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A MOMENT PROBLEM FOR POSITIVE MEASURES ON THE UNIT DISC

by Aharon Atzmon

1. Introduction.
The purpose of this note is to present the solution of the following complex moment
problem :

)OO

m,n’m, n=0 does there exist a positive Borel

For which infinite matrices (a

. measure (& on the closed unit.disc ID in the complex plane such that

m -n
(1.1) am,n"J[DZ z du(z)
holds for all non negative integers m,n ?
In § 2 we give the complete solution of this problem, and in § 3 we deduce,
as corollaries, known solution of the trigonometric momernt problem and the power moment

problems for the intervals [O, 1] and |:—1 , 1] .

Our interest in the moment problem (1. 1) arose from the observation that the

invariant subspace problem for bounded linear operators cn a separable Hilbert space



is equivalent to the following problem :

et A = (O'm,n)z,n -0 be an infinite matrix which satisfies the fo}lbwing two
conditions :
o0
(1.2) : mZ:,n:o %y n ¥ W, >0
and |
oo
(1.3) %;—;I:O (am,n “amﬂ,nﬂ) Y ﬁn 2 Gk

for every non zero sequence . ’(vén):: -0 -of complex numbers which has only finiteley many
non zero terms,
Let P denote the vector space of all polynomials with complex coefficients, and

define on it the inner product

u

N
> = b_ ¢
P9 gc‘m,n mmn

1=

M . N
where p(z)=3 b z% and q(z) = > .c z",
m=0 m n=0 n

It follows from (1.2) that with this inner product P forms a pre-Hilbert space,
and we denote by i A the Hilbert space obtained as its completion. Let S denote
the operator of multiplicationby z on P, that is, Sp(z) -z p(z) for pe&f’.
Condition (1.3) implies that ”SH < 1, and therefore, since P is densein Ar S
admits a unique e,xtension to a bounded linear operator on H A with the same norm,
which we shall also denote by S.

The problem which is equivalent to the general invariant problem is as follows :

For every matrix A= _ )

oo he Ty . .
m, n’m, n=0 which satisfies (1.2) and (1.3) does the

associated operator S have a non frivial invariant subspace ?



Indeed, assume that there exists a linear operator T on a separable Hilbert

space #, such that - HTH <.1, which has no non trivial invariant subspace, and

. . (o]
let x be any non zero element of H. Define the matrix A = (am,n)m,n -0 by :
am,n = (me y Tnx>, m,n=0, 1, 2, .... The assumptions on 'T imply that the

matrix A satisfies conditions (1.2) and (1.3). Let S be the operator associated
with A as before, and consider the isometric linear transformation U of # A

onto H which is defined on the dense subspace P by Up=p(T)k, peEP.

Then S = U'1TU, and therefore if T has no non trivial invariant subspace, neither
has S.

‘ -

In view of this observation, it is of interest to consider matrices (&
m,n'm,n=0

for which (1.2) and (1.3) hold, and to find further conditions on these matrices which
imply that the associated operator S has a non trivial invariant subspace. In the

particular case in which @._ )

m,n’m, n=0 satisfies condition (1. 1) for some positive

Borel measure g on the closed unit disc, then conditicns (1.2) and (1‘.3) are satisfied,
and H A canbe identified with Hz(du) - the closure of P in Lz(d/.t) - and the
associated operator S is now multiplication by 2z on Hz(du ). It is worth nothing
that the problem of whether for every positive Borel measure g on D the operator
of multiplication by z on Hz(df.;) has a non trivial invariant subspace is still open,
and is equivalent to the invariant subspace problem for sub-normal operators. (We
learned this from A. Shields. See also [5] p. 192 for further details).

In the particular cases when (@ is a Toeplitz matrix or a Hankel

)00
m,n’m,n=0

matrix, which satisfies conditions (1.2) and (1.3), the operator S, associated with



this matrix, has a non trivial invariant subspace whether or not the moment problem
(1.1) is soluble for the matrix | (a,m’n);’;,n _o- This can be seen as follows : Let £ o
be the polynomial which is identically equai to 1, and consider the closed subspace
M of qu spaned by the vec_tbrs sh 90, n=0,1,2,.... f M# ‘HA then M is
a non trivial invariant subspace for S, andif M= H A it is easily verified that in
the case of Toeplitz matrices S is unitary and in the case of Hankel matrices S
is self-adjoint. Th;,zs by well known results S has a non trivial invariant subspace
aléo in this case. Finally, We remark that S has obviously a non trivial invariant

subspace when (O isa diagonal matrix.

m n)m,nzo

2. Solution of the moment problem.

- The general solution of the moment problem (1. 1) is given by the following propo-

sition :

Theorem 2.1, Let @_ )°

‘ an infinite matri ex num . Then
m,n’m, n=0 be an infinite matrix of complex numbers. Then

condition (1. 1) holds for some positive Borel measure [ on the closed unit disc if

and only if the foﬂoWing two conditions are satisfied

[+e]
(2.1) > 20
fim,3,k=0 m+3,n+k n 3 m k

for every matrix (c, | )5 .. With only finitely many non zero entries
; ‘ J,K’j, k=0

.o

(2.2) ‘ :né:%'r() (am,n - Qfm+?,n+?)wmwn =0
=

for every sequence (wn);;o -0 with only finitely many non zero terms.

Proof. Assume first that (A );i ne0 satisfies condition (1. 1) for some
e , ,N=

m,n



positive Borel measure | on the closed unit disc D andlet (c, be an

g
i,k k=0

infinite matrix such that for some positive integers M and N, C:i K= 0 if
s

N
i>M or k> N. Consider the polynomials : Pn(z) = g Cn,kzk’ n=0,1,2,..
..y M. Tt follows that

2
du(z)=0

M
n
Z;)‘Jz pn?zi

oo
> a . c_ .cC :J
%, 3,k=0 m+j,n+k n,j m,k D

which proves that (2. 1) holds.
To show that (1. 1) implies (2.2) consider a sequence of complex numbers

(wn):;o which has only finitely many non zero terms. Then

(o]
2 R el 'm W T J

m,n=0 D

(o]
n
w_ Z
Jﬂ)r%“

Hence (2.2) holds.

2
du(z) =<

it 1
5w,

n=0

2

o
du(Z):Z a w,_W_.
fheo MM omon

We turn now to the proof that conditions (2.1) and (2.2) are sufficient for (1.1) to
be satisfied for some positive Borel measure g on D. Observe first that (2.1)
implies that for any sequence of complex numbers (Wn): -0 which has only finitely

meny non zero terms,

0 .

(2.3) ST oo, w_W_>0.
m, n=0 m,n mon

Indeed, (2.3)is obtained by épplying (2. 1) with the matrix (cj defined by
) #

)00
k’j, k=0

n=0,1,2,...,and c =0 for k=1,2,3,..., n=0,1,2,...

n,k

We shall now show that (1. 1) holds under the additional assumption that whenever



(w )* .. is not the zero sequence, the inequality in (2.3) is strict, that is, we assume
n'n=0 :

o0
that (am )

n’m. n=0 satisfies also condition (1.2). It will be clear from the proof that
] A

the genebal case can be established in the same way, using only (2.3), by an obvious quo-
tient space argument.
Let now # A be the Hilbert space associated with the matrix (Q'm,n)m,n 0

andlet S be the corresponding operator as defined in  § 1. It is easily verified

that condition (2.2) is equivalent to the condition
; n m
(2.4) > (Spm,8p>20

for any finite set of polynomials ) o Pyre--aPp - Since the polynomials are dense in

# 5 it follows from (2.4) that

4

(2.5) n
m,n=0 (s fm

m
, S fn>20

for any finite set f, f;,..., f, in Hdy By a theorem of J. Bram B, Theorem ‘t:f ,
condition (2.5) implies that S is a subnormal operator, thatis, S canbe

extended to a normal operator K on a Hilbert space H whichcon;cains 3{ A @sa
closed subspace. Moreover, we may also assume that ”S” = HKH [3, p. 81, Lemma 2] y
and since “S“ =< 1‘ we also have ”KH <1, Let E ‘bethe spectral measure
associated with K by the speciral theorem for normal operators [4, p. 71} . Let

Eo be the element of P which is identi¢ally equal to 1, and consider the positive
Borel measure A defined by p(E)>x (E(R)® » 90> for every Borel set B in the
plane. We claim now that this measure satisfies the required conditions.

First, since g is supported by the spectrum of K and ”KH <1, the



7.
support of 4 is contained in the closed unit disc. Secondly, it follows from the well-

known properties of spectral measures [4, p. 61] that for all p,qcP,

(B, , (<) ,> = j@ p(z) TET du(2),

and therefore since K isanextensionof S we obtain that

CLm’n= (s™ 90 ’ s eo> =JD z" 2" du ().

This completes the proof of the theorem.

Remarks.
1. Since every continuous function in the closed unit disc is a uniform limit of
polynomials in z and z, it follows that the solution of the moment problem (1. 1),

whenever it exists, is unique.

2. It follows from Theorem 2.1 and the fact that a polynomial in one variable has
only finitely many zeros, that the measure g which satisfies (1. 1) has an infinite
support if and only if the inequality (2. 1) is strict for every non zero matrix (Cj,k)z 1e=0
with only finitely many non zero entries.

3. One might be tempted to conjecture that condition (2. 1) can be replaced by

‘condition (2.3) in the hypothesis of Theorem 2.1. That this is not the case can be seen

. . s o .
from the following example : Consider the matrix (a'm,n)m,nxO defined by
Ov ‘: ol == o . iti
0,0 (11’1 2, an,n 1 for n>1 and Cn,n 0 for m#n. Then conditions
(2.1) and (2.3) are satisfied but condition (2. 1) is violated by the matrix (Cj k)go =0
14 g

=-2 and c¢., =0 otherwise.

given by : CO,O:}’ c1,§ 5,k



3. Application to the trigonometric and power moment pr'_oblems.

In order to apply Theorem 2.1 to the trigonometric and power moment problems

we first need two lemmas.

0 . . st s
Lemma 3.1. Let (O“m,n)m,n 0 be a matrix for which there exists a positive

measure K on the closed unit disc such that (1.1) holds. Then :

(ee] & . o
(a) 1f (O"m,n)m,n=0 is a Toeplitz matrix, that is, Bs 5™ O“m—n,O for
m =n, .the supportof u is contained in the unit circle {z 5 lz |= 1} .
2 o0 “ N .
i @ ) is a Henkel matrix, that is, Apnon = am—n,O’ m,n=0, 1,

m,n'm,n=0 -

2,..., then the support of U is contained in the interval [—1 i 1] .

@I (@ )2

m,n’m, n=0 is a diagonal matrix that is CLm = 0 for m 74 n, then

’
using the representation of D in polar coordinates D = {(r,e ), 0<r<1, 0<6 S27T} ,

we have U =v xd6 where vis a positive Borel measure on [0, 1] , and db

denotes Lebesgue measure on [0 , 2T).

Proof. (a) Using the assumption for m=n=1 we see that j (1= Iz lz) du(z) =0,
D

and therefore since U is a positive measure its support is contained in {z g lz l=1 } .

(b) Using again the hypothesis for m =n = 1 we obtain that
( | IZ Dy ces . . 2
z|“ ~2z")du(z)=0, hence writing z=x+iy we infer that y- du(x,y)=0.
D D
Consequently, since p is a positive measure its support is contained in [—1 " 1] .
(c)Let v be the positive Borel measure on [:O, 1] defined by

v(B) =27 u(B x [0,271.)) for every Borel set B in [O, 1J . We claim that

Kk =vxdf. Since the polynomialsin z and z are dense in the space of continuous



functions on D, it suffices to prove that for every pair of non negative integers m,n

we have :

(3.1) j z™ Endu(z)=J zZ2 7" duxado .
D D

Now for m=n, the definitionof v implies that

1

J zmindu(z)=J rzmdu(r,e)zgﬁj rzmdv(z):J 2™ 7% dy xdo
D , D o] D

27 .
and for m#n it follows from the hypothesis and the fact that j elk9

(o]

dd =0 for

k # 'O, that both sides of (3.1) vanish. This completes the proof of the lemma.

Lemma 3.2,
(a) Let (bn);o=C>° be a two sided infinite sequence of complex numbers, and
. . . o0 .
define the Toeplitz matrix (am,n)m,n=0 by am,n =b_ . mn=0,1,2,...
(oo} . . o . .
Then (O“m,n)m,n 0 satisfies conditions (2.1) and (2.2) if and only if
o0

3.2 b w w =0
(5.2) f)v’:glz_w P-4 P q

holds for any sequence (Wn):__oo with only finitely many non zero terms.

(b) Let (bn)(;lo _o Dbe aninfinite sequence of complex numbers and define the

] 00
Hankel matrix (am,n)m,nzo by a’m,n=bm+n’ m,n=0, 1, 2,... Then

O . . vy . . .
(O‘m',n)m,n _o Ssatisties conditions (2.1) and (2.2) if and only if the following two

conditions are satisfied :

w o>
(3.3) > . bmq Wy W, Z 0
and
(3.4) (b b 2) Wy qu 0

G0 Ptd P

o
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for any sequence (wn);O -0 of complex numbers with only finitely many non zero terms.

(c) Let (bn);: 0 be an infinite sequence of complex numbers and define the

diagonal matrix (f:lm’n)m’ﬂ:__O by Oy n = b, for m=n and Cpn = 0 for m#n
Then (@ ) satisfies (2.1) and (2.2) if and only if the following two conditions
m,n’m,n=0

are satisfied :

[+
(3.5) > {h=-b W w. =0
1
57 p+q+) P q
and
QO
(3.6) b w W =0
p%;:() p+a+1 "p g

for any sequence (wn);O _o Of complex numbers with only finitely many non zero terms.

Proof. (a) We show first that (2.1) implies (3:2). Let (Wn);l_;o be a sequence

with only finitely non zero terms and consider the matrix (Cj defined by :
’

)OO

k’j, k=0
, p=0,1,2, ..., and c,, =0 otherwise. A direct
P 3k | ,

computation then shows that

o (o)
. b W W, :E o, ¢ .C .
pZ,;;:::v»oo p-q p ¢ i, 3,k=0 m+j,n+k n,j m,k

Therefore (3.2) follows from (2.2). Conversely, to show that (3.2) implies (2.2),

consider any matrix {Cj k);:o K=o With only finitely many non zero entries and put
¥ g

m N
c_n’mmo, m,n=0, 1, 2,... Defining ang g p=0,+1,+2,..., we
obtain that

[se] (e o]
> a.. . c .C =9 , b W W
R, k=0 M0k Mg rm kS P-a P

Hence (3.2) implies (2.1). Finally, since (2.2) is clearly satisfied for any Toeplitz



11.

matrix, the proof of (a)is complete.

(b) First notice that (3.4) is equivalent to (2.2) and that (3.3) follows from (2.3)

hence from (2. 1). It therefore remains to prove that (3.3) implies (2.1). Let

(Cj,k);k _o be any infinite matrix witn only finitely many non zero entries, and define
= 3“2:0: o-j,i? P= 0, 1, 2,... A direct computation then shows that
® — -
p,zq=0 Pprg Vp Vg = r%:;l,g, % md,nek Cn,j Sm, K

Hence (2. 1) tollows from (3.3).

(c) By adding (3.5) and (3.6) we see that

oo

. b ; W_=0
(3.7) pz’%:{) orq Vp Vg

(o]
for any sequence (w_)

p)p=0 with only finitely many non zero terms. We claim now that

for any such sequence (Wp)(;o we also have
o
(3.8) > .\ b W W_=0
m+
Ll TP P T q

for every non negative integer m.

Indeed, assuming first that m =2k for some integer k, it follows that

<o oo
= b - 5 B Yo
m; - -k
prg=0 MtP+d "p¥q " ptq P~k ' q
where we define w_ =0, n=0,1,2,... . Consequentely (3.8) follows from (3.7)

for m even. Similarly (3.5) implies (3.8) for m odd.

To prove that (3.8) implies (2. 1), consider any matrix (c, with only

)i
3:k'5, k=0

finitely many non zero terms. Using the assumption that (Q

)® _ is diagonal
m,n’m,n=0

we obtain that



12,

o o0 00
Y . . c .C =2 V2, b c c._ .
577,k=0 m+j,n+k n,j m,k =0 p,4=0 m+p+q m,p n,q

Hence (3.8) implies (2.1). Using (2.1) with matrices (cj such that

)00
s K7j, k=0
¢ k= 0 for j#1 we see that (2.1)implies (3.5). Finally since (3.6) is equivalent
H
to (2.2), the proof of the lemma is complete.
We recall that a two sided infinite sequence (bn)n=oo is called a trigonometric

moment sequence if there exists a positive Borel measure ¢ on the unit circle

T={z: [z] =1} such that 'bn=J e ™ au(t), n=0,+1,+2,...
T ‘

A sequence (bn)gO is called a power moment sequence for the interval
[a,b] on the real line, if there exists a positive Borel measure g on [a,b] such

that : b
&;;ng tTaut), n=o0,1,2...
a

An obvious application of Theorem 2.1, Lemmo 3.1 Q nel Lemma 3.2

Lemma-3-l-and-=emma3+2 now yields :

Proposition 3.3.

(a) A sequence (bn)ﬁ__oo is a trigonometric moment sequence if and only if it

satisfies condition (3.2).

(b) A sequence (bm):;0 _o 1sa power moment sequence for the interval [—1 , 1]

if and only if it satisfies (3.3) and (3.4).

(c) A sequence (bn);;0 _o 1s.a power moment sequence for the interval [0,’ 1]

if and only if it satisfies (3.5) and (3.6).
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Part (a) of the proposition is the well known theorem of Herglotz on the
characterization of trigonometric moment sequences.
Part (b) of the proposition is proved by Akhiezer and Krein [2, p. 35, Theorem 19]

2m

for finite sequences of the form '(bk)k-0‘ Since an infinite sequence (bk)lo:~0 isa

power moment sequence for a given interval if and only if for every m the sequence
2m

(bk)k 0 is a finite moment sequence on that interval, it follows that the two conditions

are equivalent for infinite sequences.

Part (c) of the proposition is a known theorem, but we are unable to determine
its origin. See however Akhieser [1 , P. 74] .

For the power moment sequences for the interval [0, 1:[ we also have the well
known characterization of Hausdorff (see [1 s P. 74] ). It seems that there is no direct

way to prove that the two. conditions are equivalent.
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