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A MOMENT PROBLEM FOR POSITIVE MEASURES ON THE UNIT DISC 

by Aharon Atzmon 

1 . Introduction . 

The purpose of this note is to present the solution of the following coinplex moment 

problem: 

For which infinite matrices (a, )
00 

=Ü does there exista positive Borel m,n m,n-

measure µ on the closed unit. dise ID in the complex plane such that 

( 1. 1) a = J zm zn clµ (z) 
m,n ID 

holds for a.Il non negative integers m,n ? 

In § 2 we give the complete solution of this problem, and in § 3 we deduce, 

as corollaries, known solution of the trigonometric moment problem and the power moment 

problems for the intervals [o , 1] and [_ 1 , 1] . 

Our interest in the moment problem ( 1 . 1 ) arose from the observation that the 

invariant subspace problem for bounded linear operators on a separable Hilbert space 



2. 

is equivalent to the following problem: 

Let A = (a. )
00 

=O be an infinite matrix which satisfies the following two m,n m,n-

conditions : 

( 1.2) 

and 
00 

( 1.3) r:: (a -a )w w > o 
=Û 

m,n m+1,n+1 m n m,n . 

for every non zero sequence (w )
00
=0 of complex numbers which has only finiteley many n n-

non zero terms. 

Let P denote the vector space of an polynomials with complex coefficients, and 

define on it the inner product 

M N 
(p,q) =), ~ L=O a.m,n bm ën 

m=O n-

M . N 
where p(z) = L bm zm and q(z) =Len zn. 

m=O n=O 

It follows from (1.2) that with this inner product IP forms a pre-Hilbert space, 

and we denote by JI A the Hilbert space obtained as its completion. Let S denote 

the operator of multiplication by z on 1P, that is, Sp(z) == z p(z) for p€1P. 

Condition ( 1 . 3) implies that 11s 11 :s 1 , and therefore 1 since 1P is dense in J/ A, S 

admits a unique extension to a bounded linear operator on J-1 A with the same norm, 

which we shall also denote by S. 

The problem which is equivalent to the general invariant problem is as follows : 

For every màtrix A = (a )
00 

0 which satisfies ( 1 . 2) and ( 1. 3) does the m,n m,n= · 

associated operator S have a non trivial invariant subspace ? 



space 

3. 

Indeed, assume that there exists a linear operator T on a separable Hilbert 

JI , such that I IT 11 < 1 , which has no non trivial invariant subspace, and 

let x be any non zero element of JL Define the matrix A= (a. t> ('\ by: m,n m,n=v 

a = ( Tmx , Tnx) , m, n = O, 1 , '2, ..•• The assumptions on T imply that the 
m,n 

matrix A satisfies conditions ( 1 . 2) and ( 1 . 3). Let S be the operator associated 

with A as before, and consider the isometric linear transformation U of J-1 A 

onto J-f which is defined on the dense subspace 1P by Up = p(T)x, p0P. 

-1 Then S = U TU, and therefore if T has no non trivial invariant subspace, neither 

has S. 

00 
In view of this observation, it is of interest to consider matrices (am )m _ _f\ ,n ,n=v 

for which ( 1 . 2) and ( 1 . 3) hold, and to find further conditions on these matrices which 

imply that the associated operator S has a non trivial invariant subspace. In the 

particular case in which (a. )
00 

0 satisfies condition ( 1 . 1) for some positive m,n m,n= 

Borel measure µ on the closed unit dise, then conditions (1.2) and (1.3) are satisfied, 

and Jl A can be identified with H
2 

( dµ ) - the closure of 1P in L 
2 

( dµ ) - and the 

associated operator S is now multiplication by z · on H2 
( dµ ) . It is worth nothing 

that the problem of whether for every positive Borel measure µ on ID the operator 

of multiplication by z on H
2 

( dµ ) has a non trivial invariant subspace is still open, 

and is equivalent to the invariant subspace problem for sub-normal operators. (\Ve 

learned this from A. Shields. See also [5] p. 192 for further details). 

In the particular cases when (a. )'t:) A. is a Toeplitz matrix or a Hankel · m,n m,n:;;;:;v 

matrix, which satisfies conditions ( 1 . 2) and ( 1 . 3), the operator S, associated with 



4. 

this matrix, has a non trivial invariant subspace whether or not the moment problem 

( 1 . 1 ) is soluble for the matrix (Cl ) 
00 

..... • This can be seen as follows : Let e
0 m, n m, n::::v 

be the polynomial which is identically equal to 1, and consider the closed subspace 

M of JI A spaned by the vectors n = 0, 1 , 2 , • . . • If M ~ J-1 A then M is 

a non trivial invariant subspace for S, and if M = Ji A it is easily verified that in 

the case of Toeplitz matrices S is unitary and in the case of Hankel matrices S 

is self-adjoint. Thus by well known results S has a non trivial invariant subspace 

also in this case. Finally, we remark that S has obviously a non trivial invariant 

subspace when (a. )
00 

_./"\ is a diagonal matrix. · m, n m, n::::v 

2 • Solution of the moment prioblem. 

The general solution of the moment problem ( 1 . 1) is given by the following propo-

sïtion: 

Theorem 2. 1. Let (a. )
00 

0 be aninfinite matrix of complex numbers. Theri m,n m,n= 

condition ( 1 . 1) holds for some positive Borel measure µ on the closed unit dise if 

and only if the following two conditions' are satisfied : 

(2. 1) 
00 

I: a . kc .ë k>O 
m,n,j,k:::O m+J,n+ n,•J m, 

for every matrix ( c. k) ~ k /"\ with only finitely many non. zero entries 
J, J, ::::V 

(2 .2) 

for every sequence 

00 

I: (a. - a )w w ~ o 
m _0 m,n m+1,n+1 m n ,n-

(w )oo_/"\ with only finitely many non zero terms. n n::::v 

Proof. Assume first that (Cl )
00 

....... satisfies condition ( 1. 1) for some m, n m, n::::v 
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positive Borel measure µ, on the closed. unit dise [) and let (c .. k)~k n be an 
J, J' .=.J 

infinite matrix such that for some positive integer•s M and N, c. k = O if J, 
N 

j > M or k > N. Consider the polynomials : P (z) = L c kzk, n = O, 1, 2, .. 
n k=O n, 

•. , M. It follows that 

i: Q . k c . ë k = J ltzn pn(z) 12 dµ,(z) > 0 
. k-n m+J,n+ n,J m, [) _ _,, m,n,J, =..., n;;;;;:v 

which proves that (2 . 1) holds. 

To show that ( 1 . 1) implies (2. 2) consider a sequence of complex numbers 

(wn);=O which has only finitely many non zero terms. Then 

Bence (2 . 2) holds. 

We tu:rn now to the proof that conditions (2. 1) and (2 . 2) are sufficient for ( 1 . 1) to 

be satisfied for some positive Borel measure µ on [). Observe first that (2 . 1) 

implies that for any sequence. of complex numbers ( w )"/.) r. which has only finitely n n:::::v 

ma.ny non zero terms, 

(2 .3) 
00 

I: a w w 2: o. 
m,n=O m,n m n 

Indeed, (2. 3) is obtained by applying (2 . 1) with the matrix ( c. k)~ k n defined by 
J, J, ==v 

c 0 = w , n = 0, 1 , 2 , ... , and c k = 0 for k = 1, 2 , 3, ... , n = O, 1 , 2, ... n, n n, 

We shall now show that ( 1 . 1) holds under the additional assumption that whenever 
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(w )°°.J\ is not the zero sequence, the i.nequality in (2.3) is strict, that is, we assume n n=v 

that (a r° ri satisfies also condition ( 1 . 2). It will be clear from the proof that m,n m,n;:;;;v 

the general case can be established in the same way1 using only (2.3), by an obvious quo-

tient space argument. 

Let now JIA be the Hilbert space associated with the matrix (a. )00 

m,n m,n=O 

and let S be the corresponding operator as defined in § 1 . It is easily verified 

that condition {2. 2} is equivalent to the condition 

(2.4) 

for any finite set of polynomials p
0

, p 1, ••• ,Pe. Since the polynomials are dense in 

Ji A it follows from (2 . 4) that 

(2 .5) 

for any finite set f
0

, f1' ... , fe in JIA By a theorem of J. Bram L3, Theorem 1], 

condition (2. 5) implies that S is a subnormal operator, that is, S can be 

extended to a normal operator K on a Hilbert space Jf which contains Ji A as a 

closed suQspace. Moreover, we may also assume that l!sll = l!Kll [3, p. 81, Lemma 2], 

and since l ]s 11 s 1 we also have !IK Il s 1 . Let E be the spectral measure 

àssociated with K by the spectral theorem for normal operators [4, p. 71]. Let 

€
0 

be the element of IP which is identically equal to 1, and consider the positive 

Borel measure µ. defined by µ (B} = ( E(B) e , e ) for every Borel set B in the 
. 0 0 

plane. We claim now that this measure satîsfies the required conditions. 

First, since µ, is supported by the spectrum of K and !!Kil:.,;; 1, the 



support of µ is contained in the closed unit dise. Secondly, it follows from the well

known properties of spectral measures Gi,, p. 61] that for ail p,qElP, 

(p(K)e ' q(K) e > = l p(z) ëiW" dµ(z), 
o o ID 

and therefore since K is an extensj ::m of S we obtain that 

This completes the proof of the theorem. 

Remarks. 

1 . Since every continuous function in the closed unit dise is a uniform limit of 

polynomials in z and z, it follows that the solution of the moment problem ( 1 . 1), 

whenever it exists, is unique. 

2 . It follows from Theorem 2 . 1 and the fact that a polynomial in one variable has 

only finitely many zeros, that the measure µ which satisfies ( 1 . 1) has an infinite 

support if and only if the inequality (2 . 1) is strict for every non zero matrix 

with only finitely many non zero entries. 

3 . One might be tempted to conjecture that condition (2 . 1 ) can be replaced by 

condition (2. 3) in the hypothesis of Theorem 2 . 1 . That this is not the case can be se8n 

from the following example : Consider the matrix (a, )°;) 
m,n m,n==O defined by 

o..0 0 = a 1 1 = 2, a = 1 for n > 1 and o, == O for m =} n. Then conditions , , n,n m,n 

(2.1) and (2.3) are satisfied but condition (2.1) is violated by the matrix (c. k)~k~r, 
J, J, =v 

given by : c0 ,0 = l, c 1, 1 = -2 and cj,k = 0 otherwise. 



3 . Application to the trigonometric and power !lloment problems. 

In order to apply Theorem 2 . 1 to the trigonometric and power moment problems · 

we first need two lemmas. 

Lemma J. 1. Let (a )
00 

be a matrix for whlch there exists a positive m,n m,n=O 

measure µ on the closed unit dise such that ( 1 . 1 ) holds . Then : 

(a) If (a..m,n):,n;,o is a Toeplitz matrix, that is, o.m,n = a,m-n,o for 

m ~n, . the support of µ is contained in the unit circle { z : 1 z 1 = 1} . 

(b) If (a, )
00 

=Ü . is a Henkel matrix, that is, a, = a, , m,n = O, 1, m,n m,n- . m,n m-n,O . 

2 , ... , then the support of µ is coritained in the interval [- 1 , 1] • 

(c) If (a, )
00 

· is a diagonal matrix that is a, · = 0 for m f. n, · then m,n m,n=O m,n 

using the representation of · ID • in polar coordinates ID. = { (r, e ) , O::s;r::s; 1 , o:::; e ::s;21T} , 

we have µ = v x d0 where vis a positive Borel measure on [o, 1], and d0 

. denotes Lebesgue measure on [o ,· 27T). 

Proof. (a) Using the assumption for m = n = 1 we see that JII) (1- l z 1
2) dµ(z) = O, 

and therefore since · µ is a positive measure its support is contained in {z , 1 z 1 = 1}. 

(b) Using again the hypothesis for m = n = 1 we obtain that 

J
0

( lz 1
2 

- z2) dµ(z) = o, hence writing z = x + iy . we inter that J
0 

y2 dµ(x,y) =O. 

Consequentl;y, since µ is a positive measure its support is contained in [-:-1, 1] . 

(c) Let v be the positive Borel measure on [o, 1] defined by 

v(B) = 21T µ(B x [o,211')) for every Borel set B in LP, 1]. We daim that 

µ = l) X dB. Since the polynomials in z . and -z are dense in the space of continuous 
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functions on ID, it suffices to prove that for every pair of non negative integers m, n 

we have: 

(3. 1) l m -n ( ) J m -n z z dµ z = z z dvxd0. 
ID ID 

Now for m = n, the definition of v implies that 

l m -n J 2m 1 j 1 
2m J m -n z z dµ(z)= r dµ(r,0)=27i r dv(z)= z z dvxd0 

ID [) 1To [) 

f2rr 'k0 
and for m f. n it follows from the hypothesis and the fact that Jo e

1 
d0 = 0 for 

k f. O, that both sides of (3 . 1 ) vanish. This completes the proof of the lemma. 

Lemma 3.2. 

(a) Let (b )
00 

be a two sided infinite sequence of complex numbers, and n n=oo 

definetheToeplitzmatrix (a,m,n):,n=O by ctm,n=bn-m' m,n=O, 1, 2, ... 

Then (a, )
00 

{\ satisfies conditions (2. 1) and (2. 2) if and only if 
m,n m,n=v 

00 
(3 .2) L b ww>O 

p,q=-00 p-q p q 

holds for any sequence (w )
00 

with only finitely many non zero terms. n n=-oo 

(b) Let (bn);=O be an infinite sequence of complex numbers and define the 

Hankel matrix 
00 

(a.m,n)m,n=O by am,n = bm+n' m,n=O, 1, 2, ... Then 

(a, . )
00 

_f\ satisfies conditions (2 . 1) and (2. 2) iJ and only if the following two 
m,n m,n=v 

conditions are satisfied : 

(3 .3) 

and 

00 

(3 .4) ~ (b - b ) w w 2::: 0 
'---' __ {\ p+q p+q+2 p q p,q=v 
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for any sequence (w tfJ {"\ of complex numbers with only finitely many non zero terms. 
n n=v 

(c) Let (b )
00

1 , be an infinite sequence of complex numbers and define the nn:::;;v 

diagonal matrix (am )m= _0 by o, n = bn for m = n and CL.m = 0 for m ~ n ,n ,n- m, ,n 

Then (a.m,n):,n::=0 satisfies (2. 1) and (2 .2) if and only if the following two conditions 

are satisfied : 

(3 .5) 

and 

00 

(3 .6) '"""' b w w >O ~(\ p+q+1 p q 
p' q:;:;:v 

for any sequence (w )
00 

n of complex numbers with only finitely many non zero terms. n n=v 

Proof. (a)We show first that (2.1) implies (3.2). Let (w )
00 

be a sequence n n=-oo 

with only finitely non zero terms and consider the matrix ( c. k)~ k::=O defined by : 
J, J, -

and c. k = O otherwise. A direct J, 

computation then shows that 

00 00 

~ b w w0 = S a. . k c . ë k' '--' p-q p . k -" m+J,n+ n,J m, p,q=-oo m,n,J, =v 

Therefore (3.2) follows from (2.2). Conversely, to show that (3.2) implies (2.2), 

consider any matrix (c. k)°!k· n with only finitely many non zero entries and put 
J' J' :::;;v 

C = 0, -n,m 

obtain that 

m,n=O, 1, 2, •.. Defining 
00 

w = L C •• 
p ·r. p+J,J J==v 

00 00 

p = 0, ± 1 , ± 2 , •.• , we 

L a . kc .. c k=I: b w w. 
m,n,j,k::=O m+J,n+ n,J m, p,q=-oo p-q p q 

Bence (3. 2) implies (2. 1). Finally, since (2. 2) is clearly satisfied for any Toeplitz 
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matrix, the proof of (a) is complete. 

(b) First notice that (3.4) is equivalent to (2.2) and that (3.3) follows from (2.3) 

hence from (2. 1). It therefore remains to prove that (3. 3) implies (2. 1). Let 

(c. k)~k-r, be any infinite matrix with only finitely many non zero entries, and define 
J, J, =v 

p 
w = L c . . , p = 0, 1, 2, . . . A direct computation then shows that 

p j=O p-J,J 

Bence (2. 1) follows from (3. 3). 

(c) By adding (3.5) and (3.6) we see that 

00 

(3. 7) L b w w >O 
p,q:::O p+q p q 

for any sequence (wp);:::O with only finitely many non zero terms. We claim now that 

for any such sequence ( w tx:; 
0 

we also have 
p P= 

(3 .8) 

for every non negative integer m. 

Indeed, assuming first that m = 2k for some integer k, it follows that 

where we define 

CO CO 

Lb WW=Lb w w 
P, q=Ü 

m+p+q p q =O p+q p-k q-k 

w = o, -n 

p,q-

Consequentely (3 . 8) follows from (3 . 7) 

for m even. Similarly (3.5)implies (3.8)for m odd. 

To prove that (3 . 8) implies (2 . 1), consider any matrix ( c. k)c:'·k _ _f) with only 
J, J, =v 

finitely many non zero terms. Using the assumption that (a )co I'\ is diagonal m,n m,n=v 

we obtain that 
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00 00 00 

L a . kc .ë k=I: L b c ~ • . k r. m+J,n+ n,J m, _f\ _r. m+p+q m,p n,q m, J, =v m=v p, q=v 

Hence (3.8) implies (2.1). Using (2.1) with matrices (c. k)~k-O such that 
. J, J, -

c. k = 0 for j -1= 1 we see that (2. 1) implies (3. 5). Finally since (3. 6) is equivalent 
J, 

to (2 . 2), the proof of the lemma is complete . 

We recall that a two sided infinite sequence (b ) is called a trigonometric n n=oo 

moment sequence ü there exists a positive Borel measure µ on the unit circle 

{ 1 1 } J -int ( ) T = z : z = 1 such that b n = T e dµ, t , 

A sequence (bn); ;i.s called a power moment sequence for the interval 

[a,b] on the real line, ü there exists a positive Borel measure µ on [a,b] such 

that: 

b - Jb n .,,.-~ a t dµ,(t), n=O, 1, 2 ... 

An obvious application of Theorem 2. 1, L e mm 0- 3. f a ni i e 111 tno... 3 - 2 

bemma 3 . 1 and~a 3 :% now yields : 

Proposition 3 . 3 . 

(a) A sequence (b )
00 

is a trigonometric moment sequence ü and only if it n n=oo 

satisfies condition (3. 2). 

(b) A sequence (b )
00

=0 is a power moment sequence for the interval [-1, 1] 
n n-

if and only if it satisfies (3 . 3) and (3 . 4). 

( c) A sequence (b )
00 

r. is .a power moment sequence for the interval [o, 1] n n=v 

if and only if it satisfies (3 . 5) and (3 . 6). 
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Part (a) of the proposition is the well known theorem of Herglotz on the 

characterization of trigonometric moment sequences. 

Part (b) of the proposition is proved by Akhiezer and Krein [2, p. 35, Theorem 19] 

for finite sequences of the form (bk)i~o. Since an infinite sequence (bk);=O is a 

power moment sequence for a given interval if and only if for every m the sequence 

(bk)!~ is a finite moment sequence on that interval, it follows that the two conditions 

are equivalent for infini te sequences. 

Part (c) of the proposition is a known theorem, but we are unable to determine 

its origin. See however Akhieser [1 , p. 7 4] . 

For the power moment sequences for the interval [o, 1] we also have the well 

known characterization of Hausdorff (see [1 , p. 74] ). It seems that there is no direct 

way to prove that the two conditions are equivalent. 
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