
UNIVERSITÉ PARIS XI 
U. E. R. MATHÉMATIQUE 

91405 ORSAY FRANCE 

On the failure of Von Neumann' s inequality 

Anna-Maria Mantero 
and 

Andrew Tonge 

Analyse Harmonique d'Orsay 
·1976 



ON THE FAILURE OF VON NEUMANN' S INEQUALITY 

by Anna Maria MANTERO and Andrew TONGE 

Summary. - We examine von Neumann type inequalities for homogeneous polynomials 

in several commuting operators on a complex Hilbert space. Our results simplify considerably 

and improve slightly work of Varopoulos G, s] . We also generalise theorems of Dixon GJ . 

Résumé. - Nous étudions des inégalités de type von Neumann pour des polynômes 

homogènes en plusieurs opérateurs commutants sur un espace d' Hilbert complexe . Nos 

résultats apportent une simplification considérable et une amélioration légère au travail de 

Varopoulos G, s] . Nous généralisons également des théorèmes de Dixon GJ . 

I. INTRODUCTION. 

In 1951 , J. von Neumann [;] proved that if T is a (linear) contraction on a 

complex Hilbert space, then 

llo(T)II s sup{ J Q(z) J : zE:C, J z J s 1} 

whenever Q is a complex polynomial. This result was generalised by many people, and 

in particular by Brehmer LJ] ; whose method shows that if T 1 , ... , T N are commuting 

operators on a complex Hilbert space H such that 
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and if Q is a complex polynomial in N variables, then 

l!o(T1' ... , TN)I! :5 sup{lo(z1, ... , ZN) I: lzn 1:51, 1 :5 n:5 N}. 

It was Varopoulos [7] who first discoveved that the more natural inequality 

is in general false. More precisely, he proved 

THEOREM A [s]. For every K > O, there exist commuting operators T 1, .. , TN 

on some finite dimensional complex Hilbert space H and a complex homogeneous polynomial 

Q(z 1, ... , ~) of degree 3 such that 

( ~ IIT hii
2

)112 :5 11h11 \i hE:H 
n=1 n 

N 
and 1lo(T1,···, TN)II >Ksup{lo(z1' ... ,zN)I: E lznl

2
::; 1}. 

n=1 

In this paper, we shall give a simpler proof of the following more general result. 

THEOREM 1 . Let 2 :s; p :5 oo. For all positive integers S and N, there exist 

commuting operators T 1 , ... , T N on some finite dimensional complex Hilbert space H, 

and a complex polynomial Q(z 1 , ... , zN) of degree S such that 

\i hE:H 

where A is a constant independent of N and 

Here we have adopted the usual convention that (I; j a I P) 1 /p be interpreted as 
n n 



sup 
n 

la 1 n 
when p = oo. 

3. 

The symbol [. ] means "integer part of Il .. 

We note, follo'wing Varopoulos [s], that the theorem for p = oo follows easily 

from the case p = 2 . However, we de not pur sue this point, since our method of proof 

presents the same degree of difficulty for both cases. 

Let us observe that a similar theorem may be proved for 1 S p :::; 2 . In this case, 

the exponent q"? is 3 2 1S-17 1 1 (- - -) L:-:.J+ (- - -) 2 p 2 2 p· The · proof is the same. 

Setting p = oo, we are able to throw some light on the precision of Brehmer' s 

theorem. A simple reductio ad absurdam argument proves the 

COROLLARY. If p > 4 and K ~ 1 , there exist commuting operators T 1 , ... , T N 

on some complex Hilbert space H and a complex polynomial Q(z
1

, ... , zN) such that 

and 

(~ IIT h/lP) 1/p $ 11h11 \f h E: H 
n n 

!ia(T 1' ... , TN)/1 > K!la!L. 

The case p = oo of theorem 1 was proved by Dixon GJ by a different method. In 

this case, he also established an upper bound for the growth of the norm of a homogeneous 

polynomial of contractions. We shall prove a similar result for arbitrary p, 1 $ p $ 00 • 

THEOREM 2. Suppose that 
1 1 1 :::; p s oo and - + - = 1 p p' . 

commuting operators on a complex Hilbert space H satisfying 

(~ !!T hl!P) 1/p s llhll V hE:H. 
n n 

Let T 1 , ••. , T N be 

Then for every homogeneous complex polynomial Q(z 1, ... , zN) of degree S ~ 2 we 

have 
S-2 

(a) l!a(T 1, ... , TN)!I s GK(s)(2N)
2 

llal!P (2 < p S oo) 
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(b) l!a(T 1, ... , TN)I! s K(s) N ï5'llallP (1 S p :5 2) 

where G is Grothendieck' s constant (:5 1 • 527, see [6] ) , and K(S) :5 (2e )S is the 

symmetrisation constant of Davie [2] . 

In fact, part (a) is an obvious consequence of Dixon' s theorem if we note that the 

complex Littlewood constant is 

It should be noted that the case p = 1 is trivial. However, it allows us to deduce 

the pleasing, though superficial 

COROLLARY. If T 
1 

, ..• , T N are commuting operators on a complex Hilbert 

space H such that 

E IITnhll :5 Je 11h11 V hE:H, 
n 

then for every complex polynomial Q(z 
1 

, ••• , 'ZN), we have 

We conjecture that the "correct" value of cf? in theorem 1 is in fact the exponent 

of N in theorem 2 . This would show Brehmer' s theorem to be sharp. 

The main tool that we use in the proof of theorem 1 is a probabilistic estimate of 

certain norms of symmetric random tensors. We must first establish some notation. 

Let be random variables such that 

1 
prob(~k k = 1) = prob(~k k = -1) = 2~, 

1, ... , S 1''"' S 
such that ~ - ~ k1,···,ks - a(k1,··,ks) 

for every permutation a , and such that the family { e k k : 1 s k 1 :5 k2 s ... 
1''"' S 

• • :5 ks s N} is independent. If 1 :5 p :5 00, we shall de note by 11 ~ I IL(p; N ; s) the 

injective tensor product norm : 
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lie Il V " V = sup { 1 ~ ek k x~1) ... xLS) 1} 
e,~0 e ~® ... 0 e,~ k1 , .. , ks 1 , · · s 1 s 

where the supremum is taken over au S-tuples (x( 1), ... , x(S )) of elements of the unit 

Here denotes the Banach space of complex N-tuples 

(z 1 , ... , ~) with the norm (~ 1 zn I P' ) 1 / P' . If there is no possibility of confusion, we 
n 

shaU write lie IIL(p) = l le I IL(p;N) = lie I IL(p;N; s )· 

We can now state : 

PROPOSITION 3. Let S be a positive integer and take 1 s p s oo. Then for 

au 1 > ô > O, and for au N, we have 

Here B is a constant independent of N, and 

'V= w(S,p) = J ~ 
l !+s(! _ !) 

2 p 2 

(p =2: 2) 

(1SpS2). 

We shaU see in section 5 that this proposition either contains or implies easily au 

the probabilistic estimates of GJ and [s] . 

FinaUy, we urge the reader not to be too frightened by the necessarily cumbersome 

notation. (S) he should not hesitate to imagine throughout that S = 3. This is moreover 

the only case in which our results are precise 

2 THE PROBABILISTIC ESTIMA TE. 

In this section, we prove proposition 3. The proof is essentiaUy due to Varopoulos 
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G, s] , but as we must make certain modifications, we give the details. 

Proof of proposition 3. We retain the notations established in the introduction. First 

define 

and note tp.at 

llçlJL(p;N;S) $ 2
5 

sup{ l:a:(x(1), ... ,x(S))j }-= 2
5 1!1 ~Ill 

where the supremum is taken over all ( 1) (S) S-tuples (x , . , . , x ) of real elements of the 

unit ball of ep' 
N. 

We observe that it is possible to cover the real unit ball of ~~ by M $( 2:ë f real 

balls of radius ë < 1 , whose centres a (m), 1 $ m$ M, also lie in the real unit ball. 

Now, if we fix x( 1), ... , x(S) in the real unit ball of e~, we can choose 

(r1) (rs) Il (s) (rs)II 
a , ... , a such that x - a $ ë '- 1 $ s $ S . Then, using the appropria te 

generalisation of the identity 

(xy""" ab)= (x-a)(y-b) + a(y-b) + b(x-a), 

we obtain 

= 

$ C(S) elll çlll, 

where C(S) > 1 depends only on S. 

On choosing 1 
. ë = 2C(S), . this yields 

( 1) 111 ç 111 S 2 sup{I E(a (r 1), .•. , a (r s \ 1} 

(rs) 
where the supremum is taken over all possible choices of the a 

Now we claim that if x( 1), ... , x(S) are in the real unit ball of e~' , then 
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(2) [I (1) (S) J -1 {2exp(-1//2s!) (p~2) 
prob :S: (x ' ... 'x ) ~ <l'.j S 2 S(1-2/ ) 

2 exp(-<l'. N P /2S ! ) ( 1:5p~2). 

To prove this, write 

u ( 1) (S) 
k1' k = :E XJ. • .. XJ . 

. ' S 1 S 

where the sum is taken over all (j 1, ... , j
8

) which are permutations of (k
1

, .... ,k
8

). 

Then _ (1) (S) 
,=. (x ' ... ' X ) = :E ~k k uk k . 

k < <k 1 ' ... ' S 1 ' ... ' S 1-· · ·- S 

If now À E: R, we have, on taking expectations 

r: _ (1) (S)'1 
E exp LÀ.:=.. (x , ... , x lJ = II cos h(À uk k ) 

k < <k 1' ... ' S 1-· ·- S 

This, together with Chebyshev' s inequality and a suitable choice of À,- implies (2). 

Thus, we arrive at 

by (1) 

(p ~2) 

s 
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N ow, setting 
(p ~ 2) 

(1$p$2) 

we have the conclusion of the proposition. 

3. THE PROOF OF THEOREM 1 . 

We base our proof on a construction of Dixon [3] and on proposition 3 . First we 

state a lemma ; the theorem will follow as a simple consequence. 

Since it is enough to prove theorem 1 for odd integers S, we shall suppose 

throughout this section that S = 2R + 1 . If 1 $ p s oo, we know, by proposition 3 that 

there is a symmetric tensor ~ such that 

V1$sSS 

and Il Il < w(p') 
ç L(p' ; N ; S) - B N , , 

where B is a constant independent of N . 

LEMMA 3 . 1 . There exist a cornplex Hilbert space H and commuting contractions 

u
1 

, ... , UN on jt = [e] EB H EB ~] such that 

U . U C-1 -R/2 I: f f 
k · · · k e = N "'k k = 7 k k 

1 s \ '1''"' s 11 ···, s 

and uk ... uk h = o 
1 S 

VhE:HEBLl:] 

where C is a constant independent of N. 

(Here [e] denotes the one dimensional complex Hilbert generated by e, ! le 11 = 1). 



Proof of theorem 1 . With r and u
1 

, ... , UN as in lemma 3 . 1 , we set 

Q(z 1 ' ... ' ~) = E T k ' ... 'k zk ... zk ' 
k 1 , ... , kg 1 S 1 S 

and write T = N- 1/P U (1 s n s N). Clearly we have n · n 

=?: (sc)- 1 N(s/p')-(R/ 2)-w(p')l/rll-
L(p' ;N; S) 

=?: (BCf 
1 

Nél> 1 loi 1 p 

where a direct calculation shows that i
R/2 

éI> = . 
3 2 1 1 (- - -)R+(;,, - -) 2 p ,:, p 

1s - 11 
Observing that R = L~ J , we have the result required. 

We now follow Dixon' s construction to give the 

Proof of lemma 3 • 1 . First of all, we define 

H = E 1 ES • • • ES ER $ FR ES • • • ES F 1 

(p:::: 2) 

(1SpS2) 

9. 

where E.,,, , F.,,, are complex Hilbert spaces with bases { ek k ; 1S k 1s ... Sk SN} 
~ ~ 1, ... , r r 

and { f . . ; ·1 sj 1 s ... s j s N} respectively. N ow, if 1 s k 
1 

, ••• , kr s N , 
J 1 ' • • • ,Jr r 

let us write ik
1 

, ... , kr] for the non-decreasing rearrangement. We define, for 

the operators by 



U e =e n n 

Uer. ·] = er J n lJ{1, ... ,kr Ln,k1, ... ,kr 
(1 :Sr :S R-1) 

u 
~ 

f [· . J 
J 1 ' .•. 'JI' 

Uf.=ô .f n J nJ 

u f = o. n 

T k k . . f. . 
· n' 1 ' ' · . ' R 'J 1 ' • ' • 'JR J 1 ' ' •• 'JR 

= {° if ni {j,. .. A,} 
f [j1''. ,jS-1 'jS+ 1' '. ,jr] 

(2 s r :S R) 

10. 

By the symmetry of ç, the Un' s are commuting operators. They .will be contractions 

if 

But, by the proof of proposition 3, we see that it is possible to choose ç in such a way 

that we have simultaneously 

Il~ IIL(p' ,N;s) s s Nw 

and 11 ç Il 2 v 2 y 2 /2 
eN@e R~~ R :SC NR 

N N 

where C is independent of N . Since the products Uk ... Uk evidently have the 
1 S 

required property, the proof is complete. 

4. THE PROOF OF THEOREM 2 AND ITS COROLLARY. 

It will be convenient to isolate two lemmas. The first resembles Grothendieck' s 

inequality, but lies much more on the surface. 
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LEMMA 4. 1 . Consider 1 s p s 2 and suppose that x ( 1 s n s N) and y 
n -- m 

( 1 s m s M) are elements of a Hilbert space satisfying 

t !lx JIP s 1 
n n 

and 

Then for any matrix ( amn) we have 

1 t t a (x ,Y ) 1 s sup I t t a s t 1 
nm nm nm nm nmnm 

where the supremum is taken over all s = (s ) and t = (t ) with n -- m --

and 

Proof. There is no loss of generality in working with the Hilbert space of finite 

dimension D generated by the xn' s and the y m' s. In an orthonormal basis of this 

space, our hypotheses may be rewritten as 

Suppose now that 

t(t lx i2fl 2 s 1 
n d nd 

llall , v , s 1. Then 
ei ®Bt 

ltt a (x ,Y >i= /tt 
nm nm nm nm 

ta X -y 1 
· nm nd md 

d 

by Minkowski' s inequality (since p S 2) 

s 1 by the conditions on the xn' s and the y m' s. 

It should b~ noticed that a similar lemma is valid for ail 1 s p s oo - except that 
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we must introduce Grothendieck' s constant into the inequality when p > 2 • 

. eP V p p LEMMA 4.2. Let 1 :5 p::;; 00. Then if I: N ® eM 7 eNM is the identity mapping, 

we have 

Proof. This follows immediately-from the observation that if 

then t J a J p :5 1 'v' n and 
m nm 

Vm. 

We may pass to the 

Proof of theorem 2. We have already observed that it suffices to prove (b). Let us 

then fix 1 :5 p :5 2, and let us write 

Q(z 1 ' ... ' z.. T) = I: ak k zk . . . zk 
l'\I k 

1 
, . . , kS 1 ' ' . . ' S 1 S 

where a 
k

1
, .. ,k 8 

is a symmetric tensor. 

If g , h E: H, then it is clear that 

Using lemma 4. 1 , we see that 

l<o(T1,···,TN)h,g)I =i I: ak k (Tk ••. _Tk h,Tk* g) 1 
k

1 
..• k

8 
1, ... , S 2 S 1 

:5 J la J I p , v p , /lh /1 J Jg /1. 
e S-1 ®~N 

N 

B y a repeated application of lemma 4 • 2, we have 



$ N(s- 2)/p 
I 

K(S) SU,R I T- a X 

Elxn1Ps1 k1,··,ks k1,··,ks k1 
n 

by Davie' s symmetrisation process ~] . 

This is exactly what was required. 

13. 

To prove the corollary, we simply have to express the polynomial Q as a sum of 

homogeneous polynomials QS of degree S , and note that under the hypothesis, we shall 

have 

The last inequality may be deduced easily from the well-known fact (see ~] for example) 

5. THE DEDUCTION OF VAROPOULOS' ESTIMATES. 

Since many of the proofs in GJ and [a] are either .involved or use the Kahane-

Salem-Zygmund theorem, we feel that it is of interest to show, how to deduce them simply 

from proposition 3 . Accordingly, we shall fix S = 3 throughout. 

PROPOSITION 5. 1 . For every integer N, there exists a symmetric tensor ~ 

such that 

for which 

(1) 

(2) 

and 

(3) 

~. 'k = + 1 lJ -
V 1 $ i,j,k SN 
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for some constant K independent of N . 

Here ® denotes the projective tensor product. 

Proof. Choose 
1 

ô > 2' p = 2 and p = 1 in proposition 3 . This yields ( 1 ) and 

(2). (3) follows, as in GJ, from the observation that 

N3 = , I; 1 = 1 < c; ' c; > 1 s 11 c; 11 00 A A 11 c; Il 1 V 1 V 1 . 
i,j,k ~N ® e~ ®~~ eN® eN®e,N 

One may deduce proposition 1 . 1 of [s] as an immediate corollary. 

If now a and b are elements of the algebraic tensor product 

wa may define a multiplication by 

ab = (a .. k b .. k)1<. . k< . lJ lJ -1,J, _oo 

It is known LJ3] that when B2 
® e2 

® e2 
is given the injective tensor product 

norm, this multiplication is not continuous. Let us prove a more precise result. 

PROPOSITION 5.2. Under the above multiplication, 'Ye have 

(1) 

and 

(2) 
2 V 2 V 2 

There exists a tensor a € BN ® eN ® B,N such that 

where A is a constant independent of N. 

Proof. For (2), we need only choose, as in proposition 3, a random tensor c; 

with llç;IIL(2) s B N 
1
/

2
. Then 

11c;211L(2) = N3/2 ~ ~ N 1/21 le; 11~(2) . 
B 
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We pass to the proof of (1). Suppose then that llal!L( 2) s 1 and that \jbj\L( 2) S 1. 

Take 

Then 1 1 1 
·_ 1 1 12 1 /2 1 12 1/2 b ~ ~ a .. k b .. k s. t. uk S ~ s. ( ~ a .. k uk ) ( ~ b .. k t. ) 

.. k lJ lJ 1 J . 1 .k lJ . k lJ J 
1 J 1 J, J, 

and this will be S {N if we can show that 

l: 1 a .. k· uk 1
2 s 1 

. k lJ J, 
and 

However, it follows at once from the hypothesis that :E Il: a. 'k uk 12 s 1 whenever 
j k lJ 

t I uk 1
2 s 1 . But, replacing uk by ± uk and averaging over an possible choices of 

k 

± , we obtain the desired result. 
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