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A MARTINGALE THAT OCCURS IN HARMONIC Ai-.JALYSIS 

R. F Gunct/ 1) and ,~. Th. Va:r~poulos 

r • k } It has been recognised for a long time that the sequence { exp(1r 0) ; k = 0, 1 , 2, ... 

with r an integer greater than onf' and O :s: B :s; 21T , is quite similar to a sequence of 

independent random variables. TJ,at isJ many statements that are valid for sums of inde pen

dent variables are also true for sums of exp01:entials of the abovc type. This coihcidence 

may be explained by the observation that the sequence, while not inde pendent, is a 

martingale difference sequence. 

Our purpose in this note is to discuss this type of martingale in the context of the 

theory of HP -spaces. In fact J we show that for any positive integer r > 1 one cati find 

a sequence of cr-fields with respect to which the above lacunary exponentials become 

martingale differences. Using this; we define HP -spaces in a manner analogous to what 

has been done in the classical case (cf. [2] ). These HP-spaces are translation invariant 

subspaces of L \T) that coihcide with LP(T) for p > 1. 

The most interesting case is when p = 1 ; here the spaces which we denote by H; 

are translation invariant subspaces of L 1(T), distinct from the classical Hardy space 

H 1 • The space H; may be characte1,ised as follow s 

,.., 

f E:H 1 if and only if f and r 

its "conjugate" f belong to L 1 (T). r Here fr is, of course, not the harmonie 

( 1) This research was sponsored, in part, by N. S. F. Grant 42478 and the Research Council 
of Rutgers University. 
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conjugate function ; neve:.l'theless, it is obtained from f by a Fourier multiplie1· taking 

the values + 1 . 

The spaces H~ and their associated conjugate functions are closely related to some 

results of Taibleson and Chao [3] ;_ we indicate this in some detail in § 3. 

We also use these ideas to obtaiïl some reC'ent results on lacunary series. We discuss 

these applications in § 2. 

For background on martingale theory and HP -spaces, we cite [ 1] and the excellent 

exposition by Garsia [t,] . 

§ 1. Statement of results. 

A 

Let f(0) = ~ f(n) exp(in8) be a trigonometric polynomial. For any positive integer 

r > 1, we define two auxillar•y functions 

* lrk-1 . kl f (0) = sup ~ f(B + Ji? r-
r ~o j=O r 

1 
A 12 00 1 00 A k k 12}1 /2 

s (f)(e) = { f(O) + ~ . ~ f(jr ) exp(ijr e) • 
r k=O J=-oo 

THEOREM 1 • Let f be a trigonometric polynomial. If O < p < oo, we have 

* If 1 < p < +oo, then we"may replace fr by f in the above inequalities. 

Let r > 0 be an odd integer with r we can associate the following partition of 

the integer Z 

A A ·{ n+ 1 n r- 1 } = r = r s + r q ; s€Z , q = 1 , 2, . . . 2 , n ~ O 

{ 
n+1 n r+1 } B = Br = r s + r q ; s€'Z , q :::; 2 , ... r-1 , n ~ O • 



3. 

THEOREM 2. Let f be a trigonometric pcl;vnomial then 

where c, C > 0 are two constants that depend only on· r. 

Fer r even;an analogue of Theorem 2 holds, but the integers have to be partioned 

into more sets . For details cf. § 3 

THEOREM 3. Let f be qn L 1-function ; tnen 

( ~ lt(rk) 1
2

) 
112 ~ C 11/11

1 k==O r r 

for 1 ~ p < +oo. 

An elaboration of the method of proof of Theorem 1 leads to the following corollary. 

COROLLARY 1 . Let f be an Lp -function on the circle and a 1, a2 , ... , am 

_be integers with 

for 1 < p < +oo. 

a. > 1, 
1 

i==1, 2, ••• m. Then 

Theorem 1 is a consequence of general martingale inequalities proved in [ 1] . This 

is made explicit in § 2. Using these inequalities we can obtain a class of LP-Fourier 

multipliers due originally to Peyrière and Spector [5]. 

Theorem 2 is a well known result of R. E. A. C. Paley when p > 1 (cf. [?] ) . 

Corollary 1 is an extension of Paley' s inequality and provides an answer to a problem 

proposed by Nemyirth, (Neuwirth had already_ proved the special case m == 2). 

This inequality was first proved by Bonami and Peyrière using the results of ~ J . 
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§ 2 . A backwacds martingale. 

For r ;?: 1 a positive integer, let ~r denote the a -field of ail 211 r - 1-periodic 

Bo~el sets of the circle 'f. Then the condiüonal expectation of a function f E: L 1 ('f) 

with respect to ~ r is given by 

Il 
r- 1 . 

E(f [r' )(e) = E t(e + ~71l) r- 1. 
r ·=0 :r J-

If we expand f in a Fourier series 

00 ,... 

f(0) :::- E f(n) exp(in8) 
n=--:io 

then 
00 A 

E f(nr) exp(in.re ). 
n=-oo 

Fix r > 1 and consider the decreasing sequence of a-fields ~ n, n == 0, 1, 2, .... 
r 

the sequence 
n 

Il 
r -1 2 . 

f ==E(f Œ )== I; f(B +__!J_).rn 
n n . 

0 
n 

r J= r 

is a hackwards martingale in the sense that for each N ;?: 1 , 

,., 
is a martingale. If we set f = lim f = f(O) we may verify quite easily that the functions 

oo n 

* Sr(f) and fr are the martingale square function and maximal function, respectively, 

corresponding to the above sequence of a -fields. Furthermore, this martingale has the 

following regularity property : If dn = f n - fn+ 1 , then 

r-1 ( ) 
(1) d == E v q p(q) 

n 
1 

n n 
q= 

where q = 1, ... , r-1 are measurable with respect to the a-field 

and where 

E(p (q) Il~ ) = 0 
n n+1 r 

~ n+1 
r 
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for j, k = 1, 2, ... , r-1 . 

In fact, if we expand d in its Fourier series, we see that, as a 277 r -n_periodic 
n 

function with E( dn 11 ~ rn+ 1) = 0, it cc.1n be written 

r-1 
d ( 0 ) = E g (rn+ \n exp(iqrne ) 

n q=1 q 

where gq are uniquely determined. The functions gq(rn+ 1e) = v ~q)(e) and 

ê!Xp(i q rn e) = p (q)(e) fulfin our requirements. This 1·egularity property allows us to 
n 

apply the techniques of [ 1 ] • (In [ 1 ] , the regularity condition states that d = v p 
n n n 

wi~h S()me what more general conditions on p n. The extension of the results of [ 1] to 

the our case presents no problems. ) 

Thus, Theorem 1 is simply a special case of Theorem 5. 1 of [1J . 

To prove Theorem 2, we have to introduce the space BMO relative to our 

martingales. We know that the space BMO is the dual to H 
1 

with respect tel our martingale, 

by Fefferman' s theorem. Here, of course, 

H1= {t € L\r): f; € L\T)}. 

A function g € L 1 (T) belongs to BMO if 

E ( 1 g '"" ~ 12 
1 J ~ rn) :s; C 

for some constant and an n ~ 0. (This condition coihcides ,vith the standard one in [ 4 J 
because of our regularity condition). 

In terms of the Fourier series, the function g € BMO provided 

1 E ;(v).~1 :s; C for an n ~ 1. 

rnfv ,µ 

rn I v-µ 
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From this, we see that if 

00 " 

(2) g(B) ~ I~ g(n) exp(uPe) 
n:::::0 

then 

(3) llg!\8 M0 s cllcpll2 

= C(~ 1;(n) 12 )1/ 2 . 

Theorem 2 is proved using a duality argument as foHows : i.f f is a trigonometric polyno-

mial, then 
00 1/2 

( I; lf(rn) 1
2) = 

n=O 
s~p J f.cp dt 

where the sup is taken over an cp of the form (2) with On the other hand, 

the duality of H 1 and BMO imply that 

j f cp dt :S C 11f;111 llcp I IBUO. 

Finally, the inequality (3} shows that !lep IIBMO :S C, so that we obtain Theorem 2. We shall 

finally outline the pPoof of Corollary. For this, we shall need some facts concerrJng 

martingales with a several-dimensional time parameter. For simplicity we limit ourselves 

to the case where the time parameter runs over the lattice (n.m), n > o, m > O. 

Let ~ n and <}m be two monotone sequences of a-fields (for simplicity assume they 

are increasing sequence) and let us suppose that the conditional expectations w. r. t. 

O.: and Î commute i. e. 

n m fnm = E(E(f 11 &'n) lltrn) = E(E(t!l~m)ll$'n)' n,m > 0 

is said to be a martingale with time parameter (n, m). The S-function associated with 

the martingale is given by 

where 
d =f -f -f -f . n,m n,m n,m-1 m-1,n n-1,m-1 



LEMMA 1 • For 1 < p < 00 , the following inequali.ty holds : 

Proof. Define the e, 2 -valued function 

F = (d1, ~,. .••.•• ) 

with dk = E(fi!3'k) - E(f ll5'k_ 1). Then the LP~norm of F satisfy 

llFl!P ~ cpllfl!P 

by Burkholder I s inequalities. Observe that 

d = E(d llc9, ) - E(d 1~ 
1

) n,m n -dm , n Om-

and that 

is a e2-valued martingale. Therefore we may apply the Burkholder inequalities again to 

obtain the desired result. 

As a special case, let 3( n be the collection of an pn -periodic Borel sets of T, 

Bnd <} m the collection of all qm -periodic sets, wheY'e p and q are primes. By 

a small calculation one can verify that the 11double 11 S-function, corresponding to these 

sequences, is given by 

so that Corollary 1 follows from the lemma and a standard duality argument in the special 

case of two primes. However, the process can be iterated finitely many times, so the 

above argument leads to a proof of Corollary 1. If we replace the primes p and q by 

by arbitrary infegers a and b, then the exp1,ession for S(f) becomes more compli-

cated. H owever , we can simply decompose the numbers a. = 1, 2, ... ,M into their 
1 
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prime factors and use the inequality obtained for primes to conclude the proof. 

RemarlŒ. As we noted above, Theorem 2 is a well-known inequality due to Paley 

when p > 1 . However, there are some differences when p = 1 . 

Paley' s inequality differs from ours in two ways : (a) instead of the sequence n 
r ' 

n = 0, 1, ... , his result holds for any lacunary sequence of integers À n, such that 

inf ( À n+ /À J > 1 ; (b) for the case p = 1, the corréd result is obbined by using thE: 
n 

classical H 1-norm of the function rather than its L 1-norm. On the other hand, our results 

are restricted to geometric sequences in an essential way. In fact, it is quite easy to see 

that one can find functions fE:L 1 such that l !t; 111 < oo for some r > 1 , but 

1 ltl 1 
1 

= 00 and vice versa. 
H 

The Lp -norm in Corollary 1 cannot be replaced by the H 1-norm. In fact, it is 

known [6] that if ~ = 0, 1 , k = O, 1 , 2 , . . . is a sequence of Fourier multipliers for 

H 1 to L2 if anè only if 7{ = 1 for a fini te number of indices k 7 2n s k :::; i1+ 1 , 

independent of n ; thb condition is not satisfied for example, by the muüipliers 

corresponding to a "double" lacunary sequence pnqm, n,m = o, 1, 2 1 ; •• 

Paley' s theorem and Corollary 1 suggest the following question : given two lacunary 

sequences mk and nj, is it true that 

( ~ lr(mkn .) 1
2
)

12 
:::=; C llfll 

k,j J p p 

for all 1<p<oo? The answer is negative, however. In fact let 

k=O, 1, ... , N. 

A 

For n., 
J 

choose j=0,1, ... ,N. If we choose 

the coefficients f(mk. nj) = 1 or O provided k = j or not, we obtain, essentially, 

the Mth partial sum of the Fourier series of a unit mass at e = O. 
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§ 3 . The II conjugate II functions . 

We now prove the inequalities given in Theorem 2. The following variant of S (f) r 

is useful here : 

~

,. oo · ] 1/2 s(f) = s (f) = f(O) 1
2 + ~ E( lct 12 115{ 

1
) 

r =Ü n M n- r 

= [lî(o) 12 + ; "i:1 lv~q) 12}112 

n=O q=1 

w here the functions v ( q) are th ose defined in ( 1 ) . 
n 

then 

LEMMA 2. For any r > 1 and O < p < oo, we have 

C Ils (ni! :s; Ils (f)II :s; C Ils (f)II . pr p r p pr p 

This lemma is a variant of a result from [ 1 ] (see Theorems 5. 3). 

To prove the left-hand in~quality in Theorem 2, it is sufficient to observe that if 

,. 
f A (0) = I: f(n) exp(in0) 

n€A 

so that for O < p < oo, 

llrAIIP :s; llf:IIP 
:s; c lls(fA)JJ p p 
:S C l!s(f)!I p p 

:s; cpllr*llp. 
Here we have used Theorem 1 , Lemma 2, and the pointwise inequality just mentioned. 

The same argument may be applied to the function t8 . Therefore, we have, in fact, 

shown that the left-hand inequality of Theorem 2 holds for all O < p < oo. 
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The right-hand side inequality of Theorem 2 depends on a theorem due to Taibleson 

and Chao ( [3] , The01~em 2). 

LEMMA 3. Let. f be a trigonomctric polynomial such that f = fA (that is, the 

spectrum of f is zero outside A). Th2re exists an o: = o: (r) < 1 
0 0 

such that for all 

o: > cx
0

, the sequence J f I o:, 1 f 1 1 o:, . . . obtained from the (baclrnrards) martingale 

f, f 1 , f 2 , • . • is a submartingale. That is, 

for all n = 0, 1 , ... 

Before giving the proof of Lemma 3, let us indicate the proof of the right-hand inequa-

lity of Theorem 2. In fact, Lemma 2 implies that 

since 1 f I ex 
n 

llr*ll1 ~ Ccx sup Il fnl 1 
n -1 

is a submartingale that is L (.( -bounded, with -1 > 1 (X • (Hcre we 

have used the maximal inequalities for submartingales (see Garsia [ 4 ] ) . 

Let us examine the proof of Lemma 3 . The function f A, written out in terms of its 

martingale differences d ( 0 ) , is of the form n r-1 

d (0)= i [u(n)(rn+ 1e)cos(qr,ne)-v(n\rn+ 1)sin(qrne}] 
n q=1 q q 

r-1 

+ i i [u(n)(rn+ 1e) sin(qrne) + v(n{rn+ 1e) cos(q rne )] 
q=l q q 

= Rn ( e ) + i In ( 0 ) , 

where the functions u~/ v~) are real-valued. Here we have simply used the represen

tation ( 1) and split the functions there into their real and imaginary parts. 

The important point in this decomposition is that 
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(4) E(R I Il n: ) =-· 0 
n n rn+ 1 ' 

a fact wl1ich can be verified rather easily. Furthermore, the conditional expectation 

E( 11 ~ 
1 
) acting on an rn -periodic function, reduces to a simple average of r 

l'n+ 

quantities, as the reader can easily verify. Ttiese circumstances allow us to apply 

Theorem 2 of Taibleson and Chao [ ~ ] to the martingale differences R , I · n n' 

conclusion of their theorem, stated in our terms, is precisely Lemma 3 . 

i:he 

As we said in the introduction there is a version of Theorem 2 for the even integers. 

It seems to be more complicated. 

Let us define : 

A
1 

= {m: m = 4n(4s+1); s€Z 

A2 = { m: m = 4n(4s+3) ; s€Z 

A
3 

= { m : m = 4n(8s+2) ; s€Z 

A 4 = { m : m = 4 n( 8s+6) ; s€Z 

n ~ o} 

n ~ 0} 

n ~ 0} 

n ~ O}. 

It is easy to verify that A 1, ..• ,A4 is a partition of the integers. 

Let also r = 2t be an even integer and let us define 

B
1 

= { m : m = (rs + q)rn 

q = 1, ... 

B2 = { m: m = (rs + q)rn ; s€Z n~O 

n ~ 0}. 

B 1 , B2 and C is then a partition of Z that depends on r ; a general element 
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of C can now be writen in the form 

where e 2 0, n 2 0 and v == 1 , 2, ... r-1 . We can partition C now into four 

subsets C 
1 

, c2 , c
3 

, C 
4 

by demanding that n and v stays in a fixed class mod 2 

(i. e. takes only even or odd values). 

B 
1 

, B2 , C 
1 

, c2 , c
3 

, C 
4 

is then a partition of Z that de pends on r. 

Let now f E: L \T) 

f ,-,J T, f(n) exp(inB) 

and let us denote in general 

A 

f A r..J ~ f (n) exp(in0 ) 
nE:A 

for any A c Z subset of the integers. We have then 

THEOREM 4. Let f be an L 1 -function and lçt r be some even integer then 

a) if 2k . f " th f c- H 1 if d 1 "f f f f f r == 1s a power o ~ en s;:., an on y 1 A , A , A , A 
r 1 2 3 4 

b) In general ( when r . is not necessarily a power of 

c) The spaces H 1k 
2 

k = 1 , 2, . . . are an identical. 

2 but even) f E: H 1 
r if 

Part c) is of course an immediate consequence of a) but we shall need to obtain an 

independent proof since the proof of a) is based on c). That independent proof follows 

from the following two pointwise inequalities : 



and 
f*k(e) ~ t2(e) 
2 
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\v'.hich are easy to verify, and Lemma 2 . (There is nothing speci3l about 2 in(c), in general 
i 

H 
1 k ""' 1 , 2, . . . are ail identical spaces). 
rk 

This point being settled we can now prove 

(a) by proving that f € H~ if and only if fA , fA , fA , fA € L \T). The proof 
1 2 3 4 

runs on strictly identical lines as the proof of Theorem 3 and will therefore be omi1ted. 

The proof of the general c2s(b) also follows the same lines. and will be omitted. The thing 

to be observed here is that the two sets B
1

, B2 behave like the two sets A and B 

of Theorem 3, and that the four sets C 1 , .· . . C 
4 

behave, like the four 

sets A1, ... , A4 of part (a) of Theorem 4. The general case combines, in so:rœ 

sense, Theorem J and the special case k r=-2. 

From Theorem 2, it follows that if T (n) == ± 1 , according to whether nE:A or not, 

theri T is a Fourier• multiplier that characterizes for r odd : the function 

f € H 1 
if and only if T(f) (= T(n) f(n)) and f belongs to 1.\T). r 

For- the case r even, Theorem 4 says that at most five multipliers are needed. We 

have not been able to decide whether fewer are sufficient, and we leave tnis as an open 

problem. 
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