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Translation invariance,- compact semigroupS and injective coalgebras 

by Andrew TONGE 

L I absence d' une notion satisfaisante du dual d' un semigroupe compact S 

empêche une caractérisation concrète et simple des sous-espaces fermés de C(S) 

invariants par translation. Dans cet article nous développons une théorie abstraite de 

tels espaces (satisfaisants à une version faible de la propriété d'approximation de Banach) 

en termes de "coalgèbres injectives", Nous donnons une caractérisation c;le leurs espaces 

duaux comme les algèbres de Banach dont les boules unitées munies de la topologie 

faible étoile sont des semigroupes compacts. On identüie les algèbres de Hopf injectives 

aux espaces C(G), où G est un groupe compact. 

The lack of a satisfactory notion of the dual of a compact semigroup S precludes 

a simple concrete characterisation of the closed translation invariant subspaces of C(S). 

In this article, we develop an abstract theory of ~uch spaces (satisfying a weak version 

of the Banach approximation property) in terms of "injective coalgebras". \Ve characterise 

their dual spaces as those Banach algebras whose closed unit balls are compact semi­

groups under the weak star topology. Injective Hopf algebras are shown to be the spaces 

C(G), G a compact group. 



2. 

1 . INTRODUCTION. 

Let G be a compact abelian group and let r be its dual. Then all closed 

translation invariant subspaces of C(G), the Banach space of all continuous (complex 

valued) functions on G, un der the uniform norm, have the form 

(*) 

for some A s r. Conversely, ail such spaces are translation invariant. Using the 

representation theory for compact groups, one may extend this result to the non-abelian 

case, but there is no analogous characterisation of the closed translation invariant 

subs paces of C(S )1 S a compact semigroup (with jointly continuous multiplication). 

This is essentially because there is in general an insufficient supply of semicharacters . 

As a simple example, consider S = [o, 1 ] with the usual topology and with multiplication 

s.t = max(s,t). 

This compact semigroup has no non-trivial semicharacters. Thus 

{ f€C(S) : f(s) = 0 if s ~ d} can have no interpretation like ( *). It is, nevertheless, 

a closed translation invariant subspace of C(S). 

Although a concrete characterisation of the closed translation invariant subspaces 

of C(S), S a compact semigroup, appears elusive, we are able to give an abstract 

characterisation in terms of "injective coalgebras" (defined in i 2) provided that we 

assume a weak version of the Banach approximation property. 

The Banach spa.cfis said to have the Banach approximation property (BAP for 

short) if, in the topology of compact convergence, the identity operator on B is a limit 

of finite rank bounded linear operators on B. We shall work with an alternative formu-



lation, due to Grothendieck, which uses the language of tensor products. 

Suppose that X and Y are Banach spaces, and write (X') 
1 
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for the 

V 

closed unit ball of the dual X' of X, etc. . . The injective tensor product X® Y 

is defined to be the completion of X ® Y under the following norm : 

IITllx@y=sup{kr, x'®y 1 )l :x' E:(X1 )1 , y 1 E:(Y1
) 1} if T E:X® Y. 

® is the smallest of Grothendieck' s natural ® -norms GJ . 
Let L(X' , Y) denote the usual Banach space of bounded linear mappings 

X' -+Y. We shall say that u E: L(X', Y) is weakly continuous if it is continuous from 

(X' ,a(X' ,X)) to (Y, a(Y,Y')). Write FW(X' ,Y) for the 

uniform closure of the weakly continuous elements of L(X', Y) 

of finite rank ; write KW(X', Y) for the closed subsoace of L(X'. Y) consisting of 

the compact weakly continuous mappings . 

V 

Now X® Y may be (and will be) identified naturally with FW(X', Y) s. 

KW(X' ,Y). 

CRITERION ( Grothendieck [2] ) . The Banach space B as the BAP iff 

V 

KW(X' , B) = X ® B for every Banach space X. 

We shall use a (probably) weaker condition. 

V 

DEFINITION. The Banach space B has the bap iff KW(B' ,B) = B®B. 

The classical Banach spaces have the BAP. However, Enflo constructed a Banach 

space for which the BAP fails (see [1] for a simplified version) and from this we can 

deduce that there are Banach spaces which do not even have the bap. For, let B be 

a Banach space which does not have the BAP. Then there is a Banach space X for 
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which KW(X' ,B) ~ FW(X 1 ,B). We claim that A= X EB B (the e2 direct sum) 

does not have the bap. If u E: KW(X' ,B)\FW(X' ,B), define U: X'EBB' +X 9B by 

U(x'+b') = u(x') Vx'E:X', Vb 1 E:B. Then it is easy to check that U E: KW(A' ,A). 

On the other hand U (/, FW(A' ,A), for if it were, we could find weakly continuous 

F E: L(A' , A) of fini te rank such that lim I IF -U Il = O. But, if II is the projection n n n-,oo 

A ➔ B and J is the natural inclusion X' +A' , then u = IIU J. Thus 

liml!IIF nJ-ul! = O, a contradiction. This establishes the claim. 
n~oo 

This article is based on part of my Ph. D. thesis at Cambridge University. The 

work was done whilst I was visiting McGill University, Montréal and the Faculté des 

Sciences, Orsay, supported by a grant from the S . R. C . I take this opportunity to thank 

my supervisor, Dr. S . W. Drury for suggesting the subject and for his constant help 

and encouragement 

2. INJECTIVE COALGEBRAS . 

Banach algebras may be defined in terms of topological tensor products and 

commuting diagrams . To do this, we interpret the multiplication on the Banach algebra 

A 

R as a linear contraction M: R ® R '7 R (where R ® R is the completed projective 

tensor product of R with itself GJ ) . It is now natural to consider what happens if 

the arrows in the diagrams are reversed. The richest theory is obtained if we also replace 

A 'V 

® by ® . The structures obtained in this way are called coalgebras The purely 

algebraic theory has been investigated extensively - a good source is [6] - and has 

applications in Galois theory and in the theory of Lie groups. Where our results are 

essentially algebraic, we shall be very brief. 



5. 
V 

DEFINITION. Suppose .that C is a Banach space and that N : C ~ C ® C is 

a linear contraction. Then the pair ( C, N) - or simply C - is said to be an injective 

coalgebra if the diagram commutes 

N V 
C-----+C®C 

N l l I®N 
V V V 

C®C---C®C®C. 
V 

N®I 
Here, and elsewhere, I denotes the identity endomorphism. N is called the 

comultiplication and the commutativity of the diagram is referred to as coassociativity. 

If there is a linear map e : C ➔ <C of norm 1 such that 

V 
C®C 

v{®1/ ÎN~v 
C®<C ---- C (C®C 

identify identify 

commutes, then ( C, N, e) - or simply C - is said to be a counital injective coalgebra 

e is called the coidentity. 

V V 

Let T : C ®C--+ C ®C be the linear isometry generated by T(c®d) = d®c 

V c, d € C. Henceforth, the letter T is reserved for reflection mappings of this form. 

C is said to be cocommutative if ToN = N. 

Many well known Banach spaces have a natural injective coalgebra structure. 

The most important is C(S), 
V 

S a compact semigroup. If we identify C(S) ®C(S) 

with C(S x S), the comultiplication is given by 

(Nf)(s,t)=f(st) Vs, tE:S 'v'fE:C(S). 

If S is abelian, then C(S) is cocommutative. If S has an identity, then evaluation 

at the identity provides a coidentity for C(S). 



Other examples are 

( 1 } L P ( T) ( 1 s p < oo). The comultiplication is generated by 

NX = X ® X n n n (n€Z). 

Here, and later, xn(t) == exp(int) (t€T). 

(2} eP ( 1 s p < oo). The comultiplication is generated by 

Ne ==e ®e n n n (n€Z) 

where the en are the usual co-ordinate vectors. 

(3) Any Banach space 1:1 may be given a trivial injective coalgebra structure. If 

b E:B, 
0 

define Nb == b ® b \/b€B. 
0 

6. 

Just as a Banach algebra may always be embedded in a unital Banach algebra, so 

we may adjoin a coidentity to an injective coalgebra. Suppose that (C,N) is an injective 

coalgebra. Define C 
1 

== C EB <C ( the e00 
direct sum). If 

N 
1 
( c+À ) :::: N c + c ® 1 + 1 ® C + À 1 ® 1 

and 

then ( C 
1 

, N 
1 

, e 
1 

} is a counital injective coalgebra . 

The foJlowing lemma will be important later. 

V 
injective coalgebras. Then C ® D is canonically a ( counital) injective coalgebra. 

Proof. The comultiplication is given by the composite 

V .., V V V V V 

C0 D--..,-- C®C0D0D --v-v-➔C0D®C0D 

Nc®No I0T®I 

where T is the reflection mapping. 

V V 

The coidentity is ec®e 0 (identifying <C ®Œ: with cr:). 
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A simple result of great significance is 

PROPOSITION 2. 2. Suppose that C is an injective coalgebra. Then C' has 

a canonical Banach algebra structure. C' is unital iff C is counital. C' is 

commutative iff C is cocommutative. 

Proof. If x,y € C' we define xy € C' by 

( C, xy) = ( N C , x0 y) \Jc€C. 

If C has coidentity e, then e is the identity of C . 

Unfortunately, the dual of a Banach algebra is not necessarily an injective 

coalgebra. However, a satisfactory substitute involving concepts of almost periodicity 

may be constructed. [7] . 

In this situation, it is natural to ask which elements of an injective coalgebra C 

are multiplicative linear functionals on C' . 

LEMMA 2 . 3. The a ( C ' , C) - continuous multiplicative linear functionals on C ' 

are precisely those elements a of C for which Na= a® a. We call such (non-zero) 

elements atoms . 

Let us consider some examples . 

(1) If S is a compact semigroup, then the injective coalgebra structure on C(S) 

induces the convolution multiplication on C(S)'= M(S). The atoms of C(S) are the 

semicharacters of S. 

(2) The injective coalgebra structure on LP(T) considered above induces convolution 

multiplication on Lp' (T) (i + i, = 1, 1 :s: p < oo). The atoms of 1 P(T) are the 

functions X (nE.:Z) n . 
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(3) The injective coalgebra structure on eP considered above indu ces pointwise 

ep' 1 1 multiplication on (- + - 1 = 1 , p p 
1 $; p < oo ). The atoms of eP are the coordi---

nate functions en (nE:Z). 

It is well known that if R is a Banach algebra, then R I is naturally a left 

or right normed R-module. 

PROPOSITION 2 .4. Suppose that C is an injective coalgebra. Then C is a 

left normed C 1 -module. 

Proof. Fix r E: C I and cE:C. Define r t>c E: C II by 

( r t> c , s) = ( c , rs) VsE:C'. 

We show that r t> c is a norm limit of elements of C, and so is itself in C. 

Fix then E > 0 and choose r! 
1 

c . © d. E: C © C with 
J= J J 

!IN c - ~~ 1 c. ®d.ll~c < E • Then 
J= J J \..,'<.Y 

llrt>c-r/
1 

(c.,r)ct.11 = 
J= J Jc11 

$; Ellrl 1 , and we deduce that r t> c E: C. The rest is immediate . 

Similarly, C is a right normed C 1 -module with action c <l r defined by. 

(c <l r, s) = (c, sr) VcE:C, 't/r,s E: C'. 

We are now in a position to prove our first main result, which gives a manageable 

way of discovering when a Banach algebra is the dual of an injective coalgebra. 

THEOREM 2. 5. Let R be a Banach algebra with unit ball X. Suppose that 

R has a predual C and consider X as a compact Hausdorff space under the a (R, C) 

topology. 



9. 

(i) If the Banach algebra structure on R is induced (as in 2, 2) by an injective 

coalgebra structure on C, then X is a compact semigroup. 

(ii) If C has the bap and if X is a compact semigroup, then C may be given 

an injective coalgebra structure which induces the Banach algebra structure on R. 

X will be unital, resp. abelian iff C is counital, resp. cocommutative . 

Proof. (i) X is clearly a semigroup. We must show that the multiplication is 

jointly a (R, C) continuous. Suppose that 

Fix E > 0 and c€C. Then 

X ?X a: and y f3 +y in (X,a(R,C)). 

(c,xcxyf3-xy) = (Nc,(xa:--x}8>(y,B-y)) + (xt>c, y
13

-y) + (c<:Jy, xcx-x). 

Now :;I: ex , B such that cx::2: ex => l<c~y, x -x>I < E/3 and 
0 0 0 CX 

f3 > f3 0 ==} 1 < X t> C ' y /3- y> 1 < E/3. Choosing ~= 1 cj ® dj € C ® C with 

l!Nc -1=l cj ® djllC ®C < E/24, we can find a:1 ::2: o:
0 

and .B 1 > $ 
0 

such that for 

a: ::2: a:. and ,B ::2: /3 1 we have 
i 1 

!(Ne, (x -x)® (y/3-y))I< E/6+~, !(c., x -x)(d., y/3-y)! 
ex J= 1 J a: J 

< E/3, 

whence 1 ( c , xa:y f3 - xy) 1 < E. Consequently xa:y /3 ~xy in (X , a (R,C)). 

(ii)Fix cE:C and r€R anddefine f(c,r)E:C" by (s,f(c,r))=(c,rs) 

Vs€ R. One may verify that f(c,r) lx is a(R,C)-continuous, whence f(c,r) € C. 

Now, allowing r to vary, we define a linear mapping (Ne) : C' ~ C by 

(Nc)(r) = f(c,r). It is easy to check that (Ne) is weakly continuous . Since C has 

V 

the bap, we can identify (Ne) with an element of C ® C if we can show it to be a compact 

mapping. This will follow if (N c) 1 X is continuous (R , a (R, C)) to ( C , I / . Il). 
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Thus, given E > 0, we must find a o (R, C) neighbourhood of O E: R - U, say -

such that s E: Un X ~ !!(Nc)(s)II < E. 

B y hypothesis, there is an absolutely convex a (R, C) neighbourhood V of 

0 E: R such that 

U, V € V n X ~ 1 ( C, UV) 1 < E/ 4 . 

As X is cr (R, C) compact there is a finite set { r 1 , ... , r N} c X such that 

N 
X ç U (V + r n). Now, in the procedure above, we might just as well have defined a 

n=1 

mapping (J,1 c) : C 1 + C by ( ( l,,1 c)(x), y) = ( c , yx) 'Vx, y E: R. The properties of 

( v1 c) will be similar to those of (Ne). Consider 

(1:::;n:::;N). 

Then U = V n ( n V n) is a cr (R, C) neighbourhood of o E: R. Choose 
n=1 

s €un X. Then 1 (c,sr >I < E/2 (1::; n::; N). Taldng rE:X, 3: i::; V::; N n 

such that r E: V + r v . so 1 (c,s(r-r ))! < E/2. 
V 

Adding, we obtain 1 ( (Nc)(s),r) < E, and since this holds t/r E: X we have 

l!(Nc)(s)I! < s, as required. 

V 

We now have a mapping N : C ~ C ® C ; c t? (Ne), which clearly defines an 

appropriate comultiplication. 

As illustrations, it can be shown that 

(1) The Banach algebra L 
00

(T) under pointwise multiplication is not the dual 

of an injective coalgebra. 

(2) If H~(T) = { fE:L \r): f(n) = o (n:::; O)} and 

H
00

(T) = {fE:L
00

(T): f(n) = 0 (n < o)}, then there is an injective coalgebra structure 

on L \T)/H~(T) which induces the Banach algebra structure on its dual H
00

(T) 
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given by pointwise multiplication. 

This stands in contrast with the situation for convolution multiplication on 

L
00

(T) and H
00

(T). 

Our next objective is the characterisation of injective coalgebras as closed 

translation invariant subspaces of C(S), S a compact semigroup. The precise result 

is 

THEOREM 2. 6. (i) An injective coalgebra is a closed translation invariant subspa-

ce of C(S), S some compact semigroup. 

(ii) If a closed translation invariant subspace of C(S ), S a compact semi-

group, has the bap, then it is an injective coalgebra under the comultiplication induced 

from C(S). 

One may add the usual statements about identities and commutativity. 

To see that a closed translation invariant subspace of C(S) need not have the 

bap, simply take an injective coalgebra which does not have the bap and apply 2 .6 (i). 

To prove 2. 6, it is natural to talk about subcoalgebras and coideals . This raises 

some unexpected difficulties which we discuss below. Working on the principle that 

arrows are created to be reversed, the following definition is very natural. 

DEFINITION. Let J be a closed subspace of the injective coalgebra C 

(i) J is a natural left (right) coideal if 

y V 

N:J~C®J (J-,. J ® C). 

V 

(ii) J is a natural coideal if N: J ➔ J® C + C ® J (closure in C ® C), and 

(when C is counital) e(J) = O. 
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V 

(iii) J is a natural subcoalgebra if N : J -+-J ® J. 

On the other hand to justify the term "coideal" we must be able to construct 

quotients. More precisely, coideals should be kernels of structure preserving mappings. 

DEFINITION. Suppose that C and D are injective coalgebras and that 

cp : C ~ D is a linear contraction. Then cp is called a coalgebra contraction if the 

diagram below commutes 
N V C _____ _. C ® C 

~ l ! ~~ 
V 

D------D0D 
N 

If C and D are counital, we also demand that eOocp == ec. 

It is easy to verify that the composition and injective tensor product of hvo coalge-

bra contractions is again a coalgebra contraction. Using the fact that if cp : C + D is 

a coalgebra contraction, then 
t 

cp : D 1 -+-C 1 is an algebra contraction, one may show 

that if J == ker cp then J <1 J° c J (and, equivalently J° I> J ç_ J) where J° 

denotes the annihilator of J in C 1 • If C and D are counital, then ec (J) = 0. 

One may quickly verify 

PROPOSITION 2. 7. Suppose that J is a closed subspace of the injective 

coalgebra C . Then J 0 is a weak* closed subspace of 

(i) C' f> J c J~J 0 is a left ideal of C' 

(ii) J <I C' ç_ J {:=;> J 0 is a right ideal of C 1 

(li.· 1·) J ...., JO ç_ J .,.,__,_ JO . b l b f --... .....,.. 1s a su a ge ra o C'. 

If C is counital, we have 

C' 
' 

and 

(iii)' J <J J 0 ç_ J and e(J) == O <:=> J 0 is a unital subalgebra of C' . 
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With this motivation we make the following. 

DEFINITION. Let J be a closed subspace of the injective coalgebra C. 

(i) J is a left (right) coideal iff C' t> J ç J (J <1 C' c J). 

(ii) J is a subcoalgebra iff C I t> J c J and J <J C' c J. 

(iii) J is a coideal iff J <1 J 0 
ç J (and, if C is counital, e(J) = 0). 

Then, we see that the kernel of a coalgebra contraction is a coi de al, and that if 

J is a coideal of C and 1r : C -+C/J is the quotient map, then C/J has a unique 

injective coalgebra structure with respect to which 1T is a coalgebra contraction. 

Also, the intersection of subcoalgebras is again a subcoalgebra. Fortunately, the 

"natural" and the "correct" definitions almost coihcide. If we use results like 

LEMMA 2. 8. Suppose that B is a closed subspace of the Banach space A. 

V V V 

i) If B has the BAP, then (A 0 B) n (B 0 A) = A 0 A . 

V V V 

ii) If A has the BAP, then (A 0 B) n (B 0 A)= A 0 A iff B has the bap 

it is not difficult to prove 

PROPOSITION 2. 9. Suppose that J is a closed subspace of the injective 

coalgebra C. 

(i) If J is a natural left coideal, then J is a left coideal. 

If either C or J has the BAP and if J is a left coideal, then J 

is a natural left coideal. 

(ii) If J is a natural subcoalgebra, the, J is a subcoalgebra. If J has 

the BAP (or if C has the BAP and J has the bap) and if J is a subcoalgebra, 
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then J is a natural subcoè}lgebra. 

(iii) If J is a natural coideal, then J is a coideal. If C has the BAP, 

if J is a complemented subspace of C and if J is a coideal, then J is a natural 

coideal. 

Before giving the proof of theorem 2. 6, we isolate 

LEMMA 2. 10. An injective coalgebra C may be realised isometrically as a 

natural subcoalgebra of C(S), S some compact semigroup. S has an identity iff 

C is counital, and S is abelian iff C is cocommutative. 

Proof. We take S to be the unit ball of C 1 • By 2. 5, S is a compact 

semigroup. Define 

<I> : C---? C(S) <I>(c)(s) = (c,s) Ve E: C Vs E: S. 

<I> is a linear isometry. It suffices to show that <I> is a coalgebra contraction. Writing 

n for the comultiplication of C(S), we have (n<I>(c))(s,t) = <I>(c)(st) = (c,st) = 

(Ne , s®t) Ve E: c Vs, t E: S . The result follows immediately. 

COROLLARY. The atoms of C are realised as semicharacters of S. 

Proof of theorem 2. 6 . 

(i) Keep the notations of 2 . 10, fix c E: C and s E: S and define 

(<I>(c)) E: C(S) by 
s 

s 
(<I>(c))(t) = <I>(c)(st) Vt E: S. 

Then 
5

(<I>(c))(t) = < c , st) = < s t> c , t) = <I>(s l> c)(t). Thus 
5

(<I>(c)) = <I>(s l> c) 

and so <I>( C) is invariant un der left translations. Right translation invariance is 

treated similarly. 



(ii) Let C be the space in question and take f€C and µ €C 0 
ç M(S). 

If y€S, write f for the right translate of y 

invariance, if V € M(S), we have 

f by y. Then, by translation 

(Nf, µ© v) = J J f(xy) dµ(x) dv(y) = J (f , µ) dv(y) = O. 
s s s y 

15. 

Consequently ( f <J v , µ ) = O and so, by the bipolar theorem, f <::J v € C. Thus 

C <1 M(S) c C, i. e. C is a right coideal of C(S). Similarly, it is a left coideal. 

Since C(S) has the BAP, we may use 2. 9 (ii) to get the desired result. 

3. INJECTIVE BIALGEBRAS. 

In this section we investigate what happens when we attempt to combine algebra 

and coalgebra structures on a Banach space. It is sensible to attempt this combination in 

a coherent way, and this leads us to abandon the full generality of Banach algebras. The 

appropriate restriction is given below. 

DEFINITION. The Banach algebra R is called an injective algebra if the 

V 
multiplication is a linear contraction M : R © R + R. 

Versions of injective algebras were studied by Varopoulos [s, 9 J. Kaijser GJ 

has proved the very useful 

THEOREM. A unital injective algebra R is a uniform algebra, i. e. a closed 

subalgebra of C(X), X some compact Hausdorff space. In particular R is commuta-

tive. 

V 

One sees at once that if R is an injective algebra, then so is R © R. 

The multiplication is the composite 
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V V V 

(R ® R) ® (R ® R) 
V V Y V 

V V R®R®R®R--...,,-~R®R. 
I®T®I M®M 

If we interpret an identity for R as a linear map u : ([ + R of norm 1 , the following 

result is immediate. 

LEMMA 3. 1. Suppose that H is a Banach space which is an injective coalgebra 

with comultiplication N (and coidentity e) and an injective algebra with multiplication 

M ( and identity u). Then M ( and u) are coalgebraf:ontractions iff N ( and e) 

are algebra contractions, i. e. norm-decreasing multiplicative linear maps. 

This prompts 

DEFINITION. A triple (H,M,N) satisfying the equivalent conditions of lemma 

3. 1 is called an injective bialgebra. A quintuple (H, M, N, u, e) satisfying the se condi-

tions is called a unital counital injective bialgebra. 

As examples we have 

( 1) C(S), S a compact semigroup, under the usual comultiplication and 

pointwise multiplication. 

(2) C( G), G a compact abelian group, under convolution multiplication and 

the usual comultiplication. Françoise Piquard has pointed out that convolution makes 

C( G) an injective algebra. 

(3) e 1 under pointwise multiplication and the usual comultiplication. 

For a proof that e,1 is an injective algebra under pointwise multiplication, 

see [s]. 

We shall show that the maximal ideal space of a unital counital injective bialgebra 

is a compact semigroup. In fact, this is a spectal case of a more general result. First 
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we generalise 2 . 2 . 

PROPOSITION 3. 2. Suppose that C is an injective coalgebra and that R 

is an injective algebra. Then we may define a multiplication, * , on L(C ,R) under 

which it is a Banach algebra. If C is cocommutative and R is commutative, then 

L( C, R), * is commutative . If C is counital ( with coidentity e) and R is unit al 

(with identity u), then L(C,R),* is unital with identity u o e. 

Proof. If cp , l/J € L( C, R), it is easy to see that cp * l/J may be appropriately 

defined as the composite 

V V 

C 
N 

C© C --v~ 
cp©l/J 

R© R---- R. 
M 

The example C = C(S), S a compact semigroup and R = ([ justifies the notation *. 

Suppose now that H is an injective bialgebra, that C is a cocommutative 

injective coalgebra and that R is a commutative injective algebra. Write 

C0ALG
1
(C,H) for the space of coalgebra contractions C +H and ALG 1(H,R) for 

the algebra contractions H + R. If we use the fact that the comultiplication 

V 

N : C + C © C is a coalgebra contraction (since C is cocommutative) and that the 

V 

multiplication M : R © R +R is an algebra contraction (since R is commutative), 

it is straightforward to verify 

PROPOSITION 3.3. (i) C0ALG,{C,H) is a closed topological subsemigroup of 

(L( C , H), *) un der the topology of pointwise convergence . It is abelian if H is ; it is 

unital if H is unital and C is counital. 

(ii) ALG 1(H,R) is a closed topological subsemigroup of (L(H,R),*) under 
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the topology of pointwise convergence. It is abelian if H is cocommutative ; it is unital 

if H is counital and R is unital. 

The special case R == <C yields 

COROLl.ARY. If H is a unital counital injective bialgebra, then its maximal 

ideal space filH is a compact unital semigroup for the weak * topology. lTl, H is abelian 

if H is cocommutative. 

Now, we may specialise 2. 6 to obtain 

THEOREM 3. 4. (i) A unital counital injective bialgebra is a closed translation 

invariant subalgebra of C(S), S some compact unital semigroup. 

(ii) If a closed translation invariant subalgebra of C(S) S a compact unital 

semigroup, has the bap, then it is a unital counital injective bialgebra under the multipli­

cation and comultiplication induced from C(S). 

Proof. Proceed as for 2 . 6, replacing the dual unit ball by the maximal ideal space 

wherever necessary. 

4. INJECTIVE HOPF ALGEBRAS . 

We show that the appropriate generalisation of the algebraically useful notion of 

a Hopf algebra gives nothing more than the spaces C( G), G a compact group. 

DEFINITION. Let H be a unital counital injective bialgebra. A linear 

contraction S in L(H, H) is said to be an antipode if it is inverse to the identity 

endomorphism, I, under *· (Note that the identity of L(H,H) is u o e and not 
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the identity endomorphism). A unital counital injective bialgebra with antipode is called 

an injective Hopf algebra. 

EXAMPLE 4. 1. If G is a compact group, then C(G) under the usual 

operations is an injective Hopf algebra. The antipode is given by S : C(G)-+ C(G) ; 

Proof. S is well-defined since inversion is a continuous operation. 

V V 

(I * S)(cp)(g) = (M(I ® S)N)(cp)(g) = ( (I ® S) Ncp , bg ® bg) = (Ncp, bg®b -1) = 
g 

< cp , b g * b _ 1 ) = ( <P , b 1 ) = cp ( 1) 'ïJ cp € C( G) V g € G. Here b g denotes Dirac 
g 

measure at G, and 1 is the identity of G. 

The crucial thing about injective Hopf algebras is that the maximal ideal space 

is not merely a compact semigroup, but is in fact a compact group. This is a consequence 

of the ( essentially algebraic) observation that the antipode is a sort of involution. 

LEMMA 4. 2. The antipode S of an injective Hopf algebra H is an algebra 

contraction. 

V V 
Proof. We must show that M o (S ® S) = S o M : H ® H + H and that 

Sou=u:IC-+H. 

The second equality is easy. The first follows from the fact that both mappings 

V 

are inverse to M in L(H ® H , H),*. 

COROLLARY. S o S = I, i.e. S be haves like an involution. 

Proof. By the definition of S, it is enough to show that 
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V V V 

S * (S o S) == u o e in L(H,H),*. But S * (SoS) == M(S ® S)(I ® S)N == SM(I ® S)N 

by 4. 2. The result now follows from the definition of S . 

We may now improve on 3. 3 for the special case of injective Hopf algebras. 

PROPOSITION 4. 3 . Let H be an injective Hopf algebra and let R be a unital 

injective algebra. Then ALG 
1 
(H, R) is a topological group un der the multiplication * 

of L(H,R). 

Proof. By 3. 3, we need only produce inverses. We show that if S is the anti-

pode of H, then the inverse of w € ALG,(H,R) is w o S. 

If f € L(H ,H), write 1/'>(f) == W o f € L(H ,R). Then 1/J : L(H ,H) +L(H, R) 

is an algebra contraction (by the definition of '¾') for the multiplications *. Now we 

know that S == C 1 in L(H,H),*. Thus 1/'>(S) = l/'>(If1
, i.e. -1 'V o S = W . The 

continuity of the inverse operation is clear. 

COROLLARY. The maximal ideal space of a ( cocommutative) injective Hopf 

algebra is a compact (abelian) group in the weak * topology. 

Finally we arrive at the main result of this section. 

THEOREM 4 .4. Every injective Hopf algebra H may be identified (as an injective 

Hopf algebra) with the space of continuous functions on its maximal ideal space G. 

Proof. We suppose for simplicity that G is abelian, and write G for the 

character group of G. To treat the non abelian case, one has simply to translate the 

proof below into the language of the representation theory for compact groups [4] . 
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As we have seen in 3. 4, H may be considered as a closed translation invariant 

subalgebra of C(G). Consequently, it has the form 

CX(G) = {rE:C(G) : f is supported on X s. G}. 

We shall use the Stone-Weierstrass theorem to show that in fact H = C(G). Firstly, 

H clearly contains the constant functions. Secondly, the fact that G is the maximal 

ideal space of H implies at once that the functions in H separate the points of G. 

It remains to show that H is closed under complex conjugation. 

Using 4. 3, one may quickly verify that the antipode of H coihcides with the 

restriction to H of the antipode of C(G). Now x € X c H =9 sx € H. But 

1 -
S X (g) = X (g - } = X (g) 'v g € G. Since every function in CX(G) may be uniformly 

approximated by finite linear combinations of elements of X, we have proved that 

H = CX(G) is closed under complex conjugation. 
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