

ty y
Ge2.7) | % 3 [¢ (@) — ¢ CRuoR) - [ ¢4 ue) —

e
- VNf)&a(‘c‘)ffmj@Gv =< < (4+2g) % SJ}(I*—%‘)“&”%{W -

where (see (3. .1)) the constant € depends on _Q,f, ¥

and {(9;; , but not on £,k or j. For p = 1,2,,. let

denote by dfP the set of those t € [o, té] for which
2

u(t) € 3%, = {wé‘ HE . Ifmg‘ea%{o} and let

Epe = A {IG-Ruls we R
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~Then g , —> 0 for { —> oo and, by (3.1.1) and
, .

(3.2,1) we get

+ e’ mecw'/[‘?/yz]\ /gs)""

v 08 - é -
D T T e %
/b,f 7 c’ /62 .ZL[" / //Q(Z’)//AG/Z“:‘S
[0(1‘7\%} 7
C/f’

————y

~"‘§£,:b,g ~f~ /é&

where c¢'-¢" are some constants independent of 3},}{,8,13‘ In

- virtue of (3.2.6-8) we have

(3:2:9)  Lpx / CIBat)*) [ alr)) = I B aco ¥ e =
75““*3'00
7

y
= —cr# A ) /@fw 7’. = —-c (/?‘“%)/é“ Cz/

But ?,/(Ugce/z) [(Fe)—» ) Ru //?éeé?%zgg, thus
(3.2.9) yields
[#C IR 0)~ 1R a] Apte) >
= -l )05, 7 <62,

Letting first 4?~q>cx> y Secondly p—>» oo and finally

kK —> oo we obtain

Guzorey SO [(fa) ~viral®] farn) = O.
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In (3.2.10), ¢ is any non-decreasing twice continuously
differentiable function on [o, e¢ ) such that

2o (o - L

#
0 7 /i‘?"/&)/dfoo,
Consequently {3.2.10) will remain valid also in case go’_
is any non-negative continuous function with compact support
in [o, oo ); we can thérefore easily infer (2.4.4) from (3.2.10).
| This achives the proof of the theorem.

3+3. For any set & H let denote by <(t,) (toza 0}
the set of all values u(té) of all solutions u{t) which have

their initial date u, in ¢5 .« It can be shown that wh@never

O
¢G> is a Borel subset of H, the set e@ao(t,) is measurable with

respect to any Borel measure on H (see 123 §>I_f,,‘2 )+ This

allows us to make the following definition: A Borel probability

measure fL on H will be called aceretive if

(3.3.1) (@ (1)) = & (w ) (for all 2 0 and Borel sets
= 1.)
Since for any set @ <~ H we have

(3e342) w (t1)(tp) & o (t1tty) (ty,tp = 0)

it results easily that if M is accretive then actually
FL( ¢ (t)) 1is a nondecreasing function of t & [o, o0 ), for
any Borel subset ¢ of H.
d .
In case n = 2 (see Sec. 2.5), then any stat%ﬁéry statisti-

cal solution is acceretive, since

u(act)) = @ (stw) = p( sty (SHw) = plw)

for any t 2 0 and Borel set & H.



- 20 -

3ol Theorem, Any time average of an individual

- - o -

solution 1s aceretive,

Proof. Let w(t) be an individual solution, t,7> O
and K a bounded subset of H, closed ink ™1 . ror ué Ho
and t >0 klet d¢(u) denote the distance in H“; from &
to K(t); for fixed %, d () 1is continuous in the topology
induced on H by 11, thus weakly continuous on the bounded

sets of H. Moreover for every p = 1,2,.. , there exists a

q (= 1,2,.. ) such that

(3elte1) d‘t‘ (u(t+t))) = %& whenever ofo(ée(‘é“)):é %7‘3””*6{ t2q

(24

(The proof of this fact will be given in the next section.) Thus

if we set

| 7z f AGl4)>% | < F )2
& (1) = L s 2P

i A< pelf F foct,
then
(3.4.2) s,b(u(t‘*tc)):)é implies y)(u('t})}.i (for any tz=0)

But ?asp g;‘tg ; therefore, for a suitable sequence '{f;%;i

converging to o0 , we have

fptoapn) < £ / ! ) = = tin £ / U Cuctatsy)att
J“”" v

and

Sptpt) = L / Fracests
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where, in virtue of (3.4.2)

l/?/«(ﬁf}/% ey {t €0, 57 : w/c((f+2;)y>//f}%
% =
7o 7
z £ 7z . =
5 7 ;: e {telo % ] wlecr)) > 1 F
tL
< £ . Z #
Y ,? b/-?/zc/f//azf

We can conclude that

Jptoua) < £ S = A KD,
Letting p —> o we finally obtain
(3.4.3)  pOINKG ) SHMONK) , Le p(K)=p

Let (23] be any Borel subset of H. Then there exists
a sequence Kl 5 Kp oy we of bounded subsets of H, closed in
H'l such that f‘( o™\ §;/‘ Kj) = 0, because [ regarded,
as Borel measure on H'l. g;lregular (see (871 , Chap.III, §.9 )y

consequently
(73] = ; > ?L
p() ﬁgﬁ/ﬁ(’i;) fg:/o p (K1) = pwlt)),
where we used the obvious property Kj(ta)fécv(%b) (}=:14§b>~.l
This achives the proof of the theorem.
3450 Proof of (3.4.1). Suppose that the property (3.4.1)

does not hold, Then there exist tyx € [o, o0)(k=1,2.. ) such that

(3.5.1) dté(“(fé*%o))>;2£ and o (wf )= O Sor A>eo;

since df_ (u(t+to)) and do(u(t)) are continuous (because

o

u(t) 1is weakly continuous in H), we can suppose that u(t) is
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AN
LC{/AC’(’ 9% ({y( W/”/"/‘;"‘{,('J)/;”<o«;
strongly continuous from the right at each t,(k=1, 2,.. ))/“"“‘. T

Therefore if w7 (%) = u(t+t,) for t &€ [0, co ) then
v“k(t) is an individual solution of (2.3.2) for any k=1,2,.. .
Therefore, by (3.1.1) and (3.,2.1), we have
o
e N2
( () =@ = (14 >+ >N §2)*  (tzo0),

(35 2)}
| { C,Si{lfg(r)ﬁn'a/ré vip + VRN £2E (tzo)

- for any k=1,2,.. . Moreover for 0 &1t =t; <=2 we have

ta ta
I ta) =% )y = SUFO,. ot = (A, ot <
: A : )
G e 3 %
< » (@t + ¢ § 1Ol MBI +
t, 1

TR (-t) € v () "'(< v, (f)*%%) e

e &a—wi)"(j b st ) e 351 ),

from which we can infer that %(t)(k*l.z,.. ) are equiconti-
nuous (on any compact interval < [ 0,00 )) as H™l-valued
functions. Since -{u € H lu!fzp} is compact in
H'j‘ s the Arzela-Ascoli theoren all«ows us to select a sub-
sequence { vy ( ks“{ Ky converging in H"1,
uniformly on every compact interval <& {' 0, o )}, Let =(t)=

Liom V{«:- (t) for +t >0, where the limit is taken in H-1,
]

d‘a—a-aa

Since on bounded subsets of H 5 the strong topology of H-1 ana
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the weak topology of H coincide, ar(t) 1is an H-valued
weakly continuous function on [fo.cw). Moreover in virtue

of (3¢5.2) we can also suppose that {ﬁq<, (t)}% is weakly
convergent in Lz(o,t;H‘) for all :?Q:JUsingjkhese properties
we can infer now, as in the proofs of the existence of indivi-
dual solutions (see L 23 ,Ch.I, § 6 and [izj , §.I1.2 ),
that +{t) is an individual solution of (2.3.2).

Since W (0) = u(ty) and dy(u(ty)) —>0, it results v(o)&K.

Therefore w(t,) & K(t,). Consequently, because vi(ty,)—> v(t,)

in H‘l) we obtain {see (3.5.1))

-’—‘-f; = d (u G, Ft)) = d, (% () = Uuéj&o)_v&o){gm«-» o,

that is, a contradiction.
This concludes our proof.

3ebe Let n =3 and define 1t(u,) by
aup{t,: “Oé;ZZQS(fa)} c‘f - Hﬂ‘)

'(3-5'1) tlU, )= # w, € HNH?*
¢ o i

O

Then (see Sec. 2.6), t(u) is a Borel function on H, since

{u: t(u) >to} = DRs(t,) is open in HY (for any t,7> 0)

and thus a Borel set in H.

3.7. Proposition. Let K be an accretive Borel proba-

- — ook D S @ - - P -

bility on H. Then

< 4 - ...5:. —
(3.741) either %d/&i(u)- oo O g*(‘:(u) 5(/((“} = 0.

In the last case, [ ig invariant with respect to {Rs(t}

*

feso

Proof, Let us suppose that

- - o
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(3.7+2) [ = g——‘-‘-u duw) < oo

and let t, be fixed, t,7>>0. It is clear that

e "‘k
k I,L,C{LLGHS 1 : -, < t(“)éé—l:#t’}>

£

and that, for j 2k+4,
-1 ) e -
{u €H= “7‘—-— to < tlu)= —é—ﬁ,_}({:o)c:{ue H: i’-—E——’ t,< T < L_k k to§‘

Therefore, by the fact that fb is accretive, we obtain

I = S k H({“eﬁ‘f-'%<f(“)é%fo})s

b uens S o= 220

whence

(3.7.3) g [t) -t, 17 o(/q(u): ({’Zfo L =TI,

fueH: >t}

Integrating (3.7.3) with respect to t, € [}9,71] s we obtain,

by the Fubini theorem}

7'7
7T = [{ Of T~ T T 0 i (00 =

e Tita,
= f{f [:Z//:z— z‘a]"dzj,}#/f// =

o
= [ [ 45 555 Tt # S
{uet: t)>7} TwesT t)= T}

which plainly implies that M ({uc H: ¢te) < 77}):0, It results
readily that t{(u) ==09)fL-a.e.; plainly, the last conclusion

is equivalent to the second alternative in (3.7.1).
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In order to prove the second statement, let ¢) Dbe a

Borel subset of H and let <, = RS(t,) ‘e , where t_ > 0,

Then )
507.8) (Ww)z pCRSBIw,) = fu(eot]) = (W) = [ (RSCt) ‘)

and -analogously ‘
(3:7+5) lu(:H\w) > fL(?ESC{*o)"’[H\w)),
Since
HN{ (RSt w)olRse (Hywl = HN Dygr )
is of null [ -measure, (3.7.#~5) imply that
(3.7.6) (@) = pu(RS(te) w).
‘Because in (3.7.6), tg>> 0 and the Borel set W H are

arbitrary, we have thus proved that [ is invariant with respect

to § RS

tz0°

(3.7.&) will occur whenever
(3.7.7) Cllaloluw) < 0.

This fact was essentially already known by G. Prodl long time

ago (see E33] ) e
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3.8, let Xec'H (or X< HI) be given. An individual solution u(t) is
weakly, resp. strongly, asymtotically convergent in H (or in Hl) to X if

t
(3:8.1) lim % J XG (u(r)) de = 1
: too  Jo

for every neighbourhood G of X , in the weak, resp. strong topology of H
(resp. Hl) .
The set X< H will be called an asymptotic attractor if

() X is weakly closed in H ;

(o) there exists a weak neighbourhbod VX‘ of X in H such that

any individual solution wu(t) starting from V {(i.e. such that u{(0)= VX)

X
weakly asymptotically converges in H to X ;

(oan) if Y < X satisfies the properties (o) and (o0a), then Y =X,

3.9. Theorem. Every asymptotic attractor is the weak closure of the support

of an accretive stationary statistical solution.

Proof. Since any individual solution wu{t) satisfies

(3.9.1) Tim |u(t)] < J,—’f—'— ,
o 1

the set Y=XN{ue B : lul € v 1 kzllfl} will also enjoy (a), (aa). Thus by

(ax0) we must have Y =X , i.e.
(3.9.2) Xc {ue H: |uf ¢ vl 7\;1[5}} .

et K= {ue H: lul g vul AIIlf|+1} . K is a compact metrizable space in H
endowed with its weak topology, thus there exists a countable system:
N K, G

{Gl, Gyreens Gp""} of weakly open sets in H such that G 0Ky cuny

1 2

pr\ K, ... form a basis for the (weak) topology of K . Let us assume that for

a fixed Gj , we have

€ 1t

t
(3.9.3) 1i J Xg (u(t)) dt =0
£ o OV
X
for any individual solution u(t) . Then it is plain that X~G. will enjoy (a)
and (0o ; with VX\G = VX) , thus, by (caa), X\Gj =X , i.e. ij\ X=¢.
Therefore for every jGé such that Gjl\ X # § there exists an individual
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solution uj(t) satisfying
1 t
e & 1o XGj N Ve

in virtue of (3.9.1) the 1lim in (3.9.4) will remain unchange if we replace Gj

by Gj{\ K . Thus we can infer that

t.

(3.9.5) L J Jp (u, (1)) 4 0
.9, lim —— X u, (1 =% >
t. G. 0 V_ 1 K
pr jpJo ] X J J
for an adequate sequence tj < tj < «4e =—> o, By n°3.1-5 we can even assume

' 2
that
t,
| g g v
(3.9.6) lim E~—-J ¢(uj(1)) dr = j@(u)‘duj(u)
p>e jp ‘0

for every real  (functional ¢ (weakly) continuous on K , where H is an
accretive stationary statistical solution, Since individual solutions are (weakly)
continuous, it is plain that (replacing, if necessary, uj(t)[ by an adequate

time translation uj(t + toj)) we can assume uj(O)ea V., . Let now ¢ be any

X
(weakly) continuous functional on K such that O ¢ p<l, ¢u) =1 ina
(weak) neighbourhcod G K of X in K . Then by (3.8.1), (3.9.1) and (3.9.6)

we have

t, t.
. 1 | IP 1 [P
th dy. = lim T ¢(uj (t)) dt 2 lim -{'—J XG(uj (t)) dr =1 .
pr jp © p> jp ‘o

In this manner

1, ¢=1 in a (weak)

1, Since X

for any (weakly) continuous functional ¢ on K, O-s ¢

N

neighbourhood of X in K . This implies obviously that uj(X)

is weakly closed, it is also strongly closed, thus we can infer that
(3.9.8) supp pjci X .
We will prove now that

(3.9.9) (supp uj)f\ Hj.* ¢
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where H, denotes the (weak) closure of Gj Y X . (Recall that we are considering
the case Gj(\ X091

| Indeed let ¢j be a functional as is ¢ in (3.9.7) but with X replaced by
H, in its definition. Then as above we will infer from (3.9.5) (instead of (3.8.1)),
(3.9.1) and (3.9.6) that

.9.10 . du, > X,
(3.9.10) oy auy 5 %,

Again, since &i s up to its designed properties, is arbitrary, from (3.9.10) it

u- Ha y, ?C.
( J) ‘s J s

whence also (3.9.9). Let us set

(3.9.11) no= Z ej p. with Z

e. =1, €.50 (for G. N X # &)
¢, VX #9 ] Gjnx%(éj ] J :

It is plain that P 1is an accretive stationary statistical sclution, which by

(3.9.8), satisfies suppu c X . On the other hand (3.9.9) shows that
(supp u) O Hj # ¢ for any j such that ij\ X+£60.

Since {Hj(\ X Gj(\ X # ¢} is a basis for the (weak) topology of X it results

that suppp 1is weakly dense in X ., This achieves the proof.

3.10. Corollary. Any asymptotic attractor bounded in Hl is the support of an

invariant stationary statistical solution ; in case n=2 , any asymptotic attractor

is bounded in Hl .

s oot o

notations of n® 3.9) supp u will be bounded in Hl . In case n=2 , even without
any supplementary assumption on X , supp u will be bounded in Hl (see n° 2.5).
Thus in ﬁoth'cases, supp M 1is compact in H , thus also a compact subsetbof K
endowed with the weak topology of H . In particular this implies that . supp U is
weakly cloded thus, by the preceding theorem,k supp ¥ = X .
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§ L,y Analytic nroverties

bel, In order to unify the nqtation we shall set, in case
n =2, t(u,) =co and RS(t)uy = S(t)u, for 2ll uy, & H' and
t > 0; this is justified by the fact that in this case S(t)ug &
€ C(lo,00); KL o

Thus we can state our next results in an unified manner,

for both cases n

]
N
o)
o
(o7
3

i
p S

b2, Lemma, For u, € H1 1e

R - -—‘/ . "‘/ -
(4,2.1) tolug) = ¥3 min -{ (¥ 131’2 L1 )7 Hugl 9} (see (2.6.1))
There exists a constant c,, such _that +t(u,)= c,, tolug)y
RS(t)uy, is analytic on (O.cﬂjto(uo)] as a Dp - vzlued

function (D, being normed by (Awx| ) and

(La2.2) [ ARS(t)uo| = Cig V"{ PRGEIRE R
- \ . Y |
fmax {55y 2150, ol F]S Fma {8 v gL o} +

+ Y5 forall 0Lt <o, tolug)

{where Cy_1a depend only on () ).
t o
_Proof. Let H, ., resp, Hcf , denote the complexified
-+ 4 . n :
space of H, resp. H-* , that is the space of those C -valaed

m
distributions {uj+ ivj} iz on_Q such that ‘U-jvvj E H,

resp. uj,vj e Hit (1 = j= n). By linearity, A P and B

extend to a selfadjoint operator in H , resp. to the grthonor-
mal orojection of H on 4:w1+..+ d:wm and respectively to a

2 3o n 1 il s -1
bilinear operator from HG X He uﬁblﬂz.

Consider now in the following differential system

PmHC

(fe2.3) flg Upg (5) +Y Ally, (5)+ By Blm ),y (5)) =L, F
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which for small l§( has an analytic solution with values
in Ppifand such that up(0)=Ppuye For |&| < T/ and
3'=/5e19 we can easily infer from (4.2.3) that

O/L/'M (5) ] U L A
i N2 = « /5/) = S z '
E%’ /{U,M(S’Q’ )U Re (C 5 ) T ) o

_ w( M/S) Ay /S))-

= —Re ¢, //4&{,,,/5)}9“-—- Ro o*? (3(%(5]/%/;/‘2/)%@)

+ Re o (£ A4, () = —(vers) | Au, (5)[%+

+ s Wt N5 | Aty B) T2 4 V- Aty S)] =

5 /2 27 f |
=~ 228 4y, 5)[*+ ) “'17;}%;#-3—(9-//%/5)/163

" that is

L 2 27’ . Y2
(2] 2 i I # (veos Oty )%= L+ g o,

whence

7§f
//z/ /5?"9)// A, veeo ) 1, /5 W= "= ff;y 29 3ery ey

Integrating this differential inequality we obtain easily that

_ o112 s 0 12
(4e2.5) (u, Seb))f~ =4 WZ'{;?} 1/’254_717 R //4/0//"‘_/?

as ‘long as

— -2 JF? -g
(h.2.6) ©O=s= LG, (3 cor’t) omen £ (4 V7% %) VY4 f
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where ¢ is a suitable constant depending only on C3.

11
i.e. only on _{} ; plainly we can suppose that £¢, < ¢,
(see (2.6.1)).The preceding conclusion (4.2.5-6) shows
that ©,(S) which was defined and analytic in a neighbour-
hood of % = 0, actually extends to an analytic solution of

(4,2.3) in a neighbourhood of

(4.2.7) Alug) = -{se.l 1 0=s .'s:..s(u(};@) =
- "(7 :
=8¢y, (\23 COS3(9) min [(A;V"“a(:ifw) 1l ] ﬂ 93 }

Also by (4.2,5-7) we can extract a subsequence ‘-{Umé () }«3‘»”:
such t}iat it converges in HC (by ’che‘veotor version of the
classical Vitali's theorem, which can be applied since

a{u & Hé, o lu | 56} is compact in HC for any 05;0-‘4&0)'
uniformly on every compact set included in the interior A(uo}o
of A(uo)k. to an analytic HC -valued function ug(S ).
But we can prove, as in 1 1d, § 4, Sec., 2,c), that the
sequence {um(t)}' converges in H, uniformly on [O .s(uo;'O}J
~to RS(t) 2 5. We can therefore infer that uo( ') 1is the |
analytic Hévazued extension to [_\,(uo)c of RS(t)uye This
uniqueness of u, (¥ ) implies now that actually *{_um (S' )}My_f

is convergent in H ¢« uniformly on every compact subset of

<
Aluy)®, to u (¥ ). Therefore the same is true for the following

convergence in H

C
AR Uy (§) —= AR U(S) for 7 —>e0,

where Kk = 1,2,.,. -‘is fixed. It results that for any compact

set K & (uo}o we have, by (4.2,4.7),
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S1AP w(1* 13)d15) df = Lirn jl-A?'?(u,,,,/QI“’/YIo(/S]aééé
k M ~» O K

= bon flAu (P S)AIS) G <

>0
s(G)

= c(K)- Aco/o{_f (A w (52 el : m=t,2,..., Be
A4%1‘56’9<f5=>6y pnlbrtecZd ,;25
=< (K7, £)C1+ tuop®)?

where €(K), resp. c(K;»,f) are some adequate constants

depending only on K, resp. K, » and f. Thus we infer that

o c/{{/3d3<-c_l<>(5)/2'15lo(MOLé‘'<0"

The sequence 4?\APkuo(:g)[ € Yy being increasing it re-

sults that
(4.2.9) Lim (/47) MO(S)/ coo a.e. on K,
k> o0
It is easy to check that if for a W € H we have L lA FE:

&£ oc then vye q% and

2 .
(4,2,10) lin [Avy - APv, 7 = 1in ( [av i “ppeve t ) = 0.

ko0 k=00
In this manner (4.2.9) implies that uo(S')EE Dy aee. in
zﬁ(uo)o (since K bis an arbitrary compact c:;é}(uo)o).
Moreover (h.2.8) and (4,2.10) imply that

LIA%(S)J“ (51131 df < o0

and. consequently also that
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(Bo2.11) S\Auo(g) -ARu, (504 2 x| als] a@ =
S[A%(m - lapgu (5012 Jis g5l a8 —>0

for any compact K o= A(u,)%.

Since APyu, (¥ ) is analytic on Ao)® for any k=1,2,... ,

the convergence (4,2,11) implies that the function Auy(%)
is also an anzalytic HC ~-valued function on the whole Ai(ua)o.
Thus, in particular RS(t)u, is a Dp-snalytic function on

(0, ¢, to(u,)] < (o, s(uo,onc‘:A(uQ)O

In order to obtain the relation (4.2.2), let us first re-
mark that the disk {?5 3 ’g wﬂ‘f{: %—t} is,for O<*tsfcut0(u0},
contained in A (uO)C’, so that for such a t, by the Cauchy for-
mula and (4.1.5),

RN AT )37 ds |< 2

gﬂ

o

(4e2.12) ‘4:&2&) }

. Max {A ot $ 1 luoll ]

Using now the equation (2.3.6) (which is satisfied everywhere

on (0, s(ﬁogo)} because of the anzlyticity of ‘éf%Zf/4Q¥%j there)
and the relations (2,2.3) and (4.1.12) we ob%tain (again for

0™t -écﬂ to(uo))

Id,dc(ﬂ{
pre

VIAu (t)]| = + [ Bluo®),u,ct)| + 151 =

I\

= [ "ZQ_CJ‘) |+ ¢ lluocolf A, )] + 15
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< I %)) + G {{uo(t)t(% lﬁruo(t){y‘" + 14| =

= {"{’;‘&(H} b 2 | Ak, ()] +

’+-f§.. ({uo(t)(ls + I,
2y

whence (4,2.2) vresults in virtue of (4.2.5).

L3, Corollary . For \Aé}ﬁ, RS(t)u is a Dy-valued

—— -

analytic function on (0,t(u)). In case n=2 'ggg ué&H, then

S{t)u is also a DA' valued analyvtic function on (O,eo).

the
The first statement is a direct consequence of /preceding

lemma, while for the second one we use the fact that in case n=2
‘we have (see Sec. 2.5 and 4.1) S(t+tjy)u = Rs(t)s(to)u for
any ué&H and t,ty >0,

4,h, Theorem., If for a stationary statistical solution:

- n - "

f{lwe have

 (4,£;,,1') supp}L c {ue Hi; llull = bt}
then

(a8.2) supp . < {ue,: [Aul=b
where |

¢ it . "l S ‘ 2
(wa3) b=q, v N (e {2k 5, 18, })p , z(maz{f'"‘x,’3!&23:;"1,,}}1«%1}

ﬁfﬁ%ere~ <H3 | is a suitable constant depending only on {2 ).
Proof. By Lemma 4.2, if flugll = by and
"""" , » -4 %
(bobt) ty = e ¥ min { (v 41D 8T,
then

k 2 [y Ve yma o maf e L ]2 }'
(hois)  [ARS(t)u [ €y v {A, v ot [mar { R v S, L5+

rmax 3% vt 51, b, 317 497 (5] = 4
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with Db, as in (4.4.3), where ¢, is chosem a suitable
large constant, depending only Caa thus only on {2 .
Since Supp p is bounded in H?T , pblis invariant with respect

to '{Rs(t)} t2 o0 {see Sec., 2.6), hence, by (4.4.5),

z p({ued s 1Aulsh}) = R(RSE (ued iz 1)
> p({fueH*: qul=bt)=1.

We can now infer (4.04,3) because {u c DA t \AUIS' E&}'
compact in H.

b4e5, As a direct consequence of the preceding theorem
we obtain readily from (2.5.2) the following

Corollary. et n = 2, Then any stationary statistical

e e

solution |t has the support bounded in D3 more precisely

(4250 ) supp 0 <= {ue 1 lAulsc, v exp (o, v oi51%)

(where c14-15 are some suitable constants depending only,fl Yo
4,6, Another consequence (however less obvious) of

Theorem 4.4 is the following

Corollary. Let F, be a stationary statistical solu-

tion with a bounded support in Hi. Then for any +t .2 0, we have

(Lb.6.1) RS(t)supp F» = supp [+
Proof. Let b and t; be as in (4.k.1), resp. in

(Gob,b); then it is sufficient to prove (4,6,1) for O£t <tq.
Since, supp K is closed in H' and, by

Theorem 4.4, bounded in D, supp & is compact in ‘H1, But BS{t)
is for 0 <t=ty continuous from Dés(t) {endowed by the

H‘—topolagy} into H*. But, again in virtue of Theorem 4.l
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DRS(‘Q) D supp M for 0 =St = tkl. We can therefore infer
that RS(t) suppft is compact in Hl, and so much the more
closed in H, for any 0 =t = ty. Fix such a2 t. By the inva-
riance of M  we have tL(RS(t)supp ) = 1, thus RS(t)supprL‘D
Dsupplu, . On the other hand if G = RS(t)~! (Hi\suppﬁ, )
then G . is open in Drg(t)s henceforth in HI. By the inva-
riance of o we have (L(G)ﬁi, hence for K = (HNMG)AAsuppl =
=(H4\ o) n Supp L which is closed in H%, we have H{K)=1.
But K, being closed in a compact subset of HY (namely Suppfx_)
is compact in HY, and so much the more it is closed in H.
Therefore K :‘:)suppfk {since yV(K)-“:l); Consequently KX=suppp
which ovviously implies that RS(‘t)supptA < suppft .

4, 7. Theorem. Let f¢ Dbe a stationarv statistical

nar . —— -

solutiun with a bounded support in H*. Then on supp b the .

topologies induced by H, H' and Dy goincide. (Thus Supp/u-

is also compact _in Dpt)

_Proof. By Corollary 4.6 and Lemma 4.2 there exi’sts
an 7] > 0 such that for any « € supp & , RS(t)& can
be extended to an Hq: -value‘d analytic funVction w( X ) de~-
fined on a whole sthip Zr- {5’6@: | ITmx ) <2U and,
lau(g) | == for any § &« _=_ and some constant = < 0o
depending on fL ¢ but independent of u € supp f& and S€_~>

plak*inly, we will have also that

RS{tg)u(t) = u(t+tg) (t,=0,~co<Ct«< oo )

Therefore, if u,v &€ SUpp (& , We can infer, for w(t)s w(t)-

~-v(t) and any t € (-oo, oo ), that

1 0?

P || wit) 1%+ L aw(£)[ % = = dlu(t),w(t), Aw(t)) -
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- b (w(t),v (), Aw(E)) = eg {lulR)( - AT w()| L Aw ()] +
bog (WO« (8 o] < o] = o5 AT [l (f 2.
'(Aw(t)[s/g‘ + 03» A;‘ff’ & (W) |- | aw(e)| =

= yiw(e)|] 2+ f( Aw(t)[ ?

where X is a constant {with respect to u,v & SUpPPK and

- 00 & t< oo }e Thus we can easily'conclude, first

. = LAYt .
wet) > = e TIwER - <t tan,

and then, secondly,

. |
(taweict = v1 ™ ue? (o <tz t<na;

this last relation obviously implies

(+.7.1) ?(Aw(‘t)[zdv = 2’1 \w(o}}
o

where Y= 2 viof e ., Consider, for (Sl=7%,

S

F(S) = gAw(z)dz.

o
Then F(S ) is analytic in {S:[5)=7}, |F(S)| =21 for [Sj=7
and
(1.7.2) R = %2 %) wo)* for ost“é-fz.
Let ¢ denote the maximum on the circle %S ¢ = 19@}

of the harmonic function (& ) in '{S $ [S’ 472 ,5"5,1:‘ {'o,}:?}
such that (% )-=0 on $52/%]| :’]} and CQ(S') 1 for ge [o;1),

Then the Nevanlinna's classical maximum principle yields

1P)| = [max {1, (szp()‘ ‘“’}] [772é17 {2 5 ()/””*7”’2 iwfo)l”i)c"}]
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for a1l 5, S| = 47 . Thus (w/fA switable conslants )i ;)

Lwio)l = F@) = 77"y W@ =y lwl ™

-1 5y=1
whenever {w(o) ‘ < X 7 + We can finally conclude that

for some positive constants %, (depending on _Q, v,fy and

on {L' in case n = 3!) and wW>0, we have
(4.7.3) [Au -av | = Y‘, | u-v lw/:z for all u,v € SuppM .
It is plain that (4.7.3) is sufficient for the validity of

the theorem.

4,8. As a direct consequence of Corollary 3.10 and Theorem 4.7 we have the

following

bounded in ‘EA and the topologies induced by H , H1 and $A on X coincide.

4,9, In the case n=2 , Theorem 4.7 and Cofollary 4.8 concern any stationary
statistical solution, resp. any asymptotic attractor. In the case n=3 , these
proposition concern only those stationary statistical solutions , resp. asymptotic
attractors, which have bounded supports in Hlx, resp. are bounded in Hl.
Moreover as far as we are concerned the existence of nontrivial such entities is

in this case (n=3) not known. However we have the following

Proposition. Let n =3 and let u be a time average of an individual solution

(see sec. 3.1-3). Then

(4.9.1) J]Au]zls duu) < o
(Thus, so much the more,

(4.9.2) u(ﬂk) =1.)

s e v e

Proof. Let wu(t) be a fixed individual solution. For every t, < (0,~) such that

ﬂu(to)“ <o (i,e. u(to)ea Hl) we have, by virtue of Lemma 4.2,
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laa(e)] < e, [(Cemt ) TenluCe 1% (ulhuce Y l+1]
" for all t such that
e <t + el QelucelhH ™

where cilwlz are constants independent of tO and t (but depending on Q ,

v and f). We can easily infer that if for some p = 1,2,... we have

(4.9.3) luce %< p
then
2/5

(4.9.4) zAu(tonp)l < e, (1+p)
where

- 1 2 "1
(4.9.5) tp c11(1+p )
and c{z is a constant independent of t, and p . We set

a (0 ={os e e tip-Te hue)l?< p)

and
6, (t) = (otpcwvcpl nfo,t] .
Then
(4.9.6) meas qp(t) » meas @p(t) » meas ap(t) - Tp .

Taking into account (4.9.3-6) we obtain (for any m = 1,2,...)

1 jthPmu('t)fz‘/S av = ¢ j |ap_uc)] /3 at + %j . lap u(0) 2%
tJo ‘ w o, thp (e) ™ '
NO) Lo U By
p=1
1 <& 2/5
< - {Au()] dt
‘ Z:JJ@ ()
P= P 2/5
& 2/5

meaé ([O,tj\ p\=Jl (’?p(t))
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2/s

t @ 2 1/5
1 2/5. 1 " An 2 !fl
: JOIAPmP(T)l dr < ¢ E ;c12(1+p) meas gp(t) * = (Ju(0) |* + 2)
p=1 VoA
oo
. meas([0,t]\ U s ()
=1 P
P
c" o Cl [ ] .
12 12
= E {(1+p) meas 3p{t} + = (t E meas 3p€t}}
P::l P""l
C" " cl te
12 . 12 ¢ =
& (1+p) meas aP(t) + ==t | (meas ag(t) *Vr?)]
p=1 p=1
C“ o ct sy -
12 wonly 12
= -7:—[2t + § :(p 1) meas ap(c)]+ T Tp
: P t i cim p=l
s (243 ﬁﬁ(T)Hgét} o
¥ 12 t ], t
vhere ci%'—”" are two suitable constants independent of t (depending however
on @, vy, £, u(0) and Vm}. Using €3.2.1) we finally obtain
t 2
(4.9.7) Tim 2| Jap u()]?/% dr g e 2 + 2L
: t m 12 2
s o] ?\1'\7
But  $(u) =,{APmp!2;5 is weakly continuous on any bounded set of H , so that -
from (4.9.7) we can readily infer that
2
(4.9.8) 18P u|2/% duu) € ot (2 + 1EL,
m : 12 A\Vz
1

for every time average u of u(t) and every m = 1,2,... (4.9.1) follows
obviously from (4.9.8), by letting m =-> = ,

a constant (for instance c¥2(2+k—1/2‘v"2]f]—2

; see (4.9.8)) which depends only
on Q, v and f but neither on the individual solution u(t) nor on its time

average u
4,10, Finally let us also remark a useful proprety of S(f;v) which is a
diréet consequence of Lemma 4.2, the estimation (2.3.7) and the fact that

RS(t)uo = Uy (t20), for any u S(f;v) , namely :

(4.10.1) sup{ |Au] 1 ue S5V} < =,
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§.5. Structure of stationary statistical solutions.

5.1, We shall denote by %;(f;v) the set formed by all accretive stationary

solutions ; obviously
(5.1.1) S (£3v) < S(E;5v)

and Qgﬁf;v) = 4(f;v) if n=2 . Let moreover R = {ue H : !ul < vﬁl A;llfl}

be endowed with the weak topology of H and let C(Ko) denote the space of all
real continuous functionson Ko . Plainly we can identify in a natural way (as we
did for instance in sec. 3.1), the sets $(f;v) and %;(f;v) with subsets of the
dual C(Ko)' of C(Ko) . Moreover we endow C(Ko)' , with its U(C(Ko)',C(Ko))
topology.

5.2. Proposition. %(£;v) and ﬁ;(f;v) are convex compact subsets of C(KO)'.

Proof. That <$(f;v) and %;(f;v) are convex is obvious. Since
K(£3v) < M1 = {re C(Ko)‘ : uuﬂ < 1} and the latter is compact in C(Ko)’ , it
remains to prove that <(f;v) and 6;(f§v)_ are qiosed. Using the fact that Ml

is metrizable, we can consider the cases when uj — p in ,Ml' and
{uj};;1C:€f(f;v)‘~or %%(f;v) . In the first case, sigce for all fixed k, m= 1,2...
km(u) = <A(Pku), Pm ¢‘(Pmp) belong

also to C(Ko) for any test functienal ¢ , We can infer that

the restriction to Ko of the functionals ¢

(5.2.1) j<A(Pku),Pm¢'(Pmu)> dp(u) = 1lim J<A(Pku),Pm¢'(Pmp)>-dpj(u) .

joeo

On the other hand for kym (see sec. 3.2; formula (3.2.5))

(u e ")

(5.2.2)  [sA®),B4" () = <A@, 2e" Bud>| < 2 5 22/ ”%H»

3'™m k+1

vhere cg is (as in sec. 3.2) a constant depending only on Q .and ¢ . But,since

‘(the restriction to ‘Ko of) ‘¢k(u)~=,HPkuu2 also belongs to C(Kb) we have
(see (2.4.5))

.JHPkunz duw) = lin jupkuﬁz ans @ « 227 E)?

J*‘)'OO

whence (letting k -—» «)

(5.2.3) Jﬂu}zz du(u) < v2 x'l'llflz .
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Taking into account (5.2.1-3), (2.4.5), (2.4.3) (the last two for “j) and the
fact that

' s ' 1
¢U(PmD) P ¢>u( Pul) (ue HY)
we obtain at once
' ' m
IJ<A(Pku> B 9" (B u)>du(u) | < T 7
k+1 AR |

whenever k>m . Letting k — o and then m — « we obtain the relation
(2.4.3) for y . The relation (2.4.4) for , can be obtained easily using the

functionals
@ = ¢"(J2 ul®) [E,0-|pu)?] Qe K
k 2 4 kK ?

which belong to C(Ko) (ky2 = 1,2,...) in a manner similar to that in sec. 3.2.
It remains to prove that if {uj};=1 c:&g(f;v) then p 1is accretive. By an
argument similar to that at the end of sec. 3.4 we can infer that it is sufficient

to prove
(5.2.4) u(R(t)) > u(K) (£20)
for any bounded subset of H , closed in H_l-a For p,q = 1,2,... , let us set

Koy = 108 B ful<p dp(u) < :11'}

where for a subset XcH and ue H we denote by d (u) the distance in H—l

from u to X . Obviously K is compact in H (thus also closed in H ) .
consequently by [12], Lemma II 2 +55 Kp (t) 1is closed in H e . Let v denote
the function (from [b,m) to [O <)) defined by & (l~k£) # (k=1, 2...) "
let -
= U K

pui D94

Then wr(de q(t)(u)) and wr(qu(u)) (as function of u e,Ko) belong to 9§(Ko)

for every k = 1,2,...) so that we have
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Jwr(dK (t)(u))du(U) = }im Jwr(dK (t)(u))duj(u)
Psq joe Psq

4 . : 1
> lim sup ¥, (K (t)) > lim sup[u.(K y-u({ue H ¢ ﬂu" > p})]
ST b B ity

j-+00
> lim sup u.(Kq) - —1-2— v-z XIllflz > lim sup Jw (dK(u))duj (u) - 1-2— v_z )\Illflz
joe P s % P
_ 1 -2 .-11.2 1 =2 y~lym2
= qu<dK(u>>du<u> sV AL ET > u®) -5 v AT
P p
that is
1 =2 .-1,.,2 '
e |
R < 5 v A |£1° + Jwr(dK (t)(u)) du(u) .
P »q
Letting r —> « and taking into account that K q(t) is closed in H—l we
b
obtain
(5.2.5) 1(K) < l?_-v‘z lelflz U (1) .
Psq
P
It is obvious that
02'6 K t > K v t > LR 2N L]
(5.2.6) SNORS SHOR

In virtue of [12], Lemma 2.5, we have also

(5.2.7) c(l;\l Kp’q(t)c K(t) .

Making q —> <« in (5.2.5) and taking into account (5.2.6-7) we obtain

@) € vl uke)
%

whence (5.2.4) follows at once (by letting p —> «) . This finishes the proof.

_ ; ; 1 . ‘ i
(5.3.1) supp # is bounded in H~ for any wm e S(£;v) (resp. ‘:Ya(f,\))) then

(5.3.2) supp B S(f;v) for any ue H(E;v) (resp. %Z(f;v)) .
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[In other words if every stationary statistical (resp. accretive stationary
statistical) solution has a bounded support in Hl , then actually the supports
are included in the set of the stationary individual solutions. Let us also
emphasize that the assumption (5.3.1) always holds for the case n =2, i.e. for
plane fluids ; see (2.5.2).]

Proof. Under the assumption (5.3.1), all measures ue S(f;v) (resp. %;(f;v))
are invariant with respect to {Rs(t)}tzo (see sec. 3.7-8). But then the extremal
elements of <S(f;v) (resp. %;(f;v)) are these measures p e S(f3v) (resp.
4;(f;v)) for which the functional flow {Rs(t)}tzo is ergodic (see [7], p. ).
Let * be such a measure. In virtue of sec. 4.2 and 4.6, for every u & supp H

we can extend RS(t)u to a ‘SA. -valued analytic function RS(3)u defined in a

. - ¢
strip ¢ = {Y& € : |m3| <n) (where 5 depends on §,v; f and
bI = {}lul : u < supp 4} , but is independent of u < supp u) satisfying also the

following properties
(5.3.3) |Ag RS(gduf < b, + 1 (z € 0)
(see sec., 4.4 and again the proof in sec. 4.2) and
(5.3.4) RS(t)u  supp u (= » <t < w)
By analyticity it follows at once
RS(t)u = (RS(—t)!supp u)—lu (t<0, u e supp ) ,

so that {RS(t) supp u} forms a group of homeomorphic maps of supp y,

~oo< t<oo
with respect to which y 1is still invariant. We shall consider now some remarkable’

functions (the first one suggested by [3}, {4]), namely

(5.3.5) ¢(t9 = J (RS(t)U,U).dﬁ(u) (-w<t<w).,
supp u
(3.8 0@ = [ (@s©uw) dw (mmctco)
supp 1
and
(5.3.5)  y(s,t) = J (B(RS(t)u,RS(t)u) ,u) (meocs, t<o) .
supp u

In virtue of the properties of RS(Z)u for ue supp u , these functions are
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analytic. Moreover, by the invariance property of | we have

’

o(-t) = J (RS (-t)u,u) dylu)
supp H
= J (RS(-t) RS(t)u, RS(t)u) du(u)
supp u
- J (u,RS(t)u) dp(u) = 4(t)
Supp u

(and analogously for él), that is

(5.3.6) ¢o(t) = ¢(-t), ¢1(t) = ¢1(—t) (—o<t<w) 3

n '
— ——— ———

also Y(s-t,-t) (B(RS(s=t)u,RS(~t)u),u) du(u)

supp M

(B(RS (s~t)RS (t)u,RS (~t)RS (t)u) ,RS(t)u) du(u)
supp U

(B(RS(s)u,u) ,RS(t)u) du(u)
supp M

- J (B(RS(s)u,RS(t)u),u) dulu) = - y(s,t) ,
supp ¥
(where we used (2.2.2) and {(2.2.6))

(5.3.7) P(s=t,t) = ¥(s,t) = O (<5, t<e) .

From (5.3.7) we infer, by recurrence,

5.3.8) = p(s,t) - (1) §§7 & 2 0(0,8) = 0 = s=t, B = =t
el £ 37 g3 5pKd ’ ’

=0
for all -=<g,t<> , But (5.3.1) also yields y{s,0) = 0 , so that for t=0 the
relation (5.3.8) becomes

K
(5.3.9) Gz W EO DN =0 K =0,1,2,..., —=xs<w) .
ot

In particular the relations (5.3.9) (for s=0) show that the analytic function
P(0,t) is odd. Thus

d)(tst) = ”d)(O,“t)

is also an odd function ; on the other hand (5.3.6) shows that the functions ¢(t)
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and él(t) are even, But, for t>0 , we have

t L
j [(f:u) - V¢1(T) - W(TsT)} dt Lj (E% RS(T)u,u) du(u)} dt
s SO supp u

.t

t
- [I (%E-RS(T)u,u)dT] du (u)
supp # ‘o

(RS(t)u,u) dulu) - Ilulzdum)

]

p

it

/supp U

where again we used the analytical properties of RS(t)u and sec. 4.4, but also
the form (2.3.1), (2.3.6) of the Navier-Stokes equations.
It results that

(5.3.10) $1(t) + vp (8) + ¥(t,t) = (f,Ju du(u)) (-o<tee)

Since the function involved in (%.3.10) are analytic, some odd and other even, the

equation (5.3.10) splits into its cdd and even part, This latter part is

V¢1(t) = (f:Ju dn(u)) ("'°°<t<°°) s

[N

[y

(5.3.11) 'vj ((RS(t)u,u)) duu) = (f,ju dufu)) (=w<tew)

Supp u
For t=0 , (5.3.11) yields

(5.3.12) vJHuRZ du(u) = (£,, Jn duu)) .

Moreover, from (5.3.11) it follows easily that

« |

o}

t

(5.3.13) vj RS{t)u drt,u))dul(u) = (f,Ju du(u)) (Ogt<=) ,
8

upp u

Now because of the ergodicity we have on supp p that for every vea Hl
(5.3.14) e J (RS(1)u,v)) d1 = ((Jw dulw),v))
o

for all wu ¢.EV where Ev<:~supp U, u(EV) =0, But, for u = supp U ,

{

[ Tl

t
f RS(T) u dt; t0}
o



is bounded in Hl . Therefore if E = \JJ Ew we can easily infer that for t
| =1 "

r
% J RS(THu -~ jw’du(w)‘ weakly in Bl for all u e supp INE .
o

Thus from (5.3.13) we obtain by Lebesgue's dominated convergence theorem

(5.3.15) {w du(W) J((Jw du(w),u) du(u) = (f.Jw du(w)) .

!
J

Substracting (5.3.15) form (5.3.12) we obtain

fﬂuﬁz du = llfw éMw)Ilz , ie. Jﬂu - Jw du | duqu) =

This shows that yu is the Dirac measure concentrated in u = fw du(w)

consequently (see sec. 4.6, for instance) u, e S(f;v) (i.e. is an individual

—-

stationary solution. The theorem follows now directly from the general barycentric

representation theorem of Choquet (see [f], P ).

5.4, Theorem, If the assumption (5.3.1) holds for ‘3 (£;v) (in particular if

n~2 s 1.e. if the fluid is two dimensional), then :

(=}

(i) Every asymptotic attractor is included in the set S(f;v) of the stationary

individual solutions.

(ii) Every individual solution is weakly asymptotically convergent in H to

S({f:v)

(iii) Every weakly almost periodic individual solution (in particular every

periodic or quasi-periodic solution) is stationary (i.e. time-independant).

~ (An individual solution u(t) is called weakly almost periodic if it is

defined on all (-»,*) and for every v e H , the function ~(u(t),v) is a real

almost periodic function ; see [2]).

Proof. If X< H 1is an symptotic attractor then, by Theorem 3.9, X is the

s i o o o

weak clogure of supp v , u e;%;(f;v) , thus, Ey Theorem 5.3, X 1is included in

the weak closure of S(f;v) , which being compact in H (see, for inétahce, (2.3.7))

is also weakly closed, thus X < S(f;v) . This proves the statement (i).
Assume now that there exists an individual solution u(t) which is not
asymptotically convergent to S(f;v) . Then, if d(u) denotes the distance in

from ue H to S(f;v) , we have

t
= lim sup % f du{t)) dr > 0 ..
L0 0

le
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Since d(u) e € , from sec. 3.1, 3.2 and 3.4 it follows that there exists
116'6;(f;v) such that

[d(u) du@w) =1 > 0

which shows that supp u ¢ S(£;v) , in contradiction with Theorem 5.3 . This
proves the statement (ii).

Concerning (iii), the shortest proof rumns as follows : let u(t) denote also
the extension to the whole (~w,») o¢f our individual solution enjoying the
property indicated before the proof. Then u(t) extends by continuity'to‘a uniquely
determined weakly continuous H-valued function U{p) defined on the Bohr ccmpacti—
fication R of R = (-=,o) (see for instance [2]). It is easy to check that if t

measure py on H 1is defined by

(5.4.1) jm) dy (1) éj 50 (6)) do Ge?)
31,
R
then (see [2]),
| .
(5.4.2) lim EJ p(ur)) dr = fd)(u) dp (u) (b6 %)
Tty [o]

so that, in virtue of sec. 3.1, 3.2 and 3.4, we can infer that y e.ﬁg(f;v) .

Therefore, by Theorem 5.3, supp p < S(f;v) , whence

(5.4.3) j ~ d(U(e)) de =0 .
iRM'

It follows that U{(g) &« 8(f;v) for all ¢ e.ﬂhA ; in particular u(0) & S(fjv) .
But in this case u(t) = RS(t) u(0) = u(0)(te [0,»)) so that u(t) = u(0) is

a stationary individual solution. This finishes the proof of the Theorem.

5.5. Corollary. In case n=2 , every individual solution is strongly asymptoti-

cally convergent in Hl to S(f3v) .

. s

solution u(t) the following holds :

lim sup Ju(t)] < = |
a0

From Lemma 4.2 we can thus infer that
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(5.5.1) lim sup ng(;%lv# Y <

oo

.

Let us denote by dl(u) the distance in H1 from ue B to S{f:v) (where we
set dl(u) = if ue H\Hl). Since instead of u(t) we can consider u(t+l) ,

‘we can assume from the beginning that u(0) e Hl ; thus

t
s = [ 4 ew) « (£30)

o}

will make sense. It will be sufficient to prove that
(5.5.2) §(t) ~> 0 for t —> .

To this purpose we notice that for u(t) there exists v e S(f;v) such that

Ju(e) - vtn 1= d(u(t)) (see the proof of the statement (ii) in sec. 5.4).
. .

Therefore
dl(u(t)) < Hu(t)~vtﬁ < Uu(t)-vtﬂéﬁé ]A(u(t)_ve}3/4
1/4 3/4

< d@u(t)) [iAu(t)]+sup{%Av{ t ve S(£3w}]

whence, by Corollary 4.3 and formula (5.5.1), (4.10.1),

/4 (for t3l)

4, @(®) < v, de)’
‘where Y1 is constant with respect to the time ¢t .

We can infer now that

1 . st ‘
0« 8(t) < % J d)(ur)) dr + (% J_ﬁ(U(T)) dT)lf& Yq o
o o
where the latter term tends to O (for t — «) , by Theorem 5.4 (ii). Hence

(5.5.2) is valid.

5.6. As we already pointed out the results in sec. 5.3-5 are always valid
in case n=2, i.e. for two dimensional fluids. In the more interesting case n=3 ,
i.e. that of three dimensional fluids (the real ones!) we will now show that the
basic assumption (5.3.1) for &g(f;v) is connected with the éreservation of the

regularity for the individual solutions. Precisely, we have the following.
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5.7, Theorem. Let n=3 and assume that

(5.7.1) t(u) = » for every ue Hl

{see (3.6.1)). Then

(i} This assumption (5.3.1) holds for 4g(f;v) .

(ii) Every individual solution is strongly asymptotically convergent in Hl to

S(f3v)

" - v

Proof. Since the prooé(%tatement (ii) is similar to that of Corollary 5.6
(once the statement (i) is proved) we shall omit it. In order to prove thé: statementi

(1) we will firstly prove that (5.7.1) implies
(5.7.2) sup{|RS(t)u]] + 0 ¢« t ¢ T, flull s R} < =

for every fixed T, Re (0,») . Let us assume the contrary.Then there exists
ix e ut ”u « R and t. (O T, ] (j=1,2,...) such that

(5.7.3) }tRS(tj)uj[‘.——> o for j — w .
In virtue of Lemma 4.2, there exists toes (0,T) -such that

(5.7.4) sup{nRS(t)u f:10gctgst

i o? j‘-"l;z"“} < e

(5.7.5) sup{{ARS(to)ﬁjl t §=1,2,000} < @

Plainly, we can also assume:z that t, - ta,e:[O,T] and that wu, converges
weakly in Hl to some u_ G’Hl y ﬂu I < . From (5.7.4) it follows t < [t Tj
On the other hand, by an argument similar to that in sec. 3.5 [16], we can infer
that a subsequence of {RS(t)uj}wawhlch will agaxﬁbﬁénoted as the initial oné) is
weakly convergént in H , uniformly on every compact 1nterva1c;[o,«§ (in particular
on [0,T]) to an individual solution wu(t) such that u(0) = u_ . By the uniqueness
-theorem for the regular solution and the assumption (5.7.1) we have -u(t) =‘R8(t)um
{for al t30) . But since by (5.7.5) {Rs(t )u ¢ j=1,2,...} 1is bounded in ;DA

it is relatively compact in Hl . This fact Jo1nt to the weak convergence in H

of RS(to)uj to u(to) yields that

(5.7.6) ]}RS(to)uj - u(to)“ —> 0 for j — o« .
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Moreover for t e.fto,Tj and vj(t) = RS(t)uj - u(t) we obtain easily (from

(2.3.6), (2.2.3) and (2.2.5))

(5.7.7) % g{'"vjnz + V[Avjlz = - <B(u,vj),AVj> - <B(vj,u),kvj§ - <B(vj’vj)’AVj>
: 1/2 3/2 ©.3/2 3/2
s Cegrelulllvy 1/ 2 av, 1372 4 cgpvy 1P/ av, Y

2 ., 2 i
< V]Avjl +‘C(v}uw)ﬁvjﬁ (1*iju )

where c(v,um) is a constant depending on Q (by the c3_4)', v and
max{HRS(t)ugmn: ty€ ts T . Integrating (5.7.7) we obtain

I

4
§vj(t) . ij(to)ﬂ

£ . exp|2c(v,u )(T-t )| (t €; £ ,T]) .
Lo vy @ 1+ e et (-c)] (e e [t,T]

(5.7.8)

Since té e:[té,T] , in (5.7.8) we can take t = tj for j 1érge enough.
Letting afterwards j - , we obtain in virtue of (5.7.6) that for j -—> o

o

HRS(tj)u - u(t )] < ﬂv(tj)ﬁ + uu(tj) -u(t )] = e
in contradiction with (5.7.3). Thus, we conclude that (5.7.2) is valid.
We return now to the proof of the statement (i). Let thus n e,%%(f;v) , and

let p denote the upper bound in (5.7.2) corresponding to the choice T = 1 and

(5.7.9) R= @5 VR e 2

Let moreover u(t) be any individual solution starting from supp u , i.e. such
that u(0) « supp y . Then from (2.3.4) and (2.4.6) it follows plain{y

-1 -1
!

2
1V ]

t 2
f Juce) |2 de < 2 £
[o]

so that the set
{te (0,1) : [lu(e)] < R}

is of positive measure. Thus we can chose a point t, in this set at which u(t) is
strongly continuous (in H) from the right (see the definition of an individual
" solution in sec. 2.3). Then, since u(t+to) (fdfﬁjtzd)afis:alsdfén individual

solution (with"initial'value u(tc)) we have u(t+t0) = RS(t) u(to) for all t30
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and consequently, by (5.7.2),
flu) ) = R (1=t ) ue )] < o

It follows
(5.7.10) (supp W) (L) e {ue B : Ju) ¢ o} .
Recalling that u 1is accretive, -we have firstly
1 v
p{ue B : ull< o}) =1
and then, secondly:
supp ve {ue 3 : Jull € 0},

achieving our proof.



- 53 ~

§.6. Structure of the set of stationary individual solutionms.

6.1. We want now to describe the structure of the set S(f;y,) of the

stationary individual solutioms, i.e. the set of u eﬁl such that
(6.1.1) A(u) =V Au + B(u;u) -£f=0.
The main results are Theorems 6.3 and 6.8.1.

We recall that for n = 2 or 3, by reiteration of the regularity results for the
Stokes problem [67| [40] it can be shown (see for instance [41]) that any solution

u e';:H1 of (6.1.1) actually belongs to DA : thus
(6.1.2) S{fv) < DA “u

This result can be also deduced from Lemma 4.2 : let u e S(f:v) ; then u e iﬁl ;

and u, = RS(t)uo s 50 that uoe DA .

6.2. Lemma. There exists a constant s depending only on @ and n (n=2,3)

such. that _3;‘{::

. 4
(6.2.1) (m+1) 278 > J%-
v

then the restriction of Pm to S(f;v) is a one to one mapping.

Proof. We first show that S{(f;v) is bounded in DA ; Let wu belongs to S(f3;v) ;

o v -

taking the scalar product of (6.1.1) with Au , we obtain
leul = (f,Au) - b{u,u,Au) .
3 P - = = 2 = }- -
If n=2 we apply (2.2.4) with @ TY; T Yy < 0, a, = 62 =5 81 = 1 ¢
[bu,u,au)] < CZHUIP/Z IAuif3/2 .

For n=3 , we deduce the same inequality from (2.2.3) written with « = % s B= % s

Y = 0 and the inequality

1837 % < o |aY 2|2 au| Y2 ¢ ctulf]au]t? .
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Whence
v laul? < fellaul + ey llalP/? au|?2

< (from (2.3.7))

< |E]lau] + ¢ £ zjleu{:’/z

<§ {Aulz + %mz + }-"]Au]z + o' -%;
so that
(6.2:9) lau] < o l§l (1+ iféfb,

v

with some suitable constant ¢y depending only on &

Let now u, ve& S{(f;v) , and let w

i

u - v ., We take the scalar product

in H of A(u) - A(v) with Qmw (Qm = [ - Pm) and we obtain (m an arbitrary
integer) :
uQmwuz = - b(u,u,Qmw) + b(v,v,Qmw)
= - b(u,w,Qmw) - b(w,v,Qmw)‘

+ b(u,Qmw,me) + b(me,Qmw,v)V+ b(Qmw,v,Qmw) .

For the first two terms we apply the first inequality (2.2.5) ; the third term is

majorized with (2.2.3) (¢ =y = % s B = % . [A3/8 u[1/41A1/2UI3/4

11/4"u83/45‘

u| € ¢l
S c'lu

We arrive to

1 3/4 13/2 1/2
i1/4 §3/4+iVI /4 / i /2 /

| Au fav]|™'™) ﬁQmWEIPmWI+C&ﬂHQﬁW tqmwl .

v loul? « o([u

& (from (2.3.7) and (6.2.2))

2 3/4 - ‘
< e L2l + LS o wlie ol +.c, Ll of/?| ¢ 2

’

Y 2 3/2 c
< Yllgul + e J%— (1 + l%—) Ip_v]? + ai"" Ll yqul?
: m+l

and thus,
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Y _ £ 2 2 3/2
(6.2.3) (;2'2 C 1 4) Qmw < " -LE—:L—- {1 + J%—-) . .leW{Z
: M+l v : v
For
1/4 f
we obtain

| 2 2 3/2
6.2 o wnl? < teg E a+ LT e wen |
. \Y v

Plainly (6.2.4) together with (2.1.4) show that if m satisfies (6.2.1) with a
suitable constant ¢, depending only on @ , then Pm is injective on
S(f;v) .

More generally, for any u, ve S(f;v)

c 2 27
6.2.6)  luvl?e [+ —S LD 0 L LD T w2
v

(m+1)2/n N

6.3, Theorem. S(f;v) is homomorphic to a compact set of R™ , M

. - - o

sufficently large so that (6.2.1) is fulfilled.

ggggg S(fj;v) 1is a compact set of H » and L S(£3v) , for m satisfying

(6.2.1) i§ compact too. Hence Pm1 is continuous on the image and the result

follows.

6.4, Before continuing, it will be usefull to establish a majoration ..
similar to (6.2.5) for the H2~norm.,Let U, ve. S(fv) andw=u~v ,

We have
v Aw + B(w,u) + B{v,w) =0

‘V Aw + B(me + Qmw,u) * B(V,Pmy * Qmw) =70
and taking the scalar product-in H with. quawA, we find

v‘lA Qmw|2~5 | (B(w,u), A Qmw){ + I(B(v,w), A Qmw)f

cl el M2 wr“zlsur’-”aa ™1 g

RN

R c]Qmwsl 2|A Qmw[l 2! IA Qmw]

1/2

Bl 14 QmW}

)l/zfﬁv!

+'|
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1/2 1/2

+ c|v| IAVJ “Qmwn|A Qmw]

c' : »
€3 |ap wl|a Q| (|au]+|av])

'
. 2 .
f ;%77 |A QnF1 (|Au]+]Av])

m+1l

By‘virtue of (2.1.5). and (6.2.2) we easily deduce that

. » 9 | |
(6.4.1) - |A Qm(u-v)l § ¢, lf%-(l + lfizq IA‘Pm(u—v)I , u,v,e S(f;v)

provided
2 2 2
(6.4.2) my2/™ s cg J_f_LZ (1 + J%_)
v \
6.5. We introduce the complexified space of H ‘denoted HC and let AC s
BC . Pm,C see+5 be the operators in HC characterised as the linear extensions

of the operators .A, B, Poseee o All the relations (2.2.3-4~-5) are still valid

if we replace B by %-BC .

Lemma 1. Let VP> 0 be fixed and let

Y

& . o 1/2

2/ %9 i£1+po 2.

(6.5.1) (mt+1) ™"y 5 (f. v +_£|f[+po) )

° v

¢
Then for each ve C, |v] >V, » and a.e.ﬁk' y [Aca[ S Py s the equation
— e | :

(6.5.2) v ACW + Qm,C BC(w+a,w+a) = Qm,Cf“’

possesses one and only one solution w = wm(a) » such that
2,
2
)

c
10.

C vo

Proof. (For simplicity we omit in this proof the subscripts C , and we

note A, B, Qm,.;., instead of AC’ BC"Qm,C"'f)"

Let us consider the function
w = F(w) = v 1 ATEQ B(uta,uta) + Q £]

from  Q HCr\ébA into itself, this space being equiped with the norm |auf .
We infer from (2.2.5) :
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| & | < L ()¢ ]+IBCa,a) [+ ]BCayw) [+ [BGwya) [+ |BGrw) |)

AN

L 1f1+c1a11f2ra;an11’2+c: 112 || V2l e 11’2rw11’2n M2 nalM?

AV
[+]
| | B L S [T s
2 ! ' o
'cp 4 Cp : , !
L R (e o LIl 7 et B 1 [P
o 1 Al - Al -
¢ L (felrods =0 aule —2 [aule 2 [au]D
S % o 1}2 * 37 3/4 Wit g 1av
o Am+1 m+1 m+1
< (Ifl-m + = |awl?)
o m+l

(where as always ¢, ¢', ci s are various constants dependingion1Y'on Q).

Therefore using (2.1.4)

. s 12
6560 lare] s 2 (ol —I—jau?
» 0 ()"
where . 19 is: an appropriate constant >1 ..In a similar manner, we write »n s e

,AF(W) ;vAF(w%)l < %~11B(a,w—w1$l+!B(w~wt,a)l+;B(w—w};w)]+IB(W};§FW?)Il.
o : <. ' :

\"‘S“ (ié!‘llzl I}_/Z!W“W I*‘IW“W'}UZIA(W w“’)]l‘,?‘[{ I

e e e T B R P e S
v o ' . ¢
$%;'( kl/Zillz * lAf!*tAw i) lAw~Aw'l
1 “m+l “ Tmel
Thus
(6.5.5). . |AF(w) - AF(w')] < }7- (p SHav]+ T ) A D] .
vr(m+1)
Wg take éib~a (2c12)”;' Then? because of;(6.5.4), if
' Lot | |
(6.5.6) TRCLIN = (JE]+0D
Vg )

the function F maps the following set WO into itself
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2 %10 2
wo= {we HC(\Q‘DA‘IAW| \<°§o—'(lf|+po) .

With an appropriate constant 14 ¥ 0.13 s (6.5.5) implies

(6.5.7)  |AF@)F(w' 14 £l P )
5. w)-F(w )| < 7 0 * 5 |aGew') |
vo(m+1) Vo

for each w, v = Wo . Chosing the constant e zmax(c we immediately

10°%1%) *
see that if m satisfies (6.5.1) then F 1is a strict contraction from Wo into

itself and thus there exists a unique we& Wo such that F(w) = w .

This complete the proof of the Lemma.

Lemma 2. Under the assumptions of Lemma 1, let -

Ifl+P 1/2

(6.5.8) @, 2 e (leled) )
Q. .'\)
(o]

where 615 > g is a constant depending only on $ . Then the mapping

a > wm(a) from {a eﬁ)ACl-lACaI < po} into E)Ac given by Lemma 1 i_s_analz_t;]'.c.

e - e s

Proof. (In this proof again we omit the: subscripts C). iy s g et GEPBIELL

For m' -satisfying (6.5.1),. 4, b «9, , |Aa] <p, and veC; [V » vy s

we consider the following equation with unknown  ze& Q HC N -'9A 3
(6.5.9) vAz + Q B(b+z,a+w) + Q B(atw,b+z) =

wvhere w = wm(a) . For the mapping

z 5 G(z) = - v ' ATI[Q B(btz,atw) + Q Blatw,b+z)]

from Q HC ﬂ:@}i ctinto-itself, Wwe can show eXact;.ly:;:.as‘. for  F ~that: phol e :d.}ru
(lfl+P )
(6.5.10) |AG(2) | < 16 [po x 20 5 [Ab|+ - 47‘{,%
Yo v (m+1)™
2 e W
c el CHERD)
€6.5.11)  |A@G(2)-6(z")}] < ——-——%;—- [oo. + 20O Ha(z-2Y)]
_ . (m+1) v
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Now if c18 = max(c16 cl? and if

2 2
2c o ('f’+p ) ,
(m+1)2/n » “l%‘(po + -12—-;-—£L)

2
hY] x
(] Vo

- (6.5.12)

we easily deduce from (6.5.10-11) that there exists a unique z = zm(a)ﬁ which

is.solutiop of (6.5.95, i.e. é(z) = z , and such that

2?18 Toclele? |
(6.5.13) laz] ¢ =2 |0, + 20ty .
o] v
(o]

It follows from (6.5.11) that 2z 1is uniquely determinéd by (6.5.9), if we
impose to 2z to satisfy furthermore (6.5.13). We conclude that b > zm(a)b
defines a linear continuous mapping from Q HC(W ik. into itself (the space being

normed by |Aul).

Now we will show that if m 1is sufficeﬁtly iarge, then a +> w = wm(a)'
1s Frechet differentiable in ;DA , at each a e A ,lAa[ < Py s and that
LA "(a) = Zm(a) . In virtue of [28], this implies that wm(a)
is analytic in -a . First we observe that we can prove-without-any difficulty
(the technics are similar to those leading to (6.5.1)) that

| 2 1l o2
Let . lf!"' ) .
1B L. ¢ P
(6.5.14) |a wﬁ(a+b) - A wm(a)] $ = [%o - f—leEf———Q—‘ |ab| ,
(o) v -
o
for every a, be ﬂ) » |Aa| < P and m satisfying (6.5.1);.For' m .satisfying

(6.5. 1) and (6 5. 12) let g,b é:ﬂk 5 lAa] < Py * lA(a+b)§“s f% ; we set

W, =W (a+b) ,.w = wm(a) and z = zm(a).b « Then

k §

-w—z)+B(wl—w—z,a,

|v|[A(w1-w~z)|

|Q[s(b,b)+B(w1—w,w1—w)+B(b,wl-w)+ngwl-w,b>+n(a,wl

+B (w,w) ~w-2)+B (wy ~w-2z,w)] |
R e Y IR PR e P [TV s
ve oy M2 a0 | 2ol e o 2 o [ 2oy ]
+c(lw|1/2|Aw|1/2+|al1/2|A l1/2 )y
¢ ¢ olab| e |aG )| %2 o[ Ab] [A G ) |
1/2

CIQ(IAw|+lAa|)(lwl-w~z|1/2|A(w1—w-z)[
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Using (2.1.5), (6.5.3) and (6.5.14) we obtain

' 2 2
. 2 -(!f[+0 ) 2
v Jatr w2y | < e g Lo i e g, Sollilee 7]+ 1}
. 0 \)o ’
(6.5.15) c
+ -«g-g-—-au-lA(w —w-z) | {p + -—-*- (| }+p )j
(m+1) v°
Thus taking in (6.5.8), €5 = g * + 2c18,<:10 c20(1+§§0) ~y the relation (6.:5.15)
can be writen -
e 5 ! "'i 2
[A[wm(a-!-b)-wm(a)r-zﬁi(a)-.b]] < o ¥ X v)lAbl
[

as is verified as soon as m verifies (6.5.8). Thie implies that ,wx;(a)‘ exists

and is equal to zm(a) , and completes the proof of the Lemma.

: +
Let now . Dm(vo,po) c ¢ ! be the open set

(6.5.16) {vec, |v| >"v'°} x {z e C, ]Acpm;] < po}
where for I ={§1,l..,%n}es c® ,- We set

(6.5‘417) ,pmz;‘= Clwl + e F mem .

Lemma 3. Under the assumptions of Lemma 2, we deflne the m Eplng

o(v,2) = 0, (vsz sv sp) from D (v, ) in ¢” HM

£6.5.18) o0(v,z) = Pm,C [\)AC pmc'*BC(p'mg-*wm(\),sz;) stC'*Wm(v;sz;)) - f]

where wm(v,pmg) represents the solution of (6.5.2) given by Lemma 1 for a = pm‘g.

Then the function ‘{\J,C} > 0(v,z) is analytic.

Proof. We have shown in Lemma 2 that v (vya) is dlfferentlable with
reépect to a . It is much easier to show w1th similar methods that under the
assumption's of Lemma 2, wm(v,a) is also d‘lfferentlable w1th respect to v,

iv[ > v, Hence, 0(v,z) 1is separately analytic in v and ¢ . It follows then

from a classical theorem of Hartogs that a(v;“}) is aﬁalyti'c in {v,3}.
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6.6. Lemma (Representation of stationary solutions).

We assume that

2

~ 2 : f
(6.6.1) 0 < v, <o and o >y Eb s i
N

10

where m satisfies to (6.5.8) and > Vg

Then u e S(y) if and only if

- (6.6.2) : ’u,= pmg + Wm(vapmg) s
where
(6.6.3) SeD (\’o"’o) 08" and: 9, (vsz sv o) =0 &

, o ‘ .
Proof. Let u € S(f;v) and let =R be defined by Pmu = 5w +...+ngﬁ .

ity )

Because of (6.2.2) |Au] < Py and the assumptions (6.6.1) imply that

(6.6.4) | lapul < laul <o,
, 1/2
(6.6.5) A %ul <p < 1/2 (IFI+p ) :
' o

'Applying the operator Qm to (6.1.,1) we obtain the equation (6.5}2) with
= Pmu = Pt and w = Qmu . Due to Lemma 6.5.1, and (6.6.5), we see that -
Qu=w (p 5) . Introducing this value of e in (6.5.2) and applying P
to the relatlon that werobtain; we-arrive to # (v,f, ,p C.- :

Conversely if u satisfies (6.6.2-3) then it is obvious that ue S(f;v)

‘since the mappings P Vi o Bm are real (i.e. P, wm(v,w) e.H‘, @m(v,§)<z H,

m

Taking into account Lemma 6.6 and Lemmas 6.5.2-3, we obtain the foilowing

6.7. Corollary. .The set S(v) = S(f3v) is for & fixed v (and f e H)

o S i

‘3 real analytical set of finite dimension in H (x)

Moreover, proving as in Lemma 6.5.3 that Wﬁ(v,pmﬁ) is analytic with

(%) We use the usual definition of an analytical set ; see for instance [28],
ch.V,
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respect to {v,%}, {v,S}e Dm(vb’Po) , we can prove as well that Lv) S(f;v)

vy
. . . e . . . . o . .
is a real analytical set (in H) of finite dimension which has only one irreductibl

unbounded component ( of dimension 1).

6.8. After Theorem 6.3, our main result on the structure of the set

S(f;v) will be now the following.

Theorem 1. Let v > O be fixed. Then for every generic f£ (i.e. for

each fe HNE , where E 1is some rare set of H), the set S(f;v) of stationary

solutions of Navier-Stokes equations (cf. (6.1.1)) ii finite,

In fact we will prove a more precise result, Before stating this result,
let us make preliminary remarks. In order to emphasize the dependance in £ of
the solution w of (6.5.2), we will denotethis solution wn(v,a;f) or
wn(a;f) instead of wh(v,a) « For p> 0, let us define’ fo by

= £
(6.8.1) Py = 1+ cq o8 1+

P..u
)
v4

o

where v, = % min {cio,v} . With this choice of ¢ , let m be the first

integer m such that

2 2
c,p 22 ¢, ¢ p+p

6.8.2) @?/?y o fy L 12, 132, o
A v o \70 VO

(see (6.4.2) and (6.5.8).

We set then
(6.8.3) B(e) = {f e H, |£f]l< p}

and let Bm(P) be the subset of f e B(p)  such that S(v,f) 1is finite and

such that for each ue S(v,f) , the following condition holds

If Ve ﬁk
(6.8.4) v Av + B(u,v) + B(v,u) =0
and

I

(6.8.5) Qv ;i[g?w (p_%5E)
pﬁ$=Pmu

m

where pNnN =P v , then v =0 .
m m
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Let B p) = B . Then
reg® = U )

Theorem 2. B(P)\Breg(p) is rare in B(p) equiped with the strong topology

Theorem 2 provides immediately a proof of Theorem 1 for which we can take
E=\U [B&rs_ @] .
k=1 reg

For this reason the remaining part of this section is devoted to the proof of

Theorem 2.

6.9. We first prove that if the set 8(v,f) 1is not finite for some
f « B(¢) , then necessarily there exists u, e S(f:;v) and v, E:ﬁk s Vg £0 ,

such that u = ug s v»=fvd .satisfy (6.8.4-5).

Assume that S(f;v) 1is not finite. Since it is a compact set of H , there
exists a sequence u,j e Sv) , (=1,2,...) with mutually different elements,
such that uj converges strongly in H to some element ug of S(f;v) . The

relations (6.8.2) and (6.4.1-2) give

|A(uj-uo)[2 = IA]?m(uj--uo)]-2 + !AQm(uj—uo)l2

- l 12' l !2 2
. < l:I * €7 ol (1+ A ) ][APm(uj-uo”
2. 2 2
2 \ 3.2 2
< 1+ cy -9—-4 (1 + -——:4) }Am[uj—uoi .

. _ -1 o . .
Thus if vy = (uj-uo) luj uo[ , the s?quence {vj}j=l is bounded in ﬂk"‘
We can extract a subsequence (still denoted vj) which converges weakly in ﬁﬁ

to some element vy o i.e. A vj converges weakly in H to Avo . By compacity,

v. converges to v, strongly in Hl and H , and ’Vol = 1 . On the other hand

(6.9.2) I\) Avj~ * B(uo’vj) + B(Vj’uo)l luj—uoHB(Vj ’Vj)l

1/2 1/2
jl ”Vjﬂ

& clu.-u ][Av
j o
-1/2 '
£ cllllufmJlmHl
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and this converges to zero since !Avj! -is bounded (cf. (6.9.1)). We infer

from the 3rd and 5th inequajities (2.2.5) that ¢ > B(u_,¢) and ¢ > B(¢pu )
are linear continuous mappings from H1 into H . Thus B(uo,v.) — B(uo,vo) s
B(vj,uo) — B(vo,uo) strongly in H , and, from (6.9.2) v A f converges

strongly in H to
) Avo = - B(uo,vc) - B(vc,ug) .

There remains to prove that u = u, s and v = v, satisfy (6.8.5) too.

Let gjeiiRm s (j=0,1,2,...) be fefined by Pmpj = pmgj « Then, in virtue

of Section 6.6

-1, -1 |
Q, vy = ‘lujwuol (Q uy= Qu) = Iuj—-uo; v, (P e;j,f)-*wm(pmgo,f)]
(6.9.3) -1 D ,
= [uj~éoi {lﬁzz'wﬁ(pm go’f)](gj“£o> * ejlpm gj_pm go!}

. ) _ - _ -1
where }ajl —» 0 as j —> =, Let us set n = (;j gc)}uj‘nol and let

~m 3 ' = ‘ - = ‘
née,m; be defined by Py =Py Y, ¢ Then ]pm(nj “0}1 }Pm(vj~vo)} — 0

*

as j =% « , Hence, letting j>»—e» « in (6.9.3), we obtain (6,8.5) with

u=uo, V=V, and this completes the proof of our assertion.

6.10. We now prove that B(p)\ﬂBm(p) is clésed in B(p) (for the strong
topology of H) .

Let fj be a sequence of B(p)~ Bm(P) strongly convergent in H to some
element f . As a consequence of the results of Section 6.9, for each j there
exists u, e S(f.,v) and v.,e I lv.] =1, such that u=u, and v =v,
satisfy (6.8.4~5), Due to (6.2.2), we have

(6.10; 1) M= suplAu.! <+ w,

3 J
Then, by extracting perhaps a subsequence, we can aséume ujV is«weakly'convergent
in 9, to some limit 'u , i.e. Au, —> Au  weakly in H . On the other hand
because of (2.2.2), (2.2.5) and (6.8.2)
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2 - - A -
v] Avj| (B(vj,uj),Avj) (B(uj,vj),Avj)
. 1/
< o oy av | aug |+ clau||v)av]

< ( by (6.10.1))

< ¢! M|Av ]3/2
Whence
(6.10.2) Ml = sup IAVj! < (! M\;J._-l)2 < + o,
3

After extraction of a subsequence, we can also assume that vj converges
weakly in °%A to some limit v (i.e. Avj — Avo weakly in H). Now by
compacity, uj (resp. Vj) converges to u (resp. Vo) strongly in H~™ and H .

Using again (2.2.5) and (6.10.1-2), we can write :

.-uo)|

[B(vj ,uj) - B.(vo,uo)[ < |B(vj-vo,uj)] o+ IB(\_,O’UJ

1/2 2 1/2 1/2 1 2
B R e P i TR ST

Thus B(vJ,u L) B(v U ), strongly in H , and in the same manner we can

prove that B(u ,v ) - B(u Vo ) for the norm of H . This implies that

Av. - B(v.,u.) = B(u.,v.
v i (VJa J) (J’ J)

converges strongly in H to its limit v Avo s

AV AVO - B(VO’uO) - B(uO’VO) s

and consequently U v, satisfy (6.8.4).

Finally it is easy to deduce from Lemmas 6.5.1-2, that
(v (a,£)); =z (vja,f) ,

is continuous from {ae 9,, la|<p o} x B(p) into the space of linear continuous
operators on H (for instance we prove this fact for the mapping {a,f} -—> w(a,q

which is analytic on {ae .S[)A s \akgo} x {fe HC s ‘f((p}, and we apply the
C
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vectoriel form off'the classical theorem of Cauchy ; see [ 4 ] Y.
Setting then £ = fj , U= uj and v = vj in (6.8.5), we can easily let

j => e , and conclude at the limit that u = LI satisfy (6.8.5).

‘Hence f & B{p)> Bm(g) and this completes the proof of this second
assertion (B(p)\ Bm(?) is closed).

6,11, In order to achieve the proof of Theorem 2 it will be sufficent to

show that the set Bé’e%;(?} s dense in B(p) . But since
- }
BVNCIONE X
N=1 .

is dense in B(»p)‘ and since for m» mafo,mpk , we have

B(p) O P.H < By N P H and B (P)CB__ (p)

8

it will suffice to prove that for such an m , 'B(?) 0 Pmli is in the closure
(in B(p)) of B (p) .

For proving that we first observe that since the mapping
@ :u > v Au+ B(u,‘u)

‘is continudus form Q)A inte H , the set @:1 Bm(p) is open in "(DA . On the
other hand, in virtue of section 6.6, u g,(f):lfB(?) N PmH} if and only if for
one g e B(p) ) Pmﬂ , We have

(6.11.1) Pu=rp% and- Qu = w (p %8) »

'3

where % satisfies (6.6.4). Since Qm’Cg = %g =0, v is independant of

g e B(p) N PmH and the condition (6.6.5) becomes (see (6.5.1))
(6.11.2) g =B _[v Ap $+B(p Stw_(p G,8)p S*w_(p €,8))] .

Hence the mapping u —> <% =Tu , where u and 9 are linked by (6.11.1), is
an homeomorphism from @1"1[8(?) N PmH] on some open set G of ifaiRm,iApm‘?i(pcg
Furthermore if 9, denotes the mapping Y;:“l form G. into GL“IEE(Q) 0O Pmﬁ‘j we

will have



- 67 -

(6.11.3) W) =p z+w (pCr8) »

and, by Lemma 5.5.2, 4, is analytic from G into ik . It is then clear that the
function ¢ =+ (LWg) 1is differentiable with differential (apply the chain

rule differentiation)
(6.11.4) 3= ORUE)) 0 = v A WD + BEURD,U (@n) + BOL () wnsUle))

Cte G,ne R™) .

Let now & denote the analytic function ¢ +—> n from G into R ,

where 4 1is determined by PF = PmGK%Kc)) . Because of (6.11.2) we have
(6.11.5) aUE)) = py ¢(z) (z €6)
and therefore

(6.11.6) p, ¢@) =B N P H=pAne®", |p_c|<o}

Now let G1 be the subset of points of G where the Jacobian det ¢'(;) of
¢ 1is O . We infer from the ciassical theorem of Sard (see [3§], p.13) that the
Lebesgue measure in R® of ¢(G1) -Ls O . Consequently puﬂ§{G)*\¢(Gl)} is

dense in B(p) ) PmH s and,theiproof will be complete if we show that

(6.11.7) b, [6(6) \ 96 1] = B_(o)

If this inclusion is not true, Section 6.9 shows us the existence of
fe pm.[¢(G)\ ¢(G1)] , u’e S(vv,»f) R Ve,SDA » V# 0 , satisfying (6.8.4-5). Then
(6.8,5) and (6.11.3) imply that v = W(z).n , and because of (6.11.3-5) and
(6.8.4) we have

P ¢'(z).n = v Av + B(u,v) + B{v,u) =0

and necessarily e G1 , £ = P olr) e.¢(G1) which contradicts the definition
of £ .

The proof of Theorem 2 is complete.
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§.7. Connections with the theory of turbulence.

7.1. There are several distinct mathematical points of view on the
turbulence. Some do not involve the Navier-Stokes equations,(examplé : [25]; see
also {}6], [}7]) others do involve the Navier-Stokes equations, but essentially
without any boundary conditions (as for instance in the case of the theory of
homogeneous turbulence [5], [30] ). Finally there are some points of view which
are a priori suited also for the Navier-Stokes equations on bounded fixed domains.
Since this is the boundary problem considered in the present paper we will try now
to discuss some of these last points of view in the light of our previous results
and methods. | |

First of all these last points of view can be further divided into two groups.
The first group contains those views which consider that the irregularity and the
randomness of the turbulent flows are due to the same character of their initial
states. The second group contains those views which consider that these irregularity
and pandomness are produced by the Navier-Stokes equations even if the initial
states are neither irregular nor random. As we will show below tﬁe results of this

paper are pertinent to this sécond group . (For the first group we refer to [17],

[29], Tiol, [14],..o

7.2. The oldest mathematical attempt is due to Reynolds [34], who proposed

the study of the time averages

1 t : 1 t n

T J u(e) dr = {: J uj(T’x)dT}j=1
‘o o

‘of a flow u(t) = {u(t,x)}?=1 (n=2 or 3), for convenient large t . Plainly, in

virtue of the results in sections 3.1-4, this study is equivalent to that of the

means
§'='Ju dy(u)

where W stands for an accretive stationary statistical solution. Thus the study
of these statistical solutions will include any Reynolds type theory.

- Another old point of view on turbulence belongs to Leray [221, for whom an
individual solution ~u{t) is turbulent whenever it is not regular on any interval

{b,ﬁ](: [9,%1 though u(0) = u e Hl . In other words,'turbulence»in Leray's sense

exists if and only if t(uo)<Q» (see sections 2.6 and 3.6) for some uoei.Hl .
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7.3. Other views on the occurence of turbulence was proposed by Landau (see for
instance [20]) and Hopf [16]. Essentially these views can be reduced to
the following : for given ¥>0 there exists an asymptotic attractor (see sec. 3.8)

M, , uniquely determined, enjoying the following properties‘:

(i) M, is a finite dimensional manifold.
(ii M, is the closure of its almost periodic trajectories (i.e. the closure
in H of the union of the sets {U(t) : —=<t<=} , where U(t) is an almost

periodic H-valued function &nd »Uﬂt#to) is an’individual solution for any toei*é,m)
(iii) 1If d, = dim M, > O there exists at least one non stationary individual
solution lying in M, .

(iv) d\r/“’ for v ™0 (this assumption corresponds to the development of
more turbulence with the increase of the Reynolds number).

We will refer in the sequel to this kind of behaviour as turbulence in the

sense of Landau-Hopf.

7.4. A related view on turbulence was proposed by Ruelle and Takens [35], [36],
[3?}, which invour frame can be sumarized as follows : Tor ¥>0 enough small there
existé an as?mpictic attractor- A with a number of strange properties, among which
we quote the following : A 1is the closure of its non-stationary periodic
trajectories., This behaviour will be>called in the sequel, turbulence in the sense

of Ruelle-Takens.

7.5. It is well known that in the case n=2 (i.e. the case of plane fluids),

turbulence in the sense of Leray does not occur. Our Theorems 5.4 (i), (iii) and

5.7 plainly implies that in this case also turbulences in the sense of Landau-Hopf

or Ruelle~Takens do not occur.

These mathematical facts seem to confirm the experimental point of view that .

in laboratory no plane turbulence can occur,

7.6, One of the hardest open problem in the study of the.Navier-Stokes
equations is that of the existence of the turbulence in some of the above senses,
for three dimensional fluids (i.e. the case n=3). There seems to exist a strong
believe that one of the turbulence in the sense of Landau-Hopf or Ruelle-Takens
ddes‘not exist in this case (see for instance [9]). : It is‘plain that our
‘Theorem 5.4 (i), (iii) and 5.7 yields also the foliowing : Xn‘case n=3 , if

turbulence in the sense of Landau-Hopf or in the sense of Ruelle-Takens does not—

exist, then there exists also turbulence in the sense of Leray.
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7.7. We wish now to discuss also another view on turbulence due to Bass [4].

: n ;
In order to present it, let us call pseudo-random an IR ~valued bounded function

o(t) = (¢j(t))? (n=2 or 3) defined on [D,m) satisfying the following conditions

=1
1 T

(i) lim 3 ¢, (t+1) ¢.(t) dt = ¢,.(7) exists for any < e;[o,ug and

T—)coT o 1 J 1]

l<i,jsn

50 n
(ii) (Qij(r))i,j=l £0 on (0,%) ;
(iii) ¢ij(T) ~> 0 for T - =

for any 1l<i,j<n . For Bass a flow u(t) = {uj(t,x)}?___1 is turbulent if the

0 . n . . .
R -valued function t r—> {uj(t,xo)}j=1 is pseudo-random for at least some x @ .

We will refer to such a flow as turbulence in the sense of Bass (Actually the

definition of Bass is more restringent, but for our purposes the above one is

sufficient.)

7.8. Proposition. (i) In case n=2 , there exists no turbulence in the

sense of Bass.

(ii) In case n=3 , if turbulence in the sense of Bass

‘exists, there exists also turbulence in the sense of Leray.

(In the case n=2 this assumpﬁion is automatically satisfied.) Then if Cl(T,R)

denotes the sﬁpremum (5.7.2) we have for any individual solution wu(t) , such that

u(0) = u € Hl , the following global estimate

(7.8.1) Ju(e)] <« ¢ (LR )
' (o]
where
2
2 " 2 1 2 . |f|
(7.8.2) R = max {nuou . uol § = } .
o v AI

Indeed for t e [0,1] we have [u(t)| < Cl(l’“uo”) < C(l,Ru~) . Moreover for
t e [1,2] we have (by (2.3.5))

t -X.t 2
J e P are e Llu]?+ £ ¢ g2
t-1 AV u

! v 1
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henceforth there exists to  (t-1,t) such that uu(to)ﬂ < Ru and consequently
o

“u(t)” ”RS(t -t ) ult )" < C (1 R ) . Thus (7.8.1-2) is checked. Using Lemma 4.2
Yo
we can now easily infer that

(7.8.3) u(t)  €((0,*), J,)

and

(7.8.4) lau(ern) | < ¢ R ) (£20)
(o]

where C2 (R) 1is a finite real function defined on [O,m]

Let now uo(t) = {uoj (t,x)} 31=1 be an individual solution turbulent in the
sense of Bass and let x € % be a point such that {uoj (t,xo) }?=1 is pseudo-
random (in the sense defined in sec. 7.7). This in particular means that

lim & JT u L (e+T,x ) u_, (t,x ) dt = B, (1)
o300 T 1 0] o’ Toj "0 ij

exists for any T e [O,w:] and 1<i,j<n , or equivalently

n 2 1/2 2 1/2
(7.8.5) lz: (By 5 (T, 1) =B, (D), nJ < e (T><>: £ > ")
i,j=1 i=1

where §&, neR® are arbitrary, 61('1‘) —> 0 for T -—» ® and

T
1
(7.8.6) Bij (t,T) = = jo uoi(t+r,xo) uoj(t,xo) dt (T>1) .

Let now &, nean be fixed and let AP = LZ(Q) (p=1,2,...) be such that

(7.8.7) s =a_| -=e5(p) => 0 for p — «,
x Pl o,
: H()
where 6§ denotes the Dirac functional in X which obviously e(HZ(Q))' .

o
Set hp = P(E® A ) s kp =P(nQ® A ) , where as usual P denotes the orthogonal "

projection of (L @)™ on H and where, for instance, ?®A denotes the R -
valued function {£ A (x)} 1 y Obviously-belonging to (L (SZ))n . Finally let us se

T .
lj (uo(t+r),hp) (uo(t),kp) dt (T>1) .

B. (t,T) =
p T 1
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Then (for T>1)
b - Fo 5 N - % 1
IBﬁ(T,T) - ﬁij(r) Ei”j| < T.}Jl [<Ap,uoi(t+r)><Ap,uoj(t)> = u L (E4T,x )

. uoj(t,xo):]gi ng dt|

n
t 157 (8D = 8y (0)g; s

i, j=1
n

< 2e5(P) Cz(Ruo(o)) eplipl 2y :Z:: UL

2J=1
+ 51(T)(Z 2 1/ Z(Z 2 1/2
that is
' n
8.9 gD - Y e il < ey + ey (T))(\”"’ 1“(2 31/
| {551

where eB(p) —> 0 for p —>» = , and neither eq DOT g4 do not depend on

Te [O,%] . On the other hand, if for m,p = 1,2,... and 1 e,[p,w>v fixed we set
(7.8.9) ¢(u) = (RS(*) P u, hp)(u,kp) ,

the functional ¢ belongs to ¢ (see sec. 3.1). Thus if u 1is any time average of
the individual solution uo(t) (see sec. 3.1), there exists a sequence

1« T1 < T2 < +¢s => o guch that
T.

: ]
(7.8, 10) J@(u) du(u) = lim %—-j o (u_(£)) dt .
: o

joe 7]
But, in virtue of sections 3.2-5, u e.egﬁf;v), S0 tHat, by Theorems 5.3 and 5.7,
supp 1 < S(f,v)

It results-

}(7-8-1?) | J¢(u) du(u) = J(Pmu,hp)(u,kp) du(u) .



- 73 -

Since
1 1 ., )
i:f;‘ jl ¢ (u (t))de - BP(T,Tj)! < —T—J;.(CZ(R%(O))) (iﬂznitgi‘ 1“51’)(8‘{,’1’&&?9:@2@))r;)*
TS ;
.”Jl |A[RS (1) u_(£) - RS(x) ?m uo(t)]} dt
o 1 [t i T 7 5,0
=1 T=1 j’o

n, 1/2 'n 1/2

< C°(Z: £5) (Z n?) C(t,m) ,

where Co is a constant with respect to j, p, m and 1 , while

(7.8.12) Clt,m) = sup{ |A[RS(1)u - RS(r)Pmp] v |Au] g 02(Ru (0))} )
i Q

from (7.8.8~11Y, we can plainly infer

0
[j(?mu,hp)(u,kp) du(u) - ;ZE:: B30 gl
i,j=1

n ,12 a ,
s e v e, cc@m]Gen  Ga))
i=1

whence

(7.8.B) [855(r) = B35 (p) ] s 2 e5(e) + c [CCry,m) + C(rym)]

for any T, T, g;[b,é] and 1¢i , jsn . In (7.8.13), p and m (= 1,2,...) are
at our disposal. Letting p, m =-> « , and using the fact that

Cltym) —> O for m > ® (T50)

(which results readily from (5.7.4-5) and Corollary 1.9, (1.9.3) of [ :] y Ch.I1I),
we obtain

(7.8.14%) Sij («;1)‘ = 615(12) (Tl,fz e (0,°), 1¢i, j<n) .
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Since {uoj(t’xo)}?=1 is pseudo-random we must have (see sec. 7.7.(1i1)),

Bij('r) — 0 for 1 ~—w , thus, by (7.8.14),
( | n = o0
f7'8'15) (Bij(T))i,j=1 =0 on (0,») ,

in contradiction with the property (ii) in sec. 7.7. Thus, if turbulence in the

sense of Leray does not exist, neither does exist turbulence in the sense of Bass.

7.9. The results in §.5 explain why whenever Bifurcation Theory was successfully
applied to produce periodic, or more general almost periodic, individual solutions
for the Navier-Stokes equations (see for instancé [18] and [38]), the boundary
value problem involved was different of the classical Dirichlet type one we consi-
dered in this papér. Indeed for this classical boundary value problem our results
show that, at least in case n=2 , no non stationary périodic or almost periodic
individual solutions exist. In particular this implies, via the Bifurcation Theory

(see for instance [36]), a very peculiar spectral behaviour of the operator
(7.9.1) Auv = v Au + B(u,v) + B(v,u) (v €”$A)

in H , where u e.ik plays the role of a parameter. Therefore this raises the
question if, again in case n=2, the set S(f,v) of all stationary individual
solutions is not a singleton. This would constitute a substantial improvement of

our results in §.6. However this seems rather improbable to happen.
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