UNIVERSITÉ PARIS XI

U.E.R. MATHÉMATIQUE 91405 ORSAY FRANCE

nº 143

Sur certaines martingales de B. Mandelbrot

J.-P. Kahane J. Peyrière

Analyse Harmonique d'Orsay 1975

SUR CERTAINES MARTINGALES DE BENOIT MANDELBROT

par J.-P. Kahane et J. Peyrière

En hommage au Professeur Norman Levinson

En analysant de façon critique le modèle aléatoire de turbulence de A. M. Yaglom, Benoit Mandelbrot a introduit son propre modèle, qu'il appelle "canonique" ($\begin{bmatrix}1\end{bmatrix}$, $\begin{bmatrix}2\end{bmatrix}$, [3]). On part d'un pavé, qu'on divise successivement en $c, c^2, \ldots c^n, \ldots$ pavés semblables ; chaque pavé de la n-ième étape est divisé en c pavés égaux de la (n+1)ième étape. On donne une suite de variables aléatoires indépendantes $\,W_{
m P}^{}$, équidistribuées, positives, d'espérance 1 et indexés par les pavés P qu'on vient de considérer. Partant de la mesure de Lebesgue μ_{o} sur le pavé initial, on construit par étapes la suite des mesures μ_n : μ_n a une densité constante sur chaque pavé P de la n-ième étape, et la densité de $\,\mu_{\,\mathrm{n}}\,$ sur P est le produit par $\,\mathrm{W}_{\mathrm{P}}\,$ de la densité de $\,\mu_{\,\mathrm{n-1}}\,$ sur P. La suite des mesures $\,\mu_{\,n}\,$ est une martingale vectorielle, qui converge vers une mesure aléatoire μ . Dans $\begin{bmatrix} 2 \end{bmatrix}$ et $\begin{bmatrix} 3 \end{bmatrix}$ sont indiqués des résultats et des problèmes concernant la mesure μ (conditions de non dégénérescence ; étude des moments de $\|\mu\|$; étude des boréliens portant μ et de leur dimension de Hausdorff). Certaines conjectures de B. Mandelbrot ont été résolues par Jacques Peyrière [4] ou par J.-P. Kahane [5]. On se propose ici d'exposer ces résultats sous une forme améliorée. Les théorèmes 1, 2, 3 ci-dessous sont dus à J.-P. Kahane, le théorème 4 à J. Peyrière.

Il sera commode de prendre pour pavé initial l'intervalle [0,1[. Les "pavés" P sont alors les intervalles c-adiques

$$I(j_1, j_2, ... j_n) = \begin{bmatrix} n \\ \sum_{i=1}^{n} j_k c^{-k}, \sum_{i=1}^{n} j_k c^{-k} + c^{-n} \end{bmatrix}$$

$$(n = 1, 2, ...; j_k = 0, 1, ... c-1).$$

On donne un entier $c \geq 2$, et une variable aléatoire positive d'espérance 1. On désigne par $W(j_1, j_2, \ldots j_n)$ une suite de v. a. indépendantes, de même distribution que W, et par μ_n la mesure, définie sur $\left[0,1\right[$, dont la densité est $W(j_1)W(j_1j_2)\ldots W(j_1,j_2,\ldots j_n)$ sur l'intervalle $I(j_1,j_2,\ldots j_n)$.

Posons

(1)
$$Y_{n} = \|\mu_{n}\| = c^{-n} \sum_{j_{1}, j_{2}, \dots, j_{n}} W(j_{1}) W(j_{1}, j_{2}) \dots W(j_{1}, j_{2}, \dots, j_{n}).$$

C'est une martingale positive, et $E(Y_n) = 1$. Elle converge p. s. vers une v. a. Y_{∞} telle que $E(Y_{\infty}) \leq 1$. De même, pour tout intervalle c-adique I, $\mu_n(I)$ est une martingale d'espérance |I| qui converge p. s. vers une limite $\mu(I)$. Donc μ_n tend p. s. vers une mesure μ de masse totale Y_{∞} , au sens de la topologie faible.

Il est commode d'écrire (1) sous la forme

(2)
$$Y_{n} = c^{-1} \sum_{j=0}^{c-1} W(j) Y_{n-1}(j).$$

Les v. a. W(j) et $Y_{n-1}(j)$ sont mutuellement indépendantes, et les $Y_{n-1}(j)$ ont la même distribution que Y_{n-1} .

Considérons enfin l'équation fonctionnelle

(3)
$$Z = c^{-1} \sum_{j=0}^{c-1} W_j Z_j$$

où les v.a. $\mathbf{W}_{\mathbf{j}}$ et $\mathbf{Z}_{\mathbf{j}}$ sont mutuellement indépendantes, les $\mathbf{W}_{\mathbf{j}}$ ayant même

distribution que W et les Z_j même distribution que Z. L'inconnue dans (3) est la distribution de Z; par abus de langage, on dira que Z est solution de (3). Il est clair que Y_∞ est solution de (3). Il peut y avoir d'autres solutions ; par exemple, dans le cas $W \equiv 1$, une variable de Cauchy est solution de (3), et elle ne peut pas être du type Y_∞ puisqu'elle n'est ni positive, ni sommable.

Il sera commode d'associer à W la fonction convexe

(4)
$$\varphi(h) = \log_{C} E(W^{h}) - (h-1) (où \log_{C} x = \frac{\log x}{\log c}),$$

qui est toujours définie pour $0 \le h \le 1$, et peut être définie pour des valeurs h > 1. La fonction φ s'annule au point 1 et éventuellement en un autre point, α_0 . La dérivée à gauche de φ au point 1 est

$$\varphi^{\scriptscriptstyle \dag}(1\text{--}0) = \mathrm{E}(\mathrm{W}\,\log_{\mathbf{C}}\,\mathrm{W}) - 1 = -\mathrm{D}\,.$$

On verra le rôle joué par $\,$ D dans la non-dégénérescence de $\,\mu$, et dans la dimension des boréliens portant $\,\mu$. On verra aussi le rôle de $\,\alpha_{_{\hbox{\scriptsize O}}}$ en relation avec les moments de $\,Y_{_{\hbox{\scriptsize C}}}$.

Les illustrations les plus frappantes sont 1) le cas où $W=e^{\tau}$ $\frac{\tau^2}{2}$, ξ étant une variable normale (c'est l'origine de la théorie) – alors φ est un polynôme du second degré – 2) le cas où W prend seulement deux valeurs, dont la valeur 0 – alors φ est une fonction linéaire, et $c^n Y_n$ peut s'interpréter comme la population au temps n dans un processus de naissance et de mort (chaque individu donnant naissance à c rejetons, ayant pour chance de survie $P(W \neq 0)$) –.

Toutes ces notions ont été introduites par B. Mandelbrot dans [2] et [3].

Nous allons établir les résultats suivants.

THEOREME 1 (condition de non dégénérescence). Les assertions suivantes sont équivalentes :

- α) $E(Y_{\infty}) = 1$
 - β) $E(Y_{\infty}) > 0$
 - γ) (3) a une solution Z telle que E(Z) = 1
 - δ) E(W log W) < log c.

THEOREME 2 (condition d'existence des moments). Soit h > 1. Supposons $P(W=1) \neq 1. \quad \underline{On \ a} \quad E(Y_{\infty}^h) < \infty \quad \underline{si \ et \ seulement \ si} \quad E(W^h) < c^{h-1}.$

THEOREME 3 (cas où Y_{∞} a des moments de tous les ordres). 1) Les assertions suivantes sont équivalentes : α_1) $0 < E(Y_{\infty}^h) < \infty$ pour tout h > 1 β_1) $\|W\|_{\infty} = \text{ess.sup } W \le c$ et $P(W = c) < \frac{1}{c}$ (inégalité stricte). 2) Si β_1) a lieu, on a $\lim_{h \to \infty} \frac{\log E(Y_{\infty}^h)}{h \log h} = \log_c \|W\|_{\infty}.$

THEOREME 4 (étude de la mesure μ). On suppose $E(Z \log Z) < \infty$. Pour chaque $x \in [0,1[$, on désigne par $I_n(x)$ l'intervalle c-adique d'ordre n contenant x; la mesure de Lebesgue est $m(I_n(x)) = c^{-n}$. On a p. s.

(6)
$$\lim_{n\to\infty} \frac{\log \mu(I_n(x))}{\log m(I_n(x))} = D = 1 - E(W \log_C W) \quad \mu - \underline{\text{presque partout}}.$$

COROLLAIRE. La mesure μ est p. s. portée par un borélien de dimension D, tandis que tout borélien de dimension < D est de μ -mesure nulle.

Avant de donner les démonstrations, voici quelques remarques.

La condition δ) du théorème 1 s'écrit D > 0. Dans [5], on avait seulement établi que

$$D > 0 \Longrightarrow \emptyset \Longrightarrow \beta) \Longrightarrow \gamma) \Longrightarrow D \ge 0.$$

Le rôle de D dans l'étude de la dégénérescence avait été deviné dans [2] (section 10).

Le théorème 2 répond à une conjecture de $\left[2\right]$. Il est établi dans $\left[5\right]$. La démonstration qu'on va donner est plus simple. Remarquons que la condition $E(W^h) < c^{h-1}$ s'écrit aussi $\varphi(h) < 0$. Si φ s'annule en $\alpha_o > 1$, c'est aussi $h < \alpha_o$.

Le théorème 3 constitue un commentaire critique de la proposition 10 de $\begin{bmatrix} 2 \end{bmatrix}$. Il correspond à $\alpha_0 = \infty$. La démonstration donnera des variantes de (5).

Le corollaire du théorème 4 répond à une conjecture de $\begin{bmatrix} 2 \end{bmatrix}$. Il améliore $\begin{bmatrix} 4 \end{bmatrix}$.

Démonstration du théorème 1.

Visiblement $\alpha)\Longrightarrow \beta)\Longrightarrow \gamma$). Supposons γ), et soit Z une solution de (3) telle que E(Z)=1. Il existe une suite de v. a. indépendantes $W(j_1,\,j_2,\ldots\,j_n)$ $n=1,\,2,\,\ldots\,;\,j_k=0,\,1,\ldots\,c-1)$, ayant même distribution que W, et une suite de v. a. $Z(j_1,\,j_2,\ldots\,j_n)$ ayant même distribution que Z et indépendantes des $W(i_1,\,i_2,\ldots\,i_k)$ lorsque $k\le n$, telles que pour tout n

(7)
$$Z = c^{-n} \sum_{j_1, \dots, j_n} W(j_1) W(j_1, j_2) \dots W(j_1, j_2 \dots j_n) Z(j_1, j_2 \dots j_n).$$

En effet, (7) se réduit à (3) pour n=1 (W(j) = W $_j$ et $Z(j)=Z_j$), et l'équation (3), appliquée à $Z(j_1,j_2,\ldots j_n)$ s'écrit

$$Z(j_1, j_2...j_n) = c^{-1} \sum_{j_{n+1}} W(j_1, j_2, ..., j_{n+1}) Z(j_1, j_2, ..., j_n, j_{n+1})$$

avec les conditions requises pour les v.a. du second membre. L'espérance conditionnelle de Z par rapport à la tribu engendrée par les $W(j_1,\ldots j_k)$ $(k \le n)$ est Y_n (défini par (1)). Il s'ensuit que la martingale Y_n est uniformément intégrable et que $Z = Y_\infty$ p.s. (voir p. ex. [6] V 8). Donc γ) $\Longrightarrow \alpha$), et de plus γ) entraîne $Z \ge 0$ p.s.

Supposons encore γ), et en conséquence $Z \ge 0$. Pour 0 < h < 1 la fonction x^h est sous-additive, donc (3) donne

(8)
$$\mathrm{E}(\mathbf{c}^h \, \mathbf{Z}^h) \leq \sum_{j=0}^{c-1} \, \mathrm{E}((\mathbf{W}_j \, \mathbf{Z}_j)^h) = \mathbf{c} \, \, \, \mathrm{E}(\mathbf{W}^h) \, \, \mathrm{E}(\mathbf{Z}^h)$$

avec $0 < E(Z^h) \le 1$. La fonction $\varphi(h)$ définie par (4) est donc positive sur $\left[0,1\right]$, ce qui entraîne $\varphi'(1-0) \le 0$, soit $D \ge 0$. Pour aller plus loin, on doit améliorer (8).

LEMME A.
$$(x+y)^h \le x^h + hy^h$$
 pour $x \ge y > 0$, $0 \le h \le 1$.

Preuve. y = 1, et la formule des accroissements finis.

LEMME B. Soit X une v.a. positive sommable, et X' une v.a. équidistribuée avec X et indépendante de X. Il existe un nombre $\epsilon_{\rm X}>0$ tel que

$$\mathrm{E}(\mathrm{X}^h \ \mathbf{1}_{\mathrm{X}^! \geq \mathrm{X}}) \geq \epsilon_{\mathrm{X}} \ \mathrm{E}(\mathrm{X}^h) \ \mathrm{pour} \ 0 \leq h \leq 1.$$

Preuve. Chacune des esparances écrites est une fonction continue de $\,h\,$ et strictement positive sur $\,\left[0,1\right].$

Comme la fonction x^h est sous-additive, on a à partir de (3)

$$c^h Z^h \le \sum_{j=0}^{c-1} W^h_j Z^h_j$$
 p.s.

D'après le lemme A,

$$c^{h}Z^{h} \le h W_{o}^{h} Z_{o}^{h} + \sum_{j=1}^{C-1} W_{j}^{h} Z_{j}^{h}$$
 si $W_{1}Z_{1} \ge W_{o}Z_{o}$,

donc

$$E(c^{h}Z^{h}) = \sum_{j=0}^{c-1} E(W_{j}^{h} Z_{j}^{h}) - (1-h) E(W_{o}^{h} Z_{o}^{h} 1_{W_{1}Z_{1} \ge W_{o}Z_{o}}),$$

d'où, en utilisant le lemme B,

(9)
$$E(c^h Z^h) \le c E(W^h) E(Z^h) - (1-h) \varepsilon_{WZ} E(W^h) E(Z^h).$$

(9) est l'amélioration souhaitée de (8). En divisant par $\mathrm{E}(\mathrm{Z}^h)$ et en prenant les logarithmes, on a

$$\varphi(h) + \log_{C}(1 - \frac{(1-h)\varepsilon}{c}) \ge 0 \quad \text{sur} \quad [0,1] \quad (\varepsilon = \varepsilon_{WZ})$$

d'où $\varphi'(1-0) + \frac{\varepsilon}{c \log c} \le 0$, donc D > 0.

On a montré $\alpha \Leftrightarrow \beta \Leftrightarrow \gamma \Rightarrow \delta$). On va terminer la démonstration en montrant que δ) entraîne β).

LEMME C.
$$(x+y)^h \ge x^h + y^h - 2(1-h)(xy)^{h/2}$$
 pour $x > 0$, $y > 0$, $h_0 < h < 1$.

Preuve. Posons $f(t)=e^{th}+e^{-th}-(e^t+e^{-t})^h$ et $C_h=\sup_t f(t)$. Il s'agit de montrer que $C_h\leq 2(1-h)$ quand $h\leq 1$ est assez voisin de 1. On vérifie que f(t) a un minimum local en t=0, tend vers 0 quand $t\to\infty$, et

$$f(t) = 2 \frac{e^{(1-h)t} - e^{-(1-h)t}}{e^t - e^{-t}}$$

aux points $t \neq 0$ où f'(t) = 0. Or la fonction

$$g(\varepsilon) = e^{\varepsilon t} - e^{-\varepsilon t} - \varepsilon(e^t - e^{-t})$$

est nulle pour $\varepsilon=0$ et sa dérivée est négative pour $\varepsilon<\frac{\sqrt{3}}{3}$ (on le vérifie sur son développement de Taylor); donc $g(\varepsilon)\leq 0$ pour $\varepsilon<\frac{\sqrt{3}}{3}$, et il en résulte que

 $f(t) \le 2(1-h)$ aux points t où f admet un maximum local, lorsque $0 \le 1-h \le \frac{\sqrt{3}}{3}$. Le lemme est établi.

En voici un corollaire: on a

(10)
$$(\sum_{1}^{C} x_{j})^{h} \ge \sum_{1}^{C} x_{j}^{h} - 2(1-h) \sum_{i \le j} (x_{i}x_{j})^{h/2}$$

pour $x_j > 0$ (j = 1, 2, ... c) et $h_0 < h < 1$. En effet, (10) s'obtient par induction à partir de

qui résulte du lemme C et de la sous-additivité de la fonction $x^{h/2}$.

Reprenons la formule (2), que nous écrivons provisoirement

(11)
$$Y = c^{-1} \sum_{j=0}^{c-1} W_{j} X_{j}$$

 $(\texttt{Y}, \texttt{W}_j, \texttt{X}_j \quad \text{\'etant\'ecrits pour} \quad \texttt{Y}_n, \ \texttt{W}(\texttt{j}), \quad \texttt{Y}_{n-1}(\texttt{j})). \quad \texttt{Supposons} \quad \texttt{h}_o < \texttt{h} < \texttt{1}.$

Appliquons le lemme C sous la forme (10) avec $x_{j+1} = W_j X_j$. On obtient

$$c^{h}Y^{h} \ge \sum_{j=0}^{c-1} W_{j}^{h} X_{j}^{h} - 2(1-h) \sum_{i \le j} W_{i}^{h/2} W_{j}^{h/2} X_{i}^{h/2} X_{j}^{h/2},$$

d'où, en prenant les espérances,

$$c^{h} E(Y^{h}) \ge c E(W^{h}) E(X^{h}) - c(c-1)(1-h) E^{2}(W^{h/2}) E^{2}(X^{h/2}).$$

En revenant aux notations initiales,

$$\mathrm{E}(\mathrm{Y}_{n}^{h}) \geq \, \mathrm{c}^{1-h} \, \, \mathrm{E}(\mathrm{W}^{h}) \, \, \mathrm{E}(\mathrm{Y}_{n-1}^{h}) \, - \, \mathrm{c}^{1-h}(\mathrm{c}_{-1})(1-h) \, \, \mathrm{E}^{2}(\mathrm{W}^{h/2}) \, \, \mathrm{E}^{2}(\mathrm{Y}_{n-1}^{h/2}).$$

Compte tenu de $E(Y_n^h) \le E(Y_{n-1}^h)$ (inégalité des surmartingales),

$$\mathrm{E}(\mathrm{Y}_{n}^{h})(1-\mathrm{c}^{1-h}\,\mathrm{E}(\mathrm{W}^{h})) \geq -\mathrm{c}^{1-h}(\mathrm{c}-1)(1-h)\,\,\mathrm{E}^{2}(\mathrm{W}^{h/2})\,\,\mathrm{E}^{2}(\mathrm{Y}_{n-1}^{h/2})$$

donc

$$E(Y_n^h)(c^{\varphi(h)} - 1) \le c^{1-h}(c-1)(1-h) E^2(Y_{n-1}^{h/2})$$

et, en faisant tendre h vers 1,

D log
$$c \le (c-1) E^2(Y_{n-1}^{1/2})$$
.

Or les v.a. $Y_n^{1/2}$ sont équiintégrables, puisque $E(Y_n) = 1$. Comme elles convergent p.s. vers Y_∞ , on a $E(Y_\infty^{1/2}) = \lim_{n \to \infty} E(Y_n^{1/2})$ (cf. p. ex. [6], II.21), donc $E(Y_\infty^{1/2}) \neq 0$. Cela entraîne β), ce qui termine la démonstration du théorème 1.

Démonstration du théorème 2.

Supposons d'abord que (3) ait une solution positive $\, Z \,$ telle que $\, E(Z^h) < \infty \,$, h donné > 1. Comme la fonction $\, x^h \,$ est suradditive, on a

$$c^{h} Z^{h} \ge \sum_{j=0}^{c-1} (W_{j} Z_{j})^{h}$$

et l'inégalité est stricte sur un évènement de probabilité strictement positive, sauf si $W \not\equiv 1$. Donc, à part ce cas,

$$c^h E(Z^h) > c E(W^h) E(Z^h),$$

soit $E(W^h) < c^{h-1}$.

Inversement, supposons $E(W^h) < c^{h-1}$, $c'est-\grave{a}-dire \ \phi(h) < 0$, et soit k l'entier tel que $k < h \le k+1$. Comme la fonction $x^{\frac{h}{k+1}}$ est sous-additive, on a, pour $x_j \ge 0$ $(j=1,\,2,\dots\,c)$,

$$(x_1+x_2+\ldots+x_c)^h \leq (x_1^{\frac{h}{k+1}}+\ldots+x_c^{\frac{h}{k+1}})^{k+1} = x_1^h+\ldots+x_c^h+\Sigma \ \gamma_{\alpha_1,\ldots\alpha_c}(x_1^{\alpha_1}\ldots x_c^{\alpha_c})^{\frac{h}{k+1}}$$
 dans la dernière somme, les exposants de x_j ne dépassent pas k , les coefficients

sont positifs, et $\Sigma \gamma_{\alpha_1, \dots \alpha_c} = c^{k+1} - c$.

Reprenant la formule (2) sous la forme (11), on obtient ici

$$\mathbf{c}^h \; \mathrm{E}(\mathbf{Y}^h) \leq \mathbf{c} \; \mathrm{E}(\mathbf{W}^h) \; \mathrm{E}(\mathbf{X}^h) + (\mathbf{c}^{k+1} - \mathbf{c}) \; \mathrm{E}(\mathbf{W}^k) \; \mathrm{E}(\mathbf{X}^k)$$

donc

$$\mathrm{E}(\mathrm{Y}_n^h) \leq \mathrm{c}^{1-h} \; \mathrm{E}(\mathrm{W}^h) \; \mathrm{E}(\mathrm{Y}_{n-1}^h) + \mathrm{c} \; \mathrm{E}(\mathrm{W}^k) \; \mathrm{E}(\mathrm{Y}_{n-1}^k)$$

et, compte tenu de l'inégalité $E(Y_n^h) \ge E(Y_{n-1}^h)$ (sous-martingale)

$$\mathrm{E}(\mathrm{Y}_n^h)(1{\text{-}}\mathrm{c}^{1-h}\;\mathrm{E}(\mathrm{W}^h)) \leq \mathrm{c}\;\mathrm{E}(\mathrm{W}^k)\;\mathrm{E}(\mathrm{Y}_\infty^k).$$

En faisant tendre n vers l'infini, on voit que

$$\mathrm{E}(\mathrm{Y}_{\infty}^{k})<\infty\Longrightarrow\mathrm{E}(\mathrm{Y}_{\infty}^{h})<\infty.$$

Cela établit le résultat cherché quand $1 \le h \le 2$. Supposons maintenant $h \ge 2$.

Comme l'hypothèse $\varphi(h) < 0$ entraîne $\varphi(\ell) < 0$ pour tout entier $\leq h$, on a aussi

$$E(Y_{\infty}^{\ell-1}) < \infty \Longrightarrow E(Y_{\infty}^{\ell}) < \infty$$

pour $\ell=2,\ldots$ k. Les implications écrites montrent que $E(Y_\infty^h)<\infty$. Cela termine la démonstration du théorème 2.

Démonstration du théorème 3.

Partie 1. D'après les théorèmes 1 et 2, α_1) équivaut à $E(W \log W) < \log c$ et $E(W^h) < c^{h-1}$ pour tout h > 0, ou $W \equiv 1$. Cela entraîne β_1). Inversement, si β_1) a lieu, la condition δ) du théorème 1 est satisfaite, donc $E(Y_\infty^h) > 0$. De plus $E(W^h) \le c^h$ soit $\varphi(h) \le 1$ pour tout h > 0. Comme $\varphi(1) = 0$ et que φ est convexe, cela entraîne $\varphi(h) < 0$ pour tout h > 0, c'est-à-dire $E(W^h) < c^{h-1}$, ou $\varphi \equiv 0$, c'est-à-dire $W \equiv 1$. Donc $E(Y_\infty^h) < \infty$ pour tout h > 0. Ainsi $\alpha_1 \iff \beta_1$).

Partie 2. β_1). Alors (théorème 1) $E(Y_\infty)=1$; d'autre part il existe un $\epsilon>0$ tel que $\phi(h)<\log_c(1-\epsilon)$ pour $h\geq 2$, soit

Considérons la formule (3), avec $Z=Y_{\infty}$, et soit h un entier ≥ 2 . On a

$$c^{h} Z^{h} = (\sum_{j=0}^{c-1} W_{j} Z_{j})^{h}$$

d'où

(13)
$$c^{h} E(Z^{h}) = c E(W^{h})E(Z^{h}) + \sum_{\substack{h_{1}+\ldots+h_{C}=h\\h_{j}\leq h-1}} \frac{h!}{h_{1}! \ldots h_{C}!} \prod_{j=1}^{C} E(W^{j}) \prod_{j=1}^{C} E(Z^{j}).$$

(13) avec (12) donne

donc

$$E(Z^h) \le \frac{1}{\varepsilon} \sum_{i \text{dem}} \frac{h!}{h_1! \dots h_C!} \prod E(Z^hj).$$

LEMME D. Pour tout $\alpha > 0$, on a

$$\Sigma h_1 + \dots + h_c = h (h_1! \dots h_c!)^{\alpha} = o(h!)^{\alpha}) \qquad (h \to \infty).$$

$$h_1 \le h - 1$$

Preuve immédiate pour c = 2, et de là par récurrence sur c.

Posons $(\alpha > 0 \text{ étant fixé})$ $A_h = \sup_{\ell < h} \left(\frac{E(Z^{\ell})}{(\ell!)^{1+\alpha}} \right)^{1/\ell}$; (14) donne

$$A_{h+1}^h \leq \sup \left(\frac{1}{\varepsilon} \frac{\Sigma(h_1! \dots h_c!)^{\alpha}}{(h!)^{\alpha}} A_h^h, A_h^h\right).$$

D'après le lemme D, la suite A, est bornée, donc

$$E(Z^h) \le A^h(h!)^{1+\alpha}$$
, $A = A(\alpha) < \infty$.

En conséquence

(15)
$$\frac{\overline{\lim}}{h \to \infty} \frac{\log E(Y_{\infty}^{h})}{h \log h} \le 1.$$

Supposons maintenant $\|W\|_{\infty} = \gamma < c$. (14) donne ici

$$E(Z^{h}) \leq \frac{1}{\varepsilon} \left(\frac{\gamma}{c}\right)^{h} \sum \frac{h!}{h_{1}! \dots h_{c}!} \prod E(Z^{h_{j}}).$$

En posant $B_h = \sup_{\ell < h} \; (\frac{E(Z^\ell)}{\ell!})^{1/\ell}$ et en observant que le nombre de termes dans la somme Σ ne dépasse pas h^C , on obtient

$$B_{h+1}^{h} \leq \sup(\frac{1}{\epsilon} (\frac{\gamma}{c})^{h} h^{c} B_{h}^{h}, B_{h}^{h})$$

donc la suite B_h est bornée. Il en résulte que $E(e^{tZ}) < \infty$ pour t > 0 assez petit. Posons $e^{\chi(t)} = E(e^{tZ})$. La formule (3) s'écrit

(16)
$$e^{\chi(ct)} = E^{c}(e^{\chi(Wt)}).$$

L'hypothèse $\left\| \mathbf{W} \right\|_{\infty} = \gamma < c$ entraîne $\chi(ct) \le c \, \chi(\gamma t)$, donc $\chi(\left(\frac{c}{\gamma}\right)^n) = \mathbf{O}(c^n)$ $(n \to \infty)$. Posant $\left(\frac{c}{\gamma}\right)^K = c$, on a

(17)
$$\chi(t) = O(t^{K}) \quad (t \to \infty).$$

C'est un exercice de vérifier que (17) équivaut à l'existence d'un réel positif B tel

que
$$E(Z^h) \leq B^h(h!)^{1-\frac{1}{K}}.$$

Or $1 - \frac{1}{K} = \log_C \gamma$. Donc on a

(18)
$$\frac{\overline{\lim}}{h \to \infty} \frac{\log E(Y^h)}{h \log h} \le \log_C \gamma.$$

Choisissons maintenant $1 < \gamma_1 < \left\| \mathbf{W} \right\|_{\infty}$ (le cas $\left\| \mathbf{W} \right\|_{\infty} = 1$ est évident). Il existe $\epsilon > 0$ tel que $\mathrm{E}(\mathbf{W}^h) \geq \epsilon \, \gamma_1^h$. Reprenons la formule (13). Comme

$$\sum_{\substack{h_1+\ldots h_c=h\\h_i\leq h-1}} \frac{h!}{h_1!\ldots h_c!} = c^h - c,$$

on a

$$E(Z^{h}) \ge \frac{c^{h} - c}{c^{h}} \inf \left[\prod_{j=1}^{C} E(W^{j}) E(Z^{h}^{j}) \right]$$

$$\ge \frac{1}{2} \varepsilon^{C} \gamma_{1}^{h} \inf \left[\prod_{j=1}^{C} E(Z^{h}^{j}) \right]$$

la borne inférieure étant prise sur tous les c-uples $(h_1, h_2, \dots h_c)$ tels que $h_1 + h_2 + \dots h_c = h \quad \text{et} \quad \sup_j h_j \leq h-1. \quad \text{Supposons} \quad h \quad \text{multiple de} \quad c. \quad \text{La borne}$ inférieure est alors $\text{E}^c(Z^{h/c})$. Donc

$$\frac{\log E(Z^{ch})}{ch} \ge \frac{\log E(Z^{h})}{h} + h \log \gamma_1 + O(\frac{1}{h})$$

par conséquent

(19)
$$\log E(Z^h) \ge \eta \ h \log h + O(h), \quad \eta = \log_C \gamma_1$$

d'où

(20)
$$\frac{\lim_{h\to\infty} \frac{\log E(Y_{\infty}^h)}{h \log h} \ge \log_C \gamma_1$$

(15), (18) et (20) donnent bien

$$\lim_{h\to\infty} \frac{\log E(Y_{\infty}^{h})}{h \log h} = \log_{C} \|W\|_{\infty}.$$

Cela achève la démonstration du théorème 3.

Remarquons que dans le cas $0 < P(W=c) < \frac{1}{c}$ on a $\gamma = c$ dans (19), et il en résulte que $E(e^{tZ}) = \infty$ pour t > 0 assez grand.

Démonstration du théorème 4.

Soit Ω l'espace sur lequel sont définies les variables aléatoires $W(j_1,\ldots,j_n)$. Considérons sur l'espace produit $\Omega \times \left[0,1\right[$ la probabilité Ω définie par

$$Q(A) = E(\int 1_A^{-1} d\mu).$$

Posons
$$X_n = \sum_{\substack{j_1, \dots, j_n \\ 1 \leq j \leq n}} W(j_1, \dots, j_n) \, \mathbf{1}_{I(j_1, \dots, j_n)}$$
. On a alors $\mu_n = \prod_{1 \leq j \leq n} X_n$ (avec un abus de notation évident).

Ecrivons $\mu=\mu_n \ \nu_n$, ici ν_n est une mesure dont la restriction à chaque intervalle de la $n^{\mbox{ième}}$ étape est définie de façon analogue à μ .

Observons que les variables $c^n \nu_n(I(j_1,\ldots,j_n))$ ont la même distribution que Y_∞ et que, pour n fixé, elles sont mutuellement indépendantes. En outre, les variables $\nu_n(I(j_1,\ldots,j_n))$ et $W(k_1,\ldots,k_p)$ sont indépendantes lorsque l'intervalle $I(k_1,\ldots,k_p)$ n'est pas strictement contenu dans l'intervalle $I(j_1,\ldots,j_n)$.

Il est commode de considérer la fonction aléatoire

$$T_n = \sum_{j_1, \dots, j_n} c^n \nu_n(I(j_1, \dots, j_n)) 1_{I(j_1, \dots, j_n)}$$

Si u est une fonction définie sur $\left[0,1\right[$, constante sur les intervalles de la $n^{\mbox{ième}}$ étape, on a

(21)
$$\int u \, d\mu = \int_0^1 u(x) \, \mu_n(x) \, T_n(x) \, dx.$$

Le théorème résulte des deux lemmes qui suivent.

LEMME E. Si $E(W \log_C W) < 1$, alors presque sûrement μ -presque partout $\frac{1}{n} \log \mu_n$ tend vers $E(W \log W)$ lorsque n tend vers $+\infty$.

Démonstration. On va montrer que l'on a

(22)
$$\sum_{n\geq 1} Q(\left\{X_n > e^{n-1}\right\}) < \infty$$

et que

(23) la série
$$\sum_{n\geq 1} \frac{1}{n} \left[\log \inf(X_n, e^{n-1}) - E(W \log \inf(W, e^{n-1})) \right]$$
 converge Q-p.s.

On aura alors Q-presque sûrement $X_n \le e^{n-1}$ à partir d'un certain rang et

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n}\log\inf(X_{j},e^{j-1})=\mathrm{E}(\mathrm{W}\log\mathrm{W}),$$

d'où le lemme.

Commençons par évaluer $Q(\{X_n > e^{n-1}\})$. On a

$$Q(\{X_n > e^{n-1}\}) = E(\int 1_{\{X_n > e^{n-1}\}} d\mu),$$

tenant compte de (21) et des propriétés d'indépendance des variables, on obtient

$$Q(\{X_n > e^{n-1}\}) = E \int_0^1 1_{\{X_n(x) > e^{n-1}\}} \mu_n(x) T_n(x) dx$$

$$= \int_0^1 E(X_n(x)) 1_{\{X_n(x) > e^{n-1}\}} E(\mu_{n-1}(x)) E(T_n(x)) dx$$

$$= E(W) 1_{\{W > e^{n-1}\}},$$

d'où

$$\begin{split} & \underset{n \geq 1}{\overset{\Sigma}{\text{Q}}} \left(\left\{ \textbf{X}_{n} > e^{n-1} \right\} \right) \leq \text{E}(\textbf{W} \underset{n \geq 1}{\overset{\Sigma}{\text{M}}} \textbf{1}_{\left\{ \textbf{W} > e^{n-1} \right\}}) \\ & \leq \text{E}(\textbf{W}(\textbf{1} + \log^{+} \textbf{W})), \end{split}$$

ce qui prouve (22).

Posons, pour alléger l'écriture, $X_n^1 = \log\inf(X_n, e^{n-1})$. Nous allons calculer $\mathrm{E}_{\mathbb{Q}}(X_n^1 \mid X_1, \dots, X_{n-1}).$ Soit u une fonction borélienne bornée de \mathbb{R}^{n-1} dans \mathbb{R} . On a

$$\int u(X_1, \dots, X_{n-1}) X_n^{\dagger} dQ = E \int_0^1 u(X_1(x), \dots, X_{n-1}(x)) X_n^{\dagger}(x) \mu_n(x) T_n(x) dx$$

$$= \int_0^1 E \left[u(X_1(x), \dots, X_{n-1}(x)) \mu_{n-1}(x) \right] E \left[X_n^{\dagger}(x) X_n(x) \right] dx$$

$$= E \left[W \log \inf(W, e^{n-1}) \right] \int_0^1 E \left[u(X_1(x), \dots, u_{n-1}(x)) \right] dx$$

...
$$X_{n-1}(x) \mu_{n-1}(x) T_{n-1}(x) dx$$

Ceci prouve que l'on a $E_Q(X_n \mid X_1, \dots, X_{n-1}) = E[W \log \inf(W, e^{n-1})]$.

On a aussi

$$\int (X_n')^2 dQ = E \int_0^1 (X_n'(x))^2 \mu_n(x) T_n(x) dx = E \left[W(\log \inf(W, e^{n-1}))^2 \right],$$

donc

$$\sum_{n \geq 2} \frac{1}{n^2} \int (X_n^*)^2 dQ = E\left[W \sum_{n \geq 2} \frac{1}{n^2} (\log \inf(W, e^{n-1}))^2\right]$$

$$\leq E\left[W(\text{Log } W)^2 \sum_{n \geq \sup(2, 1 + \log W)} \frac{1}{n^2} + W \sum_{2 \leq n \leq 1 + \log W} \left(\frac{n-1}{n}\right)^2\right]$$

$$\leq E\left[W(\log^+ W) + \frac{(\log W)^2}{\sup(1, \log W)}\right].$$

Le théorème de convergence des martingales de carrés sommables donne alors (23).

LEMME F. Supposons que $E(W \log_C W) < 1$ et que $E(Y_\infty \log Y_\infty) < \infty$. Alors presque sûrement μ -presque partout $\frac{1}{n} \log \nu_n(I_n(x))$ tend vers $-\log C$.

Démonstration. On a

$$\int T_n^{-1/2} dQ = E \int_0^1 \mu_n(x) (T_n(x))^{1/2} dx = E(Y_\infty^{1/2}),$$

d'où

$$\int \left(\sum_{n\geq 1} \frac{1}{n^2} T_n^{-1/2}\right) dQ < \infty.$$

Par suite, Q-presque sûrement, à partir d'un certain rang on a $T_n^{-1/2} \le n^2$, d'où $\frac{\lim}{n-\infty} \frac{1}{n} \log T_n \ge 0$. Jusqu'à présent nous n'avons pas utilisé la seconde hypothèse.

Montrons maintenant que, Q-presque sûrement, on a $\varlimsup_{n\to\infty}\frac{1}{n}\log T_n\le 0$. Soit un nombre $\alpha>1$. On a

$$\mathbf{E} \int \mathbf{1} \left\{ \mathbf{T}_{n} > \alpha^{n} \right\} d\mu = \mathbf{E} \left(\mathbf{Y}_{\infty} \mathbf{1} \left\{ \mathbf{Y}_{\infty} > \alpha^{n} \right\} \right)$$

(on utilise (21)).

Par suite

$$\sum_{n\geq 1} Q(\left\{T_n > \alpha^n\right\}) = E(Y_{\infty} \sum_{n\geq 1} 1_{\left\{Y_{\infty} > \alpha^n\right\}})$$

$$\leq E(Y_{\infty} \log_{\alpha}^+ Y_{\infty}).$$

Ceci prouve que, pour tout $\alpha > 1$, Q-presque sûrement on a $\overline{\lim_{n \to \infty}} \frac{1}{n} \log T_n \le \log \alpha$, d'où le résultat annoncé. Puisque l'on a $\nu_n(I_n(x)) = c^{-n} T_n(x)$ le lemme est démontré.

Pour démontrer le corollaire, on utilise un théorème de Billingsley ([7], p. 136-145).

Remarque. Sous la seule hypothèse, $E(W \log_C W) < 1$, on obtient que presque sûrement tout borélien de dimension < D est de μ -mesure nulle.

- [1] MANDELBROT, B. Intermittent turbulence in self similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 (1974). 331-358.
- MANDELBROT, B. Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sc. Paris, t. 278 (1974), 289-292
- MANDELBROT, B. Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire : quelques extensions. C. R. Acad. Sc. Paris, t. 278 (1974), 355-358.
- [4] PEYRIERE, J. Turbulence et dimension de Hausdorff. C. R. Acad. Sc. Paris, t. 278 (1974), 567-569.
- [5] KAHANE, J.-P. Sur le modèle de turbulence de Benoit Mandelbrot. C. R. Acad. Sc. Paris, t. 278 (1974), 621-623.
- [6] MEYER, P. A. Probabilités et potentiel, Hermann 1966.
- [7] BILLINGSLEY, P. Ergodic theory and information, Wiley 1965.