UNIVERSITÉ PARIS XI

U.E.R. MATHÉMATIQUE 91405 ORSAY FRANCE

nº 168 - 75.48

SOUS _ ESPACES DE L1

(2^{ème} version)

D. DACUNHA-CASTELLE et J.L. KRIVINE

Publication Mathématique d'Orsay.

n° 168 - 75.48

SOUS _ ESPACES DE L¹

(2^{ème} version)

D. DACUNHA-CASTELLE

et J.L. KRIVINE

Publication Mathématique d'Orsay

D. DACUNHA-CASTELLE et J.L. KRIVINE.

0. <u>INTRODUCTION ET RESULTATS</u>.

Un résultat typique de ce travail est le suivant :

Théorème 0.1. Soit E un sous-espace réflexif de L¹ (Ω , α , P) ((Ω , α , P) étant un espace de probabilité). Si E contient un sous-espace isomorphe à ℓ^p , alors, pour chaque $\epsilon > 0$, E contient un sous-espace (1 + ϵ) – isomorphe à ℓ^p .

^(*) Dans [7], il est annoncé, de façon incorrecte, la démonstration de (C); en fait il est seulement démontré que (C) ⇔ (C¹) (voir plus loin l'énoncé de la conjecture (C¹)).

 $(X_n)_{n\in\mathbb{N}}$ est <u>finalement \$\beta\$-mesurable</u> s'il existe une suite $(Y_n)_{n\in\mathbb{N}}$ de variables dans L^1 (Ω, \mathcal{Q}, P) dont la σ -algèbre de queue soit contenue dans \mathcal{B} et telle que $\|X_n - Y_n\|_1 \to 0$ quand $n \to \infty$.

Rappelons que, si $(Y_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires, et \mathcal{B}_n la σ -algèbre engendrée par les Y_k $(k\geq n)$, alors, par définition, la σ -algèbre de queue de la suite $(Y_n)_{n\in\mathbb{N}}$ est $\mathcal{B}_\infty=\bigcap_{n\in\mathbb{N}}\frac{\mathcal{B}_n}{n}$.

Le résultat essentiel de ce travail s'énonce ainsi :

Théorème 0.2. (théorème principal). Soient E un sous-espace réflexif de L 1 (Ω , α , P) β une sous- σ -algèbre de α , et p un réel (1). Alors les quatre conditions suivantes sont équivalentes :

- 1) pour chaque $\epsilon > 0$, E contient un sous-espace $(1+\epsilon)$ isomorphe à ℓ^D dont la base est finalement $\mathcal B$ -mesurable.
- 2) il existe une ultrapuissance de E qui contient un sous-espace isomorphe à ℓ^p dont la base est finalement β -mesurable.
- 3) il existe une ultrapuissance de E qui contient un sous-espace isomorphe à ℓ^p dont la base est une suite de variables aléatoires échangeables et symétriques, dont la σ -algèbre de queue est contenue dans $\mathcal B$.
- 4) il existe une ultrapuissance de E qui contient une variable aléatoire $Z \neq 0$ avec Z = UV, U étant B-mesurable, V indépendante de $\mathcal I$ et p-stable.

On voit que le théorème 0.1, se déduit du théorème principal en faisant $\mathcal{B}=\mathcal{Q}$ et en ne considérant que l'équivalence $1\ \Leftrightarrow\ 2$.

De plus, si on ne précise pas la valeur de p, on peut, dans la condition 4 supprimer l'hypothèse que V est p-stable. Autrement dit, on a le

Théorème 0.3. Soient E un sous-espace réflexif de L 1 (Ω , \mathcal{Q} , P), \mathcal{B} une sous- σ -algèbre de \mathcal{Q} . Alors les conditions suivantes sont équivalentes :

- a) il existe p, $1 tel que E contienne un espace isomorphe à <math>\ell^p$ dont la base est finalement β -mesurable.
- b) il existe une ultrapuissance de E qui contient une variable aléatoire UV \neq 0, U étant *B*-mesurable, V symétrique et indépendante de $\mathcal Q$

Nous montrons également que la conjecture (C') suivante, apparemment plus faible que (C), équivaut en fait à (C) :

(C'): Tout sous-espace de L 1 (Ω , \varnothing , P) engendré par une suite de variables aléatoires non nulle, échangeable et symétrique contient un sous-espace isomorphe à ℓ^p pour un p \in [1, 2].

(Une suite $(X_n)_{n \in \mathbb{N}}$ de variables aléatoires est dite échangeable et symétrique, si, pour chaque $n \in \mathbb{N}$, la loi du n-uplet (X_0, X_1, \ldots, X_n) est invariante par une permutation quelconque des variables, et aussi par le changement de l'un des X_i en $-X_i$).

Dans la partie I, on définit les ultrapuissances d'espaces de probabilités, et on étudie leurs propriétés.

La partie II établit un critère permettant de "redescendre" un espace ℓ^p convenable d'une ultrapuissance à l'espace initial. On montre ainsi, dans cette partie, l'implication $4 \Rightarrow 1$ du théorème principal. Ce critère est légèrement amélioré dans la partie V

Dans la partie III on donne une technique qui, à partir d'un sous-espace de L 1 (Ω , \varnothing , P) isomorphe à ℓ^p , permet de construire des variables p-stables

dans une ultrapuissance convenable (voir aussi [3]). La partie IV permet ensuite de retrouver l'hypothèse du critère établi en II, c'est-à-dire de prouver l'implication $3 \Rightarrow 4$ du théorème principal.

Enfin la partie V est essentiellement la récapitulation des différents résultats afin d'établir le théorème principal, le théorème 0.3. et le fait que $(C) \Leftrightarrow (C')$.

I. PRELIMINAIRES: ULTRAPRODUITS D'ESPACES DE PROBABILITE.

Pour les définitions et notations sur les ultraproduits d'espaces de Banach, on se réfère à [2].

Soient $(\Omega_i, \mathcal{B}_i, P_i)_{i \in I}$ une famille d'espaces de probabilité, \mathcal{B} un ultrafiltre sur I, Λ l'ultraproduit Π L^1 $(\Omega_i, \mathcal{B}_i, P_i)$ qui est un espace L^1 . L'ensemble \mathcal{B} des éléments de Λ de la forme (1_A) avec $A_i \in \mathcal{B}_i$ est une σ -algèbre munie d'une probabilité P (on pose $P\left[\begin{array}{c} (1_A) \\ A_i & i \in I \end{array}\right] = \lim_{\mathcal{B}} P_i (A_i) = \|(1_A) \\ A_i & i \in I \end{array}$ engendré par \mathcal{B} est de la forme L^1 (Ω, \mathcal{B}, P) . L'espace de probabilité (Ω, \mathcal{B}, P) est appelé ultraproduit de la famille $(\Omega_i, \mathcal{B}_i, P_i)_i \in I$ suivant l'ultraproduit \mathcal{B} ; on notera $\mathcal{B} = \Pi$ $\mathcal{B}_i/\mathcal{B}$ ou $(\mathcal{B}, P) = \Pi$ $(\mathcal{B}_i, P_i)/\mathcal{B}$. (\mathcal{B}_1, P_1) , (\mathcal{B}_2, P_2) étant deux σ -algèbres d'espaces de probabilité, on notera $(\mathcal{B}_1, P_1) \subset (\mathcal{B}_2, P_2)$ pour indiquer que $\mathcal{B}_1 \subset \mathcal{B}_2$ et que P_2 est un prolongement de P_1 .

Dans [2] on a vu que l'on a $\Lambda = L^1$ $(\Omega, \mathcal{B}, P) \oplus \Lambda'$ où Λ' est l'ensemble des éléments de Λ étrangers à L^1 (Ω, \mathcal{B}, P) , c'est-à-dire étrangers à $1_{\Omega}(1_{\Omega} = (1_{\Omega}))$.

Toute famille $(f_i)_{i \in I}$ où $f_i \in L^1$ $(\Omega_i, \mathcal{B}_i, P_i)$ telle que $|f_i| \leq M$ pour tout $i \in I$ définit un élément de L^1 (Ω, \mathcal{B}, P) : en effet, si $f = (f_i)_{i \in I}$ on a $|f| \leq M$. 1_{Ω} , et, en fait, $f \in L^{\infty}$ (Ω, \mathcal{B}, P) . Inversement pour tout $f \in L^{\infty}$ (Ω, \mathcal{B}, P) , il existe une famille $(f_i)_{i \in I}$, $f_i \in L^{\infty}$ $(\Omega_i, \mathcal{B}_i, P_i)$, $||f_i||_{\infty} \leq ||f||_{\infty}$, telle que $f = (f_i)_{i \in I}$ (car si $f = (g_i)_{i \in I}$, comme $f = (-||f||_{\infty}) \cup (f \cap ||f||_{\infty})$ on a $f = (f_i)_{i \in I}$, avec $f_i = -||f||_{\infty} \cup (g_i \cap ||f||_{\infty})$).

Proposition I.1. Soient f, $g \in L^1(\Omega, \beta, P)$, $f = (f_i)_{i \in I}$, $g = (g_i)_{i \in I}$, avec $|g_i| \le M$. Alors $fg = (f_i g_i)_{i \in I}$.

Notons que g $\in L^{\infty}(\Omega, \mathcal{B}_i, P)$, $||g||_{\infty} \leq M$. On peut supposer $g \geq 0$.

Supposons diabord $f = 1_A = (1_{A_i})$, $(A \in \mathcal{B})$. On a alors $(g_i \circ 1_{A_i}) \leq g \text{ et } \leq M \circ 1_A \text{ , donc } (g_i \circ 1_{A_i}) \leq g \circ 1_A \text{ ; de même}$ $(g_i \circ 1_{A_i^C}) \leq g \circ 1_{A^C} \circ \text{Or } (g_i \circ 1_{A_i}) + (g_i \circ 1_{A_i^C}) = (g_i)_{i \in I} = g \circ 1_A \text{ .}$ Donc $(g_i \circ 1_{A_i}) = g \circ 1_A \text{ .}$

Le résultat est ainsi obtenu lorsque f est une fonction étagée. Dans le cas général, soit $f_n = (f_n^i)_{i \in I}$ une suite de fonctions \mathcal{B} -étagées qui tend vers f dans L^1 (Ω , \mathcal{B} , P). Alors f_n , $g = (f_n^i, g_i)_{i \in I}$. Or, pour n assez grand on a $\|f_n - f\|_1 \le \epsilon$ donc, d'une part $\|f_n \cdot g - fg\|_1 \le M\epsilon$, d'autre part $\{i \in I \; ; \; \|f_n^i - f_i\|_1 \le 2 \; \epsilon \; \} \in \mathcal{B} \; ; \; \text{comme} \; \|g_i| \le M$, $\{i \in I \; ; \; \|f_n^i g_i - f_i g_i\|_1 \le 2 \; M \; \epsilon \} \in \mathcal{B}$. Π en résulte que $\|(f_i g_i)_{i \in I} - (f_n^i g_i)_{i \in I}\|_1 \le 2 \; M \; \epsilon$, et donc $\|(f_i \cdot g_i)_{i \in I} - f_n g\|_1 \le 2 \; M \; \epsilon$. Donc $\|(f_i \cdot g_i)_{i \in I} - f_n g\|_1 \le 3 \; M \; \epsilon$. d'où le résultat puisque ϵ est un nombre > 0 arbitraire. $C \cdot Q \cdot F \cdot D$.

Proposition I.2. Soient f, $g \in L^1$ (Ω, β, P) avec $fg \in L^1$ (Ω, β, P) et $(f_i)_{i \in I}$ une famille représentant f. Il existe une famille $(g_i)_{i \in I}$ $(g_i \in L^1$ (Ω, β_i, P_i)) représentant g, telle que f_i $g_i \in L^1$ (Ω_i, β_i, P_i) pour tout $i \in I$ et $fg = (f_i g_i)_{i \in I}$.

On a fg = $(\varphi_i)_{i \in I}$, $g = (h_i)_{i \in I}$ avec φ_i , $h_i \in L^1(\Omega_i, \mathcal{B}_i, P_i)$. En écrivant $g = g^+ - g^-$, on voit qu'on peut supposer g, $h_i \geq 0$. On pose alors $g_i = h_i \cdot 1$ { $|f_i| \leq 1$ } + $\frac{\varphi_i}{f_i} \cdot 1$ { $|f_i| > 1$ } evidemment $g_i \leq h_i + \varphi_i$

 $\begin{aligned} &\operatorname{donc}\, g_i \in L^1\left(\Omega_i,\, \beta_i,\, P_i\right) \text{. D'après la proposition précédente, on a, pour } n > 0 \text{:} \\ &f \cdot (g \cap n) = \left(f_i \cdot (h_i \cap n)\right)_{i \in I} \cdot \text{D'autre part, pour } n \text{ assez grand on a} \\ &\|f \cdot g - f \cdot (g \cap n)\|_1 \leq \varepsilon \text{ et } \|g - g \cap n\|_1 \leq \varepsilon \text{ et par suite :} \end{aligned}$

$$\{i \in I; ||\varphi_i - f_i \cdot (h_i \cap n)||_1 \le 2 \epsilon\} \in \mathcal{B}$$
 et

 $\left\{i\in I \; ; \left|\left|h_i - h_i \cap n\right|\right|_1 \leq 2 \; \epsilon\right\} \in \mathcal{P} \; .$

On a
$$\|g_i - h_i\|_1 = \int_{\{|f_i| > 1\}} |\frac{\phi_i}{f_i} - h_i| dP_i$$

Mais, pour un ensemble de i \in I qui est dans \mathcal{B} , on a

$$\int_{\Omega_{\bf i}} |\varphi_{\bf i} - f_{\bf i} \cdot (h_{\bf i} \cap n) dP_{\bf i} \le 2 \varepsilon \text{ et } \int_{\Omega_{\bf i}} |h_{\bf i} - h_{\bf i} \cap n| dP_{\bf i} \le 2 \varepsilon$$

$$\operatorname{donc} \quad \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\phi_{\underline{i}} - f_{\underline{i}} \circ (h_{\underline{i}} \cap n) \right| \, \mathrm{dP}_{\underline{i}} \leq 2 \; \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \int_{\left\{\left|f_{\underline{i}}\right| > 1\right\}} \left|\frac{\phi_{\underline{i}}}{f_{\underline{i}}} - h_{\underline{i}} \cap n \right| \mathrm{dP}_{\underline{i}} \leq 2 \epsilon \; \operatorname{d'où} \right| + C \; \operatorname{d'où}$$

et donc
$$\int_{\{|f_i|>1\}} \left| \frac{\varphi_i}{f_i} - h_i \right| dP_i \le 4 \epsilon .$$

Donc {i \in I ; $||g_i - h_i||_1 \le 4 \epsilon$ } $\in \mathcal{B}$. Comme $\epsilon > 0$ est arbitraire, on voit que $(g_i)_i \in I = (h_i)_i \in I = g$.

Soient $A_i = \{ |f_i| \le 1 \} \in \mathcal{B}_i \text{ et } A = (A_i)_{i \in I} \in \mathcal{B} \text{ . On a}$ $f_i g_i = f_i h_i \cdot 1_{A_i} + \varphi_i 1_{A_i^C} .$

 $\begin{array}{c} \text{Comme } |f_i \mid_{A_i}| \leq 1 \quad \text{et que } (f_i \mid_{A_i}) &= f \cdot 1_A \text{ , on a } (f_i \mid_{i=1}^1 A_i) = f \mid_{A} \\ \text{(proposition précédente) ; de plus } (\phi_i \mid_{A_i}) &= f \mid_{A} f \mid_{A} \\ (f_i \mid_{B_i})_i \in I = f \mid_{A} f \mid_{A}$

Proposition I.3. Soient $f_1 = (f_1^{\ i})_{\ i \in I}$, ..., $f_k = (f_k^{\ i})_{\ i \in I}$ des éléments de $L^1(\Omega,\mathcal{B},P)$, avec $(\mathcal{B},P) = \prod_{\ i \in I} (\mathcal{B}_i^{\ i},P_i^{\ i})/\mathcal{B}$. Soient π , $\pi_i^{\ i}$ les distributions (probabilités sur \mathbb{R}^k) respectives des k-uplets de variables aléatoires (f_1,\ldots,f_k) , $(f_1^{\ i},\ldots,f_k^{\ i})$. Alors $\pi = \lim_{\mathcal{B}} \pi_i^{\ i}$ (convergence étroite des probabilités sur \mathbb{R}^k).

Soit $\mathcal F$ le $\mathbb R$ -espace vectoriel réticulé de fonctions réelles sur $\mathbb R^k$ engendré par les fonctions 1, x_1,\ldots,x_k ; si $\tau(x_1,\ldots,x_k)\in\mathcal F$, on a $\tau(f_1,\ldots,f_k)=(\tau(f_1^{\ i},\ldots,f_k^{\ i}))_{i\in I} \text{ puisque I'ultraproduit est compatible avec les opérations de treillis et d'espace vectoriel, et que <math>\mathbf 1_{\Omega}=(\mathbf 1_{\Omega_i})$. Il en résulte que

$$\int_{\Omega} \mathcal{F}(f_1, \ldots, f_k) dP = \lim_{\beta} \int_{\Omega_i} \tau(f_1^i, \ldots, f_k^i) dP_i$$
 (1)

Or le sous-espace \mathcal{I}_b de \mathcal{I} constitué des fonctions de \mathcal{I} bornées sur \mathbb{R}^k est un sous-espace dense de \mathcal{C} ($\mathbb{R}^k \cup \{\infty\}$)/étant le compactifié d'Alexandroff de \mathbb{R}^k); en effet c'est un sous-espace réticulé de \mathcal{C} ($\mathbb{R}^k \cup \{\infty\}$) qui sépare les points : l'égalité (1) montre donc alors que $\pi = \lim_{\mathcal{H}} \pi_i$. $\underline{C} \cdot Q \cdot F \cdot D$.

Lorsque la famille $(\Omega_i$, β_i , $P_i)_{i\in I}$ est constituée d'un seul espace de probabilité (Ω_o, β_o, P_o) , l'ultraproduit de cette famille suivant l'ultrafiltre β sur I est appelé ultrapuissance de l'espace de probabilité (Ω_o, β_o, P_o) suivant l'ultrafiltre I. On note $(\beta, P) = (\beta_o, P_o)^{-I}/\beta$. Notons qu'on a un plongement canonique de la σ -algèbre (β_o, P_o) dans (β, P) : si $A \in \beta_o$ on lui fait correspondre la famille $(A_i)_{i\in I}$ avec $A_i = A_o$ pour tout $i\in I$. On considèrera donc dans la suite que β_o est une sous- σ -algèbre de $\beta = \beta_o^{-I}/\beta$.

Proposition I.4.: Soit $(f_i)_{i \in I}$ une famille équi-intégrable de L¹ (Ω_o, β_o, P_o) .

Alors l'élément f de L¹ $(\Omega_o, \beta_o, P_o)^{I/\beta}$ représenté par cette famille est dans L¹ (Ω, β, P) où $(\beta, P) = (\beta_o, P_o)^{I/\beta}$.

Proposition I.5. Si F est un sous-espace réflexif de L¹ (Ω_{o} , β_{o} , P_o) alors F I/ β \subset L¹ (Ω , β , P), où (β , P) = (β_{o} , P_o) I/ β . De plus F I/ β est un sous-espace réflexif de L¹ (Ω , β , P).

Rappelons qu'un sous-espace fermé d'un espace L^1 est réflexif si et seulement si sa boule unité est équi-intégrable. Le fait que $F^{I}/\partial\subset L^1$ (Ω, β, P) résulte donc immédiatement de la proposition I.4.

Il reste à montrer que la boule unité de F $^I/\vartheta$ est équi-intégrable. Celle de F l'étant, pour tout $\epsilon>0$ il existe $\eta>0$ tel que $\int_A |\phi| \, dP_o \leq \epsilon$ pour tout $A \in \mathcal{B}_o$; $P_o(A) \leq \eta$ et toute $\phi \in F$, $||\phi|| \leq 1$.

Soient alors $f = (\phi_i)_{i \in I} \in F^I/\vartheta$, $||f|| \le 1$ (donc $||\phi|| \le 1$ (donc $||\phi|| \le 1$) pour tout $i \in I$) et $A = (A_i)_{i \in I} \in \mathcal{B}$, $P(A) \le \eta$ (donc $P_o(A_i) \le \eta$ pour tout $i \in I$) pour un choix convenable de la famille $(A_i)_{i \in I}$ représentant A). On a

$$\int_{A} |f| dP = ||f| \cdot 1_{A}|| = \lim_{\mathcal{B}} ||\varphi_{i}| \cdot 1_{A_{i}}|| = \lim_{\mathcal{B}} \int_{A_{i}} |\varphi_{i}| dP_{o} \leq \eta$$

$$\underline{C.Q.F.D.}$$

Supposons d'abord les f_i uniformément bornés, $\|f_i\|_\infty \leq K$, et soit $g \in L^\infty\left(\Omega_0,\,\mathcal{B}_0,\,P_0\right)$. Posons $h = E^\mathcal{J} g$, \mathcal{J} étant la σ -algèbre engendrée par les $(f_i)_{i \in I}$. Pour $\varepsilon > 0$ fixé, il existe h' intégrable, \mathcal{J} -mesurable et ne dépendant que d'un nombre fini des f_i , telle que $\|h-h^i\|_1 \leq \varepsilon$. Donc, sauf pour un nombre fini de i, h' est indépendante de f_i , d'où, pour ces $i: E\left(f_i \; h^i\right) = E\left(f_i\right) E\left(h^i\right)$. Or $|E\left(f_i \; h\right) - E\left(f_i \; h^i\right)| \leq \|f_i\|_\infty \; \|h-h^i\|_1 \leq K \; \varepsilon$: $|E\left(f_i\right) \; E\left(h^i\right) - E\left(f_i\right) \; E\left(h\right)| \leq |E\left(f_i\right)| \; \|h-h^i\|_1 \leq K \; \varepsilon$. Par suite, sauf pour un nombre fini de i, on a $|E\left(f_i \; h\right) - E\left(f_i\right) E\left(h\right)| \leq 2 \; K \; \varepsilon$, donc $|E\left(f_i \; g\right) - E\left(f_i\right) E\left(g\right)| \leq 2 \; K \; \varepsilon \; (par définition de h, \; E\left(f_i \; h\right) = E\left(f_i \; g\right)$, et $E\left(h\right) = E\left(g\right)$).

Comme E (fg) = $\lim_{\mathcal{B}}$ E (f g), on a donc | E (fg) - E (f) E (g) | \leq 2 K ϵ , donc E (fg) = E (f) E (g) puisque ϵ est arbitraire.

Dans le cas général, on pose $f_i^N = f_i \ 1_{\{|f_i| \leq N\}}$ (N réel \geq 0) et $f^N = (f_i^N)_{i \in I}$; d'après ce qu'on vient de voir, f^N est indépendante de \mathcal{B}_o . Or, pour N assez grand, $||f_i^N - f_i||_1 \leq \epsilon$ (uniformément en i, par équi-intégrabilité), d'où $||f^N - f||_1 \leq \epsilon$ et $f^N \to f$ dans L^1 . Cela montre que f aussi est indépendante de \mathcal{B}_o : car, si $g \in L^\infty(\Omega_o, \mathcal{B}_o, P_o)$, $E(f^N g) \to E(fg)$ et $E(f^N) E(g) \to E(f)$. E(g).

Ultrapuissances itérées.

Proposition I.6. Soient \mathcal{B} , \mathcal{S} des ultrafiltres respectifs sur I, J, $\mathcal{B} \times \mathcal{S}$ l'ultrafiltre sur I × J défini par X $\in \mathcal{B} \times \mathcal{S} \Leftrightarrow \{j \in J \; ; \; \{i \in I \; ; \; (i, j) \in X\} \in \mathcal{B}\} \in \mathcal{S}$. Si F est un espace de Banach , $(F^I/\mathcal{B})^J/\mathcal{S}$ est canoniquement isomorphe à $F^{I \times J}/\mathcal{B} \times \mathcal{S}$. De même, si (\mathcal{B}_O, P_O) est la σ -algèbre d'un espace de probabilité, $((\mathcal{B}_O, P_O)^I/\mathcal{B})^J/\mathcal{S}$ est canoniquement isomorphe à $(\mathcal{B}_O, P_O)^{I \times J}/\mathcal{B} \times \mathcal{S}$.

$$\begin{split} & \text{Si } f \in (F^I \, / \! \vartheta)^{\ J} / \! \vartheta \text{ on a } f = (f_j)_{j \ \in \ J} \text{ avec } f_j \in F^I / \! \vartheta \text{ , donc} \\ & f_j = (f_j^{\ i})_{i \ \in \ I} \text{ . On definit 1'isomorphisme de } (F^I / \! \vartheta)^{\ J} / \! \vartheta \text{ sur } F^{I \times J} / \! \vartheta \times \! \vartheta \text{ en} \\ & \text{associant à } f \text{ 1'elément } \varphi \text{ de } F^I \times J / \! \vartheta \times \! \vartheta \text{ défini par la famille } (f_j^{\ i})_{j \ \in \ J}^{i \ \in \ I} \text{ .} \\ & \text{Cette application étant linéaire, il suffit de voir qu'elle conserve la norme.} \\ & \text{Or } \|f\| = \lim_{f \ j} \|f_j\| \text{ . Donc, pour } \varepsilon > 0 \text{ donné, } Y = \{j \in J \ ; \ \big| \ \|f_j\| - \|f\| \big| \le \varepsilon\} \in \mathcal{S} \text{ .} \\ & \text{Mais } \|f_j\| = \lim_{f \ j} \|f_j^{\ i}\| \text{ , donc } X_j = \{i \in I \ ; \ \big| \ \|f_j^{\ i}\| - \|f_j\| \big| \le \varepsilon \} \in \mathcal{B} \text{ .} \\ & \text{Si } Z = \bigcup_{j \ \in \ Y} X_j \times \{j\} \text{ alors } Z \in \mathcal{B} \times \mathcal{S} \text{ et } \{ \ (i, \ j) \in I \times J \ ; \ \big| \ \|f_j^{\ i}\| - \|f\| \big| \le 2 \varepsilon \} \supset Z \ ; \\ & \text{donc } \{ (i, j) \in I \times J \ ; \ \big| \ \|f_j^{\ i}\| - \|f\| \big| \le 2 \varepsilon \} \in \mathcal{B} \times \mathcal{S} \text{ ce qui montre que} \\ & \|f\| = \lim_{\mathcal{B} \times \mathcal{S}} \|f_j^{\ i}\| = \|\varphi\| \text{ .} \\ & \underline{C.Q.F.D.} \end{aligned}$$

 $\begin{array}{lll} \underline{\text{Proposition I.7.}} & \underline{\text{Soient (I}_n)_n \in \mathbb{N}} & \text{une suite d'ensembles, } \mathcal{B}_n & \text{un ultrafiltre} \\ \underline{\text{sur I}_n, } & \mathcal{B} & \text{un ultrafiltre sur } \mathbb{N}, & \text{F un espace de Banach; on pose } F_n = F^{\underline{I}_n}/\mathcal{B}_n & \underline{\text{Alors }} & \underline{\text{II}} & \underline{\text{F}_n}/\mathcal{B} & \text{est isomorphe à une ultrapuis sance de } F. & \text{Plus précisément,} \\ \underline{-\frac{1}{n} \in \mathbb{N}} & \underline{\text{II}} & \underline{\text{deux à deux disjoints, }} & \underline{\text{II}} & \underline{F_n/\mathcal{B}} & \text{est isomorphe à } F^{\underline{J}/\mathcal{E}} & \underline{\text{où } J} = \underline{\cup} & \underline{\text{I}}_n & \underline{\text{et où } X \in \mathcal{E}} & \Leftrightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{I}}_n \in \mathcal{B}_n\} \in \mathcal{B} & \underline{\text{on pose } F_n} & \underline{\text{II}} & \underline{\text{et où } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{I}}_n \in \mathcal{B}_n\} \in \mathcal{B} & \underline{\text{on pose } F_n} & \underline{\text{II}} & \underline{\text{et où } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{I}}_n \in \mathcal{B}_n\} \in \mathcal{B} & \underline{\text{otherwise } F_n} & \underline{\text{II}} & \underline{\text{et où } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} \in \mathcal{B} & \underline{\text{et où } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} \in \mathcal{B} & \underline{\text{et où } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} \in \mathcal{B}_n & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} \in \mathcal{B}_n & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} \in \mathcal{B}_n & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} \in \mathcal{B}_n & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \{n \in \mathbb{N} \text{ ; } X \cap \underline{\text{II}}_n \in \mathcal{B}_n\} & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \underline{\text{et out } X \in \mathcal{E}} & \underline{\text{et out } X \in \mathcal{E}} & \Rightarrow & \underline{\text{et out } X \in \mathcal{E}} & \underline{\text{et out } X \in \mathcal$

Démonstration analogue à la précédente.

Variables aléatoires échangeables.

Soit $(X_n)_n \in \mathbb{N}$ une suite de variables aléatoires réelles sur un espace de probabilité $(\Omega$, β , P); la σ -algèbre de queue de cette suite est, par définition, $\beta^\infty = \bigcap_{n \in \mathbb{N}} \beta^{(n)}$, $\beta^{(n)}$ étant la σ -algèbre engendrée par les X_k $(k \ge n)$.

Soit \mathcal{B}_{0} une sous- σ -algèbre de \mathcal{B} . On dit que $(X_{n})_{n} \in \mathbb{N}$ est une suite échangeable sur \mathcal{B}_{0} si, pour chaque entier k > 0 et chaque variable Y \mathcal{B}_{0} -mesurable, les distributions (probabilités sur \mathbb{R}^{k+1}) de $(X_{i_{1}}, \ldots, X_{i_{k}}, Y)$ $(i_{1}, \ldots, i_{k} \text{ entiers} \geq 0 \text{ distincts quelconques})$ sont les mêmes. Lorsque $\mathcal{B}_{0} = \{ \emptyset, \Omega \}$ la suite sera dite échangeable (tout court). On sait (voir [5]) que dans ce cas les variables X_{n} sont conditionnellement indépendantes et équidistribuées sur \mathcal{B}^{∞} , autrement dit, si f_{1}, \ldots, f_{k} sont des fonctions réelles continues bornées sur \mathbb{R} on a :

$$\mathbb{E}^{\beta^{\infty}}\left(f_{1}\left(X_{1}\right)...f_{k}\left(X_{k}\right)\right) = \prod_{i=1}^{k} \mathbb{E}^{\beta^{\infty}}\left(f_{i}\left(X_{0}\right)\right).$$

La suite $(X_n)_{n\in\mathbb{N}}$ sera dite symétrique sur \mathcal{B}_o si, quel que soit k>0, ϵ_o , ϵ_1 , ..., $\epsilon_k=\pm 1$, et Y \mathcal{B}_o -mesurable, les distributions de $(\epsilon_o \ X_o \ , \ \epsilon_1 \ X_1 \ , \ \ldots \ , \ \epsilon_k \ X_k \ , \ Y)$ sont les mêmes. Lorsque $\mathcal{B}_o=\{\ \phi,\ \Omega\}$ on dira suite symétrique (tout court).

Théorème I.1. Soient F un sous-espace réflexif de L¹ (Ω_o , \mathcal{B}_o , P_o),(X_n) $_n \in \mathbb{N}$ une suite d'éléments de la boule unité de F, et \mathcal{B} un ultrafiltre sur \mathbb{N} . Il existe un ultrafiltre \mathcal{B} ' sur \mathbb{N} et une suite Y_1 , ..., Y_k , ... d'éléments de $\mathbb{F}^\mathbb{N}/\mathcal{B}$ ' (sous-espace réflexif de L¹ [(\mathcal{B}_o , P_o) $^\mathbb{N}/\mathcal{B}$ ']) ayant les propriétés suivantes : 1) Y_1 , ..., Y_k , ... est une suite échangeable sur \mathcal{B}_o , conditionnellement indépendante et équidistribuée sur \mathcal{B}_o et la σ -algèbre de queue de cette suite est contenue dans celle de la suite (X_n) $_n \in \mathbb{N}$.

2)
$$\frac{\|X + \lambda_{1} Y_{1} + \cdots + \lambda_{k-1} Y_{k-1} + \lambda_{k} Y_{k}\|_{1}}{\mathcal{P}} = \lim_{\substack{n \to \infty \\ \mathcal{P}}} \frac{\|X + \lambda_{1} Y_{1} + \cdots + \lambda_{k-1} Y_{k-1}}{\frac{+\lambda_{k} X_{n}\|_{1}}{2}}$$

où
$$\lambda_1, \ldots, \lambda_k \in \mathbb{R}$$
 et $X \in L^1$ $(\Omega_0, \mathcal{B}_0, P_0)$.

3) La distribution (probabilité sur \mathbb{R}^{k+1}) du k+1-uplet $(X, Y_1, \dots, Y_{k-1}, Y_k)$ est la limite quand $n \to \infty$ suivant l'ultrafiltre \mathcal{B} de celle de $(X, Y_1, \dots, Y_{k-1}, X_n)$ (où $X \in L^1$ $(\Omega_0, \mathcal{B}_0, P_0)$).

On définit une suite croissante (\mathcal{B}_k, P_k) de σ - algèbres $(\mathcal{B}_k \subset \mathcal{B}_{k+1})$ et P_{k+1} est un prolongement de P_k) en posant $(\mathcal{B}_{k+1}, P_{k+1}) = (\mathcal{B}_k, P_k)^{\mathbb{N}}/\mathcal{B}$. On a évidemment $(\mathcal{B}_o, P_o) \subset (\mathcal{B}_k, P_k)$ et donc $X_n \in L^1$ (\mathcal{B}_k, P_k) . On désigne alors par Y_{k+1} l'élément de L^1 $(\mathcal{B}_{k+1}, P_{k+1}) = L^1$ $[(\mathcal{B}_k, P_k)^{\mathbb{N}}/\mathcal{B}]$ représenté par la suite équi-intégrable $(X_n)_n \in \mathbb{N}$. Il en résulte que $Y_1, \ldots, Y_k \in L^1$ (\mathcal{B}_k, P_k) et on en déduit immédiatement les propriétés 2, 3 de l'énoncé du théorème (d'après la proposition I.3).

Soient m un entier > 0, $\mathcal{B}^{(m)}$ la sous- σ -algèbre de \mathcal{B}_{o} engendrée par les X_{n} $(n \geq m)$, $\mathcal{B}^{\infty} = \bigcap_{m \geq 0} \mathcal{B}^{(m)}$ la σ -algèbre de queue de la suite $(X_{n})_{n \in \mathbb{N}}$.

On fait la démonstration par récurrence sur k, soit X une variable aléatoire $\mathcal{S}^{(m)}$ -mesurable bornée. On a à montrer que

$$E(f_1(Y_1)...f_k(Y_k).X) = E(X.\prod_{i=1}^k E^{(m)}(f_iY_1))$$

D'après la propriété 3) de l'énoncé du théorème, on a

$$\begin{split} & \text{E}\left(f_{1}\left(Y_{1}\right)\ldots f_{k}\left(Y_{k}\right).X\right) = \lim_{\substack{n \to \infty \\ \beta}} & \text{E}\left(f_{1}\left(Y_{1}\right)\ldots f_{k-1}\left(Y_{k-1}\right)f_{k}\left(X_{n}\right).X\right) \\ & = \lim_{\substack{n \to \infty \\ \beta}} & \text{E}\left(\mathbb{E}^{\beta^{\left(m\right)}}\left[f_{1}\left(Y_{1}\right)\ldots f_{k-1}\left(Y_{k-1}\right)\right]f_{k}\left(X_{n}\right).X\right) \end{split}$$

(puisque, pour n assez grand, $f_k(X_n)$ est $\beta^{(m)}$ -mesurable).

$$= \lim_{\substack{n \to \infty \\ \mathcal{B}}} E \left(\prod_{i=1}^{k-1} E^{\mathcal{B}^{(m)}} f_i (Y_k) \cdot f_k (X_n) \cdot X \right)$$

(d'après l'hypothèse de récurrence).

Or, si Z=X. If $E^{\binom{m}{i}}$ ($f_i(Y_1)$), Z est une variable aléatoire bornée qui est $\mathcal{B}^{\binom{m}{i}}$ -mesurable, donc \mathcal{B}_{o} -mesurable. D'après la propriété 3) de l'énoncé du théorème, on a

$$\lim_{\substack{n \to \infty \\ \theta}} E(Z \cdot f_k(X_n)) = E(Z \cdot f_k(Y_1)) = E(Z \cdot E^{g(m)} f_k(Y_1))$$

et on trouve donc exactement l'égalité à démontrer.

C.Q.F.D.

D'après le lemme I.8, les variables Y_1, \ldots, Y_k , ... sont conditionnellement indépendantes et équidistribuées sur la σ -algèbre $\beta^{(m)}$. Il en résulte qu'elles sont échangeables et que leur σ -algèbre de queue est contenue dans $\beta^{(m)}$; donc dans $\beta^{(m)}$ puisque m est un entier ≥ 0 arbitraire.

En remplaçant $\mathcal{B}^{(m)}$ par \mathcal{B}_{o} dans la démonstration du lemme I.8, on trouve

$$E^{\beta_{0}}\left(f_{1}\left(Y_{1}\right)...f_{k}\left(Y_{k}\right)\right) = \prod_{i=1}^{k} E^{\beta_{0}}\left(f_{i}\left(Y_{1}\right)\right)$$

Cela montre que les variables Y_1 , ... Y_k , ... sont conditionnellement indépendantes et équidistribuées sur la σ -algèbre $\mathcal{B}_{_{\hbox{\scriptsize O}}}$, et donc échangeables au-dessus de $\mathcal{B}_{_{\hbox{\scriptsize O}}}$.

Il reste à trouver sur N, ou, ce qui revient au même, sur un ensemble I dénombrable, un ultrafiltre $\mathcal{B}^{\text{!`}}$ tel que $Y_1, \ldots, Y_k, \ldots \in F^I/\mathcal{B}^{\text{!`}}$. On définit l'espace de Banach F_k par récurrence en posant $F_o = F$, $F_{k+1} = F_k^{N}/\mathcal{B}$. On a donc $F_o \subset F_1 \subset \ldots \subset F_k \subset \ldots$ et $F_k \subset L^1$ (\mathcal{B}_k, P_k) . De plus $Y_1, \ldots, Y_k \in F_k$.

D'après la proposition I.6 on a $F_k = F^{\mathbb{N}^k}/\partial_k$ où ∂_k est un ultrafiltre sur \mathbb{N}^k . Donc si on pose $G = \mathbb{N}$ F_k/∂ , on a $G = F^I/\partial$ où $I = \bigcup$ \mathbb{N}^k est dénombrable (proposition I.7). On a évidemment $F_m \subset G$ pour tout $m \geq 0$, puisque $F_m \subset F_k$ pour $k \geq m$. Il en résulte que $Y_1, \ldots, Y_k, \ldots \in G$. $\underline{C.Q.F.D.}$

II. UN CRITERE POUR QU'UN SOUS-ESPACE DE L 1 CONTIENNE ℓ^p (1 < $p \le 2$)

Soit p un réel, $1 . Une variable aléatoire Y sera dite p-stable si on a <math>E(e^{itY}) = e^{-|t|^p}$ pour $t \in \mathbb{R}$. On pose $\gamma_p = E(|Y|)$. Si Y_0, \ldots, Y_n sont indépendantes et p-stables, on a

$$\|\lambda_{o} Y_{o} + \dots + \lambda_{n} Y_{n}\|_{1} = \gamma_{p} (|\lambda_{o}|^{p} + \dots + |\lambda_{n}|^{p})^{\frac{1}{p}}$$

La partie II est consacrée à la démonstration du

Théorème II.1. Soient $(\Omega_O, \mathcal{B}_O, P_O)$ un espace de probabilité, P_O étant une mesure diffuse, F un sous-espace réflexif de L^1 $(\Omega_O, \mathcal{B}_O, P_O)$ et \mathcal{B} un ultrafiltre sur \mathbb{N} ; on a donc $F^\mathbb{N}/\mathcal{B} \subset L^1$ (\mathcal{B}, P) , avec $(\mathcal{B}, P) = (\mathcal{B}_O, P_O)^\mathbb{N}/\mathcal{B}$. On suppose qu'il existe une variable $Z \in F^\mathbb{N}/\mathcal{B}$ telle que Z = UV, $U \in L^1$ (\mathcal{B}_O, P_O) , $U \neq 0$, et $V \in L^1$ (\mathcal{B}, P) , V étant une variable p-stable indépendante de \mathcal{B}_O . Alors, pour tout $\epsilon > 0$, il existe une sous-espace F^+ de F^- qui est $(1 + \epsilon)$ -isomorphe à ℓ^P (c'est-à-dire qu'il existe une application linéaire bijective $T: \ell^P \to F^+$ avec $\|T\|$ $\|T^{-1}\| \leq 1 + \epsilon$).

On pose $Z=(Z_n)_{n\in\mathbb{N}}$ avec $Z_n\in F$; $V=(V_n)_{n\in\mathbb{N}}$, $V_n\in L^1$ ($\mathcal{B}_o,\, P_o$). D'après la proposition I.2 on peut choisir la suite $(V_n)_{n\in\mathbb{N}}$ de façon que $UV_n\in L^1$ ($\mathcal{B}_o,\, P_o$) pour tout $n\in\mathbb{N}$ et que $Z=UV=(UV_n)_{n\in\mathbb{N}}$. Autrement dit, on a $\lim_{n\to\infty}\|Z_n-UV_n\|_1=0$.

Lemme II.1. Soient $A \in \mathcal{B}_o$, C_o , C_1 ,..., $C_r \in \mathcal{B}$, contenus dans A et deux à deux disjoints. Alors pour chaque i, $0 \le i \le r$, il existe une famille $(C_i^n)_{n \in \mathbb{N}}$ représentant C_i , $C_i^n \in \mathcal{B}_o$, $P_o(C_i^n) = P(C_i)$, C_o^n , ... C_r^n étant deux à deux disjoints et inclus dans A.

Démonstration par récurrence sur r. Pour $0 \le i \le r-1$ on a donc une famille $(C_i^n)_{n \in \mathbb{N}}$ représentant C_i , $P_o(C_i^n) = P(C_i)$, C_o^n , ..., C_{r-1}^n étant deux à deux disjoints et contenus dans A. On a d'autre part $C_r = (B_r^n)_{n \in \mathbb{N}}$ et comme C_r est contenu dans A et disjoint de C_o , ..., C_{r-1} , on peut supposer $B_r^n \subset A$ et disjoint de C_o^n , ..., C_{r-1}^n . Soient $\Gamma = A - (C_o \cup \cdots \cup C_{r-1}^n)$ et $\Gamma_n = A - (C_o^n \cup \cdots \cup C_{r-1}^n)$ on a donc $P(\Gamma) = P_o(\Gamma_n)$ et $C_r \subset \Gamma$, $B_r^n \subset \Gamma_n$. On définit C_r^n de la façon suivante : si $P(C_r) \ge P_o(B_r^n)$ on choisit $C_r^n \in \mathcal{B}_o$ tel que $B_r^n \subset C_r^n \subset \Gamma_n$ et $P_o(C_r^n) = P(C_r)$ (c'est possible car P_o est une mesure diffuse) ; si $P(C_r) \le P_o(B_r^n)$, on choisit $C_r^n \in \mathcal{B}_o$ tel que $C_r^n \subset B_r^n$ et $P_o(C_r^n) = P(C_r^n)$.

Dans les deux cas on a $P_o(|B_{\mathbf{r}}^n - C_{\mathbf{r}}^n|) = |P_o(B_{\mathbf{r}}^n) - P(C_{\mathbf{r}})|$ $(|B_{\mathbf{r}}^n - C_{\mathbf{r}}^n|$ désigne la différence symétrique). Comme $C_{\mathbf{r}} = (B_{\mathbf{r}}^n)_{n \in \mathbb{N}}$, $|P_o(B_{\mathbf{r}}^n) - P(C_{\mathbf{r}})| \to 0$, donc $P_o(|B_{\mathbf{r}}^n - C_{\mathbf{r}}^n|) \to 0$ ce qui montre que $C_{\mathbf{r}} = (B_{\mathbf{r}}^n)_{n \in \mathbb{N}} = (C_{\mathbf{r}}^n)_{n \in \mathbb{N}}$.

Lemme II.2. Soient Φ une variable aléatoire \mathcal{B} -étagée, indépendante de \mathcal{B}_{0} , telle que $\|U\Phi - UV\|_{1} \leq \epsilon$ (ϵ réel > 0), \mathcal{A} une sous- σ -algèbre finie de \mathcal{B}_{0} et $D \in \mathcal{B}$. Il existe alors $n \in D$ et une variable aléatoire Ψ , \mathcal{B}_{0} -étagée, de même loi que Φ et indépendante de \mathcal{A} telle que $\|U\Psi - UV_{n}\|_{1} \leq 2 \epsilon$.

On a $\Phi = \lambda_0$ $1_{B_0} + \cdots + \lambda_k$ 1_{B_k} avec $B_0, \cdots, B_k \in \mathcal{B}$ deux à deux disjoints. Soient $A_0, \cdots, A_\ell \in \mathcal{B}_0$ les atomes de \mathcal{A} (A_0, \cdots, A_ℓ) sont deux à deux disjoints, \cup $A_j = \Omega_0$, et ils engendrent \mathcal{A}). On pose $C_{ij} = B_i \cap A_j$ $(0 \le i \le k ; 0 \le j \le \ell)$. Donc $P(C_{ij}) = P(B_i) P_0(A_j)$ (puisque Φ est indépendante de \mathcal{B}_0). Les C_{ij} sont deux à deux disjoints et $C_{ij} \subset A_j$. D'après le lemme Π .1 on peut donc écrire $C_{ij} = (C_{ij}^n)_n \in \mathbb{N}$ où $C_{ij}^n \in \mathcal{B}_0$, $P_0(C_{ij}^n) = P(C_{ij})$, $C_{ij}^n \subset A_j$, les C_{ij}^n étant deux à deux disjoints pour n fixé. On pose $B_i^n = \mathcal{A}_i$ C_{ij}^n donc

$$P_{O}(B_{i}^{n}) = \sum_{j=0}^{\ell} P_{O}(C_{ij}^{n}) = \sum_{j=0}^{\ell} P(C_{ij}) = P(B_{i})$$

De plus $B_i^n \cap A_j = C_{ij}^n$ donc

$$P_{o}(B_{i}^{n} \cap A_{j}) = P_{o}(C_{ij}) = P(B_{i}) P_{o}(A_{j}) = P_{o}(B_{i}^{n}) P_{o}(A_{j})$$

Cela montre que la variable $\Phi_n=\lambda_0 \ 1_{B_0} \ n + \cdots + \lambda_k \ 1_{B_k} \ n$ a même loi que Φ et est indépendante de $\mathcal Q$.

D'autre part on a B_i =
$$(B_i^n)_{n \in \mathbb{N}}$$
 (puisque $(B_i^n)_{n \in \mathbb{N}} = (\bigcup_{j=0}^{\ell} C_{ij}^n)_{n \in \mathbb{N}} = \bigcup_{j=0}^{\ell} C_{ij} = B_i$) ce qui montre que $\Phi = (\Phi_n)_{n \in \mathbb{N}}$.

D'après la proposition I.1, on a U $\Phi = (U \Phi_n)_{n \in \mathbb{N}}$. On a vu d'autre part que $UV = (UV_n)_{n \in \mathbb{N}}$. Comme $\|U \Phi - UV\|_1 \le \epsilon$ par hypothèse, il en résulte que $\{n \in \mathbb{N} : \|U \Phi_n - UV_n\|_1 \le 2 \epsilon \} \in \mathcal{B}$. Il existe donc $n \in D$ tel que $\|U \Phi_n - UV_n\|_1 \le 2 \epsilon$, d'où le résultat cherché avec $\Psi = \Phi_n$. C.Q.F.D.

Démonstration du théorème II.1.: puisque $U \neq 0$ et intégrable, on peut évidemment supposer $||U||_1 = 1$.

Soit Φ_k une suite de fonctions étagées, V-mesurables, telles que $||\Phi_k-V||_1 \leq \frac{1}{2^{k+2}} \quad .$

Nous allons définir par récurrence sur k un entier $n_k>0$ et une variable Ψ_k , \mathcal{B}_o -étagée de même loi que Φ_k , telle que Ψ_o,Ψ_1 , ..., Ψ_k ,... soient indépendantes et $\|Z_{n_k}-U\,\Psi_k\|_1\leq \frac{1}{2^k}$.

Supposons donc définis $n_0, n_1, \ldots, n_{k-1}, \Psi_0, \ldots, \Psi_{k-1}$ avec ces propriétés. Comme U est \mathcal{B}_0 -mesurable et que V (donc aussi Φ_k qui est V-mesurable) est indépendante de \mathcal{B}_0 , on a $\|U\Phi_k-UV\|=\|U\|\,\|\Phi_k-V\|=\|\Phi_k-V\|$

et donc $\|U \Phi_{\mathbf{k}} - UV\| \le \frac{1}{2^{\mathbf{k}+2}}$.

On applique le lemme II.2 en prenant $\Phi = \Phi_k$, $\mathcal Q$ est la σ -algèbre engendrée par Ψ_0 , Ψ_1 , ..., Ψ_{k-1} , $D = \{n \in \mathbb N \; ; \; \|Z_n - UV_n\|_1 \leq \frac{1}{2^{k+1}} \}$ ($D \in \mathcal B$ puisque $\|Z_n - UV_n\|_1 \to 0$). Il existe donc un entier $n_k \in D$ et une variable Ψ_0 $\mathcal B_0$ -étagée de même loi que Φ_k , indépendante de $\mathcal Q$ telle que $\|U\Psi_k - UV_n\|_1 \leq \frac{1}{2^{k+1}}$; comme $n_k \in D$, on a $\|Z_n - UV_n\|_1 \leq \frac{1}{2^{k+1}}$ et donc $\|Z_{n_k} - U\Psi_k\| \leq \frac{1}{2^k}$; cela donne exactement le résultat cherché.

On pose
$$Y_k = Z_{n_k}$$
. Donc $Y_k \in F$ et $||Y_k - U\Psi_k||_1 \le \frac{1}{2^k}$.

Lemme II.3.

$$(\gamma_{p} - \frac{1}{2^{k+1}}) \left(\sum_{i=k}^{k+n} |\lambda_{i}| \right)^{p} \leq \| \sum_{i=k}^{k+n} \lambda_{i} \Psi_{i} \|_{1} \leq (\gamma_{p} + \frac{1}{2^{k+1}}) \left(\sum_{i=k}^{k+n} |\lambda_{i}|^{p} \right)^{p} .$$

$$\begin{split} &\Psi_0,\Psi_1,\dots,\Psi_k,\dots \text{ sont des variables \'etag\'ees, ind\'ependantes, }\Psi_k\\ \text{a la m\'eme loi que }\Phi_k \text{ , } &\|\Phi_k-V\|_1 \leq \frac{1}{2^{k+2}} \text{ , } V \text{ \'etant une variable p-stable}\\ \text{et }\Phi_k \text{ \'etant V-mesurable. Par suite il existe une suite }S_0,S_1,\dots,S_k,\dots\\ \text{de variables p-stables ind\'ependantes telle que }\Psi_k \text{ soit }S_k\text{-mesurable et}\\ &\|\Psi_k-S_k\|_1 \leq \frac{1}{2^{k+2}} \text{ .} \end{split}$$

On a alors

$$\begin{split} \left| \| \sum_{i=k}^{k+n} \lambda_{i} \, \Psi_{i} \|_{1} - \| \sum_{i=k}^{k+n} \lambda_{i} \, S_{i} \|_{1} \, \left| \leq \sum_{i=k}^{k+n} \left| \lambda_{i} \right| \, \| \Psi_{i} - S_{i} \|_{1} \leq \sum_{i=k}^{k+n} \left| \lambda_{i} \right| \, 2^{-i-2} \\ \leq 2^{-k-1} \, \left| \sup_{i=k}^{k+n} \left| \lambda_{i} \right| \, \leq 2^{-k-1} \, \left(\sum_{i=k}^{k+n} \left| \lambda_{i} \right|^{p} \right)^{\frac{1}{p}} \, . \end{split}$$

Cela donne immédiatement le résultat cherché puisque

$$\|\sum_{i=k}^{k+n} \lambda_i S_i\|_1 = \gamma_p \left(\sum_{i=k}^{k+n} |\lambda_i|^p\right)^{\frac{1}{p}} . \underline{C.Q.F.D.}$$

Soient \mathcal{C}_{o} la σ -algèbre engendrée par les variables indépendantes $\Psi_{o}, \Psi_{1}, \ldots, \Psi_{k}, \ldots$ et \mathscr{E}_{k} l'espace vectoriel engendré par $\Psi_{k}, \Psi_{k+1}, \ldots$ Pour tout $X \in \mathscr{E}_{o}$, on a $\|u X\|_{1} = \|(E^{o} u) X\|_{1}$; comme $\|u\|_{1} = \|E^{o} u\|_{1} = 1$ et que $\|E^{o} u\|_{\infty} \leq \|u\|_{\infty}$, on voit qu'en remplaçant u par $E^{o} u$, on peut supposer que u est \mathscr{C}_{o} -mesurable.

D'après le lemme II.3, l'espace \mathscr{E}_{O} (muni de la norme de L¹ (\mathscr{B}_{O} , P_{O})) est isomorphe à ℓ^{P} donc est réflexif (p > 1). Sa boule unité est donc équi-intégrable ; il existe donc N \geq 1, tel que, pour tout X $\in \mathscr{E}_{O}$, ||X|| = 1, on ait $||X - X_{N}|| \leq \frac{\epsilon}{3}$, avec $X_{N} = X$. $1_{\{|X|| \leq N\}}$.

Par ailleurs, u étant \mathcal{C}_o -mesurable, il existe un entier k, et $u'\in L^1(\mathcal{C}_o,\,\mathsf{P}_o),\;\;u'\;\text{ne dépendant que de }\Psi_o,\;\ldots,\;\Psi_{k-1}\;\;\text{tels que}$ $||u-u'||_1\leq \varepsilon/\;3\;N\;.$

On a alors $|\int |u|X_N| \;dP_o - \int |u'|X_N| \;dP_o \;| \leq \int |X_N| \;|u-u'| \;dP_o \leq \frac{\epsilon}{3}$ puisque $|X_N| \leq N$.

Or, si X $\in \mathcal{E}_k$, X est indépendant de u', donc X_N aussi. Il en résulte que $\int |u^+ X_N| \ dP = ||u^+||_1 \ ||X_N||_1 \ et$ on a donc $|||u X_N||_1 - ||u^+||_1 \ ||X_N||_1 \ | \leq \frac{\epsilon}{3}$. Comme $|||u||_1 - ||u^+||_1 \ | \leq ||u - u^+||_1 \leq \frac{\epsilon}{3}$ et que $|||X_N|| - ||X||_1 \ | \leq \frac{\epsilon}{3}$, on a $(1 - \frac{\epsilon}{3})^2 \leq ||u^+||_1 \ ||X_N||_1 \leq (1 + \frac{\epsilon}{3})^2$. Donc $(1 - \frac{\epsilon}{3})^2 - \frac{\epsilon}{3} \leq ||u X_N||_1 \leq (1 + \frac{\epsilon}{3})^2 + \frac{\epsilon}{3}$ quel que soit $X \in \mathcal{E}_k$, ||X|| = 1.

On a $\|u\ X\|_1 = \int \|u\| \|X\| \ dP \ge \int \|u\| \|X_N\| \ dP$ puisque $\|X\| \ge \|X_N\|$.

On en déduit $\|u\|X\|_1 \ge (1-\frac{\epsilon}{3})^2-\frac{\epsilon}{3}\ge 1-\epsilon$ pour tout $X\in \mathscr{G}_k$, $\|X\|=1$ ce qui est le premier résultat cherché .

Si u est bornée on a $|\|u X\|_1 - \|u X_N\|_1 | \leq \|u (X-X_N)\|_1 \leq \|u\|_\infty \|X-X_N\|_1 \leq \frac{\epsilon}{3} \|u\|_\infty$. Il en résulte que $\|u X\|_1 \leq (1+\frac{\epsilon}{3})^2 + \frac{\epsilon}{3} + \frac{\epsilon}{3} \|u\|_\infty$ pour tout $X \in \mathcal{B}_k$ tel que $\|X\| = 1$. Autrement dit, si $\delta = \epsilon (1+\frac{\|u\|_\infty}{3}) + \frac{\epsilon^2}{9}$, on a $\|u X\|_1 \leq (1+\delta) \|X\|_1$ pour tout $X \in \mathcal{B}_k$. C'est bien le second résultat annoncé puisque δ peut-être rendu arbitrairement petit en choisissant ϵ convenablement

C.Q.F.D.

Lemme II.5. Pour tout $\epsilon > 0$, il existe un entier k tel les sous-espaces de L¹ (β_0 , P₀) respectivement engendrés par les Y_i ($i \ge k$) et les U Ψ_i ($i \ge k$) soient (1 + ϵ)-isomorphes.

Soit δ un réel >0; on choisit k de façon que $2^{-k} \leq \delta$, et que $\|UX\|_1 \geq (1-\delta) \|X\|_1 \text{ pour tout } X \text{ de la forme } \sum_{i=k}^{k+n} \lambda_i \Psi_i \text{ (lemme } \Pi_{\bullet}4). \text{ On a alors}$ $\|\sum_{i=k}^{k+n} \lambda_i Y_i - \sum_{i=k}^{k+n} \lambda_i U \Psi_i\|_1 \leq \sum_{i=k}^{k+n} |\lambda_i| \|Y_i - U \Psi_i\|_1 \leq \sum_{i=k}^{k+n} |\lambda_i| 2^{-i}$ $\leq 2^{-k+1} \sup_{i=k}^{k+n} |\lambda_i| \leq 2 \delta \left(\sum_{i=k}^{k+n} |\lambda_i|^p\right)^{\frac{1}{p}}$ $\leq \frac{2 \delta}{\gamma_p - 2^{-k-1}} \|\sum_{i=k}^{k+n} \lambda_i \Psi_i\|_1 \text{ (lemme } \Pi_{\bullet}3)$ $\leq \frac{2 \delta}{(1-\delta)(\gamma_n - 2^{-k-1})} \|\sum_{i=k}^{k+n} \lambda_i U \Psi_i\|_1$

(Cette dernière inégalité résultant du choix de l'entier k d'après le lemme II.4). Comme $2^{-k-1} \le \delta/2$ on a donc

$$\| \sum_{i=k}^{k+n} \lambda_i Y_i - \sum_{i=k}^{k+n} \lambda_i U \Psi_i \|_1 \leq \frac{4 \delta}{(1-\delta) (2 \gamma_p - \delta)} \| \sum_{i=k}^{k+n} \lambda_i U \Psi_i \|_1 .$$

Il ne reste plus qu'à choisir δ assez petit pour que $\frac{4 \, \delta}{(1-\delta)(2 \, \gamma_p - \, \delta)} \leq \epsilon$ pour obtenir le résultat cherché. $\underline{\text{C.Q.F.D.}}$

Les Y_i ($i \ge k_0$) engendrent un sous-espace réflexif de L^1 (β_0 , P_0) c'est un sous-espace de F qui est réflexif). Il en est donc de même des U Ψ_i ($i \ge k_0$) d'après le lemme II.5, donc aussi des U Ψ_i ($i \ge 0$) puisque l'espace 3 qu'ils engendrent ne diffère du précédent que par un espace de dimension finie. Il en résulte que la boule unité de 3 est équi-intégrable.

 $\begin{array}{c} \text{Comme } ||U||_1 = 1 \ \, \text{on a } \, P_o \, \{ \, \, |U| > N \} \, \leq \, \frac{1}{N} \, \, . \, \, \text{Pour N assez grand et pour tout } X \in \mathcal{E}_o \, \text{(espace engendré par } \, \Psi_o, \, \ldots, \, \Psi_k, \, \ldots \text{) tel que } \, \|UX\|_1 = 1 \, \, \text{on a donc } \int_{\{ \, |U| > N \}} |UX| \, dP_o \leq \delta \, \, \left(\delta \, \text{ réel } > 0 \, \text{fixé} \right) \, ; \, \text{ on peut aussi prendre N assez } \\ \{ \, |U| > N \} \, & |U| \, dP_o \leq \delta \, \, \left(\delta \, \text{ réel } > 0 \, \text{fixé} \right) \, ; \, \text{ on pose } U_N = U \cdot 1 \, \{ \, |U| \leq N \} \\ \text{on a donc } \|U_N \, X - UX\|_1 \leq \delta \, \text{ si } \|UX\|_1 = 1 \, . \, \, \text{Autrement dit } \\ \|U_N \, X - UX\|_1 \leq \delta \, \|UX\|_1 \, \text{ pour tout } X \in \mathcal{E}_o \, . \, \, \text{De plus } 1 - \delta \, \leq \, \|U_N\|_1 \leq 1 = \|U\|_1 \, . \end{array}$

En appliquant le lemme II.4 avec $u = \frac{U_N}{\|U_N\|_1}$ qui est une fonction bornée, on voit qu'il existe un entier k tel que, pour tout $X \in \mathcal{S}_k$ on ait :

$$(1-\delta) \; ||\mathbf{X}||_1 \; \; ||\mathbf{U}_N||_1 \; \leq \; ||\mathbf{U}_N||_1 \; \leq \; (1+\delta) \; \; ||\mathbf{X}||_1 \; \; ||\mathbf{U}_N||_1 \; \; .$$

$$\text{D!où} \left(1-\delta\right)^2 \left|\left|X\right|\right|_1 \leq \left|\left|U_N X\right|\right|_1 \leq \left(1+\delta\right) \left|\left|X\right|\right|_1.$$

$$\frac{(1-\delta)^{2}}{1+\delta} (\gamma_{p} - 2^{-k-1}) \left(\sum_{i=k}^{k+n} |\lambda_{i}|^{p} \right)^{\frac{1}{p}} \leq \|\sum_{i=k}^{k+n} \lambda_{i} \cup \Psi_{i}\|_{1} \leq
\leq \frac{1+\delta}{1-\delta} (\gamma_{p} + 2^{-k-1}) \left(\sum_{i=k}^{k+n} |\lambda_{i}|^{p} \right)^{\frac{1}{p}} .$$

Il ne reste plus qu'à choisir δ assez petit et k assez grand pour que $\frac{\left(1-\delta\right)^2}{1+\delta}\left(\gamma_p-2^{-k-1}\right) \geq \gamma_p\left(1-\epsilon\right) \text{ et } \frac{1+\delta}{1-\delta}\left(\gamma_p+2^{-k-1}\right) \leq \gamma_p\left(1+\epsilon\right)$ pour obtenir le résultat cherché. $\underline{C.Q.F.D.}$

D'après les lemmes II.5 et II.6, pour tout $\epsilon>0$ il existe un entier k tel que le sous-espace de L¹ (\mathcal{B}_{o} , P_{o}) engendré par les Y_{i} ($i\geq k$) soit (1 + ϵ)-isomorphe à ℓ^{p} . Comme c'est un sous-espace de F, la démonstration du théorème II.1 est achevée.

D'autre part, comme $\|Y_k - U\psi_k\|_1 \to 0$ quand $k \to \infty$, et que les variables Ψ_k sont indépendantes, la suite Y_k est finalement \mathcal{B}'_o -mesurable, \mathcal{B}'_o étant la sous- σ -algèbre de \mathcal{B}_o engendrée par U. On en déduit immédiatement l'implication $4 \Rightarrow 1$ du théorème principal.

III. CONSTRUCTION DE VARIABLES ALEATOIRES p-STABLES A PARTIR

d'UN ESPACE ISOMORPHE A & ENGENDRE PAR DES VARIABLES

ECHANGEABLES ET SYMETRIQUES.

Théorème III. 1. Soient $(X_n)_{n \in \mathbb{N}}$ une suite échangeable symétrique dans L^1 $(\mathcal{B}_1, \, P_1)$ engendrant un sous-espace fermé Γ isomorphe à ℓ^p (1 .

On suppose que

$$\frac{1}{M^{-1} \left(\left| \lambda_{o} \right|^{p} + \ldots + \left| \lambda_{n} \right|^{p} \right)^{\frac{1}{p}}} \leq \left\| \lambda_{o} X_{o} + \ldots + \lambda_{n} X_{n} \right\|_{1} \leq M \left(\left| \lambda_{o} \right|^{p} + \ldots + \left| \lambda_{n} \right|^{p} \right)^{\frac{1}{p}}, M \geq 1.$$

Alors il existe un ultrafiltre \mathcal{B}_2 sur \mathbb{N} , et, dans $\mathbb{N}^{\mathbb{N}}/\mathcal{B}_2$ (sous-espace de L^1 (\mathcal{B}_2 , P_2) avec (\mathcal{B}_2 , P_2) = (\mathcal{B}_1 , P_1) \mathbb{N}/\mathcal{B}_2) une suite (Z_k) $_k \in \mathbb{N}$ symétrique échangeable, $\|Z_k\|_1 = 1$ ayant les propriétés suivantes :

1) $Z_k = UV_k$, U, V_o , V_1 , ..., V_k , ... étant des variables indépendantes dans L^1 (β_2 , P_2), V_o , V_1 , ..., V_k , ... étant p-stables, et $U \ge 0$.

2) $Z_k = (z_k^n)_{n \in \mathbb{N}}$ avec $z_k^n \in \Gamma$, $||z_k^n|| = 1$, les z_k^n étant des paquets disjoints formés avec les X_i (pour n, k variant dans N).

Rappelons qu'un "paquet formé avec les X_i " est simplement une combinaison linéaire finie à coefficients réels des X_i .

Nous montrerons d'abord le

Théorème III.². Sous les hypothèses de l'énoncé du théorème III.¹. il existe un ultrafiltre \mathcal{B}_2 sur \mathbb{N} et, dans $\Gamma^{\mathbb{N}}/\mathcal{B}_2$ une suite symétrique échangeable $(Z_k)_k \in \mathbb{N}$, $\|Z_k\|_1 = 1$ telle que

- 1) quels que soient les réels a, b > 0 et $c = (a^p + b^p)^{\frac{1}{p}}$, les trois couples de variables aléatoires (cZ_0, cZ_1) , $(aZ_0 + bZ_1, cZ_2)$, $(aZ_0 + bZ_1, aZ_2 + bZ_3)$ ont la même distribution.
- 2) $Z_k = (z_k^n)_{n \in \mathbb{N}}$ avec $z_k^n \in \Gamma$, $||z_k^n|| = 1$, les z_k^n étant des paquets formés avec les X_i , deux à deux disjoints pour n fixé (c'est-à-dire que z_0^n , z_1^n ,..., z_k^n ,... sont des paquets disjoints).

Soit $\mathcal B$ un ultrafiltre non trivial sur $\mathbb N$. On définit une application linéaire $\phi \to X_{\phi}$ de $L^p(\mathbb R_+)$ dans $\Gamma_1 = \Gamma^{-\mathbb N}/\mathcal B$ telle que $M^{-1} ||\phi||_p \le ||X_{\phi}||_1 \le M ||\phi_p||_p$.

Pour cela, appelons pour abréger "intervalle de \mathbb{R}_+ " un intervalle semiouvert [a, b[avec $0 \le a < b$.

Lorsque I = [a, b[, a, b étant des rationnels dyadiques, on définit $X_I \in \Gamma^{\mathbb{N}}/\mathfrak{D} \text{ en posant } X_I = (\xi_I^n)_{n \in \mathbb{N}} \text{ avec}$

$$\xi_{\rm I}^{\ n} = 2^{-\frac{n}{p}} \quad \begin{array}{l} {\rm b.2}^{n} - 1 \\ \Sigma \\ {\rm k=a.2} n \end{array} \quad {\rm X_k} \ {\rm si} \ {\rm n} \ {\rm est} \ {\rm assez} \ {\rm grand} \ {\rm pour} \ {\rm que} \ {\rm a.2}^{n}, \ {\rm b.2}^{n} \in \mathbb{N},$$

$$\xi_{\rm I}^{\ n} = 0 \ {\rm sinon}.$$

Soient I_1 , ..., I_k des intervalles disjoints de \mathbb{R}_+ , I_j = $[a_j, b_j[$, à extrémités dyadiques. Pour n assez grand, on a

$$\lambda_{1} \xi_{1}^{n} + \dots + \lambda_{k} \xi_{k}^{n} = 2^{-\frac{n}{p}} \xi_{j=0}^{k} \lambda_{j} \xi_{i=a_{j}, 2^{n}}^{p-1} X_{i}$$

D'après l'hypothèse faite sur les X_i , on a alors :

$$M^{-1} = 2^{-\frac{n}{p}} \begin{bmatrix} k \\ \sum_{j=0}^{k} |\lambda_{j}|^{p} \cdot 2^{n} (b_{j} - a_{j}) \end{bmatrix}^{\frac{1}{p}} \leq \|\lambda_{1} \xi^{n}_{1_{1}} + \dots + \lambda_{k} \xi^{n}_{1_{k}}\|_{1}$$

$$\leq M \cdot 2^{-\frac{n}{p}} \begin{bmatrix} k \\ \sum_{j=0}^{k} |\lambda_{j}|^{p} \cdot 2^{n} (b_{j} - a_{j}) \end{bmatrix}^{\frac{1}{p}}$$

Il en résulte, en passant à la limite suivant & que l'on a

$$(1) M^{-1} (|\lambda_{1}|^{p} \mu (I_{1}) + ... + |\lambda_{k}|^{p} \mu (I_{k}))^{\frac{1}{p}} \leq ||\lambda_{1} X_{I_{1}} + ... + \lambda_{k} X_{I_{K}}||_{1}$$

$$\leq M (|\lambda_{1}|^{p} \mu (I_{1}) + ... + |\lambda_{k}|^{p} \mu (I_{k}))^{\frac{1}{p}} ;$$

 μ désigne la mesure de Lebesgue sur \mathbb{R}_+ . Pour chaque fonction $\varphi:\mathbb{R}_+\to\mathbb{R}$ en escalier sur des intervalles à extrémités dyadiques, $\varphi=\lambda_1$ $^1\mathbf{I}_1+\dots+\lambda_k$ $^1\mathbf{I}_k$, on pose $\mathbf{X}_\varphi=\lambda_1$ \mathbf{X}_1 $^+\dots+\lambda_k$ \mathbf{X}_1 (cette définition ne dépend pas de la représentation que l'on choisit pour φ ; cela résulte aisément du fait que si I, J sont deux intervalles consécutifs, $\mathbf{X}_{I\cup J}=\mathbf{X}_I+\mathbf{X}_J)$. L'application $\varphi\to\mathbf{X}_\varphi$ est donc linéaire, et d'après (1), on a \mathbf{M}^{-1} $\|\varphi\|_p\leq\|\mathbf{X}_\varphi\|_1\leq\mathbf{M}$ $\|\varphi\|_p$. Elle se prolonge donc en une application linéaire de \mathbf{L}^p (\mathbb{R}_+) dans Γ $^N/\vartheta$, notée aussi $\varphi\to\mathbf{X}_\varphi$, satisfaisant la même inégalité.

(Autrement dit: $\operatorname{si} J_1$,..., J_k sont des intervalles disjoints de \mathbb{R}_+ , μ (J_1) = μ (I_1), ..., μ (J_k) = μ (I_k), alors (ϵ_1 X_{J_1} ,..., ϵ_k X_{J_k}) a même distribution que (X_{I_1} ,..., X_{I_k}), ϵ_1 ,..., ϵ_k étant \pm 1).

Supposons d'abord $I_1, \dots, I_k, J_1, \dots, J_k$ à extrémités dyadiques. Il est alors clair que, pour n assez grand, $(\xi^n_{I_1}, \dots, \xi^n_{I_k})$ et $(\epsilon_1 \xi^n_{J_1}, \dots, \epsilon_k \xi^n_{J_k})$ ont même distribution (car les X_i forment une suite échangeable symétrique). Or la distribution de $(X_{I_1}, \dots, X_{I_k})$ (resp. $(\epsilon_1 X_{J_1}, \dots, \epsilon_k X_{J_k})$) est la limite suivant θ de celle de $(\xi^n_{I_1}, \dots, \xi^n_{I_k})$ (resp. $(\epsilon_1 \xi^n_{J_1}, \dots, \epsilon_k \xi^n_{J_k})$) d'après la proposition I.3. D'où le résultat.

Dans le cas général, on choisit des intervalles à extrémités dyadiques
$$\begin{split} &I_1^n,\dots,I_k^n\;,\;\;J_1^n\;,\dots,J_k^n\;\text{respectivement inclus dans }I_1,\dots,I_k\;,\;J_1,\dots,\;J_k\;,\\ &I_1^n,\dots,I_k^n\;,\;\;J_1^n,\dots,J_k^n\;,\;\;\text{tels que }\mu\;(I_i^n-I_i^n),\;\;\mu\;(J_i^n-J_i^n)\;\leq\frac{1}{n}\;\;\text{et }\;\;\mu\;(I_i^n)=\mu\;(J_i^n)\;\;(1\leq i\leq k)\;.\;\;\text{D'après} \end{split}$$
 l'inégalité (1) on a $\|X_{I_i}^n-X_{I_i}^n\|_1\leq M\;n^{-\frac{1}{p}}\;$, $\|X_{I_i}^n-X_{I_i}^n\|_1\leq M\;n^{-\frac{1}{p}}\;$

Il en résulte que X $I_i^n \to X_I^n$, $X_I^n \to X_J^n$ au sens de L^1 . Par suite la distribution de (X I_1^n ,..., X_I^n) (resp. $(\epsilon_1^n X_{J_1^n},...,\epsilon_k^n X_{J_k^n})$) tend vers celle de ($X_{I_1}^n$,..., $X_{I_k}^n$) (resp. $(\epsilon_1^n X_{J_1^n},...,\epsilon_k^n X_{J_k^n})$). D'où le résultat puisque, comme on vient de le voir, $(X_{I_1^n}^n,...,X_{I_k^n}^n)$ et $(\epsilon_1^n Y_{J_1^n},...,\epsilon_k^n Y_{J_k^n})$ ont même distribution. $\frac{C.Q.F.D.}{C.Q.F.D.}$

Pour chaque $k \in \mathbb{N}$, soit I_k^n une suite croissante d'intervalles contenus dans I_k , telle que $\bigcup_n I_k^n = I_k$, les extrémités de I_k^n étant des rationnels de dénominateur 2^n . D'après le lemme III.2, on a $X_{I_k} = (\xi^n)$. Il suffit de poser $\eta_k^n = (\xi^n)$. $\underbrace{C.Q.F.D.}_k$

Lemme III.4. Soit φ_0 , φ_1 ,..., φ_k ,... une suite de fonctions en escalier sur \mathbb{R}_+ , deux à deux étrangères. Alors on a $X_{\varphi_k} = (\eta^n_{\ k})_{n \in \mathbb{N}}$, les $\eta^n_{\ k}$ étant des paquets formés avec les X_i ; pour n fixé, η^n_0 , η^n_1 ,..., η^n_k ,... sont des paquets disjoints.

On écrit $\varphi_k = \sum\limits_{j=0}^{r_k} \lambda_{kj} \, 1_{I_{kj}}$, les I_{kj} ($k \in \mathbb{N}$, $0 \le j \le r_k$) étant des intervalles de \mathbb{R}_+ deux à deux disjoints. On a donc (lemme III.3) $X_{I_{kj}} = (\zeta^n_{\ kj})_{\ n \in \mathbb{N}} \text{, les } \zeta^n_{\ kj} \text{ étant, pour chaque n fixé, des paquets disjoints en les } X_i \text{. On a donc } X_{\varphi_k} = \sum\limits_{j=0}^{r_k} \lambda_{kj} \, X_{I_{kj}} = (\eta^n_{\ k})_{\ n \in \mathbb{N}} \text{ avec }$

 $\eta^n_{\ k} = \sum_{j=0}^{r_k} \lambda_{kj} \ \zeta^n_{\ kj} \ . \ \ \text{Pour n fix\'e, les} \ \eta^n_{\ k} \ \ \text{sont donc des paquets disjoints}$ en les X_i . $\underline{\text{C.Q.F.D.}}$

Soit ρ un réel >1 ; si I = [a, b[, 0 \le a < b, on pose $\Delta_I^{j,n,\rho} = \left[j + \frac{a}{n\rho^j} \right], \ j + \frac{b}{n\rho^j} \left[si \ \frac{b}{n} < 1 \right], \ \Delta_I^{j,n,\rho} = \emptyset \ si \ \frac{b}{n} \ge 1 \ .$

Donc $\Delta_I^{~0,n,\rho}$, $\Delta_I^{~1,n,\rho}$, ..., $\Delta_I^{~n-1,~n,\rho}$ sont des intervalles disjoints (respectivement contenus dans [0,1[,[1,2[,...[n-1n[). On pose

$$Y_{I}^{\rho,n} = \sum_{j=0}^{n-1} \rho^{j} X_{\Delta_{I}^{j,n,\rho}} = X_{\varphi_{I}^{\rho,n}}$$
 avec

$$\varphi_{\mathbf{I}}^{\rho, \mathbf{n}} = \sum_{\mathbf{j}=0}^{\mathbf{n}-1} \rho^{\mathbf{j}} \mathbf{I}_{\Delta_{\mathbf{I}}^{\mathbf{j}, \mathbf{n}, \rho}}$$

Notons que si I_0 , I_1 , ..., I_k , ... sont des intervalles disjoints, $\varphi_{I_0}^{\ \rho,n}\ ,\ \varphi_{I_1}^{\ \rho,n}\ ,\dots, \varphi_{I_k}^{\rho,n}\ ,\dots \text{ sont des fonctions en escalier deux à deux étrangères.}$

On désigne par Γ_1 l'espace $\Gamma^\mathbb{N}/\vartheta$, et par Γ_2 l'espace Γ_1 \mathbb{N}/ϑ . On définit $Y_I^{\ \rho} \in \Gamma_2$ en posant $Y_I^{\ \rho} = (Y_I^{\ \rho}, ^n)_{\ n \ \in \ \mathbb{N}}$.

 $\begin{array}{ll} \underline{\text{Lemme III.5.}} & \underline{\text{Si I}_1, \, \dots, \, \text{I}_k \, \text{ sont des}_1 \, \text{intervalles de } \mathbb{R}_+ \, \text{deux à deux disjoints on a} } \\ \underline{\underline{\text{M}^{-1} \, \left(\left| \lambda_1 \right|^{\, \rho} \, \mu \, \left(I_1 \right) + \dots + \left| \lambda_k \right|^{\, \rho} \, \mu \, \left(I_k \right) \, \right)^{\overline{\rho}}} \leq \, \left\| \lambda_1 \, \underline{Y}_{I_1} \, \underline{\underline{\qquad \qquad } } \\ \underline{\leq \, \text{M} \, \left(\left| \lambda_1 \right|^{\, \rho} \, \mu \, \left(I_1 \right) + \dots + \left| \lambda_k \right|^{\, \rho} \, \mu \, \left(I_k \right) \, \right)^{\, \overline{\rho}}} \, . \end{array}$

Posons $I_i=\left[a_i^{}$, $b_i^{}\right[$ (1 \leq $i\leq$ k) et soit nun entier assez grand pour que $\frac{b_i^{}}{n}$ <1 pour 1 \leq $i\leq$ k . On a alors

$$\varphi_{I_{i}}^{\rho,n} = \sum_{j=0}^{n-1} \rho^{\frac{j}{p}} 1_{[j+\frac{a_{i}}{n\rho^{j}}, j+\frac{b_{i}}{n\rho^{j}}[} d^{i}où \|\varphi_{I_{i}}^{\rho,n}\|_{p} = (b_{i}-a_{i})^{p} = \mu (I_{i})^{p}.$$

 $\begin{array}{c} \text{Comme les } \phi_{I_{1}}^{\ \rho,n} \ (1 \leq i \leq k) \ \text{sont \'etrang\`eres, si} \\ \Phi_{n} = \lambda_{1} \ \phi_{I_{1}}^{\ \rho,n} + \ldots + \ \lambda_{k} \ \phi_{I_{k}}^{\ \rho,n} \ , \ \text{on a } \|\Phi_{n}\|_{p} = \left[\ |\lambda_{1}|^{p} \ \mu \ (I_{1}) + \ldots + \ |\lambda_{k}|^{p} \ \mu \ (I_{k}) \right]^{p}. \\ \text{Or } \lambda_{1} \ Y_{I_{1}}^{\ \rho,n} + \ldots + \lambda_{k} \ Y_{I_{k}}^{\ \rho,n} = \ X_{\Phi_{n}}^{\ \rho,n} \ , \ \text{d'oùil r\'esulte que} \\ M^{-1} \ \|\Phi_{n}\|_{p} \leq \|\lambda_{1} \ Y_{I_{1}}^{\ \rho,n} + \ldots + \lambda_{k} \ Y_{I_{k}}^{\ \rho,n} \|_{1} \leq M \ \|\Phi_{n}\|_{p} \ . \end{array}$

En faisant tendre n vers l'infini suivant l'ultrafiltre & on obtient le résultat cherché. C.Q.F.D.

(Autrement dit, si J₁, ..., J_k sont des intervalles disjoints dans \mathbb{R}_+ , μ (J₁) = μ (I₁) , ..., μ (J_k) = μ (I_k) , alors (ϵ_1 Y_{J1} $^{\rho}$, ..., ϵ_k Y_{Jk} $^{\rho}$) a même distribution que (Y_{J1} $^{\rho}$, ..., Y_{Ik} $^{\rho}$) , ϵ_1 , ..., ϵ_k étant ± 1).

Posons $I_i = [a_i, b_i]$, $J_i = [c_i, d_i]$ $(1 \le i \le k)$ avec $b_i - a_i = d_i - c_i$. Soit num entier assez grand pour que $\frac{b_i}{n} < 1$, $\frac{d_i}{n} < 1$ $(1 \le i \le k)$. On a alors

$$Y_{I_{i}}^{\rho,n} = \sum_{j=0}^{n-1} \rho^{j} X_{[j+\frac{a_{i}}{n\rho^{j}}, j+\frac{b_{i}}{n\rho^{j}}[}$$
;

$$\epsilon_{\mathbf{i}} Y_{\mathbf{j}}^{\rho, \mathbf{n}} = \sum_{\mathbf{j}=0}^{\mathbf{n}-1} \epsilon_{\mathbf{i}} \rho^{\mathbf{p}} X_{\left[\mathbf{j} + \frac{\mathbf{c}_{\mathbf{i}}}{n\rho^{\mathbf{j}}}, \mathbf{j} + \frac{\mathbf{d}_{\mathbf{i}}}{n\rho^{\mathbf{j}}}\right]}$$

D'après le lemme III.1 les deux nk-uplets de variables aléatoires

$$(X = \frac{a_i}{n\rho^j}, j + \frac{b_i}{n\rho^j}) = 0 \le j \le n-1$$
 et
$$(\epsilon_i X = \frac{c_i}{n\rho^j}, j + \frac{d_i}{n\rho^j}) = 0 \le j \le n-1$$

$$1 \le i \le k$$

ont la même distribution Il en résulte immédiatement que les k-uplets de variables

distribution.

aléatoires $(Y_{I_i}^{\rho,n})$ et $(\epsilon_i Y_{I_i}^{\rho,n})$ ont la même distribution. En faisant tendre n vers l'infini suivant $\mathcal B$ et en appliquant la proposition I.3, on en déduit que les k-uplets $(Y_{I_i}^{\rho})$ et $(\epsilon_i Y_{I_i}^{\rho})$ ont la même $(Y_{I_i}^{\rho})$ ont la même

C.Q.F.D.

Lemme III.7. Soient I_1, \ldots, I_k , I_1 , I_2 des intervalles de I_3 , I_4 , I_4 , I_5 , I_6 deux à deux disjoints ainsi que I_4, \ldots, I_k , I_4 , I_5 , I_6 , I_6 , I_6 , I_6 , I_8 ,

On a $I_i=[a_i,\ b_i[$ $(1\leq i\leq k)$, $I=[a,\ b[$, $J=[c,\ d[$, $b-a=\rho\ (d-c)$. Soit numentier assez grand pour que $\frac{b_i}{n}<1$ ($1\leq i\leq k$), $\frac{b}{n}<1$, $\frac{d}{n}<1$. On a alors :

$$Y_{\mathbf{I}_{i}}^{\rho,n} = \sum_{j=0}^{n-1} \rho^{\frac{j}{p}} X_{\left[j + \frac{\mathbf{a}_{i}}{n\rho^{j}}, j + \frac{\mathbf{b}_{i}}{n\rho^{j}}\right]}$$

$$Y_{\mathbf{I}}^{\rho,n} = \sum_{j=0}^{n-1} \rho^{\frac{j}{p}} X_{\left[j + \frac{a}{n\rho^{j}}, j + \frac{b}{n\rho^{j}}\right]}$$

$$\rho^{\frac{1}{p}} Y_{J}^{\rho,n} = \sum_{j=0}^{n-1} \rho^{\frac{j+1}{p}} X_{\left[j + \frac{c}{n\rho^{j}}, j + \frac{d}{n\rho^{j}}\right]}$$

Posons alors
$$Y^{(n)} = \sum_{j=0}^{n-1} \rho^{\frac{j+1}{p}} X$$

$$[j+1+\frac{a}{n\rho^{j+1}}, j+1+\frac{b}{n\rho^{j+1}}].$$

On a immédiatement
$$Y^{(n)} - Y_I^{\rho,n} = \rho^{\frac{n}{p}} X_{\left[n + \frac{a}{n\rho^n}, n + \frac{b}{n\rho^n}\right]} - X_{\left[\frac{a}{n}, \frac{b}{n}\right]}$$

et donc $\|Y^{(n)} - Y_I^{\rho,n}\|_1 \le M \left[\frac{2}{n} (b-a)\right]^{\frac{1}{p}}$. Donc $\|Y^{(n)} - Y_I^{\rho,n}\|_1 \to 0$ quand $n \to \infty$, d'où il résulte que $Y_I^{\rho} = (Y^{(n)})_{n \in \mathbb{N}}$.

Par ailleurs, d'après le lemme III.1 les deux (nk + n)-uplets de variables aléatoires :

$$(X = \frac{a_{i}}{n\rho^{j}}, j + \frac{b_{i}}{n\rho^{j}} [0 \le j \le n-1 (X = \frac{a_{i}}{n\rho^{j+1}}, j+1 + \frac{b_{i}}{n\rho^{j+1}}] 0 \le j \le n-1$$

et

$$(X = \frac{a_i}{n\rho^j}, j + \frac{b_i}{n\rho^j}) = 0 \le j \le n-1 = 0$$
 $(X = \frac{c}{n\rho^j}, j + \frac{d}{n\rho^j}) = 0 \le j \le n-1 = 0$

ont la même distribution (les intervalles $[j + \frac{c}{n\rho^j}, j + \frac{d}{n\rho^j}]$ et $[j+1+\frac{a}{n\rho^{j+1}}, j+1+\frac{b}{n\rho^{j+1}}]$ ayant la même longueur).

II en résulte que les deux (k + 1)-uplets de variables aléatoires

$$[(Y_{\mathbf{I}_{\mathbf{i}}}^{\rho,n})_{1 \leq \mathbf{i} \leq \mathbf{k}}^{\rho,n}, Y^{(n)}] \text{ et } [(Y_{\mathbf{i}}^{\rho,n})_{1 \leq \mathbf{i} \leq \mathbf{k}}^{\rho,n}, o^{\frac{1}{p}} Y_{\mathbf{J}}^{\rho,n}]$$

ont la même distribution. En faisant tendre n vers l'infini suivant ϑ et en appliquant la proposition I.3, on obtient le résultat cherché (puisque $Y_I^{\rho} = (Y^{(n)})_{n \in \mathbb{N}}$).

Lemme III.8. Si
$$0 \le a < b < c$$
 alors $Y^{\rho}[a,c] = Y^{\rho}[a,b] + Y^{\rho}[b,c]$.

Si n est assez grand pour que $\frac{c}{n}$ <1, on a immédiatement

$$Y_{[a,c[}^{\rho,n} = Y_{[a,b[}^{\rho,n} + Y_{[b,c[}^{\rho,n}].$$

Choisissons maintenant une suite de réels $(
ho_{
u})_{
u}\in\mathbb{N}$ qui tend vers 1 en

décroissant. Pour fixer les idées, et simplifier un peu le calcul, nous prendrons $\rho_{\nu} = \mathrm{e}^{\left(2^{-\nu}\right)} \;. \quad \text{Pour chaque intervalle I de \mathbb{R}_{+}, on définit dans $\left(\Gamma_{2}\right)$}^{\mathbb{N}/\mathcal{F}} \;:$ $Y_{\mathrm{I}} = \left(Y_{\mathrm{I}}^{\phantom{\mathrm{I}}\phantom{\mathrm{I}}\phantom{\mathrm{I}}\phantom{\mathrm{I}}\phantom{\mathrm{I}}\phantom{\mathrm{I}}\right)_{\nu} \in \mathbb{N} \;.$

On a M⁻¹ μ (I) $\stackrel{1}{p} \le \|Y_I\|_1 \le M \mu$ (I) $\stackrel{1}{p}$ (car les mêmes inégalités sont vraies pour $Y_I^{\rho_{\nu}}$). Si I_1, \ldots, I_k , sont des intervalles disjoints dans \mathbb{R}_+ , la distribution de $(Y_{I_1}, \ldots, Y_{I_k})$ est symétrique et ne dépend que de la suite $(\mu(I_1), \ldots, \mu(I_k))$ (car cette propriété est vraie pour $(Y_{I_1}^{\rho_{\nu}}, \ldots, Y_{I_k}^{\rho_{\nu}})$ d'après le lemme III.6 et il suffit d'appliquer la proposition I.3). Enfin $Y_{[a,c[}=Y_{[a,b[}^{}+Y_{[b,c[}$ si $0\le a < b < c$ (lemme III.8).

Lemme III.9. Soient I_1, \ldots, I_k , I_1 , I_2 described and I_3 , I_4 , I_5 , I_4 , I_5 , I_6 , I_7 , I_8 , I_8 , I_9 , I

On peut supposer $\sigma > 1$ (si $\sigma = 1$, le résultat est déjà vu ; si $\sigma < 1$, échanger les rôles de I et de J).

Supposons d'abord que σ = e $\frac{\frac{r}{2^S}}{}$, $r,s\in\mathbb{N}$, r>0 .

Lorsque $\nu \ge s$, les deux (k + 1)-uplets (Y_{I1}, ..., Y_{Ik}, Y_I) et (Y_{I1}, ..., Y_{Ik}, σ_{ν} , σ_{ν}) ont la même distribution: car alors $\sigma = \rho_{\nu}^{N}$ avec N = r . 2^{ν -s}, et il suffit d'appliquer N fois le lemme III.7.

On obtient alors le résultat en faisant tendre $\, \nu \,$ vers l'infini suivant l'ultrafiltre $\, \vartheta \,$, et en appliquant la proposition I.3.

Dans le cas général, soit σ_n une suite de réels de la forme e 2^{S} (r, s \in N, r > 0) qui tend en croissant vers σ , et soit I' $_n$ \subset I une suite

croissante d'intervalles, μ (I'_n) = σ_n μ (J) , tels que I - I'_n soit aussi un intervalle I"_n (dont la mesure tend vers 0) . On a alors Y_I - Y_{I'_n} = Y_{I''_n} donc $\|Y_I - Y_{I'_n}\| \leq M \, \mu \, (I''_n)^{\frac{1}{p}} \, donc \, Y_{I_n} \rightarrow Y_I \, au \, sens \, de \, L^1 \, . \, \, D'autre \, part,$ $\sigma_n^{\frac{1}{p}} \, Y_J \rightarrow \sigma^{\frac{1}{p}} \, Y_J \, . \, \, Comme \, Y_{I_1} \, , \, \ldots, \, Y_{I_k} \, , \, Y_{I'_n} \,) \, \, et \, (Y_{I_1} \, , \, \ldots, \, Y_{I_k} \, , \, \sigma_n^{\frac{1}{p}} \, Y_J \,)$ ont la même distribution, on voit, quand $n \rightarrow \infty$, que $(Y_{I_1} \, , \, \ldots, \, Y_{I_k} \, , \, Y_I) \, \, et$ $(Y_{I_1} \, , \, \ldots, \, Y_{I_k} \, , \, \sigma^{\frac{1}{p}} \, Y_J) \, \, ont \, la \, même \, distribution \, \qquad \underline{C.Q.F.D.}$

On pose alors $Z_k = Y_{\lfloor k, \ k+1 \rfloor}$; $(Z_k)_{k \in \mathbb{N}}$ est donc une suite échangeable symétrique de variables aléatoires, et on a $M^{-1} \leq \|Z_k\|_1 \leq M$. Vérifions que cette suite a les propriétés 1, 2 annoncées dans le théorème III.2.

Soient a, b > 0,
$$c = (a^p + b^p)^{\frac{1}{p}}$$
. Posons $I_o = [0, 1[, I_1 = [1, 2[, J_1 = [K_1, K_1 + a^p[, J_1 = [K_1 + a^p, K_1 + a^p + b^p[]]]]$

$$J_2 = [K_2, K_2 + a^p[, J_2 = [K_2 + a^p, K_2 + a^p + b^p[]]$$

avec $K_1 \ge 2$, $K_2 \ge K_1 + a^p + b^p$ (ce qui donne 6 intervalles disjoints).

D'après le lemme III.9 (appliqué 4 fois) les trois quadruplets $(aZ_o, bZ_1, aZ_2, bZ_3), \ (aZ_o, bZ_1, Y_{J_2}, Y_{J_1'2}) \ \text{et} \ (Y_{J_1}, Y_{J_1'1}, Y_{J_2}, Y_{J_1'2})$ ont la même distribution. Il en résulte que les deux triplets (aZ_o, bZ_1, aZ_2, bZ_3) et $(aZ_o, bZ_1, Y_{J_2} + Y_{J_1'2})$ ont la même distribution ; et également les deux couples $(aZ_o + bZ_1, aZ_2 + bZ_3)$ et $(Y_{J_1} + Y_{J_1'1}, Y_{J_2} + Y_{J_1'2})$.

Or $Y_{J_1} + Y_{J_1} = Y_{J_1 \cup J_1}$, $Y_{J_2} + Y_{J_2} = Y_{J_2 \cup J_2}$, $J_1 \cup J_1$ et $J_2 \cup J_2$ étant deux intervalles de longueur c^p , disjoints de I_o , I_1 et disjoints entre eux. En appliquant de nouveau le lemme III.9 on voit que les deux triplets $(aZ_o, bZ_1, Y_{J_2 \cup J_2})$ et (aZ_o, bZ_1, cZ_2) ont la même distribution ; et également

les deux couples $(Y_{J_1 \cup J_1}, Y_{J_2 \cup J_2})$ et (cZ_0, cZ_1) . On en déduit que $(aZ_0 + bZ_1, aZ_2 + bZ_3)$ et (cZ_0, cZ_1) ont la même distribution ; et aussi $(aZ_0, bZ_1, aZ_2 + bZ_3)$ et (aZ_0, bZ_1, cZ_2) . Donc les deux couples $(aZ_0 + bZ_1, aZ_2 + bZ_3)$ et $(aZ_0 + bZ_1, cZ_2)$ ont la même distribution, ce qui démontre la propriété 1.

Pour la propriété 2, comme $Z_k \in \Gamma_2^{-\mathbb{N}}/\mathfrak{F}$, il reste à montrer que $\Gamma_2^{-\mathbb{N}}/\mathfrak{F} = \Gamma^A/\mathfrak{U} \text{, A étant un ensemble dénombrable et } \mathfrak{U} \text{ un ultrafiltre sur A, et que l'on a } Z_k = (z_k^{-\alpha})_{\alpha} \in A \text{, les } z_k^{-\alpha} \text{ étant des paquets formés avec les } X_i,$ deux à deux disjoints pour α fixé .

D'après la proposition I.6 (puisque $\Gamma_2 = \Gamma_1^{\mathbb{N}}/\mathfrak{D}$ et $\Gamma_1 = \Gamma^{\mathbb{N}}/\mathfrak{D}$) on a en fait $\Gamma_2^{\mathbb{N}}/\mathfrak{D} = \Gamma^{\mathbb{N}}/\mathfrak{D}$, \mathcal{U} étant un ultrafiltre sur \mathbb{N}^3

Or, si
$$I_k = [k, k+1[$$
 , on a $Z_k = Y_{I_k} = (Y_{I_k}^{\rho_{\nu}})_{\nu \in \mathbb{N}}$; on a $Y_{I_k}^{\rho_{\nu}} = (X_{\rho_{\nu}}^{\rho_{\nu}}, n)_{n \in \mathbb{N}}$

Soient ν , n deux entiers fixés : alors $\varphi_{I_0}^{\rho_{\nu}, n}$, $\varphi_{I_1}^{\rho_{\nu}, n}$, ..., $\varphi_{I_k}^{\rho_{\nu}, n}$, ... est une suite de fonctions en escalier, deux à deux étrangères (en fait, $\varphi_{I_{\iota}}^{\rho_{\nu}, n} = 0$

pour k assez grand). D'après le lemme III.4 on a donc

$$\mathbf{X}_{\substack{\rho_{\nu}, \mathbf{n} \\ \boldsymbol{\phi_{\mathbf{I}_{\mathbf{k}}}}}} = (\eta_{\mathbf{k}}^{\mathbf{r}, \mathbf{n}, \boldsymbol{\nu}})_{\mathbf{r} \in \mathbb{N}}, \text{ les } \eta_{\mathbf{k}}^{\mathbf{r}, \mathbf{n}, \boldsymbol{\nu}} \text{ étant des paquets formés avec les } \mathbf{X}_{\mathbf{i}}$$

deux à deux disjoints pour r fixé (n, ν sont déjà fixés) et k variant dans N.

Dans Γ^{N^3}/\mathcal{U} , on a donc $Z_k = (\eta_k^{\ r}, \ n, \ \nu)$ $(r, \ n, \ \nu) \in \mathbb{N}^3$, et les $\eta_k^{\ r}, n, \nu$ sont des paquets formés avec les X_i deux à deux disjoints pour $r, \ n, \nu$ fixés.

Enfin, pour avoir $\|Z_k\|_1 = 1$, il suffit de remplacer Z_k par $Z_k/\|Z_k\|_1$

(noter qu'on avait $M^{-1} \le \|Z_k\|_1 \le M$). Le théorème III.2. est donc démontré.

Le lemme suivant montre qu'on a en fait $Z_k = U \ V_k$, U étant intégrable ≥ 0 , V_0 , ..., V_k , ... étant p-stables, indépendantes et indépendantes de U.

Lemme III.10. Soient p un réel 1 \leq 2 et $(Z_k)_k \in \mathbb{N}$ une suite échangeable symétrique de variables aléatoires réelles dans L^1 (\mathcal{B} , P) ayant la propriété suivante : si a, b, c $\in \mathbb{R}_+$, c = $(a^p + b^p)^{\frac{1}{p}}$, les trois couples (cZ_0, cZ_1) $(aZ_0 + bZ_1, cZ_2)$, $(aZ_0 + bZ_1, aZ_2 + bZ_3)$ ont la même distribution. On a alors $Z_k = UV_k$, U, V_0 , V_1 , ..., V_k , ... étant des variables indépendantes dans L^1 (\mathcal{B} , P), $U \geq 0$, V_0 , V_1 , ..., V_k , étant p-stables.

Soit \mathcal{B}^{∞} la σ -algèbre de queue de la suite $(Z_k)_k \in \mathbb{N}$. Alors les variables Z_k sont conditionnellement indépendantes et équidistribuées sur \mathcal{B}^{∞} , c'est-à-dire :

(*)
$$E^{\beta^{\infty}} \begin{bmatrix} \prod_{k=0}^{n} f_{k}(Z_{k}) \end{bmatrix} = \prod_{k=0}^{n} E^{\beta^{\infty}} [f_{k}(Z_{0})] \quad \text{où} \quad f_{k}: \mathbb{R} \to \mathbb{C}$$

est continue bornée (0 \leq $k \leq$ n) .

Pour chaque $t\in\mathbb{R}$, désignons par C_t la variable aléatoire E^∞ e itZ_0 . On a donc $|C_t|\leq 1$ et $C_{-t}=\overline{C_t}$.

d'après (*). Si u décrit une suite tendant vers t cette expression tend bien vers 0 (théorème de Lebesgue).

$$\begin{split} \text{Sit, } \mathbf{u} \in \mathbb{R}_{+} & \text{ et } \mathbf{v} = (\mathbf{t}^p + \mathbf{u}^p)^{\frac{1}{p}} \text{ alors } \mathbf{C}_{\mathbf{t}} \, \mathbf{C}_{\mathbf{u}} = \mathbf{C}_{\mathbf{v}} \; ; \; \text{ en effet, on a} \\ \mathbb{E} \left(\mathbf{C}_{\mathbf{t}} \, \mathbf{C}_{\mathbf{u}} - \mathbf{C}_{\mathbf{v}} \right)^2 = \mathbb{E} \left(\mathbf{C}_{\mathbf{t}}^2 \, \mathbf{C}_{\mathbf{u}}^2 + \mathbf{C}_{\mathbf{v}}^2 - 2 \, \mathbf{C}_{\mathbf{t}} \, \mathbf{C}_{\mathbf{u}} \, \mathbf{C}_{\mathbf{v}} \right) = \mathbb{E} \left[\mathbf{e}^{\mathbf{i} \, (\mathbf{t} Z_0 + \mathbf{u} Z_1) + \mathbf{i} \, (\mathbf{t} Z_2 + \mathbf{u} Z_3)} \right] \\ & + \mathbb{E} \left[\mathbf{e}^{\mathbf{i} \, (\mathbf{v} Z_0 + \mathbf{v} Z_1)} \right] - 2 \, \mathbb{E} \left[\mathbf{e}^{\mathbf{i} \, (\mathbf{t} Z_0 + \mathbf{u} Z_1 + \mathbf{v} Z_2)} \right] \quad \text{d'après (*)} \; . \end{split}$$

Cette dernière expression vaut 0 puisque, par hypothèse, les couples $(tZ_0+uZ_1,\ tZ_2+uZ_3),\ (vZ_0,\ vZ_1),\ (tZ_0+uZ_1,\ vZ_2) \ \ \text{ont la même distribution}.$

En particulier $C_t \ge 0$ (puisque $C_t = (C_t - \frac{1}{p})^2$), on a donc $0 \le C_t \le 1$ pour tout $t \in \mathbb{R}$.

$$\frac{C_t > 0 \text{ presque sûrement}: \text{ soit } A = \{C_t = 0\} \text{ , comme } C_t = (C_t - \frac{1}{p})^2 \text{ ,}$$

on voit que C , ..., C , ... sont nuls sur A. Donc $t.2^{-\frac{1}{p}} \quad t.2^{-\frac{n}{p}}$

E (C
$$\underline{n}$$
 . 1_A) = 0 . Comme C \underline{n} 0 . Comme C \underline{n} 0 C 0 = 1 dans L² (\mathcal{B} , P) on en déduit que

P(A) = 0.

On peut alors poser $C_1 = e^{-U^p}$, U étant une variable aléatoire réelle ≥ 0 . Si on pose $C^i_t = C_1$, on a C^i_t . $C^i_u = C^i_{t+u}$ pour t, u dans R_+ . On en déduit t $\frac{1}{p}$ que $C^i_t = (C^i_1)^t = e^{-t}U^p$ pour tout $t \in \mathbb{Q}_+$. Si maintenant $t \in R_+$, soit t_n une suite de rationnels ≥ 0 tendant vers t. Alors $C^i_t \to C^i_t$ Dans L^2 (3, P) et

 $\begin{array}{l} {C^{\,\prime}}_{t_{n}} \rightarrow e^{-t \; U^{p}} \; \text{presque sûrement. On a donc } {C^{\,\prime}}_{t} = e^{-t \; U^{p}} \; \text{pour tout } t \in \mathbb{R}_{+} \\ \text{et par suite } {C_{t}} = e^{-t^{p} \; U^{p}} \; \text{. Comme } {C_{t}} = {C_{-t}} \; \text{ on a finalement montré que} \\ {E^{\beta^{\infty}}} \; e^{itZ_{0}} = e^{-\left|t\right|^{p} \; U^{p}} \; \text{pour } t \in \mathbb{R} \; \text{. D'après (**) on a} \\ {E^{\beta^{\infty}}} \; e^{i \; (t_{0}Z_{0} + \ldots + t_{k}Z_{k})} = {E^{\beta^{\infty}}} \; (e^{it_{0}Z_{0}}) \ldots \; {E^{\beta^{\infty}}} \; (e^{it_{k}Z_{0}}) = e^{-(\left|t_{0}\right|^{p} + \ldots + \left|t_{k}\right|^{p}) \; U^{p}} \end{array}$

En prenant l'intégrale des deux membres, on trouve

$$E(e^{i(t_0 Z_0 + ... + t_k Z_k)}) = E(e^{-(|t_0|^p + ... + |t_k|^p) U^p}).$$

Soient alors $V_0,\,V_1$, ..., $V_k,\,\dots$ des variables p-stables indépendantes et indépendantes de U. Un calcul immédiat montre que

$$E [e^{i(t_{o}UV_{o} + ... + t_{k}UV_{k})}] = E[e^{-(|t_{o}|^{p} + ... + |t_{k}|^{p})U^{p}}] .$$

Il en résulte que les deux suites de variables aléatoires $(Z_k)_k \in \mathbb{N}$ et $(UV_k)_k \in \mathbb{N}$ ont la même distribution (probabilité sur $\mathbb{R}^\mathbb{N}$). Il existe donc une suite de variables U', V'_0 , ..., V'_k , ... ayant la même distribution que la suite U, V_0 , ..., V_k , ... telle que $Z_k = U'V'_k$. U' est bien intégrable car Z_k est intégrable et U', V'_k sont indépendantes. $\underline{C.Q.F.D}$.

On peut maintenant montrer le théorème III.¹: d'après le théorème III.² et le lemme III.10 on a dans $\Gamma^{\mathbb{N}/\mathcal{B}_2}$ une suite $(Z_k)_k \in \mathbb{N}$ échangeable symétrique, avec $Z_k = \mathsf{UV}_k$, U , V_0 , ..., V_k , ... étant indépendantes, $\mathsf{U} \geq 0$ et V_0 , ..., V_k , ... étant p-stables, de plus $Z_k = (z_k^{\ n})_{n \in \mathbb{N}}$ avec $z_k^{\ n} \in \Gamma$, $\|z_k^{\ n}\| = 1$, les $z_k^{\ n}$ étant pour n fixé des paquets disjoints formés avec les X_i .

On a donc $z_k^n = \sum_{i=0}^{\infty} a_k^n(i) X_i$ où $a_k^n(i) \in \mathbb{R}$ (la somme ne comportant qu'un nombre fini de termes $\neq 0$).

Soit $\tau:\mathbb{N}^2\to\mathbb{N}$ une application bijective, on pose $\widetilde{z}_k^n=\sum\limits_{i=0}^\infty a_k^n$ (i) $X_{\tau(n,i)}$ On a évidemment $\|\widetilde{z}_k^n\|=\|z_k^n\|=1$ (d'après le fait que la suite $(X_i)_i\in\mathbb{N}$ est échangeable). Par ailleurs les \widetilde{z}_k^n sont des paquets formés avec les X_i , deux à deux disjoints pour n, k variant dans \mathbb{N} : en effet, si $X_{\tau(n,i)}$ a un coefficient $\neq 0$ dans \widetilde{z}_k^n et \overline{z}_ℓ^m , on a a_k^n (i) $\neq 0$, a_ℓ^m (j) $\neq 0$ et $\tau(n,i)=\tau(m,j)$; τ étant bijective, on a m=n et i=j, donc a_k^n (i) $\neq 0$, a_ℓ^n (i) $\neq 0$, ce qui montre que X_i a un coefficient non nul à la fois dans z_k^n et z_ℓ^n ; d'où $k=\ell$ (sinon z_k^n et z_ℓ^n sont des paquets disjoints).

On définit alors $\widetilde{Z}_k \in \Gamma^N/\mathfrak{F}_2$ en posant $\widetilde{Z}_k = (\widetilde{z}_k^n)_{n \in \mathbb{N}}$. Il reste à montrer que la suite $(\widetilde{Z}_k)_{k \in \mathbb{N}}$ est symétrique, échangeable et satisfait la propriété 1) du théorème III.1. Pour cela, il suffit de montrer que les deux suites $(Z_k)_{k \in \mathbb{N}}$ et $(\widetilde{Z}_k)_{k \in \mathbb{N}}$ ont la même distribution (probabilité sur \mathbb{R}^N), c'est-àdire que pour chaque $k \in \mathbb{N}$, les (k+1)-uplets (Z_0, \ldots, Z_k) et $(\widetilde{Z}_0, \ldots, \widetilde{Z}_k)$ ont la même distribution.

Or, d'après la proposition I.3, la distribution de (Z_0,\ldots,Z_k) (resp. $(\tilde{Z}_0,\ldots,\tilde{Z}_k)$) est la limite quand $n\to\infty$ suivant l'ultrafiltre \mathscr{D}_2 de la distribution de (z_0^n,\ldots,z_k^n) (resp. $(\tilde{z}_0^n,\ldots,\tilde{z}_k^n)$). Il suffit donc de voir que (z_0^n,\ldots,z_k^n) et $(\tilde{z}_0^n,\ldots,\tilde{z}_k^n)$ ont la même distribution ; mais cela résulte immédiatement de la définition de $\tilde{z}_0^n,\ldots,\tilde{z}_k^n$, de l'échangeabilité de la suite $(X_i)_{i\in\mathbb{N}}$ et du fait que z_0^n,\ldots,z_k^n sont des paquets disjoints, et aussi $\tilde{z}_0^n,\ldots,\tilde{z}_k^n$: C.Q.F.D.

IV. PREUVE DE 3 ⇒ 4 DANS LE THEOREME PRINCIPAL.

Considérons un sous-espace réflexif F de L 1 (β_0 , P_0) et supposons que, dans une ultrapuissance $F^{\mathbb{N}}/\beta_1$ de F, $(F^{\mathbb{N}}/\beta_1)$ est donc un sous-espace de L 1 (β_1 , P_1) avec $(\beta_1$, P_1) = $(\beta_0$, $P_0)^{\mathbb{N}}/\beta_1$) il existe une suite $(X_n)_{n\in\mathbb{N}}$ ayant les trois propriétés suivantes :

- 1) la suite $(X_n)_n \in \mathbb{N}$ de variables aléatoires est échangeable et symétrique ;
- 2) Elle engendre dans L^1 (\mathcal{B}_1 , P_1) un espace Γ isomorphe à ℓ^p et, plus précisément, il existe M>0 tel que

$$\frac{M^{-1} \left(\left| \lambda_{o} \right|^{p} + \ldots + \left| \lambda_{n} \right|^{p} \right)^{\frac{1}{p}}}{\left| \left| \left| \lambda_{o} \right|^{q} + \ldots + \left| \lambda_{n} \right|^{q} \right|} \leq \left| \left| \left| \lambda_{o} \right|^{q} + \ldots + \left| \lambda_{n} \right|^{p} \right|^{\frac{1}{p}}}$$

3) la σ -algèbre de queue de la suite $(X_n)_{n\in\mathbb{N}}$ est contenue dans \mathcal{B}_{o} .

On a alors:

Lemme IV.1. Il existe un ultrafiltre u sur \mathbb{N} et une variable aléatoire $Z \in \Gamma^{\mathbb{N}}/u$ (sous espace de $L^{1}(\mathcal{B}, P)$ avec $(\mathcal{B}, P) = (\mathcal{B}_{1}, P_{1})^{\mathbb{N}}/u$) ayant les propriétés suivantes :

- 1) Z=UV , $U\in L^1$ (\$\beta\$, P) , $U\geq 0$, V étant p-stable et indépendante de la σ -algèbre engendrée par \$\beta_1\$ et U ;
- 2) $Z = (z_n)_{n \in \mathbb{N}}$, $z_n \in \Gamma$, $||z_n|| = 1$; les z_n étant des paquets disjoints formés avec les X_i .

A l'aide du théorème III.1, on construit dans L 1 (\$\beta_2\$, \$P_2\$) (avec $(\beta_2$, P_2) = (\beta_1$, P_1)^{N}/\beta_2$) une suite $Z_k = UV_k$ de variables aléatoires ayant les propriétés indiquées dans ce théorème. Soit $\Gamma_2 = \Gamma^N/b_2$, d'où $Z_k \in \Gamma_2$.$

Soit $\mathscr B$ un ultrafiltre non trivial sur $\mathbb N$, d'où $\Gamma_2^{\mathbb N}/\mathscr B\subset L^1$ ($\mathscr B$, P) avec $(\mathscr B,\ P)=(\mathscr B_2,\ P_2)^{\mathbb N}/\mathscr B$. On définit $Z\in\Gamma_2^{\mathbb N}/\mathscr B$ et $V\in L^1$ ($\mathscr B$, P) en posant $Z=(Z_k)_k\in\mathbb N$, $V=(V_k)_k\in\mathbb N$. D'après la proposition I.5.1., V est une variable p-stable indépendante de $\mathscr B_2$, donc de la σ -algèbre engendrée par $\mathscr B_1$ et U (puisque $U\in L^1$ ($\mathscr B_2$, P_2)). D'autre part, on a Z=UV: en effet la distribution du triplet $(Z_k,\ U,\ V_k)$ converge suivant $\mathscr B$ vers celle de $(Z,\ U,\ V)$ (proposition I.3); or la distribution de $(Z_k,\ U,\ V_k)$ est toujours la même et $Z_k=UV_k$, d'où Z=UV.

II reste à montrer que $(\mathcal{B},\,\mathsf{P})=(\mathcal{B}_1^-,\,\mathsf{P}_1^-)^A/\mathcal{U}$, A étant un ensemble dénombrable et $\,\mathcal{U}$ un ultrafiltre sur A, et que $Z=(z_\alpha)_{\alpha\in A}$, $\|z_\alpha\|=1$, les z_α étant des paquets disjoints formés avec les X_i . Or, d'après la proposition I.6, on a $(\mathcal{B},\,\mathsf{P})=(\mathcal{B}_1^-,\,\mathsf{P}_1^-)^N/\mathcal{B}_2^-)^N/\mathcal{B}=(\mathcal{B}_1^-,\,\mathsf{P}_1^-)^N\times N/\mathcal{B}_2\times \mathcal{B}_2^-$. On prend donc $A=\mathbb{N}\times\mathbb{N}$ et $\mathcal{U}=\mathcal{B}_2\times\mathcal{B}$. D'après le théorème III.1 on a $Z_k=(z_k^-)_n\in\mathbb{N}$ avec $\|z_k^-\|=1$, les z_k^- étant des paquets disjoints formés avec les X_i . Donc $Z=(z_k^-)_n$ (n, k) $\in\mathbb{N}\times\mathbb{N}$.

Le lemme suivant est un éxercice de calcul de probabilités.

Lemme IV.2. Soit f une variable aléatoire ≥ 0 , β_0 une σ -algèbre. Alors $(E \stackrel{\beta_0}{=} e \stackrel{-\frac{f}{n}}{=} n)$ converge presque sûrement vers $e^{-E \stackrel{\beta_0}{=} f}$ quand $n \rightarrow +\infty$.

- Noter qu'on ne suppose pas f intégrable ; donc E^{s_0} f est une variable aléatoire ≥ 0 finie ou infinie ; nous la définissons ici comme la limite quand $N \to +\infty$ de la suite croissante E^{s_0} f avec $f_N = f \cdot 1$ $\{f \leq N\}$.
- $\begin{array}{c} N\to +\infty \text{ de la suite croissante E} \overset{\mathcal{B}}{\overset{\circ}{\circ}} f_N \text{ avec } f_N = f\cdot 1 \text{ } \{f\leq N\} \\ & -\frac{f}{n} & n \\ & -\text{ Notons aussi que } (E \overset{\mathcal{B}}{\overset{\circ}{\circ}} e \overset{\circ}{\overset{\circ}{\circ}} e \overset{\circ}{\overset{\circ}{\circ}$
- Supposons d'abord f bornée. On a alors $1-\frac{f}{n} \le e^{-\frac{f}{n}} \le 1$ $-\frac{f}{n} + \frac{f^2}{2n^2}$ dès que $n > ||f||_{\infty}$.

$$\mathrm{Donc} \; (1 - \frac{1}{n} \; \overset{\beta_0}{\to} f)^n \leq (\overset{\beta_0}{\to} e^{-\frac{f}{n}})^n \leq (1 - \frac{1}{n} \; \overset{\beta_0}{\to} f + \frac{1}{2 \, n^2} \overset{\beta_0}{\to} f^2)^n \; .$$

Quand $n \to \infty$ les deux membres extrêmes tendent vers e^{-E} f d'où le résultat.

Dans le cas général, posons $\mathbf{g}_n = (\mathbf{E}^{o} \ \mathbf{e}^{-\frac{f}{n}})^n$, $\mathbf{g}_{n,N} = (\mathbf{E}^{o} \ \mathbf{e}^{-\frac{f}{N}})^n$. Quand $\mathbf{n} \to \infty$, \mathbf{g}_n tend en décroissant vers une variable \mathbf{g} ; quand $\mathbf{N} \to \infty$, $\mathbf{g}_{n,N} \text{ tend en décroissant vers } \mathbf{g}_n. \text{ Il en résulte que}$ $\mathbf{g} = \inf_{n,N} \mathbf{g}_{n,N} = \inf_{n} (\inf_{n} \mathbf{g}_{n,N}) = \inf_{n} \mathbf{e}^{-\mathbf{E}^{B_0}} \mathbf{f}_{n} \text{ (d'après ce qu'on vient de montrer)} = \mathbf{e}^{-\mathbf{E}^{B_0}} \mathbf{f}$. $\underline{\mathbf{C.Q.F.D.}}$

Considérons dans Γ , sous-espace réflexif de L¹ (\mathcal{B}_1 , P_1) une suite $(z_n)_{n\in\mathbb{N}}$ et un ultrafiltre \mathcal{U} ayant les propriétés énoncées dans le lemme IV.1. En appliquant le théorème I.1 avec ces données, on construit, dans une ultrapuissance $\Gamma^{\mathbb{N}}/\mathcal{U}$ de Γ , une suite $(T_n)_{n\geq 1}$ de variables aléatoires échangeables audessus de \mathcal{B}_1 . Démontrons un certain nombre de propriétés de cette suite :

1°)
$$M^{-2} (|\lambda_1|^p + ... + |\lambda_k|^p)^{\frac{1}{p}} \le ||\lambda_1|^p + ... + |\lambda_k|^p)^{\frac{1}{p}}.$$

En effet soit θ l'isomorphisme de Γ sur ℓ^p défini par θ $(X_i) = e_i$ $(i \in \mathbb{N})$, les e_i formant la base canonique de ℓ^p ; on a $||\theta|| \leq M$, $||\theta^{-1}|| \leq M$. Comme $||z_n|| = 1$, et que les z_n sont des paquets disjoints formés avec les X_i , on a $M^{-1} \leq ||\theta|| z_n|| \leq M$ et les θ z_n sont deux à deux étrangers : par suite, si $\mu_0, \ldots, \mu_n \in \mathbb{R}$ on a

$$\|\mu_0 \theta z_0 + ... + \mu_n \theta z_n\| = \left(\sum_{i=0}^n |\mu_i|^p \|\theta z_i\|^p\right)^{\frac{1}{p}},$$

d'où

$$\mathsf{M}^{-1} (|\mu_{\mathsf{O}}|^{\mathsf{P}} + \ldots + |\mu_{\mathsf{n}}|^{\mathsf{P}}) \leq ||\theta (\mu_{\mathsf{O}} z_{\mathsf{O}} + \ldots + \mu_{\mathsf{n}} z_{\mathsf{n}})|| \leq \mathsf{M} (|\mu_{\mathsf{O}}|^{\mathsf{P}} + \ldots + |\mu_{\mathsf{n}}|^{\mathsf{P}})^{\frac{\mathsf{I}}{\mathsf{P}}}$$

d'où

$$M^{-2} (|\mu_{o}|^{p} + ... + |\mu_{n}|^{p})^{\frac{1}{p}} \le ||\mu_{o}z_{o} + ... + \mu_{n}z_{n}|| \le M^{2} (|\mu_{o}|^{p} + ... + |\mu_{n}|^{p})^{\frac{1}{p}}.$$

On montre alors, par récurrence sur k, que l'on a

$$M^{-2} (|\mu_{o}|^{p} + \ldots + |\mu_{n}|^{p} + |\lambda_{1}|^{p} + \ldots + |\lambda_{k}|^{p})^{p} \leq ||\mu_{o}z_{o} + \ldots + \mu_{n}z_{n} + \lambda_{1}T_{1} + \ldots + \lambda_{k}T_{k}||$$

$$\leq M^{2} (|\mu_{o}|^{p} + \ldots + |\mu_{n}|^{p} + |\lambda_{1}|^{p} + \ldots + |\lambda_{k}|^{p})^{\frac{1}{p}} ,$$

ce qui est immédiat d'après le théorème I.1. D'où en particulier le résultat cherché.

2°) La σ -algèbre de queue β^{∞} de la suite $(T_n)_{n\geq 1}$ est contenue dans β_0 .

En effet, d'après le théorème I.1, β^{∞} est contenue dans la σ -algèbre de queue de la suite $(z_n)_{n\in\mathbb{N}}$, donc dans celle de la suite $(X_n)_{n\in\mathbb{N}}$ (puisque les z_n sont des paquets disjoints formés avec les X_i) et par suite dans \mathcal{B}_{O} .

3°) Si $f_j : \mathbb{R} \to \mathbb{R}$ est continue bornée $(1 \le j \le k)$, on a

En effet, d'après le théorème I.1, la suite $(T_n)_{n\geq 1}$ est conditionnellement indépendante et équidistribuée sur \mathcal{B}_1 et on a donc

$$\mathbf{E}^{\mathcal{S}_{1}} \left[\begin{array}{ccc} \mathbf{k} & \mathbf{f}_{j} \\ \mathbf{I} & \mathbf{f}_{j} \end{array} \right] = \mathbf{I}^{\mathbf{k}} \quad \mathbf{E}^{\mathcal{S}_{1}} \quad \mathbf{f}_{j} \left(\mathbf{T}_{1} \right)$$

Or, sif: $\mathbb{R} \to \mathbb{R}$ est continue bornée, on a, en particulier

$$E^{\beta_1} f(T_1) = E^{\beta_1} f(T_n)$$
 pour tout $n \in \mathbb{N}$, et par suite

$$E^{B_1} f(T_1) = E^{B_1} \frac{1}{n} [f(T_1) + ... + f(T_n)]$$

Mais les variables T_n étant échangeables, $\frac{1}{n}[f(T_1)+...+f(T_n)]$ converge dans L^1 vers $E^{\beta^{\infty}}f(T_1)$ (voir [5]). Donc

 $E^{\mathcal{B}_1} f(T_1) = E^{\mathcal{B}_1} (E^{\mathcal{B}^{\infty}} f(T_1)) = E^{\mathcal{B}^{\infty}} f(T_1) \text{ puisque } \mathcal{B}^{\infty} \subset \mathcal{B}_1 \text{ . Or on a vu}$ que $\mathcal{B}^{\infty} \subset \mathcal{B}_0 \subset \mathcal{B}_1$. Il en résulte que $E^{\mathcal{B}_1} f(T_1) = E^{\mathcal{B}_1} f(T_1)$ et par suite $E^{\mathcal{B}_1} \begin{bmatrix} k & \mathcal{B}_0 \\ \mathbb{I} & f_j (T_j) \end{bmatrix} = \mathbb{I} E^{\mathcal{B}_0} f_j (T_1). \text{ Le premier membre est donc } \mathcal{B}_0 \text{-mesurable}$ (puisque le deuxième l'est) et par suite est égal à $E^{\mathcal{B}_0} \begin{bmatrix} k & f_j (T_j) \end{bmatrix} . C.Q.F.D.$ 4°) Si $f: \mathbb{R} \to \mathbb{R}$ est continue bornée, $E^{\mathcal{B}_0} f(T_1) = E^{\mathcal{B}_0} f(UV)$, (UV étant les variables définies dans l'énoncé du lemme IV.1). En effet, si Φ est une variable \mathcal{B}_0 -mesurable bornée, on a $E(f(T_1) \cdot \Phi) = \lim_{\mathcal{C}} E[f(Z_n) \cdot \Phi]$ (théorème I.1) = $E(f(Z) \cdot \Phi)$ (proposition I.3, puisque $Z = (Z_n)_n \in \mathbb{N}$ dans $F^{\mathcal{N}}/\mathcal{U}$) et Z = UV.

En particulier, on a E^{B_0} e $i\lambda$ $T_1 = E^{B_0}$ e $i\lambda$ UV. Mais, d'après le lemme I.4, V est une variable p-stable, indépendante de la σ -algèbre engendrée par B_0 et U, d'où il résulte immédiatement que E^{B_0} e $i\lambda$ UV = E^{B_0} e $-|\lambda|^p$ U p (noter que U \geq 0). D'après la propriété 3°) ci-dessus, on a donc

On pose alors $S_n=n^{-\frac{1}{p}}$ $(T_1+T_2+\ldots+T_n)$; donc $M^{-2} \leq ||S_n|| \leq M^2$ (propriété 1°) ci-dessus); $\mathcal B$ étant un ultrafiltre non trivial sur $\mathbb N$, on définit $S \in \Gamma^{\mathfrak l}$ $\mathbb N/\mathcal B$ (où $\Gamma^{\mathfrak l}=\Gamma^{\mathbb N}/\mathcal U^{\mathfrak l}$) en posant $S=(S_n)_n\in \mathbb N$. Notons que $\Gamma^{\mathfrak l}$ $\mathbb N/\mathcal B$ est une ultrapuissance de Γ (proposition I.6). Or Γ est lui-même un sous-espace de $\Gamma^{\mathbb N}/\mathcal B_1$, ce qui montre que S appartient à une ultrapuissance de Γ .

D'après la propriété 5°) ci-dessus, on a

$$E^{\beta} \circ e^{i\lambda S} = (E^{\beta} \circ e^{-|\lambda|^p U^p/n})^n$$

D'après le lemme IV.2, quand $n\to\infty$, E'o e il S n converge donc presque sûrement vers e $^{-}$ E $^{\mathcal{B}_0}$ $|\lambda|^p$ U^p .

Posons $\tilde{U}^p = E^{B_0} U^p$; \tilde{U} est donc une variable aléatoire ≥ 0 finie ou infinie, \mathcal{B}_0 - mesurable. On a $E^{B_0} |\lambda|^p U^p = |\lambda|^p \tilde{U}^p$ pour $\lambda \neq 0$ (et $E^{B_0} |\lambda|^p U^p = 0$ pour $\lambda = 0$).

Soit X une variable aléatoire bornée, \$\beta_0^-\$ mesurable quelconque. On a i\lambda S n \quad \text{i} \lambda S n \quad \text{i} \quad \text{i} \lambda S n \quad \text{i} \lambda S n \quad \text{i} \quad \text{i} \lambda S n \quad \text{i} \quad \quad \text{i} \quad \text{i} \quad \text{i} \quad \text{i} \quad \quad \text{i} \quad \quad \text{i} \quad \text{i} \quad \text{i} \quad \text{i} \quad \quad \text{i} \quad \text{i} \quad \quad \text{i} \quad \quad \text{i} \quad \qua

$$E(e^{i\lambda S}, X) = E(e^{-|\lambda|^p} \tilde{U}^p, X) \quad \text{pour } \lambda \neq 0$$
.

On en déduit d'abord que \widetilde{U} est presque sûrement fini : car, si $A = \{\widetilde{U} = +\infty\}$ et si on pose $X = 1_A$, on a pour $\lambda \neq 0$: $E(e^{-\left|\lambda\right|^p \widetilde{U}^p} \cdot 1_A) = 0$, donc $E(e^{i\lambda S} \cdot 1_A) = 0$; quand $\lambda \to 0$, $E(e^{i\lambda S} \cdot 1_A) \to E(1_A)$, d'où $P_O(A) = 0$.

Soit alors \mathring{V} une variable p-stable indépendante de $\mathcal{B}_{_{\! O}}$, on a immédiatement $E(e^{i\lambda} \mathring{\mathring{U}} \mathring{V} \cdot X) = E(e^{-|\lambda|^p} \mathring{U}^p \cdot X) = E(e^{i\lambda S} \cdot X)$. Donc, si Y_1, \ldots, Y_n sont des variables aléatoires $\mathcal{B}_{_{\! O}}$ -mesurables, on a

Donc les (n+1)-uplets (\tilde{U} \hat{V} , Y_1 , ..., Y_n) et (S; Y_1 ,..., Y_n) ont la même distribution. Cela montre que $S = \tilde{U}$ \tilde{V} , où \tilde{V} est une variable p-stable indépendante de \mathcal{B}_o . Comme S appartient à une ultrapuissance de F, on a obtenu l'implication 3 \Rightarrow 4 du théorème principal.

V. <u>DEMONSTRATION DU THEOREME PRINCIPAL ET DE L'EQUIVALENCE DES</u> CONJECTURES (C) et (C').

1 ⇒ 2 est évident ; 3 ⇒ 4 a été prouvé dans la partie IV et 4 ⇒ 1 dans la partie II. Il reste à voir que 2 ⇒ 3 : Soit donc $F \subset L^1(\mathcal{B}_0, P_0)$ une ultrapuissance de E contenant un espace isomorphe à ℓ^p dont la base $(X_n)_n \in \mathbb{N}$ soit finalement \mathcal{B} -mesurable (\mathcal{B} est une sous- σ -algèbre de \mathcal{B}_0). Il existe donc une suite $(X_n)_n \in \mathbb{N}$, dans $L^1(\mathcal{B}_0, P_0)$, dont la σ -algèbre de queue est contenue dans \mathcal{B} et telle que $\|X_n - X_n'\|_1 \to \infty$.

Soit \mathcal{B} un ultrafiltre non trivial sur \mathbb{N} ; en appliquant le théorème I.1. à la suite $(X_n)_{n\in\mathbb{N}}$ on obtient une suite échangeable Y_1,\ldots,Y_k,\ldots d'éléments de $F^\mathbb{N}/\mathcal{B}^1$. D'après la construction de la suite Y_k et le fait que $\|X_n-X^i_n\|\to 0 \text{ il est clair qu'on obtient la même suite de variables aléatoires en partant de la suite <math>(X^i_n)_{n\in\mathbb{N}}$. Il en résulte que la σ -algèbre de queue de la suite Y_k est contenue dans celle de la suite $(X^i_n)_{n\in\mathbb{N}}$ c'est-à-dire dans \mathcal{B} .

D'autre part, d'après le théorème I.1. et le fait que l'on a :

$$M^{-1} \begin{pmatrix} n \\ \sum_{i=0}^{n} |\lambda_{i}|^{p} \end{pmatrix}^{\frac{1}{p}} \leq \|\sum_{i=0}^{n} \lambda_{i} X_{i}\| \leq M \left(\sum_{i=0}^{n} |\lambda_{i}|^{p} \right)^{\frac{1}{p}}$$

pour une certaine constante M>0, on en déduit la même inégalité pour les Y_i (d'après le théorème I.1., 2), on a immédiatement, par récurrence sur k l'inégalité

$$\mathbf{M}^{-1} \left(\begin{array}{ccc} n & k & \frac{1}{p} & k \\ \sum\limits_{\mathbf{i} = 0}^{k} |\lambda_{\mathbf{i}}|^p & + \sum\limits_{\mathbf{j} = 1}^{k} |\mu_{\mathbf{j}}|^p \right)^{p} \leq \| \sum\limits_{\mathbf{i} = 0}^{n} \lambda_{\mathbf{i}} \, \mathbf{X}_{\mathbf{i}} + \sum\limits_{\mathbf{j} = 1}^{k} |\mu_{\mathbf{j}} \, \mathbf{Y}_{\mathbf{j}}^{\mathbf{j}} \| \\ \leq \mathbf{M} \left(\sum\limits_{\mathbf{i} = 0}^{n} |\lambda_{\mathbf{i}}|^p + \sum\limits_{\mathbf{j} = 1}^{k} |\mu_{\mathbf{j}}|^p \right)^{p}$$

Il en résulte que les Y_i engendrent un espace isomorphe à ℓ^p ; si on pose $Y'_n = Y_{2n+1} - Y_{2n}$, la suite Y'_n est échangeable, symétrique et engendre un espace isomorphe à ℓ^p , d'où le résultat cherché puisque les Y'_n sont dans une ultrapuissance de F, donc de E.

Preuve du théorème 0.3.:

a ⇒ b est immédiat d'après 2 ⇒ 4 dans le théorème principal.

 $b\Rightarrow a\text{ : on a UV}=(Z_n)_{n\in\mathbb{N}}\text{ avec }Z_n\in E\text{ , UV}\in E^\mathbb{N}/\mathcal{B}\text{ ; en appliquant}$ le théorème I.1. avec l'ultrafiltre \mathcal{B} et la suite $(Z_n)_{n\in\mathbb{N}}$ on obtient dans $E^\mathbb{N}/\mathcal{B}^*$ une suite échangeable Y_1,\ldots,Y_k,\ldots Il est clair qu'on a $Y_k=UV_k,\ V_k$ étant une suite de variables aléatoires indépendantes et indépendantes de \mathcal{A} , de même distribution que V_k (donc symétriques). La σ -algèbre de queue de la suite UV_k est évidemment contenue dans la σ -algèbre engendrée par U, donc contenue dans \mathcal{B} . On a par ailleurs

$$E \mid \sum_{i=1}^{k} \lambda_i \cup V_i \mid = E \mid U \mid E \mid \sum_{i=1}^{k} \lambda_i V_i \mid$$

Dans [1], il est montré que les variables $(V_n)_n \in \mathbb{N}$ engendrent un espace Λ_1 isomorphe à un espace d'Orlicz ℓ_f de suites, l'isomorphisme étant tel que l'image de V_n soit l'élément e_n de la base canonique de ℓ_f . Les variables UV_n engendrent donc aussi un espace Λ isomorphe à ℓ_f avec la même correspondance des bases. D'après un théorème de [4], ℓ_f contient un sous-espace Γ^1 isomorphe à ℓ^p , pour un $p \ge 1$, dont la base est formée de paquets disjoints d'éléments de la base canonique de ℓ_f . Par isomorphisme, Λ contient un sous-espace Γ , isomorphe à ℓ^p , dont la base est formée de paquets disjoints des $(UV_n)_n \in \mathbb{N}$. La σ -algèbre de queue de la base de Γ est donc incluse dans \mathcal{B} : comme Λ est réflexif (sous-espace d'une ultrapuissance de E) on a P > 1. La condition 2 du théorème principal est donc satisfaite, donc aussi la condition 1, ce qui donne le résultat cherché.

Equivalence des conjectures C et C'.

On montre d'abord le

Lemme V.1. Soit E un espace de Banach ayant une base inconditionnelle $(X_n)_{n \in \mathbb{N}} \text{ et contenant un espace isomorphe à } \ell^p \text{ (1} \leq p < \infty). \text{ Alors il contient}$ un espace isomorphe à ℓ^p dont la base est formée de paquets disjoints en les X_n .

Soit P_n l'opérateur de projection de E sur le sous-espace engendré par X_0,\dots,X_n ($P_n\,X_i=X_i$ si $i\leq n$, $P_n\,X_i=0$ si i>n) et soit ($Y_n)_{n\in\mathbb{N}}$ une suite d'éléments de E formant la base d'un sous-espace isomorphe à ℓ^p . Pour chaque entier n fixé, il existe une sous-suite Y_k de la suite Y_k telle que $P_n\,Y_k$ converge quand $\nu\to\infty$ (l'image de P_n étant de dimension finie). Par diagonalisation, il existe donc une sous-suite Z_k de la suite Y_k telle que, pour chaque $n\in\mathbb{N}$, $P_n\,Z_k$ converge quand $k\to\infty$, donc, si $U_k=Z_{2k+1}-Z_{2k}$, les U_k forment la base d'un espace K-isomorphe à ℓ^p (K réel \geq 1), et, pour chaque $n\in\mathbb{N}$ $P_n\,U_k\to0$ quand $k\to\infty$.

Fixons $\epsilon > 0$; on choisit n_o assez grand pour que $\|P_{n_o}U_o - U_o\| \le \epsilon$; puis k_1 assez grand pour que $\|P_{n_o}U_{k_1}\| \le \epsilon/4$, puis $n_1 > n_o$ assez grand tel que $\|P_{n_1}U_{k_1} - U_{k_1}\| \le \epsilon/4$; ayant défini $n_o < n_1 < \ldots < n_i$, $k_1 < \ldots < k_i$, on choisit $k_{i+1} > k_i$ assez grand pour que $\|P_{n_i}U_{k_{i+1}}\| \le \epsilon/2^{i+2}$ puis n_{i+1} assez grand pour que $\|P_{n_{i+1}}U_{k_{i+1}}\| \le \epsilon/2^{i+2}$.

On pose alors $V_0 = P_{n_0} U_0$, $V_{i+1} = (P_{n_{i+1}} - P_{n_i}) U_{k_{i+1}}$ $(i \ge 0)$ et par suite $\|V_{i+1} - U_{k_{i+1}}\| \le \|P_{n_i} U_{k_{i+1}}\| + \|P_{n_{i+1}} U_{k_{i+1}} - U_{k_{i+1}}\| \le \epsilon/2^{i+1}$

Il est clair que les V_i sont des paquets disjoints en les X_n . On montre qu'ils forment la base d'un espace isomorphe à ℓ^p , si ϵ est assez petit. On a en effet :

$$\| \sum_{i=0}^{n} \lambda_{i} V_{i} - \sum_{i=0}^{n} \lambda_{i} U_{k_{i}} \| \leq \sum_{i=1}^{n} |\lambda_{i}| \|V_{i} - U_{k_{i}} \| \leq \sum_{i=1}^{n} |\lambda_{i}| \cdot \epsilon / 2^{i}$$

$$\leq 2 \epsilon \sup_{i=1}^{n} |\lambda_{i}| \leq 2 \epsilon \left(\sum_{i=1}^{n} |\lambda_{i}|^{p}\right)^{\frac{1}{p}} \leq 2 K \epsilon \|\sum_{i=0}^{n} \lambda_{i} U_{k_{i}}\|$$

Si 2 K ϵ < 1 , cette inégalité montre que l'espace engendré par les V_i est isomorphe à celui qui est engendré par les U_{k_i} . C.Q.F.D.

On montre alors que (C') \Rightarrow (C): soit E un sous-espace réflexif de dimension infinie de L¹ (Ω , \mathcal{Q} , P); E contient donc une suite (X_n) $_n \in \mathbb{N}$, telle que $\|X_n\| = 1$, qui ne possède aucune sous-suite convergente. Soit \mathcal{B} un ultrafiltre non trivial sur \mathbb{N} et (Y_k) $_k \in \mathbb{N}$ la suite échangeable obtenue à l'aide du théorème I.1 avec ces données; $Y_k \in \mathbb{E}^{\mathbb{N}/\mathcal{B}^1}$. Alors les Y_k sont distincts: si $Y_k = Y_k$ et $k \neq \ell$, alors $Y_1 = Y_2$ (d'après l'échangeabilité), soit $\|Y_1 - Y_2\| = 0$ et donc $\lim_{n \to \infty} \|Y_1 - X_n\| = 0$, ce qui donne une sous-suite convergente des (X_n) $_n \in \mathbb{N}$ contrainement à l'hypothèse. On pose alors $Z_k = Y_{2k+1} - Y_{2k}$; la suite Z_k est échangeable, symétrique et non nulle; d'après (C') l'espace qu'elle engendre contient un sous-espace isomorphe à ℓ^p , et d'après le lemme précédent, on peut supposer que la base de ce sous-espace est une suite U_k formée de paquets disjoints en les Z_k ; on a $U_k \in \mathbb{E}^{\mathbb{N}/\mathcal{B}^1}$, et la σ -algèbre de queue de la suite U_k est contenue dans celle de la suite Z_k , donc dans celle de la suite Z_k , et finalement dans Z_k d'après le théorème I.1. La condition 2 du théorème principal est donc vérifiée, et E contient donc un espace isomorphe à ℓ^p .

Bibliographique:

- [1] D. DACUNHA-CASTELLE Variables échangeables et espaces d'Orlicz Séminaire Maurey-Schwartz, 1974-75 Ecole Polytechnique, Paris.
- [2] D. DACUNHA-CASTELLE et J.L. KRIVINE Applications des ultraproduits aux espaces de Banach Studia Math. t. 41, 1972, p. 315-334
- [3] J.L. KRIVINE
 Sous-espaces de dimension finie des espaces de Banach réticulés
 (à paraître)
- [4] J. LINDENSTRAUSS et L. TZAFRIRI On Orlicz sequences spaces. I. Israël Journal of Math., vol. 10, nº 3, p. 379-390
- [5] J. NEVEU
 Bases mathématiques du calcul des probabilités
 Masson, Paris.
- [6] M. KADEC et A. PELCZYNSKI
 Bases, lacunary sequences and complemented subspaces in the spaces L^p
 Studia Math. 21 (1962), p. 161-176
- [7] D. DACUNHA-CASTELLE et J.L. KRIVINE Sur les sous-espaces de L¹. Comptes-rendus Acad. des Sciences, Paris, t. 280 (1975), p. 645-648.

