*LA STRATIFICATION NATURELLE DES ESPACES DE FONCTIONS

DIFFERENTIABLES REELLES

ET LE THEOREME DE LA PSEUDO-ISOTOPIE*

par Jean CERF

LA STRATIFICATION NATURELLE DES ESPACES DE FONCTIONS

DIFFERENTIABLES REELLES

ET LE THEOREME DE LA PSEUDO-ISOTOPIE

par Jean CERF

Je remercie tous mes amis mathématiciens à qui j'ai eu l'occasion d'exposer les versions successives de ce travail. Je dois beaucoup à leurs questions, à leurs remarques, à leurs critiques ; je ne l'oublie pas, même si je dois me borner à citer ici ceux envers lesquels ma dette est si précise que je peux dire exactement ce qui leur revient. B. MORIN a été le précieux confident des premiers temps de ce travail ; ensemble nous avons mis au point la théorie de Smale sous sa forme fonctionnelle, dont l'idée m'avait été suggérée par R. THOM; (à cette époque, le livre de MILNOR, dont le point de vue est d'ailleurs légèrement différent, n'était pas encore paru). Je suis redevable à A. DOUADY de la première demonstration correcte du "lemme d'unicité des morts"; J. WAGONER a ensuite fait faire à ce lemme un progrès important (montrant en particulier qu'aucune hypothèse sur le 📆 de la variété n'était nécessaire); l'actuelle démonstration de ce lemme bénéficie en outre d'une amélioration due à L. SIEBENMANN, qui m'a fait beaucoup d'autres remarques utiles. F. BRUHAT m'a indiqué comment géneraliser en toute dimension la définition des complexes associés au groupe symétrique, que j'avais construits jusqu'à la dimension 2. Les travaux d'A. CHENCINER et F. LAUDENBACH (qui ont démontré le théorème 2 du chapitre V dans le cas non simplement connexe) les ont conduits à améliorer plusieurs points des chapitres IV et V (en particulier la démonstration du lemme de la queue d'aronde pour l'indice zéro). Leurs rédactions de certaines parties du chapitre VI m'ont été utiles, ainsi que celles de F. SERGERAERT pour le §3 du chapitre I et de M.A. CHAVES pour les §\$2 et 3 du chapitre II.

Je ne puis terminer sans remercier la Commission Franco-Américaine d'Echanges Universitaires, l'Institute for Advanced Study (et par son intermédiaire la National Science Foundation) et l'Université de Princeton, grâce à qui j'ai pu passer l'année universitaire 1968 - 1969 à Princeton. Sans cette année de tranquillité et de travail, il est probable que ce liure n'aurait pas été écrit.

Table des Matières

Introduction: isotopie et pseudo-isotopie.

CHAPITRE I. Stratifications et chemins élémentaires.

- §1. Stratifications localement triviales.
- §2. Stratifications de codimension 1. Lemme des chemins élémentaires.
- §3. Stratification naturelle des espaces de fonctions réelles.
- §4. Plongements d'une variété de dimension i 1 dans une variété munie d'une sous-variété de codimension i .
- §5. Plongements d'une variété de dimension i dans une variété munie d'une sous-variété de codimension i .

CHAPITRE II. Etude semi-locale de la stratification de 💃 .

- 1. Classification des chemins de croisement.
- \S 1. Chemins élémentaires ascendants et descendants.
- 32. Chemins élémentaires et nappes.
- §3. Chemins de multicroisement.
- §4. Lemmes de classification de nappes.

CHAPITRE III. Etude semi-locale de la stratification de J.

- 2. Unicité des naissances et des morts.
- §1. Unicité des naissances.
- \$2. Chemins et chemins élémentaires de mort. Critère de Smale. Unicité des morts.

CHAPITRE IV. Etude semi-locale de la stratification de 🎜 .

- 3. Traversée des singularités de codimension 2.
- §1. Lemme des singularités indépendantes.
- §2. Traversée d'un point triple : lemme du triangle.
- §3. Les lemmes du bec.
- §4. Le lemme de la queue d'aronde.

CHAPITRE V. Etude globale de l'espace 💪.

- 1. Connexité de l'espace des fonctions ordonnées et de l'espace de .
- §1. Connexité de l'espace des fonctions ordonnées.
- $\S 2$. Connexité de l'espace ${m{4}}_{f{i}}$.

CHAPITRE VI. Préliminaires algébriques à la détermination du nerf de 🗗 .

 $\S1$. Le complexe algébrique $\ensuremath{\mathfrak{C}_{\!\mathbf{q}}}$,

 \S 2. Etude particulière du 2-squelette des complexes $[m{\mathcal{E}}_{_{\! ext{G}}}]$ et $[m{\mathcal{B}}_{_{\! ext{G}}}]$.

\$3. Le lemme fondamental.

CHAPITRE VII. Etude globale de l'espace f.

- 2. Structure du nerf de l'espace 🍕 .
- §1. Nerf d'une stratification.
- §2. Les espaces stratifiés $\mathcal{K}_{i,q}$, \mathcal{K}_{M} , \mathcal{K}_{M}^{+} , \mathcal{K}_{i} ; relations entre les nerfs de ces espaces.

 §3. Revêtement de $\mathcal{C}_{q} \times \mathcal{C}_{q}$ par ϕ_{M} ; invariant algébrique d'un élement de $\phi_{i,q}$.
- §4. La connexité de l'espace des fonctions sans point critique.
- \S 5. Structure du nerf des espaces $\mathcal{F}_{i,q}$ et $\mathcal{F}_{i,q}$

Appendice,

Bibliographie.

INTRODUCTION

Isotopie et pseudo-isotopie.

1. Le problème de la pseudo-isotopie.

Soit V une variété différentiable de classe C^{∞} ; dans tous les cas qu'on considère, V est en plus compacte, sans bord, et orientable.

On note Diff V le groupe des difféomorphismes d'orientation positive de V; on munit Diff V (ainsi que tous les espaces de fonctions différentiables qui vont intervenir) de la topologie C^{∞} .

On va définir deux relations d'équivalence dans Diff V .

<u>Définition 1.-</u> Une <u>isotopie</u> de V est un chemin différentiable dans Diff V, d'origine l'identité, i.e. une application :

I
$$\mathfrak{I}$$
 t \mapsto f_t \in Diff V ,(où $I = [0,1]$)

telle que :

L'application :

$$(x,t) \mapsto (f_t(x),t)$$

est alors un difféomorphisme du cylindre $V \times I$. L'ensemble des isotopies de V s'identifie donc au sous-groupe $\mathcal K$ de $\text{Diff}(V \times I)$ formé des g tels que :

- 1°) $g(x,0) = x \forall x \in V$
- 2°) pog = p (où p designe la projection $V \times I \rightarrow I$).

Le groupe **%** opère dans Diff V par la formule :

$$g.f(x) = g(f(x), 1).$$

Deux éléments de Diff V qui sont dans la même orbite sont dits <u>isotopes</u>. Les orbites coïncident avec les composantes connexes de Diff V muni de la topologie C^{∞} (car tout chemin continu dans Diff V peut être approché par un chemin différentiable).

<u>Définition 2.-</u> Une <u>pseudo-isotopie</u> de V est un difféomorphisme de $V \times I$ qui vérifie la condition 1°) (mais par nécessairement 2°)).

Les pseudo-isotopies de V forment un groupe qu'on note 4; 4 opère dans Diff V; deux éléments qui sont dans la même orbite sont dits <u>pseudo-isoto-</u> pes.

Comme $\mathcal{H} \subset \mathcal{Y}$, "isotope" implique "pseudo-isotope".

Problème. - Sous quelle condition ces deux classifications sont-elles les mêmes ?

2. Résultats.

- Théorème 0.- Soit V une variété compacte sans bord de classe \mathbb{C}^{∞} . Si $\pi_1(V) = 0$ et dimension $V \geqslant 5$, alors le groupe Ψ des pseudo-isotopies de V est connexe.
- Corollaire 1.- Sous les hypothèses du théorème O, les deux classifications de Diff V (isotopie et pseudo-isotopie) sont les mêmes.

[En effet les orbites de sont alors connexes ; comme elles contiennent les orbites de qui sont les composantes connexes, ce sont les composantes connexes].

Corollaire 2.- Pour n > 6:

- 1°) $\pi_0(\text{Diff } D^n) = 0$;
- 2°) $\pi_0(\text{Diff S}^{n-1}) \approx \Gamma_n$;
- 30) $\pi_1(\text{Diff S}^{n-1})$ est une extension de Γ_{n+1} .

[En effet, tout difféomorphisme g de D^n peut être déformé par isotopie de manière à induire l'identité sur la boule de rayon moitié D^{n} ; la restriction de g à la couronne $\overline{D^n - D^{n}}$ s'identifie alors à une pseudoisotopie h de S^{n-1} ; le théorème O permet de déformer h isotopiquement en l'identité; ceci prouve le 1°). On passe de là au 2°) et au 3°) au moyen de la suite exacte classique :

$$\pi_1(\text{Diff S}^{n-1}) \rightarrow \pi_1(\text{Diff S}^n) \rightarrow \pi_0(\text{Diff D}^n) \rightarrow \pi_0(\text{Diff S}^{n-1}) \rightarrow \Gamma_n \rightarrow 0$$
.

Remarques 1.- J'ai annoncé le théorème 0 dans [4], sous les conditions plus restrictives dimension (V \geqslant 9 et π_1 (V) = π_2 (V) = 0).

- 2. Les premiers exemples de $\pi_i(\text{Diff S}^n)$ non triviaux pour $i \gg 1$ sont dus à S.P. NOVIKOV[13].
- 3. L'analogue du théorème O dans la catégorie PL a été demontré indépendemment par C. MORLET [12] et C.P. ROURKE.

Leur méthode (qui nécessite $\pi_1(V) = \pi_2(V) = 0$) consiste à ramener (dans chacune des catégories DIFF et PL) le cas général à celui de la sphère S^{n-1} ; ce dernier cas est resolu trivialement dans les catégories PL par la "rétraction d'Alexander", dont on sait qu'elle ne s'applique pas au cas

différentiable. Dans la catégorie DIFF, la difficulté est exactement la même dans le cas de la sphère et dans celui de n'importe quelle variété simplement connexe.

- 4. La question "pseudo-isotopie entraîne-t-elle isotopie" admet une généralisation naturelle à k paramètres. Soit 0 un point marqué sur S^k ; tout difféomorphisme de $V \times S^k$ qui respecte la projection sur S^k , laisse fixe $V \times \{0\}$, et peut se prolonger en un difféomorphisme de $V \times D^{k+1}$, peut-il se prolonger en un difféomorphisme de $V \times D^{k+1}$ qui respecte la projection sur D^{k+1} ? Dans [12] MORLET munit Diff V de deux complexes, l'un donnant l'homotopie ordinaire, l'autre la notion d' "homotopie" qui généralise à un nombre quelconque de paramètres la notion de pseudo-isotopie ; le $k^{\rm ime}$ groupe d'homotopie relatif de ces deux complexes est nul exactement lorsque la réponse à la question ci-dessus est positive. MORLET montre qu'il en est ainsi dans la catégorie PL pour tout $k \leqslant c$ lorsque V est c-connexe. On peut faire la conjecture analogue pour la catégorie DIFF .
- 5. La notion généralisant celle de pseudo-isotopie (relative aux difféomorphismes) aux plongements d'une variété dans une autre est appelée en général
 "concordance". Rappelons le résultat maintenant classique de J.F.P. HUDSON
 [7]: en codimension > 3, la concordance entraîne l'isotopie; ce résultat
 (valable dans les catégories DIFF et PL) a été généralisé à plusieurs paramètres par MORLET [12].
- 6. Dans l'énoncé du théorème O, les hypothèses de compacité et de simple connexité sont essentielles ; cela résulte de deux contre-exemples de L. SIEBENMANN [15], qui associe à une pseudo-isotopie un invariant de torsion. Notons aussi qu'un autre pas en direction d'une théorie généralisant à 1 paramètre celle du s-cobordisme a été fait tout récemment par A. CHENCINER et F. LAUDENBACH.

3. La forme "fonctionnelle" du théorème O.

Soit \mathcal{J} l'espace des fonctions de classe $C^{\infty}: V \times (I,0,1) \rightarrow (I,0,1)$ sans point critique sur le bord. Pour démontrer

$$\pi_{O}(\mathcal{V}_{1}) = 0$$

on fait opérer 4 à gauche dans & par la formule :

$$g \cdot f = f \circ g$$
.

On désigne par $\mathfrak E$ le sous-espace de $\mathcal A$ formé des fonctions qui n'ont aucun point critique.

<u>Lemme</u>: <u>Soit</u> p <u>la projection</u>: $V \times I \rightarrow I$. <u>L'espace</u> \mathcal{E} <u>est l'crbite de</u> p <u>pour les opérations de</u> \mathcal{G} ; \mathcal{G} <u>est homéomorphe à</u> $\mathcal{G} \times \mathcal{E}$.

<u>Démonstration</u>: Il est clair que l'orbite de p est contenue dans \mathcal{E} , et d'autre part que \mathcal{K} est le sous-groupe de \mathcal{G} formé par les éléments qui laissent p fixe. Il suffit donc de montrer l'existence d'une section $s:\mathcal{E}\to\mathcal{G}$ pour l'application $g\mapsto p\circ g^{-1}$.

Pour construire une telle section, on choisit une metrique riemannienne sur $V \times I$. Soit $f \in \mathcal{E}$, on définit l'élément g = s(f) par : " g(x,t) est le point y de la ligne de gradient de f issue du point (x,0) qui vérifie : f(y) = t".

On a:
$$p \circ g^{-1}(y) = t = f(y)$$
;

autrement dit, p o $g^{-1} = f$; donc s est bien une section.

Puisque **K** est contractile, (1) équivaut à :

$$\pi_{O}(\mathcal{E}) = 0 .$$

Puisque 🕉 est une partie convexe de l'espace vectoriel de toutes les

fonctions réelles définies sur $V \times I$, (2) équivaut à

(2')
$$\pi_1(\vec{A}, \mathcal{E}) = 0$$
.

Ceci apparaît comme une généralisation à 1 paramètre de la théorie du h-cobordisme de Smale. Les espaces analogues à $\mathfrak E$ et $\mathfrak F$ peuvent en effet être définis pour toute triade (W, V, V). La théorie de Smale consiste à montrer que (moyennant des conditions homotopiques convenables et une condition de dimension) W est difféomorphe au cylindre $V \times \mathfrak I$; or les cylindres sont caractérisés parmi toutes les triades par la condition $\mathfrak E \neq \emptyset$, qui peut s'écrire :

$$\pi_{o}(\mathcal{F}, \mathcal{E}) = 0$$
.

4. Principe de la démonstration de (2') : stratification naturelle et filtration de Smale de Je.

D'une façon générale, une suite E° , E^{1} ,..., E^{i} , de sous-espaces d'un espace topologique E sera appelée <u>stratification de</u> E si les E^{i} forment une partition de E, et si E° U E^{1} U ... U E^{i} est ouvert pour tout i.

La notion de stratification naturelle des espaces d'applications différentiables d'une variété dans une autre a été introduite par THOM; les travaux récents de J. MATHER [9] l'ont éclairée d'un jour nouveau (cf.I.3). La strate strate de la stratification naturelle de l'espace est définie comme l'ensemble des fonctions "de codimension i", la codimension d'une fonction f pouvant être définie (au moins pour les petites valeurs de i) comme la somme des "codimensions" des points et des valeurs critiques de f. Une valeur critique de codimension 0,1 etc. est une valeur critique simple, double, etc. Un point critique de codimension 0 est un point critique du type de Morse (c'est-à-dire quadratique non dégénéré); un point critique

de codimension 1 est un "point de naissance". La "strate" \mathfrak{F} est donc l'espace des fonctions "excellentes" au sens de THOM : celles dont tous les points critiques sont du type de MORSE, et toutes les valeurs critiques distinctes. D'après un théorème classique de M. MORSE, \mathfrak{F} est ouvert et dense dans \mathfrak{F} . La strate \mathfrak{F}^1 est la réunion (disjointe) de \mathfrak{F}^1_{α} et \mathfrak{F}^1_{β} définis comme suit :

$$f \in \mathcal{F}_{\alpha}^{1} \iff \begin{cases} \text{f a un point de naissance ; tous les autres points critiques sont du type de Morse ;} \\ \text{toutes les valeurs critiques sont distinctes.} \end{cases}$$

$$f \in \mathcal{A} \xrightarrow{1} \iff \begin{cases} \text{tous les points critiques sont du type de MORSE ;} \\ \text{toutes les valeurs critiques sont distinctes, sauf exactement deux d'entre elles.} \end{cases}$$

 \mathcal{J}^1 est une sous-variété de codimension 1 de $\mathcal{J}^0 \cup \mathcal{J}^1$ et le complémentaire de $\mathcal{J}^0 \cup \mathcal{J}^1$ dans \mathcal{J}^0 est de codimension supérieure à 1, ce qui peut être précisé comme suit. On dit qu'un chemin γ à valeurs dans \mathcal{J}^0 est <u>bon</u> si $\gamma(t) \in \mathcal{J}^0$ sauf pour un nombre fini de valeurs de t, et si, pour ces valeurs exceptionnelles, $\gamma(t)$ traverse \mathcal{J}^1 ; alors <u>l'espace des bons chemins</u> <u>de \mathcal{J}^0 est dense dans l'espace de tous les chemins, muni de la topologie</u> \mathcal{C}^0 .

Il résulte de ceci que pour montrer (2'), il suffit de considérer les <u>bons</u> lacets relatifs de $(\mathcal{I}, \mathcal{E})$ et de montrer que chacun d'eux peut être déformé avec extrémités fixes en un chemin de \mathcal{E} . On utilise pour cela la <u>filtration</u> <u>de Smale</u> de \mathcal{I}° : pour démontrer le théorème du h-cobordisme, SMALE définit une filtration de l'espace \mathcal{I}° relatif à une triade (W,V,V'); puis, partant d'un élément $f \in \mathcal{I}^{\circ}$ (dont l'existence est assurée par le théorème de

MORSE) il construit (sous des hypothèses convenables) un chemin d'origine f, qui est bon au sens ci-dessus, qui est décroissant pour la filtration, et qui aboutit à un élement f' de \mathfrak{C} . La filtration utilisée est la filtration lexicographique définie par les trois invariants suivants : le nombre d'inversions ν (cf. ν .1.1), l'intervalle des indices [i,j] (cf. ν .2.2), enfin le nombre total de points critiques. Une fonction pour laquelle $\nu = 0$ est dite "ordonnée". Les trois grandes étapes de la démonstration du théorème de h-cobordisme sont les suivantes.:

- 1) existence d'une fonction oraonnée excellente;
- 2) existence (pour i convenable) d'une fonction ordonnée dont l'intervalle des indices est [i,i+1];
- 3) existence d'une fonction sans point critique.

De même pour déformer un bon lacet de (, E), on le repousse de proche en proche dans des sous-espaces de filtration de plus en plus petite, de sorte que les trois grandes étapes de la démonstration du théorème 0 correspondent à celles du théorème de SMALE:

- 1) l'espace des fonctions ordonnées est connexe (V,1.1, théorème 1).
- 2) l'espace \mathcal{F}_{i} des fonctions ordonnées dont l'intervalle des indices est [i,i+1] est connexe pour i convenable (V,2.1., théorème 2).
- 3) l'espace des fonctions sans point critique est connexe (VII,4.2, théorème 3).

5. Les lemmes semi-locaux.

Les "cocellules" de codimension 0 et 1 de \mathcal{F} (c'est-à-dire les composantes connexes de \mathcal{F} 0 et \mathcal{F} 1) ne sont pas acycliques en géneral. Au cours de la déformation d'un lacet sur \mathcal{F} , on rencontre donc un certain nombre d'obstructions à valeurs dans le π 1 des 0-cocellules modulo leur bord ; d'où la

nécessité de démontrer un certain nombre de lemmes explicitant ces obstructions et donnant des cas de nullité; on les appelle semi-locaux parce qu'ils de mettent en jeu un petit nombre cocellules. Il est souvent commode de les exprimer en terme de graphique : le graphique d'un chemin γ à valeurs dans de est la partie Γ de $I \times I$ définie par :

$$(t,u) \in \Gamma \iff u \text{ est valeur critique de } \gamma(t)$$
.

Les lemmes semi-locaux sont de deux sortes ; les uns sont des lemmes de classification de "chemins de traversée" (chemins d'origine un point donnée de 🔏 , traversant une fois 🕫); voici leur interprétation en termes de graphique :

	Lemmes de croisement (IIA.1., proposition#3 et 4	naissances	Unicité des morts (III,2.4.,proposition4)
Concernent la possibilité de déformer le graphique ci-contre :		>i+1 i+1 i+1 i	
en le graphique ci-contre :		i+1_i	

Les autres lemmes semi-locaux sont relatifs à la possibilité de faire franchir à un lacet une singularité de codimension 2, autrement dit une composante connexe de \mathcal{F}^2 . Voici leur interprétation en termes de graphique et les schémas correspondants dans l'espace fonctionnel ; (on se reportera aux énoncés pour les conditions de validité) :

	Lemme du triangle (IV,2.2, proposition 2)	Lemme du bec (IV,3.3, proposition 4)	Lemme de la queue d'aronde (IV,4.3,proposition5)
(Concerne la possibi- (lité de déformer le (graphique ci-contre: (: ×		
(en le graphique (ci-contre : (
(Schéma dans l'es- (pace fonctionnel ((α = naissance, (β = croisement) (β β β β	β	
(Singularité de co- (dimension 2 corres- (pondante.	PERBUTE OF STREET	naissance à un ni- veau critique	: singularité) : queue d'aronde) :)

La démonstration de ces lemmes utilise la méthode des "chemins élémentaires", développée en I.2 dans un cadre général : celui d'une stratification de codimension 1 dans laquelle un groupe topologique G opère de façon que les orbites soient les cocellules et que sur chacune d'entre elles, les opérations admettent des sections locales continues. Le "lemme des chemins élémentaires" affirme que, dans ces conditions on peut se borner, pour calculer les groupes d'homotopie des espaces de chemins de traversée, à considérer des "familles élémentaires de chemins", c'est-à-dire essentiellement des familles invariantes par les opérations de G. Dans le cas de la stratification de \mathcal{F} , le rôle de G est joué par le groupe $\operatorname{Diff}(V \times I) \times \operatorname{Diff} I$;

les familles elémentaires sont définies dans chaque cas par transport d'une "déformation standard" relative au modèle de la singularité correspondante. L'application du lemme des chemins élémentaires ramène alors à un problème géométrique (classification de certaines sous-variétés), de difficulté très variable suivant les cas.

6. Partie "globale" de la démonstration.

Les théorèmes 1 et 2 (connexité de l'espace des fonctions ordonnées et de l'espace \mathcal{F}_{i}) se demontrent sans grande difficulté à partir des lemmes semi-locaux (cf. chapitre V). Par contre la demonstration du theorème 3 (passage de la connexité de \mathcal{F}_{i} à celle de l'espace \mathcal{E} des fonctions sans point critique) présente une difficulté de nature algébrique ; c'est ce qui conduit à introduire le nerf de \mathcal{F}_{i} et, en fait, à la déterminer.

D'une façon générale, le <u>nerf</u> d'une stratification E° , E^{1} ,... E^{i} ,... d'un espace topologique E est l'ensemble $\pi_{o}(E^{\circ}) \cup \pi_{o}(E^{1}) \cup \dots \cup \pi_{o}(E^{i}) \cup \dots$ muni de la structure de complexe simplicial ordonné définie par la relation $A \subset \overline{B}$.

Soit $\mathcal{F}_{i,q}$ la partie de \mathcal{F}_i formée des fonctions ayant exactement 2q points critiques (fonctions "de type (i q)"); soit f une telle fonction, soit M une "variété intermédiaire de f" (c'est-à-dire une variété de niveau séparant les points critiques d'indice i de ceux d'indice i + 1 ; M sépare V x I en deux parties qu'on note W_M^+ et W_M^- . On sait que $H_{i+1}(W_M^+$, M) \approx $H_{n-i}(W_M^-$, M) \approx Z^q ; certaines bases de ces groupes d'homologie sont "adaptées à f" au sens suivant : elles peuvent être représentées par les classes fondamentales d'un système de nappes de gradient issues des points critiques de f . A tout f \in \mathcal{F}_M (sous-espace de $\mathcal{F}_{i,q}^+$ formé des fonctions pour lesquelles M est une variété intermédiaire) on peut associer l'ensemble de ses couples de bases adaptées ; cet ensemble s'identifie à une classe de $GL(q,Z) \times GL(q,Z)$ modulo un sous-groupe de $(T_q \times S_q) \times (T_q \times S_q)$ qui dépend uniquement de la cocellule de f' $(T_q$: groupe triangulaire ; S_q : groupe symétrique). On définit ainsi un morphisme

$$\overline{\omega}$$
: (Nerf de \mathcal{F}_{M}) \rightarrow $\mathcal{E}_{q} \times \mathcal{E}_{q}$

où $\mathcal{C}_{\mathbf{q}}$ est un quotient d'un complexe défini sur le groupe $\mathrm{GL}(\mathbf{q},\mathbf{Z})$ par les genérateurs privilégiés du groupe symétrique (par exemple, un couple d'éléments (\mathbf{g},\mathbf{g}') est joint par une arête si et seulement si \mathbf{g}' est de la forme $\mathbf{g}\mathbf{s}$ où \mathbf{s} est une transposition).On montre en utilisant essentiellement le lemme des croisements à indices égaux que $\overline{\omega}$ est un morphisme de revêtement. Cessant alors de fixer la variété intermédiaire \mathbf{M} , on obtient un morphisme :

(Nerf de
$$\mathcal{F}_{i,q}$$
) $\rightarrow \mathcal{H}_{q}$

où \mathcal{A}_q est le complexe quotient de $\mathcal{C}_q \times \mathcal{C}_q$ par des opérations convenables de $\mathrm{GL}(q,\mathbf{Z})$; (en particulier, le 0-squelette de \mathcal{A}_q est isomorphe à l'espace des doubles classes à gauche et à droite de $\mathrm{GL}(q,\mathbf{Z})$ modulo le groupe triangulaire).

Un lemme algébrique, qui est le résultat principal du chapitre VI , donne un système de générateurs du premier groupe d'homotopie relatif de $\mathcal{C}_{\mathbf{q}} \times \mathcal{C}_{\mathbf{q}}$ module l'orbite "neutre" des opérations de $\mathrm{GL}(\mathbf{q},\mathbf{Z})$. On constate alors que chacun de ces générateurs correspond à un certain type de singularité de codimension 2 ; les lemmes semi-locaux relatifs à ces singularités prouvent precisement que ces générateurs se relèvent dans le revêtement $\overline{\omega}$ en des chemins dont les images dans le nerf de $\mathcal{F}_{\mathbf{i},\mathbf{q}}$ sont des lacets. On en déduit facilement les théorème 3 (connexité de \mathbf{E}) et 4 (isomorphisme du nerf de $\mathcal{F}_{\mathbf{i},\mathbf{q}}$ avec $\mathcal{A}_{\mathbf{q}}$) ; ce dernier résultat à pour corollaires des théorèmes de classification : par exemple, les fonctions excellentes de type (i,q) sont classifiées par un invariant à valeurs dans $\mathbf{T}_{\mathbf{q}} \setminus \mathbf{GL}(\mathbf{q},\mathbf{Z})/\mathbf{T}\mathbf{q}$.

CHAPITRE I

Stratifications et chemins élémentaires

Après avoir fixé au \$.1 la terminologie qu'on utilisera en ce qui concerne les stratifications, on démontre au \$.2 le "lemme des chemins élémentaires", (2.2., proposition 1), outil essentiel des chapitres II, III et IV. Le \$.3 contient la définition et une première description de la stratification naturelle des espaces de fonctions réelles différentiables. Deux autres exemples de stratifications naturelles d'espaces d'applications différentiables (qui jouent dans la suite un rôle auxiliaire, respectivement au \$.4 du chapitre II et au \$.2 du chapitre III) sont étudiés aux \$.\$.4 et 5.

Sol. Stratifications localement triviales.

1.1. Stratifications.

Définition 1. Soit E un espace topologique; une suite E , E , ..., E , ..., de parties de E est appelée stratification de E si elle forme une partition de E (i.e., les E sont disjoints deux à deux et leur réunion est E), et si elle vérifie la condition suivante :

 $E^{\circ} \cup E^{1} \cup ... \cup E^{i}$ est ouvert pour tout $i \in \mathbb{N}$.

E muni d'une stratification est dit "espace topologique stratifié"; E s'appelle la i strate de E . Les composantes connexes par arcs des strates sont appelées cocellules de la stratification. Exemple de stratification. Soit V une variété triangulée de dimension n ; soit $V_{\hat{1}}$ le i-squelette de V pour i > 0, et $V_{\hat{1}} = \emptyset$ pour i < 0; la stratification de V définie par

$$V^{i} = V_{n-i} - V_{n-i-1}$$
 pour tout is M

est appelée <u>stratification naturelle</u> de V . On remarquera les deux propriétés suivantes :

- 1) Pour tout $i \in \mathbb{N}$, $V^{i+1} \subset V^{i}$;
- 2) Pour tout i $\in \mathbb{N}$, $V^{\hat{i}}$ est une sous-variété de codimension i de V .

La propriété l) est vérifiée par toutes les stratifications que nous utiliserons dans la pratique ; la propriété 2) est vérifiée par toutes les stratifications de variétés (de dimension finie ou infinie) que nous rencontrerons.

Morphismes d'espaces stratifiés. Soient E et E° deux espaces topologiques stratifiés : un morphisme $E \longrightarrow E^{\circ}$ est une application continue $f: E \longrightarrow E^{\circ}$ telle que

Ceci définit la catégorie des espaces stratifiés.

Stratification induite. Soit E un espace topologique stratifié; soit $A \subset E$; on appelle stratification induite par E sur A celle définie sur A par

$$A^{\hat{1}} = A \cap E^{\hat{1}}$$
 pour tout $\hat{1} \in \mathbb{N}$.

Stratification produit. Soient E et E' deux espaces topologiques stratifiés; la stratification de E×E' définie par

$$(\mathbf{E} \times \mathbf{E}^{\mathfrak{g}})^{\hat{\mathbf{1}}} = \bigcup_{\hat{\mathbf{J}} + \hat{\mathbf{J}}^{\mathfrak{g}} = \hat{\mathbf{1}}} \mathbf{E}^{\hat{\mathbf{J}}} \times \mathbf{E}^{\mathfrak{g}}^{\hat{\mathbf{J}}^{\mathfrak{g}}}$$

est appelée stratification produit des stratifications de E et E%

1.2. Stratifications localement triviales.

La stratification triviale d'un espace topologique E est celle définie par $E^O=E$.

Définition 2. Soit E un espace topologique stratifié; la stratification de E est dite localement triviale si pour tout $x \in E$. il existe

- un espace topologique stratifié X, ayant une strate ponctuelle {0};
- = un espace topologique Y (muni de la stratification triviale) en un point $y \in Y$;
 - un morphisme ϕ : X × Y \longrightarrow E ,

tels que $\phi(0,y) = x$, que l'image de ϕ soit un ouvert U de E, et que ϕ définisse un isomorphisme de X x Y sur U (muni de la stratification induite par E).

Tout morphisme ϕ du type ci-dessus est appelé carte locale de E en x; on dit que X est un modèle transverse de la stratification en x. On dit qu'un morphisme ψ : X \longrightarrow E est une carte transverse de E en x s'il existe une carte locale ϕ telle que $\psi(z) = \phi(z,y)$ pour tout $z \in X$.

Remarques. 1) Si ϕ est une carte locale de E en x $_0$ d'image U $_0$ la strate de x dans U est $\phi(\{0\} \times Y)$ $_1$ U étant ouvert, il en résulte que $\phi(\{0\} \times Y)$ est un voisinage ouvert de x dans sa strate.

2) Si E est un espace stratifié localement trivial et localement connexe par arcs, alors toutes les strates de E sont localement connexes par arcs.

1.3. Stratifications coniques, stratifications combinatoires.

<u>Définition 3</u>. Soit S un espace stratifié ayant un nombre fini de strates S^0 , S^1 , ..., S^n on appelle <u>cône ouvert</u> de S l'espace stratifié suivant : son support topologique est le cône

<u>Définition 4</u>. Soit E un espace stratifié, La stratification de E est dite <u>conique</u> si elle est localement triviale et si, pour tout $x \in E$, il existe un modèle transverse de la stratification en x qui soit un cône ouvert.

Définition 5. Soit E un espace stratifié ; la stratification de E est dite combinatoire si elle est conique, et si pour tout i>0 et pour tout $x \in E^1$, il existe un modèle transverse en x qui soit le cône ouvert d'une (i-1) - sphère combinatoirement triangulée (munie de la stratification naturelle, cf. l.l.).

Exemple de stratification combinatoire. Si V est une variété combinatoirement triangulée, la stratification naturelle de V constitue évidemment un exemple de stratification combinatoire; d'autres exemples seront donnés aux §§. 3, 4 et 5.

§ 2 e Stratifications de codimension l Lemme des chemins élémentaires

2.1. Stratifications de codimension l : chemins de traversée.

<u>Définition 1.</u> Soit E un espace topologique; <u>une stratification</u> <u>de codimension</u> l de E est une stratification conique (cf.1.3.) à deux strates non vides E^{O} et E^{1} , telle que pour tout $y \in E^{1}$, il existe un modèle transverse de la stratification en y qui soit le cône ouvert d'un ensemble fini.

- Exemple. 1) E est une variété (de dimension finie ou infinie), E est une sous-variété de codimension 1 de E.
- 2) V étant une variété triangulée munie de sa strati-fication naturelle, $E^O=V^{\hat{1}}$, $E^{\hat{1}}=V^{\hat{1}+\hat{1}}$.

On verra d'autres exemples au §.3 du chapitre II.

Lemme 1. Soit E un espace topologique muni d'une stratification de codimension 1. Soit $y \in E^1$; soit T l'image d'une carte transverse de E en y; on note \mathcal{L}_y l'espace des applications continues : (I, 0,]0,1]) \rightarrow (E, y, E), muni de la topologie C° .

Il y a un isomorphisme canonique : $\pi_{o}(\mathcal{Z}_{y}) \xrightarrow{\approx} \pi_{o}(T-y)$; chaque composante connexe de \mathcal{Z}_{y} est acyclique.

Démonstration: Soit φ une carte locale de E en y telle que la carte transverse correspondante ait T pour image; soit U l'image de φ . On considère sur T et sur U la stratification induite par E, et on note $\mathcal{L}_y(T)$, $\mathcal{L}_y(U)$ les espaces analogues \mathcal{L}_y . Il est clair que $\pi_0(\mathcal{L}_y(T))$ est canoniquement isomorphe à $\pi_0(T-y)$, et que chaque composante connexe de $\mathcal{L}_y(T)$ est acyclique. Or les injections naturelles $\mathcal{L}_y(T) \hookrightarrow \mathcal{L}_y(U) \hookrightarrow \mathcal{L}_y$ sont l'une et l'autre des équivalences d'homotopie faibles (la première parce que $\mathcal{L}_y(U)$ est canoniquement homéomorphe au produit de $\mathcal{L}_y(T)$ et de l'espace des chemins d'origine y dans $U \cap E^1$; la seconde, parce que tout compact de \mathcal{L}_y peut être déformé, par une homothétie convenable de \mathcal{L}_y , jusque dans l'image de $\mathcal{L}_y(U)$; ceci achève la démonstration.

Définitions. Soit γ un chemin : $I \to E$; soit t_o un point isolé de $\gamma^{-1}(E^1)$; on note : $\gamma(t_o) = y$. Si $t_o \in I$, le germe de γ en t_o définit un couple d'éléments de $\pi_o(\mathcal{L}_y)$; si ces éléments sont distincts, on dit que γ traverse E^1 en y pour la valeur t_o du paramètre. On dit que γ est un bon chemin si $\gamma^{-1}(E^1)$ n'a qu'un nombre fini d'éléments, et si pour chacun d'entre eux γ traverse E^1 . Un bon chemin traversant E^1 une seule fois est appelé chemin de traversée.

Lemme 2. Soient E, y, T comme au lemme 1. Soit \mathcal{C}_y l'espace des chemins de traversée de E en y (muni de la topologie C); soit R_y le complémentaire de la diagonale dans $\pi_o(T-y) \times \pi_o(T-y)$. Il y a un isomorphisme canonique : $\pi_o(\mathcal{C}_y) \approx R_y$, et chaque composante connexe de \mathcal{C}_y est acyclique.

Démonstration : Soit $\mathcal{C}_{y,\frac{1}{2}}$ la partie de \mathcal{C}_y formée des chemins donc le paramètre de traversée est $\frac{1}{2}$; compte tenu du lemme 1, il suffit de montrer que l'injection $\mathcal{C}_{y,\frac{1}{2}} \longrightarrow \mathcal{C}_y$ induit un isomorphisme pour tous les groupes d'homotopie. Il suffit donc de montrer que l'application τ qui à tout élément de \mathcal{C}_y associe son paramètre de traversée est une fibration localement triviale; or le groupe \mathcal{H} des homéomorphismes croissants de [0,1] opère à gauche dans \mathcal{C}_y (par la formule : $g_0\gamma = \gamma_0g^{-1}$) et dans [0,1] de manière compatible avec τ ; en plus, les opérations de \mathcal{H} dans [0,1] admettent des sections locales continues; comme il est bien connu (cf. [3], p.115, lemme 1) ceci auffit à établir la trivialité locale de τ .

2.2. Lemme des chemins élémentaires.

Soit E un espace topologique muni d'une stratification de codimension l . Dans ce n° , on suppose qu'on s'est donné un groupe topologique G opérant (à gauche) continuement dans E en respectant la stratification.

On désigne par (a_i) (pour i=0,1) la propriété suivante : "Pour tout $x \in E^1$, la strate de x coîncide au voisinage de x avec l'orbite de x, et l'application $g \mapsto g_0 x$ est une fibration localement triviale de G sur l'orbite de g."

On notera que les opérations de G dans E définissent de façon naturelle des opérations de l'espace des chemins de G dans l'espace $\mathscr C$ des chemins de traversée de E^1 (cf.2.1.) et, par restriction, des opérations de G dans $\mathscr C$.

Proposition 1. Soit E un espace topologique muni d'une stratification de codimension I a dans laquelle un groupe topologique
G opère en vérifiant les conditions (a) et (a) ci-dessus.
[Pour le 2°), la condition (a) suffit]. Soient & et & et & telles que & ce & on suppose :

(1) \mathscr{C}^* et \mathscr{C}^* sont stables pour les opérations de G

Pour tout x E E , on désigne par & (resp. &) :

- si $x \in \mathbb{R}^0$, le partie de \mathscr{C}^s (resp. \mathscr{C}^s) formée des chemins d'origine x;
- si x = E , la partie de & (reap, & ") formée des chemins qui passent par x ,
- l°) Pour tout βε € ", soit x l'origine de β , soit y son point de traversée.

Il y a un isomorphisme canonique

2°) Si la condition suivante est vérifiée s

(2)
$$\pi_{\mathcal{O}}(\mathcal{C}_{y}^{*},\mathcal{C}_{y}^{*}) = 0 \quad \text{pour tout } y \in \mathbb{R}^{1},$$

alors $\pi_0(\mathcal{C}_X^n,\mathcal{C}_X^n) = 0$ pour tout $x \in \mathbb{R}^0$.

- 3°) Soient plus généralement $\widetilde{\mathcal{C}}'$ et $\widetilde{\mathcal{C}}''$ deux sous-complexes de Kan du complexe singulier $\mathcal{S}(\mathcal{C})$ de \mathcal{C} , tels que $\widetilde{\mathcal{C}}'' \subset \widetilde{\mathcal{C}}''$; on note \mathcal{C}'' et \mathcal{C}''' les G-squelettes respectifs de $\widetilde{\mathcal{C}}'$ et $\widetilde{\mathcal{C}}'''$.
- (i) $\widetilde{\mathcal{C}}^*$ et $\widehat{\mathcal{C}}^*$ sont stables pour les opérations du groupe simplicial $\mathcal{G}(G)$ cans $\mathcal{G}(\mathcal{C})$.

Alors, pour tout $\beta \in C^n$, soit x l'origine de β , soit y son point de traversée ; il y a un isonorphisme ranonique :

$$\pi_{\mathbf{j}}(\widehat{\mathcal{C}}_{\mathbf{x}}^{*},\widehat{\mathcal{C}}_{\mathbf{x}}^{*};\beta) \approx \pi_{\mathbf{j}}(\widehat{\mathcal{C}}_{\mathbf{y}}^{*},\widehat{\mathcal{C}}_{\mathbf{y}}^{*};\beta)$$

Si, en plus :

(2)
$$\pi_{o}(\widetilde{\mathcal{C}}_{y}^{n},\widetilde{\mathcal{C}}_{y}^{n}) = 0$$
 pour tout $y \in \mathbb{F}^{1}$;

alors:
$$\pi_{\mathbf{Q}}(\widehat{\mathcal{C}}_{\mathbf{X}}^{n},\widehat{\mathcal{C}}_{\mathbf{X}}^{n})=0$$
 pour tout $\mathbf{x}\in\mathbb{E}^{0}$.

Corollaire: Soit E un espace topologique localement connexe par arcs muni d'une stratification de codimension l dans laquelle un groupe topologique G opère en vérifiant les conditions (a) et (a). Soit $\mathscr C'$ une réunion de composantes connexes de l'espace $\mathscr C$ des chemins de traversée de E^1 ; soit $\widetilde {\mathscr C}''$ une partie du complexe singulier $\mathscr S(\mathscr C')$ qui soit stable pour les opérations de $\mathscr S(G)$; on note $\mathscr C''$ le $\widetilde C$ -squelette de $\widetilde {\mathscr C}''$.

Alors, pour tout $\beta \in \mathcal{C}''$ soient x et y l'origine et le point de traversée de β , \mathcal{C}''_{β} la partie de \mathcal{C}'' formée des chemins ayant même point et même sens de traversée que β ; il y a un isomorphisme canonique

$$\pi_{j}(\mathscr{C}_{\mathbf{x}}^{i},\widetilde{\mathscr{C}}_{\mathbf{x}}^{ii};\beta) \approx \pi_{j=1}(\widetilde{\mathscr{C}}_{\beta}^{ii};\beta)$$
 pour tout $j\geqslant 1$.

Si, en plus, pour tout $\gamma \in \mathcal{C}^{\circ}$, il existe un élément de $\mathcal{C}^{"}$ ayant même point et même sens de traversée que γ , alors $\pi_{\circ}(\mathcal{C}^{\circ}_{x},\mathcal{C}^{"}_{x}) = 0 \quad \text{pour tout} \quad x \in E^{\circ}_{\circ}$

C'est la partie de ce corollaire relative au π_0 dont on fera l'usage le plus fréquent dans la suite sous le nom de "lemme des chemins élémentaires". En voici un énoncé autonome :

Lemme des chemins élémentaires. Soît E un espace topologique l.c.a. muni d'une stratification de codimension l dans laquelle un groupe topologique G opère en vérifiant la condition (a). Soit & une réunion de composantes connexes de l'espace & des chemins de traversée de E ; soit & une partie de & qui soit stable pour les opérations de G; les éléments de & sont appelés "chemins élémentaires".

Si, pour tout $\gamma \in \mathcal{C}^{\circ}$ il existe un chemin élémentaire ayant même point et même sens de traversée que γ ; alors tout $\gamma \in \mathcal{C}^{\circ}$ est homotope dans \mathcal{C}° à un chemin élémentaire, de façon que l'origine reste fixe au cours de l'homotopie.

⁽¹⁾ La notation $\pi_{j}(\mathscr{C}_{x}^{i},\widetilde{\mathscr{C}}_{x}^{ii};\beta)$ désigne le groupe $\pi_{j}(\mathscr{G}(\mathscr{C}_{x}^{i}),\widetilde{\mathscr{C}}_{x}^{ii};\beta))$.

Démonstration du corollaire : Scit G_e la composante connexe par arcs de l'élément neutre de G . Puisque E est localement connexe par arcs, le fait que les opérations de G vérifient les conditions (a_0) et (a_1) entraîne que les opérations de G_e vérifient les mêmes conditions. Or l'hypothèse faite sur \mathcal{C}^* entraîne que \mathcal{C}^* est stable pour les opérations de G_e ; on peut donc appliquer la proposition I avec G_e dans le rôle de G , de sorte que le seul point qui reste à vérifier est que, pour tout J > I , II y a un isomorphisme canonique : $\pi_J(\mathcal{C}^*_{\mathcal{F}} \circ \mathcal{C}^*_{\mathcal{F}} \circ \mathcal{C}^$

Démonstration de la proposition $1, 1^3$) et 2°) : Soit q l'application $\mathscr{C} \longrightarrow E^1$ obtenue en associant à tout élément de \mathscr{C} son point de traversée. Le groupe G opère dans \mathscr{C}° et dans E^1 de façon que le diagramme :

soit commutatif. On sait (cf. [3], poll5, lemme 1) que dans cette situation la condition (a₁) entraîne que $q \mid C'$ est une fibration localement triviale. On montre de même que $q \mid C''$ est une fibration localement triviale. C'est une propriété élémentaire des paires de fibrés localement triviaux de même base que, dans cette situation, pour tout $\beta \in C''$ (tel que $q(\beta) = y$) on a un isomorphisme canonique :

$$\pi_{j}(\mathcal{C}_{y}^{n},\mathcal{C}_{y}^{n};\beta) \xrightarrow{\approx} \pi_{j}(\mathcal{C}^{n},\mathcal{C}^{n};\beta)$$
 pour tout $j\geqslant 1$;

en plus (sans que la locale trivialité, ni par conséquent la condition (a₁), soient nécessaires), si $\pi_{o}(\mathcal{C}_{y}^{*} \circ \mathcal{C}_{y}^{*}) = 0$ pour tout $y \in \mathbb{E}^{1}$, alors $\pi_{o}(\mathcal{C}^{*} \circ \mathcal{C}^{n}) = 0$.

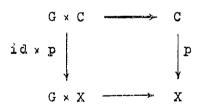
On procède exactement de la même façon pour l'application $p:\mathcal{C} \longrightarrow E^0$, qui à tout élément de \mathcal{C} associe son origine. Utilisant la propriété (a_0) , on montre que $p|\mathcal{C}'$ et $p|\mathcal{C}''$ sont des fibrations localement triviales, et on en déduît que pour tout $\beta \in \mathcal{C}''$ (tel que $p(\beta) = x$) on a un isomorphisme canonique

$$\pi_{j}(\mathcal{C}_{x}^{i},\mathcal{C}_{x}^{ii};\beta) \longrightarrow \pi_{j}(\mathcal{C}^{i},\mathcal{C}^{ii};\beta)$$
 pour tout $j \ge 1$.

En plus (mais ici la locale trivialité est nécessaire, et par conséquent la propriété (a)), si $\pi_0(\mathcal{C}^*,\mathcal{C}^*)=0$, alors $\pi_0(\mathcal{C}^*,\mathcal{C}^*)=0$ pour tout $\mathbf{x}\in\mathbf{E}^0$. Ceci achève la preuve du $\mathbf{1}^0$) et du $\mathbf{2}^0$).

Preuve du 3°) : C'est une transposition dans le cadre semi-simplicial de celle qui précède, On utilise les deux propriétés suivantes des fibrés de Kan (qui correspondent aux deux propriétés des fibrés localement triviaux utilisées ci-dessus) :

(*) Soient C et X deux complexes de Kan, et soit p un morphisme C -> X; soit G un groupe simplicial opérant simplicialement dans C et dans X de façon qu'îl y ait commutativité du diagramme



et que pour tout sommet x_0 de X, le morphisme $G \longrightarrow X$ (défini par : $G \ni g \longmapsto g$, $x_0^{(n)} \in X$) soit une fibration de Kan. Alors p est une fibration de Kan.

Démonstration : Soit $x \in X_n$; soit $k \in \{0, 1, ..., n\}$, et soient, pour $0 \le i \le n$ et $i \ne k$, $c_i \in C_{n-1}$ tels que :

Soit x_0 le sommet de x qui est opposé à la face $d_k x$; et soit q le morphisme $G \longrightarrow B$ défini par le complexe ponctuel $\{x_0\}$; puisque q est une fibration de Kan, on peut construire en grimpant sur le squelette un élément g de G_n tel que q(g) = x. Posons pour $i \neq k$:

$$d_i(g^{-1}), c_i = \tilde{c}_i$$

On a pour tout $i \neq k$:

 $p(\widehat{c}_{i}) = x_{0}^{(n-1)}$ D'autre part : $d_{i} \widehat{c}_{j} = d_{j-1} \widehat{c}_{i}$

donc, puisque C est de Kan, il existe $a \in C_n$ tel que $d_1 a = \widetilde{C_1}$ pour tout $i \neq k$. Toutes les (n-1)-faces de p(a), à l'exception de la $k^{\text{ème}}$, sont en x_0 ; il existe donc $\widetilde{g} \in G_n$, dont toutes les (n-1)-faces sauf la $k^{\text{ème}}$ sont en e, tel que $q(\widetilde{g}) = p(a)$.

$$g \cdot \tilde{g}^{-1} \cdot a = c$$

On a :

Posons:

$$p(c) = g.\tilde{g}^{-1}.p(a) = g.x_0^{(n)} = x;$$

et, pour $i \neq k$:

$$d_i c = d_i g \cdot d_i \widetilde{g}^{-1} \cdot d_i a = d_i g \cdot d_i a = d_i g \cdot \widetilde{c}_i = c_i$$
].

(**) Soient C un complexe de Kan, B un sous-complexe de Kan de C, X un complexe de Kan, et p un morphisme C \longrightarrow X; on suppose que p et p B sont des fibrations de Kan. Pour tout

 $x \in X$, soient B et C les fibres respectives de B et C situées au-dessus de x; le morphisme naturel :

$$\pi_{\mathbf{j}}(C_{\mathbf{x}}, B_{\mathbf{x}}; b) \rightarrow \pi_{\mathbf{j}}(C, B; b)$$

est un isomorphisme pour tout sommet b de B_{x} et pour tout $j \ge 1$. En plus, il y a équivalence entre la propriété : $\pi_{o}(C,B) = 0$ et la propriété : $\pi_{o}(C_{x},B_{x}) = 0$ pour tout $x \in X$.

[Démonstration immédiate à l'aide des suites exactes d'homotopie du triple (C , B , B , B , eu du triple (C , C , B , B)] .

Application des propriétés (*) et (**) : le groupe simplicial $\mathcal{L}(G)$ opère dans $\widehat{\mathcal{C}}$ et $\mathcal{L}(E^1)$ de façon compatible avec le morphisme $\mathcal{L}(G)$; il résulte donc de la propriété (*) que ce morphisme est une fibration de Kan. On montre de même que $\mathcal{L}(G)$ est une fibration de Kan ; on applique la propriété (**) à cette paire de fibrations. Puis on procède exactement de la même façon pour le morphisme $\mathcal{L}(G)$.

§.3. Stratification naturelle des espaces de fonctions rélles.

Dans ce paragraphe, W désigne soit une variété compacte sans bord, soit un cobordisme compact de bord $V \cup V'$; dans le premier cas, on désigne par $\mathscr F$ l'espace des fonctions réelles de classe C^{∞} sur W; dans le second cas, on désigne par $\mathscr F$ l'espace des fonctions C^{∞} : $(W, V, V') \longrightarrow (I, 0, 1)$ sans point critique sur le bord (dont l'étude est l'objet principal de ce travail). On désigne par $\mathscr G$ le groupe Diff $W \times D$ ou, lorsque W est un cobordisme, le groupe U opère à gauche dans $\mathscr F$ par la formule :

(1)
$$g \times \mathcal{F} \ni ((g,g'),f) \longmapsto g' \circ f \circ g^{-1} \in \mathcal{F}$$
.

3.1. Codimension d'un point critique, d'une valeur critique, d'une fonction; stratification de F.

J. Mather a proposé la définition directe suivante de la codimension d'un élément f de \mathcal{F} : c'est la codimension de l'image de l'"application linéaire tangente" (1) à l'application (g,g') \mapsto (g,g').f de g dans \mathcal{F} . Pour tout entier $j \ge 0$, on note \mathcal{F}^j la partie de \mathcal{F} formée des fonctions de codimension j; on note \mathcal{F}^∞ l'espace des fonctions de codimension infinie. La suite \mathcal{F}^0 , \mathcal{F}^1 ,..., \mathcal{F}^j ,... est une stratification de $\mathcal{F}-\mathcal{F}^\infty$ au sens de I.l.l.; on l'appelle (abusivement) stratification naturelle de \mathcal{F} . Elle est respectée par les opérations du groupe g.

En fait, nous travaillerons toujours sur un sous-espace de \mathcal{F} , contenant notamment \mathcal{F}^0 , \mathcal{F}^1 , \mathcal{F}^2 et toutes les fonctions de Morse, sur lequel il est possible de définir la codimension (de façon équivalente à celle qui précède) par une formule explicite simple ; c'est toujours cette définition que nous utiliserons.

Définition 1. Soit $f \in \mathcal{F}$; soit c un point critique de f. On appelle <u>codimension du point critique</u> c la codimension de l'idéal engendré par les germes des dérivées partielles premières de f en c dans l'anneau des germes de fonctions $C^{\infty}: W \to \mathbb{R}$, nulles en c.

Classification des points critiques de codimension 0, 1, 2.

[On désigne dans la suite par n la dimension de W].

a) Les points critiques de codimension zéro sont les points critiques quadratiques non dégénérés, encore appelés <u>points critiques du type de Morse</u>. Il est bien connu que leur forme canonique est :

(2)
$$-x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_n^2$$
;

⁽¹⁾ Voir la définition précise en [9] ou [17].

- i est appelé indice du point critique.
- b) Les points critiques de codimension l sont les points d'inflexion généralisés, encore appelés points de naissance; leur forme canonique (cf. par exemple [3] pp. 17-18) est:

(3)
$$-x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_{n-1}^2 + x_n^3$$
;

- i s'appelle encore l'indice du point de naissance;
- c) Les points critiques de codimension 2 sont <u>les points</u> critiques du type queue d'aronde; leur forme canonique est:

$$(4) - x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_{n-1}^2 - x_n^4;$$

i s'appelle encore <u>l'indice</u> du point critique.

On remarquera que tout point critique c appartenant à l'un des trois types ci-dessus vérifie la propriété suivante :

(*) Le germe en c de la fonction $x \mapsto f(x) - f(c)$ appartient à l'idéal engendré par les germes des dérivées partielles premières de f en c .

Définition 2. Soit $f \in \mathcal{F}$; soit α une valeur critique de f telle que tous les points critiques situés au niveau α vérifient la propriété (*). On appelle codimension de la valeur critique α le nombre de points critiques de $f^{-1}(\alpha)$, diminué d'une unité.

<u>Définition 3</u>. Soit $f \in \mathcal{F}$; on suppose que tous les points critiques de f sont isolés et vérifient la propriété (*). Soit :

- $v_1(f)$ = somme des codimensions des points critiques de f; $v_2(f)$ = somme des codimensions des valeurs critiques de f;
 - (5) On pose codimension $f = v_1(f) + v_2(f)$.

Description de FO.

La codimension d'un élément $f \in \mathcal{F}$ ne peut être nulle que si $v_1(f) = v_2(f) = 0$; autrement dit tous les points critiques sont du type de Morse, et toutes les valeurs critiques sont distinctes; conformément à la terminologie de Thom, nous dirons qu'une telle fonction est excellente. C'est un résultat classique de Morse (que l'on peut déduire facilement du théorème de transversalité de Thom; cf. par exemple [3], p.12) que l'espace \mathcal{F}^0 des fonctions excellentes est ouvert et dense dans \mathcal{F} .

Description de F1.

D'après (5), on peut avoir codimension f =1 dans deux cas :

- a) $v_1(f) = 1$ et $v_2(f) = 0$; on dit alors que f est un point de naissance; on note \mathcal{F}^1_{α} la partie correspondante de
- b) $v_1(f) = 0$ et $v_2(f) = 1$; on dit alors que f est un point de croisement; on note \mathcal{F}_{β}^1 la partie correspondante de \mathcal{F}_{β}^1 .
- Il est clair que \mathcal{F}_{α}^{l} et \mathcal{F}_{β}^{l} sont tous deux ouverts (et par conséquent fermés) dans \mathcal{F}^{l} . On montre en outre les propriétés suivantes (cf. [3], pp. 29-35).
- 1°) \mathcal{F}^1 est une sous-variété de codimension 1 de $\mathcal{F}^0 \cup \mathcal{F}^1$; de ceci résulte en particulier que $\mathcal{F}^0 \cup \mathcal{F}^1$ est ouvert dans \mathcal{F} , et que $(\mathcal{F}^0, \mathcal{F}^1)$ est une stratification de codimension 1 de $\mathcal{F}^0 \cup \mathcal{F}^1$ au sens de I.2.1.
- 2°) L'espace des bons chemins à valeurs dans $\mathcal{F}^{\circ} \cup \mathcal{F}^{1}$ (cf. I.2.1., définition 2) est dense dans l'espace de tous les chemins à valeurs dans \mathcal{F} , muni de la topologie C° . De ceci résulte en particulier que pour tout $f \in \mathcal{F}^{\circ}$, l'application naturelle : $\pi_{1}(\mathcal{F}^{\circ} \cup \mathcal{F}^{1}; f) \longrightarrow \pi_{1}(\mathcal{F}; f)$ est surjective, ce qu'on traduit en disant que " \mathcal{F} ($\mathcal{F}^{\circ} \cup \mathcal{F}^{1}$) est de codimension ≥ 2 dans \mathcal{F} ".

3°) Les opérations de \mathcal{G} dans \mathcal{F} respectent \mathcal{F}^0 , \mathcal{F}^1_{α} , \mathcal{F}^1_{β} . En plus, les propriétés (a_0) et (a_1) de I.2.2. sont satisfaites, autrement dit, pour tout $f \in \mathcal{F}^0 \cup \mathcal{F}^1$, la strate de f coïncide au voisinage de f avec l'orbite de f pour les opérations de \mathcal{G} , et l'application

est une fibration localement triviale de g sur l'orbite de f. [Lorsque $f \in \mathcal{F}^{\circ}$, c'est un g = g particulier du théorème de fibration de Mather, valable quel que soit la variété but dans le cas où f est stable (cf. [9]); la démonstration dans le cas qui nous intéresse ici, c'est-à-dire $f \in \mathcal{F}^{\circ}$ ou $f \in \mathcal{F}^{\circ}$, ou même lorsque $f \in \mathcal{F}^{\circ}$, n'offre aucune difficulté (voir à l'Appendice, $g \in \mathcal{F}^{\circ}$), propositions $g \in \mathcal{F}^{\circ}$, des indications sur la méthode de démonstration); le même énoncé lorsque la codimension de $g \in \mathcal{F}^{\circ}$ est quelconque est conjecturé, mais non démontré à ma connaissance].

Des familles de "chemins élémentaires" relatives à \mathfrak{F}^1_β et \mathfrak{F}^1_α sont définies respectivement aux chapitres II et III, et jouent un rôle essentiel dans ces chapitres et dans les suivants.

Description de 52 .

D'après (5), les divers cas possibles sont les suivants :

- a) $v_1(f) = 2$ et $v_2(f) = 0$; ce cas se décompose en deux :
- l) f a un point critique du type queue d'aronde, et toutes ses autres singularités (points et valeurs critiques) sont de codimension zéro.
- 2) f a deux points de naissance, et toutes les autres singularités sont de codimension zero (en particulier, les niveaux des deux naissances sont distincts).
 - b) $v_1(f) = v_2(f) = 1$; ce cas se décompose en deux s
 - 1) f a un point de naissance et une valeur critique

double correspondant à deux points de Morse ; les autres singularités sont de codimension zéro.

- 2) f a un point de naissance et un point de Morse au même niveau ; les autres singularités sont de codimension zéro.
 - c) $v_1(f) = 0$ et $v_2(f) = 2$; ce cas se décompose en deux :
- l) f a une valeur critique triple, et les autres singularités sont de codimension zéro (en particulier tous les points critiques sont de Morse).
- 2) f a deux valeurs critiques doubles, et les autres singularités sont de codimension zéro.

L'étude locale et semi-locale de ces différents cas est faite au chapitre IV; en fait le cas c) est un cas particulier de celui dont l'étude fait l'objet du n° suivant (3.2.).

3.2. Stratification de l'espace des fonctions de Morse (étude locale).

Définition 4. Soit $f \in \mathcal{H}$; on dit que f est une <u>fonction de Morse</u> si tous les points critiques de f sont de codimension zéro, autrement dit sont du type de Morse.

Il résulte de la définition 3 que la codimension d'une fonction de Morse f est égale à la somme des codimensions de ses valeurs critiques ; ceci permet de définir en toute codimension la stratification naturelle de l'espace des fonctions de Morse. Les opérations de g dans F laissent stable l'espace des fonctions de Morse, et ont relativement à la stratification de cet espace les mêmes propriétés que relativement à celle de FUFIUF2, c'est-à-dire :

- 1) elles respectent la stratification ;
- 2) pour toute fonction de Morse f, la strate de f coincide au voisinage de f avec l'orbite de f, et l'application

 $(g,g^{\theta}) \mapsto (g,g^{\theta}), f$ de g sur cette orbite est une fibration localement triviale.

Deux éléments de $\mathscr F$ sont dits <u>isotopes</u> s'ils sont dans la même orbite pour les opérations du groupe $\mathscr G_e$ (composante connexe de l'élément neutre dans $\mathscr G$). Les propriétés ci-dessus des opérations de $\mathscr G$ peuvent s'exprimer comme suit : <u>soient</u> fet f' <u>deux fonctions de Morse</u> (ou encore, <u>deux éléments de $\mathscr F^{\circ} \cup \mathscr F^{\circ} \cup \mathscr F^{\circ}$); pour que fet f' <u>soient isotopes</u>, <u>il faut et il suffit qu'ils appartientent à la même cocellule</u> (cf. I.l.) de la stratification de $\mathscr F$.</u>

On va donner de la stratification de l'espace des fonctions de Morse une définition plus adaptée à son étude locale.

<u>Définition 5.</u> Soit q un entier >0; on appelle <u>stratification</u> symétrique de \mathbb{R}^q celle qui est définie par le système d'égalités

$$x_j = x_{j^{(i)}}$$
 pour $1 \le j \le q$;

(la k-ème strate, pour $0 \le k \le q-1$, est la partie de \mathbb{R}^q formée par les points dont les coordonnées vérifient exactement k équations indépendantes de ce système).

Soit $f \in \mathcal{F}$ une fonction de Morse ayant q points critiques; on choisit un ordre de l'ensemble critique de f, c'est-à-dire une bijection μ de $\{1,2,\dots,q\}$ sur cet ensemble ; on note $\mu(j) = c_j$ (pour $j=1,2,\dots,q$); on note c le point $\{c_1,\dots,c_q\}$ de \mathbb{W}^q .

Soient U_1 , U_2 , ..., U_q des voisinages ouverts deux à deux disjoints de c_1 , ..., c_q ; soit V l'ouvert de $\mathcal F$ défini par : $f^e \in \mathcal V$ si et seulement si pour tout j=1, ..., q_p f^e a dans U_j un point critique du type de Morse (noté c_j^e), et si f^e n^p a ucun autre point critique; on note $\mathcal F_p$ l'application qui à tout $f^e \in \mathcal V$ associe le point $c^e = \{c_1^e, \ldots, c_q^e\}$ de W^q .

Lemme 1. 1) La stratification naturelle de ey est l'image

réciproque de la stratification symétrique de R par l'application nu définie par

$$\eta_{\mu}(\mathbf{f}^{\mathfrak{g}}) = (\mathbf{f}^{\mathfrak{g}}(\mathbf{c}_{1}^{\mathfrak{g}}), \mathbf{f}^{\mathfrak{g}}(\mathbf{c}_{2}^{\mathfrak{g}}), \dots, \mathbf{f}^{\mathfrak{g}}(\mathbf{c}_{q}^{\mathfrak{g}})).$$

2) L*application η_{μ} est une submersion topologique de ∇ dans \mathbb{R}^{Q} .

Démonstration : Le 1) est une conséquence immédiate des définitions.

Preuve de 2). Soit \mathcal{G}_U le groupe des difféomorphismes de W à support dans $U_1 \cup U_2 \cup \cdots \cup U_q$; le groupe \mathcal{G}_U opère à gauche dans V par la formule habituelle : $g, f' = f' \circ g^{-1}$; il opère à gauche dans $U_1 \times U_2 \times \cdots \times U_q$ par la formule

$$g_*(x_1,...,x_q) = ((g|U_1).x_1,...,(g|U_q).x_q).$$

Le diagramme suivant est commutatif :

Il existe sur un voisinage $\mathfrak X$ de c une section σ pour l'application $g \longmapsto g_{\circ} c$ de g_{U} dans $U_{1} \times \cdots \times U_{q}$; on note $\mathfrak V_{c}$ la fibre $\xi_{u}^{-1}(c)$. L'application

$$\mathfrak{T} \times \nabla_{\mathbf{c}} \ni (\mathbf{x}, \mathbf{f}^{\circ}) \longmapsto \sigma(\mathbf{x}) \cdot \mathbf{f}^{\prime} \in \xi_{\mu}^{-1}(\mathfrak{X})$$

est une trivialisation de ξ_{μ} au-dessus de $\mathfrak X$. Les opérations de g_U dans $\mathfrak V$ laissant l'application η_{μ} invariante, cette trivialisation a la propriété que la projection sur $\mathfrak V_{\mathbf C}$ qu'elle définit au voisinage de $\mathfrak V_{\mathbf C}$ laisse l'application η_{μ} invariante. On est donc ramené à montrer que la restriction de η_{μ} à $\mathfrak V_{\mathbf C}$ est une submersion.

Or l'application η_{μ} coı̈ncide sur ∇_{c} avec l'application linéaire affine ℓ définie par $\ell(f^{\circ}) = (f^{\circ}(c_{1}), \dots, f^{\circ}(c_{q}))$. Soit ω_{j} (pour $j=1,2,\dots,q$) une fonction en cloche à support dans U_{j} ayant son maximum (égal à 1) en c_{j} . Posons :

$$\rho(x_1, ..., x_q) = f + \sum_{j=1}^{q} (x_j - f(c_j))\omega_j;$$

l'application ρ donne une section de ℓ au-dessus d'un voisinage assez petit de $\ell(f)$; donc la restriction de η_{μ} à ∇_{c} est une submersion affine.

L'espace des fonctions de Morse à q points critiques est ouvert dans celui de toutes les fonctions de Morse. Il résulte donc du lemme l et du caractère combinatoire de la stratification symétrique de $\mathbb{R}^{\mathbb{Q}}$ le

Corollaire. La stratification naturelle du sous-espace de formé des fonctions de Morse est combinatoire (cf. I.l.3., définition 5).

Remarque. Ce qui précède s'applique aussi bien au sous-espace de F formé des fonctions de Morse ayant un jet donné le long de V ; il suffit, dans la démonstration, de remplacer \mathcal{G}_U par son sous-groupe formé des difféomorphismes qui sont tangents à l'identité le long de V .

\$.4. Plongements d'une variété de dimension i-l dans une variété munie d'une sous-variété de codimension i.

Dans ce paragraphe V désigne une variété compacte, connexe, sans bord, de dimension n-1; X (de dimension i-1) et Y (de codimension i) sont deux sous-variétés de V, fermées et disjointes; on suppose que Y est sans bord; on note Y_1, \ldots, Y_q les composantes connexes de Y; on note f_0 l'in-jection de X dans V.

4.1. Stratification de l'espace des plongements de X dans V définie par Y; chemins élémentaires.

On note $\mathcal X$ l'espace des plongements de $(X,\partial X)$ dans (V,V-Y). La donnée de Y définit une stratification de $\mathcal X$ dont on va se borner à décrire les deux premières strates; soient $\mathcal X^O$ et $\mathcal X^{\frac{1}{2}}$ les parties de $\mathcal X$ respectivement définies par les conditions suivantes :

X°: l'image est disjointe de Y;

x 1 : l'image rencontre Y en un seul point, avec contact d'ordre zéro en ce point [autrement dit, les espaces tangents en ces points sont en position générique].

Il résulte des théorèmes classiques de transversalité que x° est ouvert et dense dans x, et que x^1 est une sous-variété de codimension 1 de $x^\circ \cup x^1$; donc (x°, x^1) définit une stratification de codimension 1 de $x^\circ \cup x^1$ au sens de 2.1., définition 1. En plus $x = (x^\circ \cup x^1)$ est "de codimension 2" dans x; [de façon précise, tout lacet relatif de (x, x°) peut être approché par un chemin de $x^\circ \cup x^1$ qui soit "bon" au sens de 2.1., définition 2].

Soit $\mathcal G$ la composante connexe de l'élément neutre dans le groupe des difféomorphismes de V qui laissent stable Y. Le groupe $\mathcal G$ opère à gauche dans $\mathcal X$ en laissant $\mathcal X^{\circ}$ et $\mathcal X^{1}$ stables. Il résulte du théorème de fibration des espaces de plongements (cf. [3], p. 118) que les opérations de $\mathcal G$ vérifient la condition (a) de I.2.2., autrement dit : toutes les projections de $\mathcal G$ sur les orbites des points de $\mathcal X^{\circ}$ sont des fibrations localement triviales. [La condition (a₁) de I.2.2. est satisfaite également, mais nous ne l'utiliserons pas].

Chemins élémentaires. On considère le modèle $D^{i-1} \times I$, et une fonction en cloche $\overline{\omega}$ relative à \mathbb{R}^{i-1} , de support D^{i-1} , égale à 1 à l'origine. On définit un "chemin modèle" μ dans l'espace des applications de D^{i-1} dans $D^{i-1} \times I$ en posant :

(1)
$$\mu_{t}(x) = (x, t\overline{w}(x))$$
 pour $(x, t) \in D^{i-1} \times I$.

Définition 1. Soit $f' \in \mathfrak{A}$, d'image notée X'. Un plongement ϕ de $D^{1-1} \times I$ dans V est dit <u>adapté à X' et à Y s'il vérifie les conditions suivantes :</u>

(2)
$$\begin{cases} \phi(D^{i-1} \times 0) \in X^{i} - \partial X^{i}; \\ F \cap \phi(D^{i-1} \times [0,1]) = \emptyset; \end{cases}$$

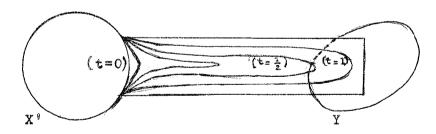
(3) (image ϕ) \cap Y = ϕ (0, $\frac{1}{2}$), et ϕ est transversal à Y.

Définition l° . On appelle chemin élémentaire d'origine f' défini par ϕ le chemin défini par $f_{t} = \psi_{t}$ o f° pour $t \in I$, où ψ_{t} est le plongement de X dans V défini par :

$$\psi_{\mathbf{t}}(\mathbf{x}) = \left\{ \begin{array}{ll} \phi \circ \mu_{\mathbf{t}} \circ \phi^{-1} \circ \mathbf{x} & \text{pour } \mathbf{x} \in (\text{image } \phi) \cap \mathbf{X} \end{array} \right\}$$

$$\left\{ \begin{array}{ll} \mathbf{x} & \text{pour tous les autres points de } \mathbf{X}. \end{array} \right.$$

Il est clair que tout chemin élémentaire est un chemin de traversée de x^1 au sens de 2.1., définition 1, (il y a traversée de x^1 pour la seule valeur $\frac{1}{2}$ du paramètre ; cf. fig.1). Il est clair que la famille des chemins élémentaires est stable



figol

pour les opérations de $\mathcal G$. Enfin, pour tout $f \in \mathfrak X^1$, chacun des deux sens de traversée de $\mathfrak X^1$ en f'' peut être réalisé par un chemin élémentaire. [En effet, soit X'' l'image de f''; soit y le point d'intersection de X'' et de Y; on choisit un plongement d'orientation positive de (D^{i-1}, O) dans $(X''-\partial X'', y)$, puis on le prolonge en un plongement

$$\widetilde{\phi}$$
 : $D^{i-1} \times [-1,+1] \longrightarrow V$

transversal à Y et ne rencontrant Y qu'au seul point y (cf. fig.2). Soit $\tilde{\mu}_{1/2}$ un difféomorphisme de $D^{i-1} \times [-1,+1]$ tangent d'ordre ∞ à l'identité le long du bord, et prolongeant $\mu_{1/2}$ (défini par la formule (1)). Soit ψ

le plongement de X" dans V défini par :

$$\psi(x) = \begin{cases} \widetilde{\phi} \circ \widetilde{\mu}_{1/2}^{-1} \circ \widetilde{\phi}^{-1} \cdot x \text{ pour } x \in (\text{image } \widetilde{\phi}) \cap X''; \\ x \text{ pour tous les autres points de } X''; \end{cases}$$

Le plongement $\widehat{\phi}$ o $\widehat{\mu}_{1/2}^{-1}$ est adapté à $\psi(X")$ et à Y; le chemin élémentaire qu'il définit traverse \mathfrak{X}^1 en f". Pour obtenir un chemin élémentaire traversant dans le sens opposé, il suffit de remplacer $\widehat{\phi}$ par son composé avec la symétrie de $D^{1-1} \times [-1,+1]$ par rapport à $D^{1-1} \times 0$. Toutes les conditions du "lemme des chemins élémentaires" (cf.2.2.) sont donc satisfaites; on en déduit le

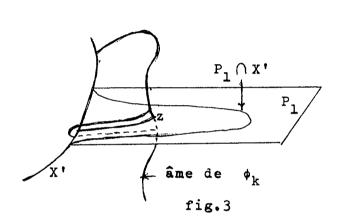
Lemme 1. Pour tout $f \in x^0$, tout chemin de traversée de x^1 d'origine f est homotope (dans l'espace des chemins de traversée) à un chemin élémentaire, de façon que l'origine reste fixe au cours de l'homotopie.

Corollaire. On suppose : 2 < i < n-2 .

- 1°) Tout lacet relatif γ de (x,x°) est homotope avec origine fixe (et extrémité restant dans x°) au composé d'un nombre fini de chemins élémentaires à supports disjoints.
- 2°) Si en plus le fibré normal à X admet une section, alors tout lacet relatif γ de (x, x°) est homotope (comme au 1°) à un chemin tel que l'application $X \times I \longrightarrow V$ associée soit un plongement.

Démonstration :

l°) On sait que γ peut être déformé en un bon chemin par une petite homotopie ; on suppose donc que γ est bon, et on démontre la propriété par récurrence sur le nombre de points où γ coupe x^1 . La propriété est vraie si ce nombre est égal à 1: c'est le lemme 1 ; supposons-la démontrée si ce nombre est $\leq k-1$, et supposons que γ coupe x^1 en k points. D'après l'hypothèse de récurrence, on peut supposer que γ est de la forme $\gamma' \cdot \beta_k$, où γ' est composé de k-1 chemins élémentaires, de supports (notés P_1, \dots, P_{k-1}) disjoints, et où β_k est élémentaire. On note f' l'extrémité de γ' , et X' l'image de f'.



Soit φ un plongement adapté à X' et Y, définissant β . On déplace d'abord la "surface d'attachement" de φ (c'est-à-dire l'image de D^{i-l} × O) par une isotopie de V laissant stable X', de façon à se ramener au cas où cette surface d'attachement est disjointe de P₁ P_{k-l} .

On met alors l'"âme" de ϕ_k (c'est-à-dire l'image de $0 \times I$) en position générale par rapport à P_1, \dots, P_k , de sorte que l'intersection est vide si $i \le n-3$, et se compose d'un nombre fini de points si i=n-2. Soit z un point où l'âme de ϕ_k rencontre par exemple P_1 ; on joint z au bord de P_1 par un chemin ne rencontrant ni $P_1 \cap X'$, ni $P_1 \cap Y$, ni les autres points où P_1 rencontre l'âme de ϕ_k ; ce chemin permet de définir une isotopie de V laissant fixes X' et Y et modifiant l'âme de ϕ_k de façon à supprimer le point z; on se ramène ainsi au cas où l'âme de ϕ_k est disjointe de P_1, \dots, P_{k-1} . On rétracte alors ϕ_k sur un voisinage suffisamment petit de son âme pour que le support P_k de ϕ_k soit disjoint de P_1, \dots, P_{k-1} .

2°) On suppose que l'origine de γ est f_0 . D'après le l°) on peut supposer que γ est composé d'un nombre fini de chemins élémentaires β_1,\ldots,β_k , respectivement définis par des

plongements adaptés ϕ_1,\dots,ϕ_k , d'images disjointes; on note B_1,\dots,B_k les surfaces d'attachement correspondantes. Puisque le fibré normal à X admet une section, il existe un plongement $\Phi: X \times I \longrightarrow V$ (tel que $\Phi(x,0) = x$ pour tout $x \in X$), compatible avec Φ_1,\dots,Φ_k . On pose, pour $j=1,\dots,k$:

$$\overline{w}_{j}(x) = \begin{cases} \overline{w} & \phi_{j}^{-1}(x) & \text{pour } x \in B_{j}; \\ 0 & \text{pour } x \in X - B_{j}. \end{cases}$$

Soit $\overline{\omega}^{\epsilon}$ une fonction positive, suffisamment petite, dont le support est un voisinage suffisamment petit du complémentaire de $B_1 \cup B_k$ dans X; on pose, pour tout $u \in I$:

$$\overline{w}_{u}^{"} = u \overline{w}' + \sum_{j=1}^{k} \overline{w}_{j}$$

et
$$\gamma_{t,u}(x) = \Phi(x,t \overline{\omega}_{u}''(x))$$
.

On a : $\gamma_{t,0} = \gamma_t$; et l'application (x,t) $\longrightarrow \gamma_{t,1}(x)$ est un plongement.

4.2. <u>Le morphisme</u> α_0 ; <u>conditions suffisantes de surjectivité</u> et de bijectivité.

On suppose dans la suite que V, X et Y sont orientables, et qu'on a choisi une orientation sur X .

Définition du morphisme α_j . Soit j un entier $\gg 0$. Soit χ un représentant de χ ; c'est une application de (D^{j+1},S^j) dans (x,x^o) ; χ définit canoniquement une application de $(D^{j+1},S^j)\times X$ dans (V,V-Y); l'image de la classe fondamentale de $D^{j+1}\times X$ par cette dernière application est un élément de $H_{i+j}(V,V-Y)$. On note α_j le morphisme : $\pi_{j+1}(x,x^o;f_o) \longrightarrow H_{i+j}(V,V-Y)$ ainsi défini.

Propriétés particulières du morphisme α_o : $\pi_1(x, x^o; f_o) \longrightarrow H_i(V, V-Y)$

1) Si on oriente V et Y, on a par dualité de Poincaré

des isomorphismes canoniques :

$$H_{i}(V,V-Y) \approx H^{n-i-1}(Y) \approx H_{O}(Y)$$
;

le groupe $H_0(Y)$ est canoniquement isomorphe à \mathbb{Z}^q . Ainsi α_0 associe à tout élément $\hat{\chi}$ de $\pi_1(\mathfrak{X},\mathfrak{X}^0;f_0)$ une suite ξ de q entiers ξ_1,\ldots,ξ_q ; pour tout $k=1,\ldots,q$, la composante ξ_k de ξ est égale au nombre algébrique d'intersection de $\alpha_0(\hat{\chi})$ et de la classe fondamentale de la composante Y_k de Y.

- 2) Soit $\pi_1(\mathfrak{X},\mathfrak{X}^\circ)$ l'ensemble des classes d'homotopie des lacets relatifs de $(\mathfrak{X},\mathfrak{X}^\circ)$ (sans point de base). On peut prolonger α_0 en une application $\widetilde{\alpha}_0:\pi_1(\mathfrak{X},\mathfrak{X}^\circ) \longrightarrow H_1(V,V-Y)$; $\widetilde{\alpha}_0$ est un morphisme pour la loi de composition (non partout définie) de $\pi_1(\mathfrak{X},\mathfrak{X}^\circ)$ et l'addition de $H_1(V,V-Y)$.
- 3) D'après la propriété 2) ci-dessus, il y a <u>équivalence</u> entre l'injectivité de α_0 et le fait que l'image réciproque de zéro par α_0 soit la classe neutre de $\pi_1(x,x^0;f_0)$ or cette dernière propriété s'interprète comme suit : "Toute isotopie de X sur (V,V-Y) dont l'invariant à valeurs dans $H_1(V,V-Y)$, <u>défini par α_0 est nul, peut être déformée avec extrémités fixes en une isotopie sur V-Y" (La nullité de cet invariant est dans tous les cas une condition nécessaire pour qu'une telle déformation soit possible).</u>

Proposition 2. Soit V (de dimension n-1) une variété orientable, compacte, connexe, sans bord; soient X (de dimension i-1) et Y (de codimension i) deux sous-variétés de V fermées, orientables, disjointes; on suppose que Y est sans bord; on note f_0 l'injection de X dans V. Soient x l'espace des plongements de (X, ∂ X) dans (V,V-Y) et f_0 l'espace des plongements de X dans V-Y . Le choix d'une orientation f_0 sur X détermine un morphisme f_0 f_1 f_0 f_0 f_0 f_1 f_0 f_0 f_0 f_1 f_1 f_1 f_2 f_2 f_2 f_3 f_4 f_5 f_6 f_6 f_7 f_8 f_9 f_9

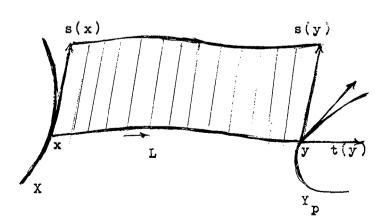
1°) o est surjectif si l'une des conditions suivantes est remplie :

 $⁽s_1)$ $2 \le i \le n-2$

- (s₂) i=l et V-Y est connexe;
- (s₃) i=n-l et V-X est connexe;
- 2°) α_0 est bijectif si $n \ge 6$, $\pi_1(V) = 0$ et si l'une des trois conditions suivantes est remplie :
 - (b₁) 3<i<n-3;
 - (b₂) i=2, et $\pi_1(V-Y)=0$ ou Y borde un disque de V;
 - (b₃) i=n-2, et $\pi_1(V-X) = 0$ ou X borde un disque de V.

<u>Démonstration</u>: On choisit une orientation sur V et sur Y, ce qui détermine une bijection $H_i(V,V-Y) \approx \mathbb{Z}^q$ (cf. propriété l) ci-dessus).

l°) D'après l'additivité de α_{o} (cf. propriété 2)) il suffit de montrer que pour toute composante connexe Y_{p} de Y, il existe, pour $\varepsilon=+1$ et pour $\varepsilon=-1$, un lacet relatif γ de $(\mathcal{X},\mathcal{X}^{O})$, d'origine f_{o} , dont l'invariant $\xi\in\mathbb{Z}^{q}$ soit tel que $\xi_{p}=\varepsilon$, les autres composantes étant nulles. Il est commode de construire un tel γ qui soit <u>élémentaire</u>. Tout revient à construire un arc orienté sans point double L joignant X à Y_{p} dans le complémentaire de $X\cup Y$ et un champ s de (i-1)-repères transverses à L, tels que (en désignant par x l'origine et par y l'extrémité de L, et par t(y) un vecteur tangent à L en



y), s(x) soit un repère
positif de l'espace tangent

C(X), et que
[t(y),s(y), repère positif
de Cy(Y)] soit un repère
de Cy(V), d'orientation
positive s'il s'agit de
réaliser e = +1, négative
s'il s'agit de réaliser
e = -1. On vérifiera sans
difficulté que, sous chacune

des hypothèses ci-dessus, l'un et l'autre sont possibles.

- 2°) Chacune des hypothèses (b) entraîne (s₁), et par conséquent la surjectivité de 🔍 , On va ici démontrer l'injectivité avec l'hypothèse supplémentaire que le fibré normal à X admet une section (hypothèse qui est vérifiée dans toutes les applications que nous avons en vue). Soit y un lacet relatif de (x,x°) , d'origine f_{\circ} ; d'après le 2°) du corollaire du lemme 1, on peut déformer Y de façon que l'application X x I -> V associée soit un plongement; soit Z l'image de ce plongement; si on suppose en plus que $\alpha_0(\dot{\gamma}) = 0$, alors le nombre algébrique d'intersection de Z et de Y est zéro ; chacune des conditions (b) est suffisante pour permettre dans ces conditions l'appplication du procédé de Whitney (cf. [10], théorème 6.6., p.71), dont l'application répétée fournit une isotopie de (Z, ZZ) sur (V, V-Y) qui aboutit à disjoindre Z de Y 6 Ceci, d'après la propriété 3) ci-dessus, suffit à établir l'injectivité de a .
- Remarques. 1. On peut s'affranchir de la condition sur le fibré normal à X (qui est d'ailleurs automatiquement remplie si 2i < n+1) par un argument de dualité dû à L. Siebenmann.
- 2. On peut montrer directement l'injectivité de α_0 en utilisant seulement le l°) du corollaire du lemme l, et en montrant que tout chemin élémentaire est caractérisé, à homotopie près, par son invariant ; cette méthode, un peu plus longue, a l'avantage de ne pas utiliser le procédé de Whithey, ce qui permet de montrer que le 2°) de la proposition est encore vrai pour n=5.

\$.5. Plongements d'une variété de dimension i dans une variété munie d'une sous-variété de codimension i .

Dans ce paragraphe, V désigne une variété de dimension m $_{0}$ X une sous-variété compacte de dimension i de V $_{0}$ Y une sous-variété fermée de codimension i de V $_{0}$ On suppose que toutes ces variétés sont sans bord, Lorsqu'on en aura besoin, on notera (x_{1}, \dots, x_{1}) des coordonnées locales dans X $_{0}$ et

 (y_1, \dots, y_m) des coordonnées locales dans V adaptées à Y, c'est-à-dire telles que les équations locales de Y soient : $y_1 = \dots = y_s = 0$.

On note $\mathfrak X$ l'espace des plongements de X dans V.

5.1. Forme générique d'un chemin à valeurs dans ∞ : chemins "excellents".

On identifie tout chemin à valeurs dans \mathcal{X} à l'application $f: X \times I \longrightarrow V$ qu'il détermine ; l'image réciproque de Y par f est appelée <u>indicatrice</u> du chemin ; on la désigne par F.

Si f est transversale sur V , alors F est une sous-variété de dimension l de $X \times I$. Les "sommets" de F (c'est-à-dire les points à tangente horizontale) sont alors exactement les points (x,t) de F tels que la restriction f_t de f à $X \times \{t\}$ ne soit pas transversale sur Y en (x,t); ils sont caractérisés en coordonnées locales (adaptées) par la condition :

$$\delta_{f_{t}}(x) = 0,$$

où δ_{f_t} désigne le déterminant fonctionnel de $(y_1(x,t),...,y_i(x,t))$ par rapport à $(x_1,...,x_i)$.

On dit qu'un sommet (x,t) de F est un sommet de Morse si $t \in]0,1[$ et si la composée des applications naturelles : F \longrightarrow X x I \longrightarrow I a en (x,t) un point critique du type de Morse. En coordonnées locales adaptées, les sommets de Morse de F sont caractérisés par la condition :

(2)
$$\mathfrak{D}_{\mathbf{f}}(\mathbf{x},\mathbf{t}) \neq 0$$

où $\mathfrak{D}_{\mathbf{f}}$ désigne le déterminant fonctionnel de $(y_1(x,t), \dots, y_1(x,t), \delta_{\mathbf{f}}(x))$ par rapport à (x_1, \dots, x_i, t) . Il en résulte en particulier que si (x,t) est un sommet de Morse de l'indicatrice de f, et si on pose $f_t = h$, le point x vérifie relativement à h (outre $h(x) \in V$) les conditions

- $(1) \quad \delta_h(x) = 0$
- (2°) la dérivée première de $(y_1, y_2, \dots, y_i, s_k)$ par rapport à (x_1, \dots, x_i) est de rang i en x

On dit qu'une application différentiable $h:(X,x) \longrightarrow (V,Y)$ qui vérifie les conditions (1') et (2') a en ce point un <u>contact</u> d'ordre 1 avec Y \circ On montre sans difficulté le lemme de forme canonique suivant \circ

(3)
$$h(x_1, x_2, \dots, x_i) = (x_1^2, x_2, \dots, x_i, 0, \dots, 0, x_1)$$

Définition 1. On dit qu'un chemin γ à valeurs dans ∞ est excellent si l'application $f: X \times I \longrightarrow V$ associée est différentiable, transversale sur Y, et si l'indicatrice $F \subset X \times I$ est une courbe excellente pour la projection $p_2: X \times I \longrightarrow I$ (c'est-à-dire telle que tous les sommets sont de Morse et situés à des niveaux différents).

Lemme 2. Tout chemin à valeurs dans x peut être approché arbitrairement près (au sens \mathcal{C}°) par un chemin excellent.

Démonstration: Tout chemin dans \mathcal{X} peut être approché arbitrairement près par un chemin (f_t) tel que l'application $f: X \times I \longrightarrow V$ correspondante soit transversale sur Y. Soit F l'indicatrice de f; il existe un petit difféomorphisme g de $X \times I$ tel que $g^{-1}(F)$ soit une courbe excellente; puisque g est petit, le chemin défini par f o g est proche de (f_t) ; il est donc à valeurs dans \mathcal{X} ; son indicatrice étant $g^{-1}(F)$, c'est un chemin excellent.

5.2. Stratification de x définie par Y ; chemins de Whitney.

Le chemin standard de suppression. Soit $\overline{\omega}$ une fonction en cloche : $\mathbb{R}^1 \longrightarrow \mathbb{I}$, à support contenu dans $D^1 \times D^{i-1}$, égale à lau voisinage de l'origine ; soit $\epsilon > 0$. On définit, pour tout $t \in \mathbb{I}$, un plongement de $D^1 \times D^{i-1}$ dans $D^1 \times D^{i-1} \times D^{m-i-1} \times D^1$ en posant :

(4)
$$\ell_{t}(x_{1}, \dots, x_{1}) = (x_{1}^{2} + \varepsilon \overline{\omega}(x)(t - \frac{1}{2}); x_{2}, \dots, x_{1}; 0, \dots, 0; x_{1})$$

Sur le complémentaire du support de $\overline{\omega}$, ℓ_t coı̈ncide avec h (défini par (3)) et par conséquent son image ne rencontre pas $\{0\} \times \frac{\{0\} \times D^{m-1}-1}{\overline{\omega}^{-1}(]0,1[)}$, cette dernière propriété a lieu également sur $\overline{\omega}^{-1}(]0,1[)$, pourvu que ε soit assez petit. Sur $\overline{\omega}^{-1}(1)$, on a :

$$\delta_{\ell_{t}}(x_{1}, \dots, x_{i}) = 2x_{1};$$

$$\mathcal{D}_{\ell}(x_{1}, \dots, x_{i}, t) = 2\epsilon.$$

Le point $(0, \dots, 0, \frac{1}{2})$ est donc l'unique sommet de l'indicatrice de (ℓ_t) ; c'est un sommet de Morse, Pour $t < \frac{1}{2}$, l'image de ℓ_t coupe $\{0\} \times \{0\} \times D^{m-i-1} \times D^1$ aux deux points $(0, \dots, 0, t + \sqrt{\epsilon(\frac{1}{2} - t)})$; pour $t = \frac{1}{2}$, l'origine est le seul point

d'intersection, et c'est un point de contact d'ordre l; pour $t > \frac{1}{2}$, il n'y a aucun point d'intersection.

Chemins de Whitney. Soient V, X, Y comme ci-dessus ; on désigne dans la suite par ℓ_t le plongement : $D^1 \times D^{i-1} \longrightarrow D^1 \times D^{i-1} \times D^1$ canoniquement défini par la formule (4).

Définition 2. Un chemin (f_t) dans l'espace $\mathfrak X$ des plongements $X \longrightarrow V$ est appelé chemin de Whitney de suppression s'il existe un plongement $\phi: D^1 \times D^{1-1} \longrightarrow X$ et un plongement $\phi: D^1 \times D^1 \longrightarrow V$, adapté à Y (ce qui signifie : $Y \cap (\text{image } \phi^\circ) = \Phi^\circ(\{0\} \times \{0\} \times D^1))$ tels que pour tout $t \in I$ le couple (ϕ, ϕ°) détermine un isomorphisme de $(D^1 \times D^{1-1}, D^1 \times D^1 \times D^1, \ell_t)$ sur (image ϕ , image ϕ° , f_t | image ϕ); et si en plus f_t est indépendant de t sur le complémentaire de l'image de ϕ . La réunion (pour $t \in I$) des $f_t \circ \phi(D^1 \times \{0\})$ est appelée \widehat{a} me du chemin de Whitney; (elle contient la réunion des intersections des $f_t(X)$ avec Y).

Un chemin (f_t) est appelé chemin de Whitney d'apparition si le chemin opposé (f_{l-t}) est un chemin de suppression ; $l^{\,0}$ âme de (f_t) est par définition celle de (f_{l-t}) .

Lemme 3. Scient x° et x^{1} les parties de x définies au début de ce numéro.

- 1°) (x°, x^{1}) est une stratification de codimension 1 de $x^{\circ} \cup x^{1}$ (en fait, x^{1} est une sous-variété de codimension 1 de $x^{\circ} \cup x^{1}$).
- 2°) Pour tout $h \in \mathfrak{X}^{\circ}$, tout chemin de traversée de \mathfrak{X}^{1} d'origine h est homotope (dans l'espace des chemins de traversée) à un chemin de Whitney (d'apparition ou de suppression).

Démonstration : 1°) Soit $h \in \mathfrak{X}^1$; d'après le lemme 1 , il existe un chemin de Whitney (f_t) tel que $f_{1/2} = h$; soit (ϕ, ϕ) un couple de plongements définissant (f_t) et soit A l'image de ϕ . L'application naturelle : $\mathfrak{X} \longrightarrow (\text{espace des plongements de A dans V}), est une fibration localement triviale <math>(cf, [3], [3])$

p.114,th.1); et, au voisinage de h, la stratification de $\mathfrak X$ (définie par l'intersection avec Y) est l'image réciproque de celle de cet espace de plongements. On est donc ramené au cas où $X = D^{i-1} \times D^{1}$, $V = \mathbb{R}^{m}$, et où (f_{t}) est le chemin standard (4). Soit alors $\mathfrak V$ un voisinage assez petit de h dans $\mathfrak X^{1}$; on pose pour $(h',t) \in \mathfrak V \times I$:

$$\Phi(h',t) = h' - h + \ell_t.$$

Soit h" assez voisin de h dans \mathcal{X} ; d'après la linéarité par rapport à t de la formule (4), le chemin (h" + h - ℓ_{t}) est voisin du chemin (ℓ_{1-t}); son indicatrice a donc un sommet unique, dépendant continuement de h"; l'équation:

$$h'' + h - \ell_t \in x^1$$

a donc une solution unique, dépendant continuement de h"; Φ définit donc un homéomorphisme de $\mathcal{V} \times I$ sur un voisinage de h dans \mathcal{X} , tel que pour tout $h' \in \mathcal{V}$, $\Phi(h', \frac{1}{2}) = h'$ et pour t $\neq \frac{1}{2}$, $\Phi(h', t) \in \mathcal{X}^{\circ}$.

2°) Soit \mathcal{G} le groupe produit de Diff X et du groupe des difféomorphismes de V laissant stable Y. Le groupe \mathcal{G} opère à gauche de façon naturelle dans \mathcal{X} en laissant \mathcal{X}° et \mathcal{X}^{\downarrow} stables, et en vérifiant la condition (a) de I.2.2. (ce dernier point résulte du théorème classique de fibration). La famille des chemins de Whitney est visiblement invariante par les opérations de \mathcal{G} ; et comme on l'a remarqué au l°) cidessus, le lemme l'entraîne que par tout point de \mathcal{X}^{\downarrow} il passe un chemin de Whitney dans chaque sens; on peut donc appliquer le lemme des chemins élémentaires (cf. I.2.2.).

Corollaire. On suppose m>5 et m-i>3; on suppose en plus que le fibré normal à X dans V admet une section. Alors tout lacet relatif Y de (x,x°) est homotope (avec origine fixe et extrémité restant dans x°) à un chemin tel que l'application f: $X \times I \longrightarrow V$ associée soit un plongement.

Démonstration: Comme pour le corollaire du lemme 1 de 4 .1., on se borne à considérer les bons lacets, et on raisonne par récurrence sur le nombre k de points où γ coupe x^{1} .

1°) Cas k=1. On peut alors, d'après le 2°) du lemme 3, supposer que γ est un chemin de Whîtney, c'est-à-dire (cf. définition 2) que γ est défini par un couple (ϕ,ϕ') de plongements de $(D^1 \times D^{i-1}, D^1 \times D^{i-1} \times D^1)$ dans (X,V). Soient C l'image de ϕ , C' celle de ϕ' . Le champ des droites orientées parallèles à 0 se transporte par ϕ' , ce qui définit un voisinage tubulaire trivialisé de C dans C'; d'après l'hypothèse faite sur le fibré normal à X, ce voisinage tubulaire peut se prolonger en un tube trivialisé d'âme X, de fibre R, que l'on note T, Pour tout teR, suffisamment petit, on peut définir au voisinage de X dans T la translation τ_{t} le long des fibres de T. Soit μ une fonction $X \longrightarrow \mathbb{R}$, dont le support soit un voisinage assez petit de X-C et qui soit strictement positive (resp. négative) à l'intérieur de ce support si γ est un chemin de suppression (resp. apparition). On pose :

$$f_t^*(x) = \tau_{t\mu(x)} \cdot f_t(x)$$
;

le chemin ainsi défini a les propriétés voulues dès que la fonction µ est assez petite.

2°) Supposons la propriété démontrée jusqu'à l'entier k-l, et soit y traversant k fois \mathfrak{X}^1 . Soit f l'application associée à y; on note f la restriction de f à $X\times \left[0,\frac{1}{2}\right]$ et f, sa restriction à $X\times \left[\frac{1}{2},1\right]$; on peut supposer que f et f, sont des plongements, f, étant associé à un chemin de Whitney γ_k , modifié par le procédé du l°) ci-dessus. On peut en plus supposer que f est différentiable (on s'y ramène en modifiant f par isotopie au voisinage de $X\times \{\frac{1}{2}\}$: c'est possible dès que m-i>2 d'après le théorème d'isotopie locale, cf.[2], p.331, cor.2) et transversale sur Y. On procède alors en deux temps :

- a) On sépare 1'âme A de γ_k (cf. définitions) de $f_-(X \times [0; \frac{1}{2}[))$. Lorsque $m-i \geqslant 4$, il suffit pour cela de mettre A, qui est de dimension 2, en position générale par rapport à $f_-(X \times [0, \frac{1}{2}-n])$ (pour n positif et petit) au moyen d'une petite isotopie de V laissant stable Y. Lorsque m-i=3, après mise en position générale, l'intersection consiste en un nombre fini de points d_1, \ldots, d_q , que l'on supprime par un procédé analogue à celui utilisé pour prouver le corollaire du lemme 1 de 4, ..., 2 puisqu'on a $m \geqslant 5$, on a ici $i+1 \gg 3$; on peut donc joindre d_1, \ldots, d_q à X dans l'image de f_- au moyen d'arcs $\delta_1, \ldots, \delta_q$ disjoints deux à deux et disjoints de Y; on relève chaque δ_j en une isotopie de V laissant fixe Y, ce qui permet de supprimer successivement d_1, \ldots, d_q .
- b) On termine en composant f à droite avec une isotopie de $X \times I$ dans lui-même, laissant fixe $X \times \left[0, \frac{1}{2}\right]$, et transformant f en un plongement dont l'image est contenue dans un voisinage arbitrairement petit de $A \cup f(X \times \{\frac{1}{2}\})$.

5.3. Application.

Proposition 3. Soit V une variété orientable, compacte, de dimension m. Soient X et Y deux sous-variétés de V respectivement difféomorphes à S et à S $^{m-1}$; on suppose que X et Y se coupent transversalement et en un seul point. On désigne par ξ l'injection de X dans V, par α l'espace des plongements de X dans V, et par α_1 la partie de α formée des plongements dont l'image rencontre Y transversalement et en un seul point.

Si i=0; ou si m>5, l<i<m-3, $\pi_1(V)$ = 0 et si le fibré normal à X dans V admet une section; alors $\pi_1(x,x_1^0;\xi)$ = 0.

Démonstration : Le cas i=0 est trivial, car alors les espaces $\mathfrak X$ et $\mathfrak X_1^0$ sont confondus ; on écarte désormais ce cas.

Soit γ un lacet relatif de (x,x_1^0) , d'origine ξ ; soit f l'application $X\times I \longrightarrow V$ associée. D'après le corollaire

du lemme 3 (cf.5.2.), on peut supposer que f est un plongement; on peut en plus supposer que γ est excellent (cf.5.1.); son

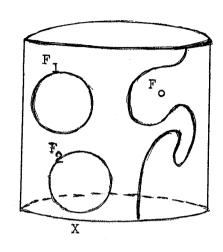


fig.1

indicatrice F est alors la réunion disjointe d'un arc sans point double F_0 joignant $X \times \{0\}$ à $X \times \{1\}$, et d'un nombre fini de courbes fermées simples F_1, \dots, F_q (cf. figure 1).

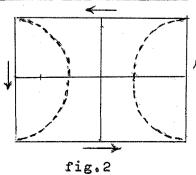
Soit \mathcal{G} le groupe des difféomorphismes de $X \times I$ laissant $X \times \{0\}$ fixe. Pour tout $g \in \mathcal{G}$, $f \circ g$ est un plongement de $X \times I$ dans V qui définit

encore un lacet relatif de (x,x_1^0) d'origine ξ , dont l'indicatrice est $g^{-1}(F)$. On en déduit la propriété suivante :

(*) <u>Si l'application</u> f <u>associée à γ est un plongement</u>, <u>on peut</u>, <u>en conservant cette propriété, et sans changer la classe de γ, modifier l'indicatrice F par l'effet d'une isotopie arbitraire de X x I, laissant fixe X x {0}.</u>

Dans la suite, on choisit une orientation sur V (qui est simplement connexe) et on oriente X et Y de façon que leur nombre algébrique d'intersection sur V soit +1 . L'indicatrice F de Y est alors munie d'une orientation naturelle. Supposons démontrée la propriété suivante :

(**) Si l'application f associée à γ est un plongement, on peut, en conservant cette propriété, et sans changer la classe de γ, modifier l'indicatrice F par l'effet de n'importe quelle chirurgie plongée orientée d'indice l.



[Si on choisit $D^1 \times D^1$ comme support du modèle de la chirurgie d'indice l des variétés de dimension l (cf. figure 2), alors toute "chirurgie plongée orientée d'indice l" de F est définie par un plongement $\psi: D^1 \times D^1 \longrightarrow X \times I$, tel que

 $F \cap (image \ \psi) = \psi(D^1 \times \partial D^1)$, et que $\psi(D^1 \times \partial D^1)$ soit compatible avec l'orientation induite par $\partial(D^1 \times D^1)$ sur $D^1 \times \partial D^1$ et l'orientation de F. L'image par ψ de $\{0\} \times D^1$ est appelée \widehat{ame} de la chirurgie].

La proposition découle comme suit des propriétés (*) et (**); on joint F_0 à F_1 dans le complémentaire de F par une courbe sans point double A_1 (transversale à F en ses deux extrémités); d'après (**), on peut réaliser une chirurgie plongée orientée d'indice ? de F, d'âme A_1 , ce qui diminue d'une unité le nombre de composantes connexes de F; en itérant le procédé, on rend F connexe. Si $i \neq 2$, F est alors G-isotope à une génératrice de $X \times I$, d'après (*), ceci termine la démonstration dans ce cas. Lorsque i=2, la dimension de $X \times I$ est 3; F peut alors être nouée. D'après un résultat élémentaire de la théorie classique des noeuds, tout noeud de $S^2 \times I$ peut être dénoué par une suite finie de croisements; or tout croisement peut être réalisé par deux chirurgies plongées orientées; la propriété (**) montre donc qu'on peut dénouer F; on termine comme ci-dessus à l'aide de (*).

Preuve de la propriété (**). D'après la propriété (*), pour montrer qu'on peut réaliser la chirurgie définie par un certain plongement $\psi: D^1 \times D^1 \longrightarrow X \times I$, on peut commencer par modifier F et ψ par l'effet de n'importe quelle \P -isotopie. On peut donc supposer qu'on s'est ramené à la situation suivante : il existe $t \in I$ et $\eta > 0$ tels qu'en désignant par J l'intervalle $\begin{bmatrix} t_0 - \eta, & t_0 + \eta \end{bmatrix}$ on ait :

- (1) $F \cap (X \times J) = (F \cap (X \times \{t_0\})) \times J$
- (2) il existe $\alpha : D^1 \longrightarrow X$, tel que, pour tout $(u,v) \in D^1 \times D^1$, $\psi(u,v) = (\alpha(u), t_0 + v_1)$

Notions $f_{t_0} \circ \alpha(1) = y_+$ et $f_{t_0} \circ \alpha(-1) = y_-$, La compatibilité de ψ avec l'orientation de F entraîne que les coefficients d'intersection de $f_{t_0}(X)$ et de Y en y_+ et y_- sont respectivement +1 et -1. Il est connu (cf. par exemple

[10], théorème 6.6., p.71) que dans ces conditions, et vu les hypothèses faites sur m et i , on peut "supprimer y_+ et y_- le long de f_+ o α par le procédé de Whitney"; d'une manière précise, il existe des plongements ϕ et ϕ' tels qu'il y ait commutativité du diagramme :

et que, pour $u \in \left[-\frac{\sqrt{\varepsilon}}{2}, + \frac{\sqrt{\varepsilon}}{2}\right]$, on ait :

(3)
$$\phi(u,0) = \alpha(\sqrt{\frac{2}{\epsilon}} u) .$$

Une construction facile (nécessitant seulement l'hypothèse m>i+2) fournit alors un plongement $\Phi: D^1 \times D^{i-1} \times D^1 \times J \longrightarrow V$ adaptée à Y et à f|X×J, c'est-à-dire tel que

$$Y \cap image \Phi = \Phi(\{0\} \times \{0\} \times D^{1} \times J)$$

et que

$$f_{t} \circ \phi = \Phi_{t} \circ l_{o}$$
 pour tout $t \in J$,

et que en particulier $\Phi_{to} = \phi'$.

Soit χ une fonction en cloche de support J, telle que $\chi(t_o)=1$; soit \widetilde{f}_t le plongement $X \longrightarrow V$ défini par :

$$\widetilde{f}_{t}(x) = \begin{cases} f_{t}(x) & \text{dès que } t \notin J \text{ ou que } x \notin (\text{image } \phi); \\ \phi_{t} \circ \ell_{\chi(t)} \circ \phi^{-1}(x) & \text{pour } t \in J \text{ et } x \in (\text{image } \phi). \end{cases}$$

L'intersection de l'indicatrice \widetilde{F} de (\widetilde{f}_t) avec l'image de ψ est d'après (1), (2) et (3) l'ensemble des points $(\alpha(\pm\sqrt{1-2\chi(t)}),t)$, où t décrit J; \widetilde{F} est donc la transformée de F par la chirurgie définie par ψ .

CHAPITRE II

Etude semi-locale de F.

1. Classification des chemins de croisement.

Dans tout ce chapitre, (W,V,V') dégigne une triade compacte de dimension n l'espace des fonctions de classe $C^{\infty}: (W, V, V') \rightarrow (I, 0, 1)$ point critique sur le bord. Le but du chapitre est la classification des chemins de F issus d'une fonction de Morse f qui réalisent, toutes les valeurs critiques égales le restant, le croisement d'une valeur critique simple avec les p valeurs critiques immédiatement inférieures. Le but des trois premiers paragraphes est de montrer que cette classification revient à celle de certains objets géométriques, les "nappes descendantes"; en fait on est conduit à montrer davantage : les espaces de chemins de croisement ont même type d'homotopie que les espaces de nappes correspondants. Au Sol, on définit ces nappes, ainsi que les "chemins élémentaires"; au §.2, on compare les espaces de chemins élémentaires aux espaces de nappes, et on les compare aux espaces de chemins de croisement au §.3. Il reste à classifier les nappes, ce qui est fait au §.4 dans un certain nombre de cas particuliers ; on en déduit l'unicité à homotopie près des croisements de mise en ordre (proposition 3), la classification des croisements à indices égaux (proposition 4), et l'unicité à homotopie près du "double croisement", c'est-à-dire du croisement d'un couple de points critiques en position de destruction mutuelle (proposition 5).

§.1. Chemins élémentaires ascendants et descendants.

1.1. Le modèle de Morse d'indice i et le chemin standard (cf. [5], chap.II, §.2 et chap.III, §.1).

Soit i un entier tel que $0 \le i \le n$; soit $x = (x_1, \dots, x_n)$ un point de \mathbb{R}^n . On pose :

$$h(x) = -x_1^2 \cdot \cdot \cdot - x_1^2 + x_{1+1}^2 + \cdot \cdot \cdot + x_n^2$$
;

$$k(x) = (x_1^2 + ... + x_i^2)(x_{i+1}^2 + ... + x_n^2)$$

On désigne par M_i ("modèle de Morse d'indice i") la partie de \mathbb{R}^n définie par :

$$\begin{cases} |h(x)| \leq 1 \\ k(x) \leq 1 \end{cases}$$

L'intersection de M_i avec le i-plan $\{x_{i+1} = ... = x_n = 0\}$ est appelée <u>nappe descendante standard</u> de M_i ; elle est difféomorphe au disque D^i . L'intersection de M_i avec le (n-i)-plan $\{x_1 = ... = x_i = 0\}$ est appelée <u>nappe ascendante standard</u>; elle est difféomorphe à D^{n-i} . La réunion de ces deux nappes est appelée <u>binappe standard</u> de M_i .

On choisit une fonction $\overline{\omega}:\mathbb{R}^n\longrightarrow [0,1]$, à support dans M_i , telle que $\overline{\omega}(0)=1$, et que les dérivées première et seconde de $\overline{\omega}$ soient nulles en 0. [On sera amené au $\S.2$ à imposer à $\overline{\omega}$ des conditions plus restrictives].

Soit ϵ un nombre positif, qu'on choisira dans la suite aussi petit qu'il sera nécessaire ; on pose pour $x\in M_1$ et $\lambda\in I$:

$$h_{\lambda}(x) = h(x) - \lambda \epsilon \overline{\omega}(x)$$

L'origine est point critique de h_{λ} pour tout $\lambda \in I$; si

ε est assez petit (ce qu'on suppose), c'est <u>l'unique</u> point critique de h_λ. La valeur critique correspondante est - λε, qui est fonction décroissante de λ.

Le chemin (h_{λ}) s'appelle le chemin descendant standard. On définit de façon analogue le chemin ascendant standard.

Du corollaire 2 des propositions 1 et 1º de 1º Appendice résulte le

Lemme 1. Il existe une application continue :

$$I \ni \lambda \longmapsto (\psi_{\lambda}, \psi_{\lambda}^{\circ}) \in Diff M_{1} \times Diff [-1, +1]$$

telle que : $h_{\lambda} = \psi^{*-1}$ o h o ψ pour tout $\lambda \in I$ o On peut en plus imposer à tous les ψ_{λ} la condition de laisser stable la binappe standard.

1.2. Plongements adaptés, nappes, chemins élémentaires ascendants et descendants. (cf. [5], chap.III, \$.3 et chap.III, \$.1).

Soit $f \in \mathcal{F}$ (cf. I. 3) et soit c un point critique de Morse de f, d'indice i .

On dit qu'un plongement $\phi : M_1 \longrightarrow W$ est <u>un plongement</u> adapté à f <u>en</u> c si $\phi(0) = c$ et s'il existe un plongement croissant $\phi' : [-1,+1] \longrightarrow I$ tel que le diagramme

$$\begin{array}{ccc}
M_{1} & \xrightarrow{\phi} & W \\
h \downarrow & & \downarrow f \\
 & & \downarrow f
\end{array}$$

soit commutatif. On notera que ϕ^{\dagger} est bien déterminé par la donnée de ϕ .

L'image de ϕ s'appelle <u>le voisinage de Morse</u> de c défini par ϕ o L'image par ϕ de la nappe ascendante (respo de la nappe descendante, respo de la binappe) standard de Morse de la binappe descendante.

la nappe ascendante (resp. la nappe descendante, resp. la binappe) de c définie par ϕ . On notera que le bord d'une nappe ascendante ou descendante est toujours contenu dans une variété de niveau de f.

On définit de façon analogue (pour tout $\lambda \in I$) un plongement adapté à h_{λ} et f en c; (la condition est : $h_{\lambda} = \phi^{\phi-1}$ of ϕ).

Lemme 2. Quels que soient fe , le point critique de Morse c de f et λεΙ, il existe (i désignant l'indice de c) un plongement φ de M dans W adapté à h, et f en c dont l'image soit un voisinage arritrairement petit de c dans W b L'image par φ de la binappe standard est une binappe de c o

Démonstration : Dans le cas où $\lambda=0$, le lemme se déduit facilement du theorème classique de M. MORSE, d'après lequel f s'écrit au voisinage de c , dans des coordonnées locales convenables, sous la forme : f(x) = f(0) + h(x). On passe de là au cas général à l'aide du lemme l .

Lemme 3. [Mêmes notations]. Soit \mathcal{F}_{λ} l'espace des plongements $M_{\hat{1}} \longrightarrow W$ adaptés à $h_{\hat{\lambda}}$ et f en c, et soit \mathcal{F} la réunion (pour $\lambda \in I$) de tous les $\mathcal{F}_{\hat{\lambda}}$. Les applications naturelles : $\mathcal{F}_{\hat{\lambda}} \longrightarrow Plgt([-1,+1],I)$ et $\mathcal{F} \longrightarrow Plgt([-1,+1],I)$ sont des fibrations localement triviales.

Ce lemme est démontré au \0.1 de l'Appendice (corollaire 3 des propositions 1 et 1').

Définition. Soient f et c comme ci-dessus. Un chemîn (f_{λ}) d'origine f dans $\mathscr F$ est appelé chemîn élémentaire descendant de f relatif à c s'il existe un plongement $\phi: M_{\hat{1}} \longrightarrow W$, adapté à f en c, tel que, pour tout $\lambda \in I$:

- a) $f_{\lambda} = f$ sur le complémentaire de l'image de ϕ ;
- b) il y ait commutativité du diagramme :

$$\begin{array}{cccc}
M_{1} & \xrightarrow{\phi} & W \\
h_{\lambda} \downarrow & & \downarrow f_{\lambda} \\
[-1,+1] & \xrightarrow{\phi'} & I
\end{array}$$

Définition analogue d'un chemin élémentaire ascendant.

Le lemme suivant est de démonstration immédiate (cf. [5], chap. III, \$.1. proposition 1)

Lemme 4. [Mêmes notations]. Soit D une nappe descendante de c; soit δ la valeur de f sur le bord de D; il existe un plongement adapté ϕ : M; \longrightarrow W vérifiant les conditions suivantes:

- 1.0) la nappe descendante définie par o est D;
- 2°) l'image de ϕ est contenue dans un voisinage arbitrairement petit de D;
- 3°) <u>le chemin élémentaire</u> (f_{λ}) <u>défini par</u> ϕ <u>est tel que</u> $f_1(c)$ <u>soit un point arbitraire de l'intervalle ouvert</u> $\delta, f(c)$.

\$.2. Chemins élémentaires et nappes.

2.1. Choix particulier de la fonction $\overline{\omega}$ définissant le chemin standard (cf.1.1.).

Dans toute la suite, on choisit une fonction en cloche ω : $\mathbb{R} \longrightarrow \left[0,1\right], \text{ satisfaisant aux conditions suivantes}:$

$$\omega(0) = 1 ; \frac{d\omega}{dt}(0) = \frac{d^2\omega}{dt^2}(0) = 0 ;$$

le support de ω est [-1,+1] ;

 ω est invariante par la symétrie t \longmapsto -t;

 $\frac{d\omega}{dt}$ est strictement négatif sur]0,1[,

Les fonctions h et k étant celles définies en l.l., on pose pour tout $\mathbf{x} \in \mathbb{R}^n$:

(1)
$$\overline{\omega}(x) = \omega(h(x)) \cdot \omega(k(x))$$
.

La fonction $\overline{\omega}$ ainsi définie satisfait aux conditions de l.l., en particulier $\overline{\omega}(0)=1$, et les dérivées d'ordre 1 et 2 de $\overline{\omega}$ sont nulles à l'origine. En plus, <u>le support de $\overline{\omega}$ est exactement le modèle de Morse M₁. Il en résulte en particulier que, pour tout plongement adapté ϕ de M₁, le chemin élémentaire correspondant a pour support $\phi(M_1)$.</u>

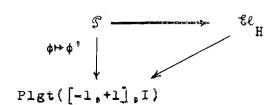
2.2. Structure d'espace fibré principal définie par le morphisme: (plongements adaptés) -> (chemins élémentaires).

Soit $f \in \mathcal{F}_i$ soit c_0 un point critique de Morse de f_i soient p et p^0 deux entiern positifs ou nuls ; soit $p \in [0,1]$. On note f l'espace des plongements $p \in (M_1,0) \longrightarrow (W_2,c_0)$ adaptés à h_p et à f (cfolo2o), avant en 0 une orientation donnée, tels en plus que $p^0([-1,+1])$ contienne p^0 valeurs critiques supérieures à $f(c_0)$ et p valeurs critiques inférieures à $f(c_0)$ o

A tout $\phi \in \mathcal{F}$ correspond, par image de la binappe standard, une binappe de f issue de c (cf.1.2., lemme 2), on note \mathcal{F} l'espace des binappes ainsi obtenues, muni de la topologie habituelle des espaces de sous-variétés, c'est-à-dire la topologie quotient de celle des espaces de plongements. A tout $\phi \in \mathcal{F}$ correspond aussi un chemin élémentaire descendant β (tel que $\beta(\mu) = f$); on note $\mathcal{E}\ell$ l'espace des chemins élémentaires ainsi obtenus.

Pour tout intervalle fermé H contenu dans I, on note $\&\ell_H$ l'espace des "arcs élémentaires" obtenus par restriction à H des éléments de $\&\ell_\ell$,

Lemme 1. Il existe une application $\mathcal{E}_{H} \longrightarrow \text{Plgt}([-1,+1],I)$ rendant commutatif le diagramme :



(dans lequel la flèche horizontale et la flèche verticale désignent les applications naturelles définies en 1,2,)

Démonstration : Soient ϕ et $\overline{\phi}$ deux éléments de $\mathscr C$ définissant le même élément de $\mathscr C\ell_H$; ϕ et $\overline{\phi}$ ont même image dans W (puisque cette image est le support du chemin élémentaire correspondant); donc les plongements ϕ^* et $\overline{\phi}^*$ respectivement associés à ϕ et $\overline{\phi}$ ont aussi même image. Posons :

$$\overline{\Phi}^{-1}$$
 \circ $\Phi = \Psi$ \circ $\overline{\Phi}^{\theta-1}$ \circ $\Phi^{\theta} = \Psi^{\theta}$ \circ

 ψ est un difféomorphisme de M conservant O , $\psi^{\,\varrho}$ est un difféomorphisme de $\left[-1\,,+1\right]$; on a :

(2)
$$(h - t \varepsilon \overline{\omega})_{\circ} \psi = \psi^{\circ} \circ (h - t \varepsilon \overline{\omega})$$
 pour tout $t \in H$ o

On en déduit en faisant x = 0 :

(3)
$$-t\varepsilon = \psi^{\varrho}(-t\varepsilon)$$
 pour tout $t \in H$.

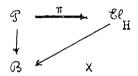
Autrement dit, ψ ° induit l°identité sur $-\varepsilon H$ 。 Plus généralement, il résulte de (2) que ψ ° est linéaire affine sur l'intervalle $H_{\mathbf{x}} = h(\mathbf{x}) - \varepsilon \overline{\omega}(\mathbf{x}) H$, quel que soit $\mathbf{x} \in M_{\hat{\mathbf{1}}}$ or, pour tout μ ° \in \mathbf{I} , l°image de $M_{\hat{\mathbf{1}}}$ par h_{μ} ° est $\mathbf{J} = \mathbf{l}_{\hat{\mathbf{1}}} + \mathbf{l}_{\hat{\mathbf{1}}}$; donc la réunion (pour $\mathbf{x} \in M_{\hat{\mathbf{1}}}$) de tous les intervalles $H_{\mathbf{x}}$ est $\mathbf{J} = \mathbf{l}_{\hat{\mathbf{1}}} + \mathbf{l}_{\hat{\mathbf{1}}}$ on recouvrement fini de K par des intervalles ouverts sur chacun desquels ψ ° est linéaire affine. Donc, compte tenu de (3), ψ ° est l°identité sur \mathbf{K} ; donc ψ ° est l°identité sur $\mathbf{J} = \mathbf{l}_{\hat{\mathbf{1}}} + \mathbf{l}_{\hat{\mathbf{1}}}$, et par conséquent sur $\mathbf{I} = \mathbf{l}_{\hat{\mathbf{1}}} + \mathbf{l}_{\hat{\mathbf{1}}}$. Donc $\overline{\phi}$ ° = ϕ °, ce qui achève la démonstration.

On pose dans la suite :

$$x_{1}^{2} + \cdots + x_{1}^{2} = x_{1}^{2}$$
; $x_{1+1}^{2} + \cdots + x_{n}^{2} = x_{2}^{2}$.

Lemme 2. [Les notations sont celles du début de ce n°; en outre on désigne par $g_{1,2}$ le groupe des difféomorphismes de M_1 qui laissent fixes r_1 et r_2].

- l°) Pour que deux éléments ϕ et $\overline{\phi}$ de $\mathscr C$ aient même image dans $\mathscr E\ell_H$, il faut et il suffit qu'il existe $g \in \mathscr G_{1,2}$ tel que $\overline{\phi} = \phi$ g g g
- 2°) Soit $\widetilde{\mathcal{H}}_{H}$ le sous-complexe du complexe singulier $\mathcal{J}(\mathcal{E}l_{H})$ défini comme image (par l'application naturelle π) du complexe singulier $\mathcal{J}(\mathcal{E})$; $\widetilde{\mathcal{H}}_{H}$ est un complexe de Kan et π est une fibration de Kan.
- 3°) Il existe une application χ : \mathcal{C}_H \longrightarrow \mathcal{B} qui rende commutatif le diagramme :



(dans lequel la flèche horizontale et la flèche verticale désignent les applications naturelles, ; χ détermine un morphisme : $\widetilde{\mathcal{C}}_H \longrightarrow \mathcal{S}(\mathcal{B})$.

Démonstration : 1°) On a

$$h = x_1 + x_2, \quad \text{et} \quad k = x_1 x_2.$$

Done tout $g \in \mathcal{G}_{1,2}$ laisse invariants h et k; done d'après (1) il laisse invariant $\overline{\omega}$; il laisse done invariant $h_{\mu^0} = h - \mu^0 \in \overline{\omega}$, pour tout $\mu^i \in I$. Done pour tout $\phi \in \mathcal{T}$; ϕ o g et ϕ définissent le même chemin élémentaire.

Réciproquement, soient ϕ et $\overline{\phi}$ définissant le même chemin élémentaire. Il résulte au lemme 1 que $\overline{\phi}^{\circ} = \phi^{\circ}$; la formule (2) cî-dessus donne donc :

(2°)
$$(h-t \in \overline{\omega})_0 \psi = h-t \in \overline{\omega}$$
 pour tout $t \in H$

En écrivant successivement (2°) pour deux valeurs distinctes de

t on obtient :

$$\overline{\omega} \circ \psi = \overline{\omega} \circ$$

et (5)
$$h_0 \psi = h_0$$

Il résulte de (1), (4) et (5) :

$$\omega(k \circ \psi) = \omega(k)$$
;

puisque ω décroit strictement sur [0,1], il en résulte :

$$(6) \qquad k_{\circ} \psi = \kappa$$

Il est immédiat que (5) et (6) entraînent :

$$h_1 \circ \psi = h_1 \circ$$

et
$$h_2 \circ \psi = h_2 \circ$$

ce qui termine la preuve du lo).

2°) Il résulte du 1°) que le complexe singulier $\mathcal{S}(\mathcal{G}_{1,2})$ opère de façon simplement transitive sur chaque fibre de l'application naturelle $\mathcal{S}(\mathcal{G}_{\mu}) \longrightarrow \mathcal{S}(\mathcal{E}_{H})$. C'est un résultat classique (et très élémentaire) que dans cette situation, on a les deux propriétés annoncées (cf. par exemple [14], exposé 1, proposition 2, p.10).

3°) Tout difféomorphisme de M_{i} qui laisse fixes r_{1} et r_{2} , laisse stable la binappe standard ; d'où l'existence de l'application $\mathrm{\chi}$; elle définit un morphisme de complexes $\widetilde{\mathcal{H}}_{\mathrm{H}} \longrightarrow \mathcal{S}(\mathrm{G})$ puisque par définition de $\widetilde{\mathcal{E}}_{\mathrm{H}}$, tout élément de $\widetilde{\mathcal{E}}_{\mathrm{H}}$ se relève dans $\mathcal{S}(\mathcal{T}_{\mu})$.

2.3. Chemins élémentaires et nappes.

Proposition 1. Soit $f \in \mathcal{F}$; soit c un point critique de Morse de f^{g} ; soient p et p^{e} deux entiers positifs ou nuls ; soit

$$\chi_* : \pi_j(\widetilde{\mathcal{E}e}_H; \beta) \xrightarrow{\approx} \pi_j(\mathcal{B}; \chi(\beta))$$
 pour tout $j \ge 0$.

(B désigne l'espace de binappes correspondant à El).

Compléments. 1. Le résultat de la proposition l'est valable également pour d'autres sous-espaces de \mathcal{L} , par exemple celui des chemins β ayant p+p' croisements. [Soit en effet ϕ ' l'élément de Plgt([-1,+1],I) associé à β par le lemme l'de 2.2.; les conditions pour que β ait p+p' croisements s'écrivent: ϕ '(0) > α _p, et ϕ '(- ϵ) < α _p; il résulte du lemme 3 de 1.2. que la partie de $\widehat{\mathcal{L}}$ ainsi définie a mêmes groupes d'homotopie que $\widehat{\mathcal{L}}$].

2. Dans le cas particulier où p' = 0 , B a même type d'homotopie que l'espace $\mathcal Q$ des nappes descendantes rencontrant p niveaux critiques inférieurs à $f(c_0)$; on a donc pour tout $j \geqslant 0$ un isomorphisme :

$$\pi_{j}(\widetilde{\mathscr{C}}_{H};\beta) \longrightarrow \pi_{j}(\mathfrak{D};\chi(\beta))$$
.

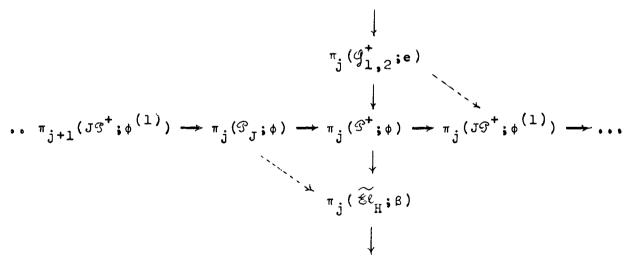
Démonstration: Soit \mathcal{F} l'espace défini au début de 2,2. On sait (cf. Appendice, §.3, proposition 3) que l'espace $J\mathcal{F}$ des l-jets en 0 des éléments de \mathcal{F} est isomorphe à $SO(i,n-i)\times]0,\infty[$. Donc $J\mathcal{F}$ est connexe si i=0 ou i=n, et a deux composantes connexes dans le cas contraire. Soient $\phi\in\mathcal{F}, \phi^{(1)}$ son image dans $J\mathcal{F}$; on note \mathcal{F}^+ la partie de \mathcal{F} formée des plongements dont le l-jet en 0 est dans la même composante connexe de $J\mathcal{F}$ que $\phi^{(1)}$. L'involution: $(x_1,\dots,x_n) \mapsto (-x_1,x_2,\dots,x_i,-x_{i+1},x_{i+2},\dots,x_n)$ de M_i

(définie lorsque i est différent de 0 et n) est un élément du groupe $\mathcal{G}_{1,2}$ (défini au lemme 2); on peut donc remplacer \mathcal{F} par \mathcal{F}^+ dans le lemme 2; en particulier, le complexe $\widetilde{\mathcal{H}}_H$ est l'image par $\pi \mid \mathcal{F}^+$ du complexe singulier de \mathcal{F}^+ .

Soit \mathcal{G}_J la partie de \mathcal{G}^+ formée des plongements qui ont en 0 même l-jet que ϕ . La démonstration consiste à prouver successivement les isomorphismes suivants :

$$\pi_{\mathbf{j}}(\mathscr{S}_{\mathbf{j}};\phi) \xrightarrow{\approx} \pi_{\mathbf{j}}(\widetilde{\mathscr{te}}_{v};\beta) \quad \text{pour tout } \mathbf{j} \geqslant 0 \quad (\beta \quad \text{désignant} \\ \mathbb{1}^{\#} \text{image de } \phi)$$
et
$$\pi_{\mathbf{j}}(\mathscr{S}_{\mathbf{j}};\phi) \xrightarrow{\approx} \pi_{\mathbf{j}}(\mathscr{B};\nu) \quad \text{pour tout } \mathbf{j} \geqslant 0 \quad (\text{en posant } \chi(\beta) = \nu)$$

a) L'application $\mathcal{G}^+ \to J\mathcal{G}^+$ est une fibration localement triviale d'après le théorème de fibration sur les jets (cf. Appendice, §.3, proposition 3); sa fibre est \mathcal{G}_J . L'application $\mathcal{G}^+ \to \mathcal{G}_H$ définit d'après le 2° du lemme 2 une fibration de Kan: $\mathcal{G}(\mathcal{G}^+) \to \mathcal{G}_H$, de fibre $\mathcal{G}(\mathcal{G}_{1,2}^+)$ (où $\mathcal{G}_{1,2}^+$ est le sousgroupe de $\mathcal{G}_{1,2}$ formé des difféomorphismes dont le 1-jet en 0 est dans la composante connexe du jet de l'identité). On a donc les suites exactes:



D'après ce diagramme, il suffit de montrer que l'application composée $\pi_j(g_{1,2}^+;e) \longrightarrow \pi_j(J\mathcal{F}^+;\phi^{(1)})$ est un isomorphisme pour tout j>0, et que $\pi_o(g_{1,2}^+;e) = \pi_o(J\mathcal{F}^+;\phi^{(1)}) = 0$.

Or on a le diagramme commutatif :

L'application ① est un isomorphisme pour tout $j\geqslant 0$ d'après les propositions 3 (fibration) et 4 (acyclicité) de l'Appendice. D'après la même proposition 3, les applications ② et ④ sont des isomorphismes pour tout $j\geqslant 0$. Enfin l'application ③ est également un isomorphisme pour tout $j\geqslant 0$, car $SO^+(i,n-i)/SO(i)\times SO(n-i)$ s'identifie à l'espace des i-plans de \mathbb{R}^n .

b) L'application $\mathfrak{F}^+ \longrightarrow \mathfrak{F}$ est une fibration localement triviale d'après le corollaire l de la proposition 2 de l'Appendice; on note \mathfrak{F}^+_{ν} la fibre située au-dessus de ν . On procède comme au a) ci-dessus, à ceci près qu'on considère la fibration $\mathfrak{F}^+ \longrightarrow \mathfrak{F}$ au lieu de la fibration $\mathfrak{F}(\mathfrak{F}^+) \longrightarrow \widetilde{\mathfrak{E}\ell}_{\mathrm{H}}$. On est donc ramené à montrer que l'application composée:

$$\pi_{j}(\mathcal{G}_{v}^{+};\phi) \longrightarrow \pi_{j}(\mathcal{G}^{+};\phi) \longrightarrow \pi_{j}(J\mathcal{G}^{+};\phi^{(1)})$$

est un isomorphisme pour tout j>0, et que $\pi_{\phi}(g_{\gamma}^{+}) = \pi_{\phi}(Jg^{+}) = 0$. Or d'après le théorème d'acyclicité (cf. Appendice, §.4, proposition 4), et le théorème de fibration sur les jets, on a pour tout j>0 un isomorphisme

$$\pi_{\dot{\mathfrak{I}}}(\mathfrak{T}^{+}_{\mathbf{v}};\phi) \xrightarrow{\approx} \pi_{\dot{\mathfrak{I}}}(\mathfrak{I}\mathfrak{T}^{+}_{\mathbf{v}};\phi^{(1)})$$
.

§.3. Chemins de multicroisement.

3.1. Définitions et résultats ; plan de la démonstration.

Soit $f \in \mathcal{F}$ une fonction de Morse (1); soit c_0 un point critique de f tel que la valeur critique correspondante a_0 soit simple; soient a_1, \ldots, a_p les p valeurs critiques de f immédiatement inférieures à a_0 (p > 1). On note $\mathcal{C}_{p,f}$ l'espace des chemins d'origine f de \mathcal{F} qui réalisent, toutes les valeurs critiques égales le restant, le croisement successif de a_0 avec a_1, \ldots, a_p . On note a_p la réunion des images de tous les éléments de a_p a_p

On note el la partie de el formée des chemins qui sont élémentaires descendants par rapport à leur origine, et dont le support rencontre (p+1) niveaux critiques de cette origine; on note el la partie de el obtenue en fixant l'origine en f. Les éléments de el sont appelés chemins élémentaires descendants de p-croisement relatifs aux données f. c.

Soit \mathcal{G}_e la composante connexe de l'élément neutre dans le groupe Diff W × Diff I; \mathcal{G}_e opère dans \mathcal{F}_p ; en respectant la stratification; \mathcal{G}_e opère dans \mathcal{C}_p en laissant stable \mathcal{U}_p . On note $\widetilde{\mathcal{U}}_p$ le sous-complexe du complexe singulier de \mathcal{U}_p défini par ces opérations; (un simplexe singulier de \mathcal{U}_p est un élément de $\widetilde{\mathcal{U}}_p$ s'il existe une projection $\mathcal{G}_e \longrightarrow \mathcal{U}_p$ du type $g \longrightarrow g$. 7 pour laquelle il se relève en un simplexe singulier de \mathcal{G}_e). Le complexe $\widetilde{\mathcal{U}}_p$ est un complexe de Kan; pour tout sous-espace \mathcal{U}_p ; f, de \mathcal{U}_p (obtenu en fixant l'origine en un point f') le complexe $\widetilde{\mathcal{U}}_p$; induit par $\widetilde{\mathcal{U}}_p$ sur \mathcal{U}_p ; f,

⁽¹⁾ Voir au début du chapitre la définition de l'espace F.

est identique à l'image canonique du complexe singulier de l'espace de tous les plongements adaptés à f tels que le chemin élémentaire correspondant soit un élément de $\ell \ell_p$; il résulte en effet du théorème de fibration des espaces de plongements (cf. [3], p.114, théorème 1) que tout simplexe singulier de $\ell \ell_p$ qui se relève dans l'espace des plongements adaptés se relève dans $\ell \ell_p$ definis par la condition de passer par un point donné pour une valeur donnée du paramètre.

Proposition 2. Soit $f \in \mathcal{F}$ une fonction de Morse; soit c_o un point critique de f tel que la valeur critique $\alpha_o = f(c_o)$ soit simple; soit $p \geqslant 1$; soit $\mathcal{C}_{p;f}$ (resp. $\mathcal{C}_{p;f}$) l'espace des chemins de p-croisement (resp. des chemins élémentaires descendants de p-croisement) d'origine f relatif à ces données. L'injection de $\mathcal{C}_{p;f}$ dans $\mathcal{C}_{p;f}$ determine des isomorphismes

et
$$\pi_{j}(\widetilde{\mathcal{E}}_{p;f};\beta) \xrightarrow{\approx} \pi_{j}(\mathcal{C}_{p;f};\beta)$$
 pour tout $\beta \in \mathcal{E}_{p;f}$ et tout $j \ge 1$.

Corollaire. Soit \mathcal{D} l'espace des nappes descendantes de codont l'intérieur rencontre exactement p niveaux critiques inférieurs à α_0 ; soit χ l'application \mathcal{E}_{f} \longrightarrow \mathcal{D} définie au $\S.2.$ On a pour tout $\beta \in \mathcal{E}_{f}$ et pour tout j > 0 un isomorphisme canonique :

$$\pi_{j}(\mathscr{C}_{f};\beta) \xrightarrow{\approx} \pi_{j}(\mathscr{D};\chi(\beta))$$

[Le corollaire est une conséquence immédiate de la proposition 2 et des compléments 1 et 2 de la proposition 1].

Plan de la démonstration de la proposition 2. On raisonne par récurrence sur p; le cas p=l est étudié en 3.2; en 3.3 on démontre (à l'aide de deux lemmes préliminaires) le lemme l, qui est utilisé en 3.4, pour la démonstration de récurrence.

3.2. Le cas d'un seul croisement (p=1).

On applique le corollaire de la proposition l de I.2.2. dans les conditions suivantes. Le rôle de E est joué par $\mathcal{F}_{p;f}$ muni des opérations du groupe \mathcal{G}_{e} (composante connexe de e dans Diff W x Diff I) les quelles vérifient les conditions (a₀) et (a₁). Pour \mathcal{C}° on prend l'espace \mathcal{C}_{p} des chemins de l-croisement, et pour \mathcal{C}° l'espace \mathcal{C}_{p} des chemins élémentaires descendants de l-croisement, muni du complexe $\widetilde{\mathcal{E}}_{p}$ défini ci-dessus.

Soit $f' \in \mathcal{F}_{p;f}^l$; soit $\mathcal{C}_{p;f}^l$ la partie de \mathcal{C}_p formée des chemins qui ont f' pour point de traversée. Pour tout $\gamma \in \mathcal{C}_{p;f}^l$ il existe un point critique unique de f' qui, le long de γ , effectue en f' un croisement descendant; on désigne ce point critique par c'. D'après le lemme 2 de 1.2., il existe un plongement $\phi: M_i \longrightarrow W$, adapté à $h_{1/2}$ et à f' en c'; le chemin élémentaire descendant défini par ϕ traverse \mathcal{F}_p^l en f' dans le même sens que γ . Le corollaire de la proposition 1 de I.2.2. donne donc les isomorphismes :

$$\pi_{o}(\mathcal{C}_{p;f}, \mathcal{C}_{p;f}) = 0,$$

$$\pi_{j}(\mathscr{C}_{p,f^{i}}, \widetilde{\mathscr{C}}_{p,f^{i}}) \xrightarrow{\widetilde{\approx}} \pi_{j-1}(\widetilde{\mathscr{C}}_{p_{i}\beta^{i}}) \text{ pour tout } \beta \in \mathscr{C}_{p,f}$$
et tout $j \geqslant 1$.

Soit λ_1 le paramètre de traversée de β , soit $\ell_{p;\beta;\lambda_1}$ la partie de $\ell_{p;\beta}$ définie par la valeur λ_1 du paramètre de traversée; $\ell_{p;\beta;\lambda_1}$ est la fibre située au-dessus de α_1 pour l'application composée :

(1)
$$\mathcal{E}_{p;\beta} \longrightarrow \text{Plgt}([-1,+1],I) \longrightarrow I$$

où l'application de gauche est définie à l'aide du lemme l de 2.2., et celle de droite est : $\phi' \mapsto \phi'(-\lambda_1 \varepsilon)$; il résulte du lemme 3 de 1.2. que l'application (1) détermine une fibration de Kan : $\widetilde{\mathcal{El}}_{p; \beta} \longrightarrow \mathcal{S}(I)$; on a donc pour tout $j \ge 1$ un isomorphisme

canonique :

$$\pi_{j-1}(\widetilde{\mathscr{S}\ell}_{p;\beta};\beta) \stackrel{\widetilde{\sim}}{\longrightarrow} \pi_{j-1}(\widetilde{\mathscr{E}\ell}_{p;\beta;\lambda_1};\beta)$$
.

D'après la proposition l de 2.3. (appliquée avec $\beta(\lambda_1)$, λ_1 , 0, 0, I dans les rôles respactifs de f, μ , p, p', H) il y a pour tout $j \ge 1$ un isomorphisme canonique :

$$\pi_{j-1}(\widetilde{\mathscr{E}\ell}_{p;\beta;\lambda_j};\beta) \approx \pi_{j-1}(\beta;\chi(\beta));$$

B désigne un espace de binappes qui, dans le cas présent, est acyclique d'après la proposition 4 de l'Appendice; ceci achève la démonstration.

3.3. Démonstration d'un lemme.

Lemme préliminaire 1. Soit h la forme quadratique $- x_1^2 \cdot \cdot \cdot \cdot - x_1^2 + x_{1+1}^2 + \cdot \cdot \cdot \cdot + x_n^2 , \text{ et soit } M_1 \text{ le modèle de Morse correspondant ; pour tout } \mu \in I , \text{ on note comme d'habitude } h - \epsilon \mu \overline{\omega} = h_{\mu} \quad (\text{cf.l.l.}) \qquad \text{et on note } \mathcal{Q}_{\mu} \text{ l'espace } \text{ des plongements } [-1,+1] \quad \to \mathbb{R} \quad \text{qui coıncident avec l'identité au voisinage de } - \mu \in \text{, Soit } k \text{ la fonction définie en l.l., et soit } \mathcal{G}_k \quad \text{le groupe des difféomorphismes de } M_1 \quad \text{qui laissent } k \quad \text{invariante. Il existe une application continue :}$

telle que :
$$h_{\mu} \circ \psi = \psi^{\dagger} \circ h_{\mu}$$

Démonstration : On rappelle qu'on a choisi \overline{w} de façon que ses dérivées première et seconde soient nulles à l'origine , et que ε peut être choisi arbitrairement petit. Si ε est assez petit, le produit scalaire (grad h, grad h,) est différent de O sur le complémentaire de l'origine. On pose alors $\psi(0) = 0$, et pour tout $x \in M_i = 0$, on définit $\psi(x)$ comme étant le point unique où la ligne de gradient de h passant par x coupe la variété de niveau ψ' o $h_{\mu}(x)$ de h_{μ} .

Lemme préliminaire 2. [Les notations sont celles du lemme préliminaire 1]. Tout difféomorphisme de Mi qui laisse invariantes les fonctions h et k laisse aussi h invariant.

Démonstration : Soient x et y deux points de M_i en lesquels h_{ij} et k prennent respectivement la même valeur. Ceci s'écrit :

$$\begin{cases} h(y) - \epsilon \mu \omega(h(y))\omega(k(y)) = h(x) - \epsilon \mu \omega(h(x))\omega(k(x)) \\ k(y) = k(x) \delta \end{cases}$$

La première ligne s'écrit compte tenu de la seconde :

$$h(y) = h(x) = \varepsilon \mu \omega(k(x)) \left[\omega(h(x)) - \omega(h(y))\right];$$

ceci entraîne :

$$|h(y) - h(x)| \le \varepsilon |h(y) - h(x)| \sup \left|\frac{d\omega}{dt}\right|$$
,

et ceci (pourvu qu'on ait choisi ε assez petit) entraîne h(y) = h(x) ε

Lemme 1. Soit $f \in \mathcal{F}$ une fonction de Morse; soient α_{p^0} of α_{p^0+1} sois of α_{-1} of

(2)
$$\phi^{\theta}(0) > \alpha_{exp}^{\theta}$$

(3)
$$\phi^{\circ}(-\lambda_{1} \varepsilon) = \alpha_{-1} \varepsilon$$

et pour $\phi \in \mathcal{T}_2$, les relations (2) et (3) ci-dessus et, en plus :

(3°)
$$\phi^{\circ}(-\lambda_2 \varepsilon) = \alpha_{-1}^{\circ}$$

On note \mathcal{C}_{μ} l'espace des arcs $([0,\mu],\mu) \rightarrow (\mathcal{F},f)$ dont l'opposé réalise, toutes les valeurs critiques égales le restant, le croisement successif de α_0 avec $\alpha_{-1},\dots,\alpha_{-p}$; pour i=1,2, on note \mathcal{C}_{i} l'image canonique de \mathcal{F}_{i} dans \mathcal{C}_{μ} et $\widetilde{\mathcal{C}}_{i}$ le complexe image du complexe singulier de \mathcal{F}_{i} . Enfin on note \mathcal{H} l'espace des nappes ascendantes de f issues de c_0 .

Il existe alors sur \mathscr{C} une déformation de \mathscr{C}_2 dans \mathscr{C}_1 , qui définit un morphisme $\widetilde{\mathscr{C}_2} \to \widetilde{\mathscr{C}_1}$, et qui est compatible avec les applications canoniques $\mathscr{C}_1 \to \mathscr{K}$ et $\mathscr{C}_2 \to \mathscr{K}$.

Démonstration : Soit ψ° un difféomorphisme de [-1,+1] qui vérifie les deux conditions suivantes :

- (4) ψ^{η} coîncide avec l'identité au voisinage de [- $\mu\epsilon_*l$];
- (5) $\psi^{\circ}(-1) > -\lambda_{2} \varepsilon$.

On pose, pour tout tel:

$$((l-t) \times identité) + t \psi' = \psi_t^*$$

Le lemme préliminaire l'associe à ψ_t^s un difféomorphisme ψ_t de M , dépendant continuement de t , et vérifiant quel que soit t:

- (6) $k \circ \psi_t = k$
- (7) $h_u \circ \psi_t = \psi_t^{\circ} \circ h_u \circ$

Considérons l'application qui à tout $\phi \in \mathcal{T}_2$ associe ϕ o $\psi_{\mathbf{t}}$ of Soient ϕ et $\overline{\phi}$ deux éléments de \mathcal{T}_2 ayant même image dans \mathcal{T}_2 ; il résulte du l°) de la proposition 2 que $\overline{\phi}^{-1}$ o ϕ laisse invariants \mathbf{h} et \mathbf{k} , et par conséquent \mathbf{h}_{μ} . On a alors compte tenu de (6) et (7):

$$k \circ \psi_{\mathbf{t}}^{-1} \circ \overline{\phi}^{-1} \circ \phi \circ \psi_{\mathbf{t}} \circ \mathbf{x} = k \circ \overline{\phi}^{-1} \circ \phi \circ \psi_{\mathbf{t}} \circ \mathbf{x} = k \circ \psi_{\mathbf{t}} \circ \mathbf{x} = k \circ \mathbf{x} ;$$

$$h_{\mu} \circ \psi_{\mathbf{t}}^{-1} \circ \overline{\phi}^{-1} \circ \phi \circ \psi_{\mathbf{t}} \circ \mathbf{x} = \psi_{\mathbf{t}}^{*-1} \circ h_{\mu} \circ \overline{\phi}^{-1} \circ \phi \circ \psi_{\mathbf{t}} \circ \mathbf{x} = \psi_{\mathbf{t}}^{*-1} \circ h_{\mu} \circ \psi_{\mathbf{t}} \circ \mathbf{x} = h_{\mu} \circ \psi_{\mathbf{t}} \circ \psi_{\mathbf{t}} \circ \psi_{\mathbf{t}} \circ \mathbf{x} = h_{\mu} \circ \psi_{\mathbf{t}} \circ \psi_{\mathbf{t}$$

pour tout $x \in M_1$; ainsi $(\overline{\phi} \circ \psi_t)^{-1} \circ (\phi \circ \psi_t)$ laisse invariants k et h_{μ} ; donc d'après le lemme préliminaire 2, il laisse aussi k invariant; donc, pour tout $k \in I$, $\overline{\phi} \circ \psi_t$ et $\phi \circ \psi_t$ définissent le même chemin élémentaire. D'après (5), $\phi \circ \psi_1$ est un élément de \mathcal{C}_1 . On obtient donc par passage au quotient une déformation de \mathcal{C}_1 sur \mathcal{C}_{μ} qui aboutit dans \mathcal{C}_1 et définit un morphisme : $\widetilde{\mathcal{C}}_2$ \longrightarrow $\widehat{\mathcal{C}}_1$; la compatibilité avec les applications canoniques \mathcal{C}_1 \longrightarrow \mathcal{A} et \mathcal{C}_2 \longrightarrow \mathcal{A} résulte de (4).

3.4. Démonstration de la proposition 2 pour p>2.

On suppose la propriété démontrée lorsqu'il y a au plus p-l croisements. D'après la propriété (**) de I.2.2., il suffit de montrer que l'inclusion de \mathcal{C}_p dans \mathcal{C}_p induit un isomorphisme de tous les groupes d'homotopie de $\widetilde{\mathcal{C}}_p$ dans ceux de \mathcal{C}_p . Pour tous les λ_1 , λ_2 , μ tels que $\lambda_1 < \mu < \lambda_2$, et pour tout $f^* \in \mathcal{F}_p$; f^* notons \mathcal{C}_p^* (au lieu de $\mathcal{C}_{p;\lambda_1,\lambda_2,\mu_1;f^*}$) la partie de \mathcal{C}_p formée des chemins dont les deux premiers paramètres de traversée sont λ_1 et λ_2 , et qui passent par f^* pour la valeur μ ; et notons \mathcal{C}_p^* l'espace de chemins élémentaires descendants correspondant. D'après la propriété (**), il suffit de montrer que pour tous les $\lambda_1,\lambda_2,\mu_1,f^*$, l'inclusion de $\widetilde{\mathcal{C}}_p^*$ dans \mathcal{C}_p^* induit un isomorphisme de tous les groupes d'homotopie.

Soit $\mathcal{C}_{p;1}^{\circ}$ (resp. $\mathcal{C}_{p;2}^{\circ}$) l'espace des restrictions à $[0,\mu]$ (resp. $[\mu,1]$) des éléments de \mathcal{C}_{p}° ; on a un homéomorphisme canonique $\mathcal{C}_{p}^{\circ} \approx \mathcal{C}_{p;1}^{\circ} \times \mathcal{C}_{p;2}^{\circ}$; pour tout $\gamma \in \mathcal{C}_{p}^{\circ}$, on note γ_{1} et γ_{2} les images respectives de γ dans $\mathcal{C}_{p;1}^{\circ}$ et $\mathcal{C}_{p;2}^{\circ}$. On note $\mathcal{C}_{p;2}^{\circ}$) l'image de \mathcal{C}_{p}° dans $\mathcal{C}_{p;1}^{\circ}$ (resp. $\mathcal{C}_{p;2}^{\circ}$). On note \mathcal{B} (resp. \mathcal{A} , resp. \mathcal{D}) l'espace des binappes (resp. des nappes ascendantes, resp. des nappes descendantes) de \mathcal{C}_{p}° ; on a un diagramme commutatif :

Soit $\mathcal{E}\ell_{p,1}^n$ la partie de $\mathcal{C}_{p,1}^n$ formée des arcs élémentaires dont l'image (par f') du support contient à l'exclusion de toute autre (et toutes deux à son intérieur) les deux valeurs critiques α_0^n et α_1^n de f' qui correspondent à α_0 et α_1 . D'après le lemme 1, il existe sur $\mathcal{C}_{p,1}^n$ une déformation de $\mathcal{C}\ell_{p,1}^n$ dans $\mathcal{E}\ell_{p,1}^n$, qui définit un morphisme : $\mathcal{E}\ell_{p,1}^n \longrightarrow \mathcal{E}\ell_{p,1}^n$ et qui est compatible avec les applications $\mathcal{E}\ell_{p,1}^n \longrightarrow \mathcal{E}\ell_{p,1}^n \longrightarrow \mathcal{E}\ell_{p,1}^n$ (pour $\ell_{p,1}^n \longrightarrow \mathcal{E}\ell_{p,1}^n \longrightarrow \mathcal{E}\ell_{p,1$

$$\pi_{j}(\mathcal{E}_{p;1}^{\circ};\beta_{1}) \leftarrow \pi_{j}(\widetilde{\mathcal{E}\ell}_{p;1}^{\circ};\beta_{1}) \rightarrow \pi_{j}(\mathcal{E};\nu_{1})$$

$$\uparrow_{1} \downarrow \qquad \qquad \downarrow$$

$$\pi_{j}(\mathcal{E}_{p,1}^{\circ};\beta_{1}^{"}) \leftarrow \pi_{j}(\widetilde{\mathcal{E}\ell}_{p,1}^{"};\beta_{1}^{"})$$

dans lequel ζ_1 est l'isomorphisme défini par le chemin décrit par β_1 au cours de la déformation, et β_1^n l'extrémité de ce chemin ; v_1 est l'image de β dans e^t . On définit de façon analogue $\ell\ell_{p;2}^n$, et on lui applique de même le lemme 1 . D'où pour tout $j\geqslant 0$ (pour j=0, on prend des ensembles sans point de base) le diagramme commutatif :

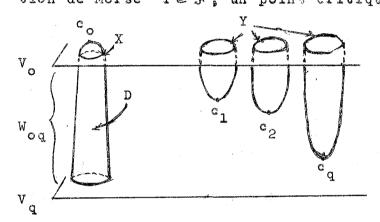
$$\begin{array}{c|c} \pi_{j}(\mathcal{C}_{p}^{\circ};\beta) & \xrightarrow{\pi_{j}(\mathcal{C}_{2}^{\circ};\beta)} & \xrightarrow{\xi} & \pi_{j}(\mathcal{G}_{s}^{\circ}v) \\ \hline \pi_{j}(\mathcal{C}_{p;1}^{\circ} \times \mathcal{C}_{p;2}^{\circ};(\beta_{1},\beta_{2})) \leftarrow \pi_{j}(\widetilde{\mathcal{E}\ell}_{p;1}^{\circ} \times \widetilde{\mathcal{E}\ell}_{p;2}^{\circ};(\beta_{1},\beta_{2})) \rightarrow \pi_{j}(\mathcal{A} \times \mathcal{D};(\nu_{1},\nu_{2})) \\ \hline \pi_{j}(\mathcal{C}_{p,1}^{\circ} \times \mathcal{C}_{p;2}^{\circ};(\beta_{1}^{\circ},\beta_{2}^{\circ})) \leftarrow \pi_{j}(\widetilde{\mathcal{E}\ell}_{p;1}^{\circ} \times \widetilde{\mathcal{E}\ell}_{p;2}^{\circ};(\beta_{1}^{\circ},\beta_{2}^{\circ})) \\ \hline \end{array}$$

Dans ce diagramme, δ est l'isomorphisme défini par l'homéomorphisme $\mathcal{C}_p^{\delta} \approx \mathcal{C}_p^{\delta} \times \mathcal{C}_p^{\delta}$

Remarque du \S .2 de l'Appendice ; enfin ρ est un isomorphisme d'après l'hypothèse de récurrence. Les morphismes $\pi_{\mathfrak{o}}(\widehat{\mathcal{E}\ell}_{\mathfrak{p}}^*) \longrightarrow \pi_{\mathfrak{o}}(\mathscr{C}_{\mathfrak{p}}^0)$ et $\pi_{\mathfrak{j}}(\widehat{\mathcal{E}\ell}_{\mathfrak{p}}^0;\beta) \longrightarrow \pi_{\mathfrak{j}}(\mathscr{C}_{\mathfrak{p}}^0;\beta)$ ($\mathfrak{j}>1$) sont donc tous des isomorphismes, ce qui achève la preuve de la proposition 2.

\$.4. Lemmes de classification de nappes.

4.1. Résultats. Dans tout ce paragraphe, on considère une fonction de Morse $f \in \mathcal{F}$, un point critique c, d indice i, de f



co, dindice i, de f tel que la valeur critique α_0 correspondante soit simple, et les q valeurs critiques immédiatement inférieures à α_0 , notées α_1 , α_2 , α_2 , α_3 , α_4 , α_5 , α_6 , α_6 , α_7 , α_8 , α_8 , α_8 , α_8 , α_8 , α_8 , α_9 , α

diatement en-dessous de $f^{-1}(\alpha_k)$. On désigne par W_{kl} (pour k<l) la partie de W comprise entre V_k et V_l . On note \mathcal{D} l'espace des nappes descendantes de c_0 jusqu'à V_q ; on suppose (ce sera le cas dans toutes les hypothèses considérées) que \mathcal{D} n'est pas vide; on choisit $D \in \mathcal{D}$ et on note $D \cap V_0 = X$. On note \mathcal{A} l'espace des systèmes disjoints de nappes ascendantes des points critiques de $f W_{Qq}$, limitées à V_0 ; on suppose (ce sera le cas dans toutes les hypothèses considérées) que \mathcal{A} n'est pas vide; on choisit $A \in \mathcal{A}$, et on note $A \cap V_0 = Y$.

On désigne par $\mathscr{C}_{\mathbf{f}}$ l'espace des chemins d'origine f réalisant (toutes les valeurs critiques égales par ailleurs le restant) le croisement successif de $\alpha_{\mathbf{c}}$ avec $\alpha_{\mathbf{l}^{\,0}}$, $\alpha_{\mathbf{q}}$.

On rappelle que la dimension de W est notée n ; celle de $V_{_{f O}}$ est donc n-l $_{\circ}$

Proposition 3. (Unicité des croisements de mise en ordre). Si les indices des points critiques de $f|_{Q_q}$ sont tous plus petits que l'indice i de c_q , alors $\pi_q(\mathcal{C}_f) = 0$.

Proposition 4. (Classification des croisements à indices égaux). Si tous les points critiques de $f|W_{oq}$ sont d'indice égal à l'indice i de c_0 ; si n>6, $\pi_o(V_o) = \pi_1(V_o) = 0$, et si l'une des trois conditions suivantes est remplie :

(b,) 3<i<n-3;

$$(b_2)$$
 i=2, et $\pi_1(V_0-Y)=0$ ou Y borde un disque de V_0 ;

$$(b_3)$$
 i=n-2, et $\pi_1(V_0-X) = 0$ ou X borde un disque de V_0 .

Alors le choix d'une orientation de D détermine une bijection :

$$\delta : \pi_{o}(\mathscr{C}_{f}) \longrightarrow H_{\mathring{I}}(W_{oq}, V_{q})$$

telle que la classe du chemin élémentaire défini par D ait pour image O $_{\circ}$ Si on remplace D par un élément D $_{\circ}$ de D $_{\bullet}$ muni d'une orientation conérente avec celle de D $_{\circ}$ la bijection δ° obtenue est composée de δ et d'une translation de $H_{\dot{1}}(W_{\circ \dot{q}}, V_{\dot{q}})$ $_{\circ}$

Proposition 5. (Unicité du double croisement). Si l'ensemble critique de f sur W_{oq} se compose de deux points critiques c_1 (d'indice j+1) et c_2 (d'indice j) en position de destruction mutuelle ; et si l'une des trois conditions suivantes est remplie :

- $(1) \quad i+j \leq n-2 \quad ;$
 - (2) i < j;
 - (3) i = j; $3 \le i \le n-3$; $\pi_0(V_0) = \pi_1(V_0) = 0$;

alors $\mathcal{C}_{\mathbf{f}}$ est connexe.

Principe de la démonstration. Le corollaire de la proposition 2 de 3.1. ramène la démonstration de chacune de ces propositions à

la détermination de l'espace $\pi_{o}(\mathcal{D})$ correspondant. D'une façon précise, les résultats qu'on va démontrer dans chaque cas sont les suivants

Proposition 3°. Sous les hypothèses de la proposition 3, $\pi_0(\mathfrak{D}) = 0$.

Proposition 4° Sous les hypothèses de la proposition 4 le choix d'une prientation de D détermine une bijection

$$\zeta_o : \pi_o(\mathfrak{D}_{\sharp}D) \implies H_{\mathring{\mathfrak{l}}}(\mathbb{V}_{\circ q},\mathbb{V}_q)$$

telle que $\zeta_0(\hat{D}) = 0$. Si on remplace D par $D' \in \mathfrak{D}$, muni d'une orientation cohérente avec celle de D , la bijection ζ_0' obtenue est composée de ζ_0 et d'une translation de $H_1(W_{0q}, V_q)$.

Proposition 5°. Sous les hypothèses de la proposition 5, $\pi_{o}(\mathfrak{D}) = 0$.

4.2. Le morphisme ; o

Les notations étant celles du début de 4 .l., on choisit un élément D de D et on oriente D; on note \mathcal{D}_{0} le sous-espace de D formé des nappes qui coıncident avec D au-dessus de V_{0} ; il résulte des propositions 3 et 4 de l'Appendice que l'injection \mathcal{D}_{0} —> D est une équivalence d'homotopie faible. Il est commode, au lieu d'étudier directement \mathcal{D}_{0} , d'étudier un espace de plongements qui lui est homotopiquement équivalent.

Définition 1. Un plongement ϕ : $S^{i-1} \times (I,0,1) \longrightarrow (W_{\text{eq}},V_{\text{eq}},V_{\text{q}})$ est dit linéairement adapté à f s'il y a commutativité du diagramme

$$\begin{array}{c|cccc}
s^{i-1} \times I & \xrightarrow{\phi} & W_{\text{oq}} \\
p_2 & & \downarrow f \\
I & \xrightarrow{\phi^{i}} & R
\end{array}$$

où p' désigne l'application linéaire affine décroissante de I

sur l'intervalle $f(W_{\text{oq}})$. On notera que cette définition implique que que <u>l'image de</u> ϕ ne contient aucun point critique de f .

On note \mathcal{X}_{oq} , et, quand il n'y a pas de confusion possible, simplement \mathcal{X} , l'espace des plongements linéairement adaptés $S^{i-1} \times (I,0,1) \longrightarrow (W_{\text{oq}},V_{\text{o}},V_{\text{q}})$ dont l'image orientée se raccorde le long de V_{oq} avec D orientée.

On a une application naturelle : $\mathcal{X} \longrightarrow \mathcal{D}$; c'est une équivalence d'homotopie faible ; on choisit dans \mathcal{X} un point de base ξ au-dessus de D.

Définition 2. On dit qu'un plongement de S^{i-1} dans W est horizontal si son image est contenue dans une variété de niveau de f et ne contient aucun point critique de f.

On note S_{oq} , et, quand il n'y a pas de confusion possible, simplement S, l'espace des plongements horizontaux de S^{i-1} dans W_{oq} . On note S_{oq} (resp. S_{q}) l'espace des plongements horizontaux de S^{i-1} dans V_{oq} (resp. V_{q}). On note S_{oq} (resp. S_{q}) l'élément de S_{oq} (resp. S_{q}) défini par S_{oq}

Soit $\Omega(\mathcal{G},\mathcal{G}_q;\xi_0)$ l'espace des chemins dans \mathcal{G} , d'origine ξ_0 , d'extrémité dans \mathcal{G}_q ; on a une application canonique :

$$\mathfrak{R} \longrightarrow \mathfrak{R}(\mathcal{S}, \mathcal{S}_q; \xi_0)$$

et par conséquent, pour tout j>0, un morphisme canonique

(1)
$$\pi_{j}(\mathfrak{R};\xi) \longrightarrow \pi_{j+1}(\mathcal{S},\mathcal{S}_{q};\xi_{q}).$$

Soit $\dot{\chi} \in \pi_{j+1}(\mathcal{S}_{q}, \mathcal{S}_{q})$; soit χ un représentant de $\dot{\chi}$: c'est une application de (D^{j+1}, S^{j}) dans $(\mathcal{S}_{oq}, \mathcal{S}_{q})$; χ définit canoniquement une application de $(D^{j+1}, S^{j}) \times S^{j-1}$ dans (W_{oq}, V_{q}) ; l'image de la classe fondamentale de $D^{j+1} \times S^{j-1}$ par cette dernière application est un élément de $H_{i+j}(W_{oq}, V_{q})$ qui ne dépend que de $\dot{\chi}$; ceci définit l'application

$$(2) \qquad \pi_{j+1}(\mathcal{S}, \mathcal{S}_{q}; \xi_{q}) \longrightarrow H_{i+j}(W_{oq}, V_{q}).$$

Par composition de (1) et (2) on obtient une application

$$\zeta_{j} : \pi_{j}(x, \xi) \longrightarrow H_{i+j}(W_{oq}, V_{q})$$

dont l'étude constitue l'essentiel de ce paragraphe.

Premières propriétés de l'application 5; .

- l. Si on remplace D par une nappe D' coîncidant avec D au-dessus de V_o et orientée de façon cohérente avec l'orientation de D , l'application ζ_o^* obtenue est la composée de ζ_o et d'une translation de $H_i(W_{og}, V_g)$.
- 2. Soient k, l, m des entiers tels que 0 < k < k < m < q; on définit comme en 4.1. les variétés de niveau V_k , V_l , V_m et les triades W_{kl} , etc.,.; on définit comme ci-dessus les espaces de plongements linéairement adaptés \mathcal{K}_{kl} , etc.,.; on note ξ_{kl} l'élément de \mathcal{K}_{kl} canoniquement défini par ξ ; on note ξ_{jkl} l'application analogue à ξ_j , relative à W_{kl} . L'application canonique $\mathcal{K}_{km} \longrightarrow \mathcal{K}_{kl}$ est une fibration localement triviale d'après le théorème de fibration des espaces de plongements (cf. [3], p. 114, théorème 1); la fibre située au-dessus de ξ_{kl} est $\mathcal{K}_{\ell m}$. Il y a commutativité dans le diagramme :

dans lequel la suite du haut est la suite exacte d'homotopie de la fibration qu'on vient de considérer ; la suite du bas se déduit de la suite exacte d'homologie du triple $(W_{km}, W_{\ell m}, V_m)$ en remplaçant l'opérateur bord par son opposé, et en remplaçant $H_{i+j}(W_{km}, W_{\ell m})$ par le groupe isomorphe $H_{i+j}(W_{k\ell}, V_{\ell})$.

$\mu_{\circ}3_{\circ}$ Cas où il y a une métrique riemannienne adaptée : les applications α_{j} , β_{j} , γ_{j} et le lemme de commutativité.

Le principe de l'étude de ζ_j consiste à définir trois autres applications α_j , β_j et γ_j telles que $\zeta_j \circ \beta_j = \gamma_j \circ \alpha_j$, et à étudier séparément α_j , β_j et γ_j . La définition de ces applications utilise une "métrique riemannienne adaptée".

Définitions. Soit No une métrique riemannienne sur W_{oq} ; on dit qu'un plongement linéairement adapté $\phi: S^{i-1} \times (I_0,0,1) \longrightarrow (W_{oq}, V_o, V_q)$ est de gradient si $\phi(\{x\} \times I)$ est une ligne de gradient de No pour tout $x \in S^{i-1}$. On dit que No est adaptée à f et à ξ si les nappes descendantes de gradient des points critiques de f sur W_{oq} peuvent toutes être prolongées jusqu'à V_q , et si en plus ξ est de gradient.

On rappelle que les conditions ci-dessus entraînent que toutes ces nappes de gradient et l'image de ξ sont deux à deux disjointes ξ en plus les nappes ascendantes de gradient des points critiques de f sur W_{oq} peuvent alors être prolongées jusqu'à V_{o} , et sont toutes disjointes deux à deux, ainsi que de l'image de ξ et de toutes les nappes de gradient descendantes.

On rappelle d'autre part le résultat suivant (utilisé en théorie de Smale): si tous les points critiques de f sur W_{oq} ont même indice i', et si $i < i^\circ$, alors l'espace $\mathcal D$, et par conséquent l'espace $\mathcal X$, sont non vides ; et pour tout $\xi \in \mathcal X$, il existe sur W_{oq} une métrique riemannienne $\mathcal A_{\mathcal G}$ adaptée à f et à ξ .

Notations. On note A la réunion des nappes de gradient ascendantes de tous les points critiques de f sur V_{oq} ; on note Y_{o} l'intersection de A avec V_{o} . On note Y_{o} le sous-espace de Y_{o} (espace des plongements Y_{o}) formé des plongements dont l'image ne rencontre pas A.

On choisit une variété de niveau V_o , située un peu au-dessous de V_o ; \mathcal{H}_b définit un difféomorphisme : $V_o \times (I_sO_sI) \implies (W_{oo}, V_o, V_o) \text{ on note } \mathcal{K}^* \text{ le sous-espace de } \mathcal{K} \text{ formé des plongements qui sont de gradient en-dessous de } V_o, .$

Définition de α_i o C'est l'application naturelle (cf.I.4.2.)

$$\pi_{j+1}(\mathcal{S}_{0}, \mathcal{S}_{0}^{*}; \xi_{0}) \longrightarrow H_{i+j}(V_{c}, V_{0}-A_{0})$$

Définition de β_j . L'espace \mathfrak{X}^* a même type d'homotopie que l'espace \mathfrak{X}^*_{oo} : espace des plongements linéairement adaptés $\mathbf{S}^{1-1}\mathbf{x}$ (I,0,1) \longrightarrow (W_{oo}, V_o, V_o,) dont l'image ne rencontre pas $\mathbf{A} \cap \mathbf{V_o}$, a La projection de W_{oo}, sur V_o définit une application de \mathfrak{X}^*_{oo} , sur l'espace $\Omega(\mathcal{G}_o,\mathcal{F}_o^o;\,\xi_o)$: espace des chemins dans \mathcal{F}_o , d'extrémité dans \mathcal{F}_o ; cette application est une équivalence d'homotopie ; on a donc une bijection (canoniquement définie par \mathcal{N}_o) : $\pi_{j+1}(\mathcal{G}_o,\mathcal{F}_o^*;\,\xi_o)$ $\xrightarrow{\sim}$ $\pi_{j}(\mathfrak{X}^*;\xi)$ obtenue en composant la bijection ci-dessus avec l'application $\pi_{j}(\mathfrak{X}^*;\xi)$ $\xrightarrow{\sim}$ $\pi_{j}(\mathfrak{X};\xi)$ définie par l'inclusion.

Définition de γ_j . Considérons les deux applications naturelles :

$$H_{i+j}(V_{o},V_{o}-Y) \xrightarrow{\Upsilon_{j}^{*}} H_{i+j}(W_{oq},W_{oq}-A) \xrightarrow{\Upsilon_{j}^{"}} H_{i+j}(W_{oq},V_{q})$$

L°application γ_j^n est bijective pour tout $j\geqslant 0$, car W_{oq}^{-A} peut se rétracter sur V_q le long des lignes de gradient de 2C; on pose :

$$\gamma_{j}^{"-1} \circ \gamma_{j}^{\circ} = \gamma_{j} \circ$$

Lemme 1. Le diagramme :

est commutatif pour tout j>0 .

Démonstration : Soit \mathcal{G}^* l'espace des plongements horizontaux de S^{1-1} dans W_{oq} -A . On complète le diagramme ci-dessus en le diagramme

où toutes les commutativités se vérifient sans difficulté.

4.4. Etude le l'application a dans quelques cas particuliers.

ler cas particulier. Tous les points critiques de f sur W_{oq} sont d'indice strictement plus grand que i ; alors chaque composante connexe de Y est de dimension strictement plus petite que n-i-1; donc, d'après le théorème de séparation de Whitney, $\pi_1(S_0, S_0^0; \xi_0) = 0$; l'application α_0 est nulle dans ce cas.

2ème cas particulier.

Lemme 2. On suppose que les points critiques de f sur Voq sont tous d'indice i et que Vo est connexe. Alors l'application o est surjective si l'une des trois conditions suivantes

est remplie :

 (s_1) $2 \leqslant i \leqslant n-2$

(s₂) i=1 et V₀-X₀ est connexe ;

(s₃) i=n-l et V_o-Y_o est connexe o

L'application α_0 est bijective si $\pi_0(V_0) = \pi_1(V_0) = 0$ et si l'une des trois conditions (b_0) , (b_1) , b_2 de la proposition 3 est remplie.

Démonstration : cf. la proposition 2 de I.4.2.

3ème cas particulier.

Lemme 3. On suppose que q=1, que f a un seul point critique sur W_{ol} , et que l'indice de ce point critique est i+l. Si en plus $1 \le i \le n-2$, alors $1 \le application$ α_1 est surjective.

Démonstration : Le fibré normal à X dans V_o ayant une section, il existe un plongement $\eta_o: S^{i-1} \times I \longrightarrow V_o$ dont la restriction à $S^{i-1} \times \{0\}$ s'identifie à ξ_o . On note Z_o l'image de η_o et \mathcal{F}_o l'espace des plongements $S^{i-1} \times I \longrightarrow V_o$ qui coıncident avec η_o sur $S^{i-1} \times \partial I$; soit \mathcal{F}_o^* la partie de \mathcal{F}_o formée des plongements dont l'image ne rencontre pas Y. On a un morphisme naturel :

$$\pi_1(3_0, 3_0^*, \eta_0) \rightarrow \pi_2(3_0, 3_0^*; \xi_0)$$

qui, composé avec α_0 , donne un morphisme

$$\widetilde{\alpha}_{0}$$
: $\pi_{1}(y_{0}, y_{0}^{*}; \eta_{0}) \longrightarrow H_{i+1}(V_{0}, V_{0}-Y)$.

D'après la condition (s₁) de la proposition 2 de I.4.2., $\widetilde{\alpha}_{o}$ est surjectif pour $2\leqslant i+1\leqslant n-2$, i.e. $1\leqslant i\leqslant n-3$; et d'après la condition (s₃) de la même proposition, $\widetilde{\alpha}_{o}$ est surjectif pour i=n-2 (car $V_{o}-Z_{o}$ est connexe). Ceci achève la preuve du lemme, car la surjectivité de $\widetilde{\alpha}_{o}$ entraîne celle de α_{o} .

4.5. Etude le l'application β_{j}

Lemme 4. 1°) L'application β_j est bijective quel que soit j > 0 lorsque q=1 et que f a un seul point critique sur $W_{q,q}$.

2°) L'application β_{o} est surjective si (i' désignant le plus petit des indices des points critiques de f sur W_{oq}) on a $1 \le i \le i' \le n-2$.

Corollaire. Soit $f \in \mathcal{F}$ une fonction de Morse ; soient c_1 , c_2 , c_3 trois points critiques consécutifs de f, de même indice i, tels que $f(c_1) > f(c_2) > f(c_3)$. Soit V_3 une variété de niveau de f située immédiatement en-dessous de c_3 . Soit D_1 (resp. D_2) une nappe descendante de c_1 (resp. c_2) limitée à V_3 . Si $1 \le i \le n-2$, alors D_1 peut être déformée (dans l'espace des nappes descendantes de c_1 limitées à V_3) en une nappe D_1 disjointe de D_2 .

Démonstration du corollaire : On choisit une variété de niveau V_1 de f située entre c_1 et c_2 , et une métrique riemannienne \mathcal{D}_0 pour laquelle D_2 soit de gradient. D'après le 2°) du lemme 4, D_1 peut être déformée en une nappe D_1^0 qui soit de gradient pour \mathcal{D}_0^0 en-dessous de V_1 ; D_1^0 ne rencontre pas D_2^0 .

Démonstration du lemme 4 : 1°) Soit $^{\circ}$ l'unique point critique de $^{\circ}$ sur $^{\circ}$ Pour tout compact $^{\circ}$ de $^{\circ}$, il existe une variété de niveau $^{\circ}$ située au-dessus de $^{\circ}$, telle que pour tout point $^{\circ}$ situé sur l'intersection avec $^{\circ}$ $^{\circ}$ de l'image d'un élément quelconque de $^{\circ}$, la ligne de gradient descendante de $^{\circ}$ ne rencontre pas $^{\circ}$. Il existe donc une sous-variété à bord $^{\circ}$ de $^{\circ}$ de codimension zéro, telle que le cylindre $^{\circ}$ engendré par les lignes de gradient descendantes issues de $^{\circ}$ et limitées à $^{\circ}$ $^{\circ}$ contienne à son intérieur les intersections avec $^{\circ}$ $^{\circ}$ des images de tous les éléments de $^{\circ}$. Il existe donc une déformation de $^{\circ}$ sur le sous-espace $^{\circ}$ $^{\circ}$ de $^{\circ}$ formé des plongements qui sont de gradient en-dessous de $^{\circ}$ $^{\circ}$ peut être déformé dans $^{\circ}$ au moyen d'une isotopie adaptée à $^{\circ}$, définie par les lignes de gradient de $^{\circ}$, amenant $^{\circ}$ ou sur $^{\circ}$ o, et induisant l'identité sur un voisinage arbitrairement

petit de $W_{0^{0}0}$, par composition, on obtient une déformation de \mathcal{H} dans \mathfrak{X}^{*} ; ceci prouve le l°).

2°) La démonstration se fait par récurrence sur q ; le cas q=l a été traité au l°). Soit q>l ; soit $V_{q=l}$ une variété de niveau non critique telle qu'il y ait exactement une valeur critique de f entre V_{q-l} et V_q ; soit $V_{(q-l)}$, une variété de niveau située immédiatement en-

dessous de V_{q-1} . Soit $\xi^* \in \mathfrak{X}$; d'après la surjectivité de β_o dans le cas q=1, et l'hypothèse de récurrence, on peut supposer que ξ^* est de gradient sur $W_{0^*,q-1}$ et sur $W_{(q-1)^*,q}$ \circ

D'après le lemme l de II.4.1., on peut supposer que la projection (le long des lignes de gradient) de $\xi_{q-1,(q-1)}^{\eta}$ sur

 V_{q-1} a son image contenue dans un voisinage arbitrairement petit de la réunion de ξ_{q-1}^* et d'un nombre fini de sous-variétés de dimension 1 de V_{q-1} ; d'après la condition de l'énoncé, le théorème de séparation de Whitney permet de séparer toutes ces sous-variété de toutes les nappes de gradient descendantes des points critiques de f sur $V_{0,q-1}$; ξ^{\dagger} peut alors être déformé en un élément de x^* , ce qui achève la preuve du 2°).

4.6. Etude de vi o

Lemme 5. Le morphisme γ_j est surjectif quel que soit $j \gg 0$; il est bijectif si $i+j \neq n-1$.

Démonstration : L'application γ_j'' étant bijective pour tout j>0, l'étude de γ_j est ramenée à celle du morphisme γ_j'' :

$$H_{i+j}(V_0, V_0-Y) \longrightarrow H_{i+j}(W_{0q}, W_{0q}-A)$$

Soient c_1 , c_2 , c_k les points critiques de f sur c_1 soient c_1 , c_2 , c_k leurs indices respectifs ; soient c_1 , c_2 , c_1 , c_2 , c_1 , c_2 , c_1 , c_2 , c_2 , c_1 , c_2 , $c_$

tées à V_o ; soit (pour tout h=1,2,0,0; k) T_c un voisinage

tubulaire de Y ; on suppose que ces tubes sont deux à deux disjoints, et on note T leur réunion. On rappelle que Y h est difféomorphe à D h , de sorte que T est difféomorphe h h $^{\rm n-i}$ h . On a donc le diagramme commutatif suivant :

Toutes les flèches horizontales de ce diagramme sont des bijections (celles de gauche par excision); d'où le lemme,

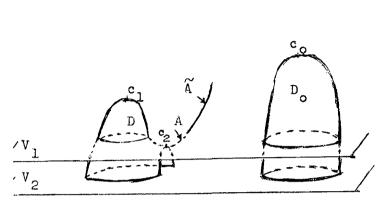
4.7. Démonstration des propositions 3, 4 et 5°.

Démonstration de la proposition 3' : On a vu en 4.4.6 (ler cas particulier) que lorsque tous les points critiques de f sur W_{oq} sont d'indice supérieur à i, $\pi_o(S_o, S_o, \xi_o)$ a un seul élément. D'après le 2° du lemme 4, l'application β_o est surjective sous les mêmes hypothèses; donc $\mathfrak X$ est connexe, donc $\mathfrak D$ est connexe.

Démonstration de la proposition $4^{\frac{1}{4}}$ Sous les hypothèses de cette proposition, α_{0} est bijectif d'après le lemme 2, γ_{0} est bijectif d'après le lemme 5, et β_{0} est bijectif d'après le 2° du lemme 4. Comme, d'après le lemme 1, on a β_{0} β_{0} = γ_{0} β_{0} a, ceci entraîne la bijectivité de β_{0} ; d'où la proposition.

Démonstration de la proposition 5' : Dans le cas (2), il s'agit

d'un simple cas particulier de la proposition 3' (le fait que c_1 et c_2 se tuent est superflu dans ce cas).



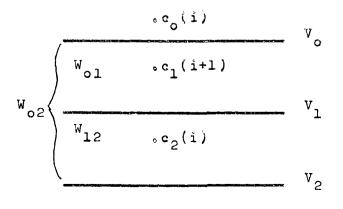
Cas (1). Soit Do une nappe descendante de continitée à V2 et soit Do une nappe descendante saturée de continitée à V2;

Do et Do sont de dimension respective i et j+1;

la condition (1) permet donc de séparer Do de Do

par une petite isotopie. Soit V_1 une variété de niveau séparant c_1 et c_2 ; soit D la partie de \widetilde{D} située au-dessus de V_1 ; si le niveau de V_1 est assez proche de celui de c_2 ; il existe une nappe ascendante A de c_2 , en bonne position par rapport à D, telle que $A \cap D_0 = \emptyset$. On choisit alors une métrique riemannienne B_0 , adaptée à D, A, et D_0 ; on construit à l'aide de B_0 un saturé \widetilde{A} de A qui est disjoint de D_0 . Il existe alors d'après III.2.1., propriété B_0 , un voisinage double saturé \widetilde{U} de $\{c_1, c_2\}$, disjoint de B_0 . On sait qu'on peut modifier B_0 sur \widetilde{U} de façon que la fonction B_0 obtenue n'y ait aucun point critique; \widetilde{U} est un cylindre de gradient pour B_0 ; il suffit donc de montrer que l'espace des nappes descendantes de B_0 pour B_0 0, limitées à B_0 1, et évitant une ligne de gradient, est connexe. Il suffit pour cela que B_0 2, ce qui découle de B_0 3.

Cas (3). On choisit les variétés de niveau Vo. V1: V2. on note



 x_{o2} l'espace précédemment noté x, ξ_{o2} le plongement ξ , et on introduit de même x_{o1} , x_{12} , ξ_{o1} , ξ_{12} . La fibration localement triviale $x_{o2} \rightarrow x_{o1}$, de fibre x_{12} , donne lieu à la suite exacte :

$$\pi_1(x_{o1};\xi_{o1}) \rightarrow \pi_o(x_{12};\xi_{12}) \rightarrow \pi_o(x_{o2};\xi_{o2}) \rightarrow \pi_o(x_{o1};\xi_{o1})$$
.

D'après le ler cas particulier de 4.4., $\pi_{0}(x_{01};\xi_{01})=0$. Tout revient donc à montrer que <u>la flèche de gauche est surjective</u>. D'après la propriété 2 de 4.2., il y a commutativité dans le diagramme

La flèche du bas est surjective, car elle est la composée des flèches :

$$H_{i+1}(W_{01},V_{1}) \longrightarrow H_{i+1}(W_{02},W_{12}) \longrightarrow H_{i}(W_{12},V_{2})$$

(la flèche de gauche est bijective par excision; celle de droite est surjective d'après la suite exacte du triple (W_{02},W_{12},V_2) , puisque $H_1(W_{02},V_2)$ est nul d'après l'hypothèse de destructabilité de c_1 par c_2), L'application $\zeta_{0;12}$ est bijective d'après le lemme 2 (la condition (b_0) est remplie). L'application $\zeta_{1;01}$ vérifie d'après le lemme 1 :

$$\zeta_{1;01} \circ \beta_{1;01} = \gamma_{1;01} \circ \alpha_{1;01}$$

or $\alpha_{1;ol}$ est surjectif d'après le lemme 3, et $\gamma_{1;ol}$ est surjectif d'après le lemme 5; donc $\zeta_{1;ol}$ est surjective. Donc l'application $\pi_1(\alpha_{ol;\xi_{ol}}) \rightarrow \pi_o(\alpha_{12;\xi_{12}})$ est surjective, ce qu'il fallait démontrer.

Etude semi-locale de la stratification de 🕏

2. Unicité des naissances et des morts.

of étant l'espace des fonctions de 6 : (Will Way (I, C, a) care resultingue see is bord muni de sa stratification naturelle (cf.I. 3), on se donne pour but dans ce chapitre de classifier à homotopie près les chemins d'origine line f (f) traversant une fois la partie ${\mathscr F}^1_{\alpha}$ de ${\mathscr K}^1$ qui est relative (suivant le sens de traversée) à la naissance ou à la suppression d'un couple de points critiques. Au $\S.1$, on classifie ceux de ces chemins qui sont relatifs aux composantes de ${\cal J}_{\alpha}^{1}$ qui tournent vers f leur côté "naissance"; le résultat est le "lemme d'unicité des naissances" (1.3., corollaire 2) dent la démonstration est une application facile du lemme des chemins élémentaires. Au \$.2, on étudie la problème de la classification des "chemins de mort"; en 2.1 et 2.2 on rappelle la définition des "voisinages doubles" des couples de points critiques en position de destruction mutuelle, on en profite pour donner une démonstration rapide du "cancellation lemma" de Smale et de sa réciproque (2.3., proposition 3). Le lemme des chemins élémentaires ramène alors la question à un problème géométrique non trivial qui a été traité en I.5, ce qui conduit au "lemme d'unicité des morts" (2.4., proposition 4) qui est le principal résultat du chapitre.

§.1. Unicité des naissances.

1.1. La naissance standard dans Rn.

Soit is un entier tel que 0 \leqslant i \leqslant n - 1, ; soit χ \in T et soit $\epsilon>0$. On pose, pour $x\in R^n$:

$$\ell_{\lambda}(x) = -x_{1}^{2} \cdot \cdot \cdot -x_{1}^{2} + x_{1+1}^{2} + \cdot \cdot \cdot + x_{n-1}^{2} + x_{n}^{3} - (2\lambda - 1) \epsilon x_{n}^{2}$$

Il est immédiat que la fonction ℓ_λ possède :

- zéro point critique pour $\lambda < \frac{1}{2}$;
- 1 point critique (l'origine) pour $\lambda = \frac{1}{2}$;
- 2 points critiques pour $\lambda > \frac{1}{2}$: les points $(0, \dots, 0, \pm \sqrt{\frac{(2\lambda 1)\epsilon}{3}})$.

En particulier, les points critiques de ℓ_1 sont les points $(0,\dots,0,\pm\sqrt{\frac{\varepsilon}{3}})$. Pour tout $\lambda\in \left]\frac{1}{2},1\right]$, les points critiques de ℓ_{λ} sont sur l'intervalle $\left[-\sqrt{\frac{\varepsilon}{3}},+\sqrt{\frac{\varepsilon}{3}}\right]$ du n^{ême} axe de coordonnées. Le point $(0,\dots,0,-\sqrt{\frac{(2\lambda-1)\varepsilon}{3}})$ est un point critique de Morse d'indice i+1 de ℓ_{λ} ; le point symétrique est de Morse d'indice i. Le chemin (ℓ_{λ}) est "un chemin de naissance d'indice i"; on va maintenant le modifier afin d'obtenir un chemin à support compact.

Soit \overline{w} une fonction en cloche (de classe C^{∞}) $\mathbb{R}^{n} \to I$, c'est-à-dire une fonction à support compact égale à 1 au voisinage de 0, dont on suppose en plus qu'elle ne dépend que de la distance (euclidienne) à l'origine. On pose :

$$\ell_{\overline{\omega}_{i},\lambda_{n}}(x) = -x_{1}^{2} \cdot \cdot \cdot -x_{i}^{2} + x_{i+1}^{2} + x_{n-1}^{2} + x_{n}^{3} - (2\lambda \overline{\omega}(x) - 1)\epsilon x_{n}.$$

Sur supp $\overline{\omega}$, les fonctions ℓ_0 et $\ell_{\lambda;\overline{\omega}}$ coincident pour tout $\lambda \in I$. Sur le compact $\overline{\omega}^{-1}(]0,1[)$, ℓ_0 n'a aucun point critique, il suffit donc de choi-

sir ϵ assez petit pour que $\ell_{\overline{\omega};\lambda}$ n'ait, quel que soit $\lambda \in I$, aucun point critique sur ce compact. Sur $\overline{\omega}^{-1}(\uparrow)$, ℓ_{λ} et $\ell_{\overline{\omega};\lambda}$ coîncident; si ϵ est assez petit, cet ensemble contient tous les points critiques de tous les ℓ_{λ} . En résumé: \underline{si} ϵ est assez petit, $\ell_{\overline{\omega};\lambda}$ et ℓ_{λ} ont les mêmes points critiques et coîncident au voisinage de ces points critiques; $\ell_{\overline{\omega};0}$ et ℓ_{o} coîncident sur \underline{R}^{n} .

Sgit ϕ le difféomorphisme de $R^{\hat{\mathbf{n}}}$ défini par :

$$\psi(x) = (x_1, \dots, x_{n-1}, \ell_0(x))$$

$$\ell_0 \circ \psi^{-1} = x_n$$

On a :

On pose pour tout $\lambda \in I$:

$$\ell_{\overline{\omega};\lambda} \circ \psi^{-1} = \flat_{\lambda}$$

Le chemin (b) ainsi défini s'appelle le chemin standard de naissance d'indice i dans \mathbb{R}^n .

Puisque $\ell_{\overline{\omega};\lambda}$ est à support compact, il en est de même de b_{λ} . Soit $B \times J$ un cylindre de la forme $\mu D^{n-1} \times \mu D^1$; on choisit μ assez grand pour que $B \times J$ contienne à son intérieur le support de (b_{λ}) ; ce cylindre $B \times J$ est appelé modèle de naissance d'indice i.

Propriétés du chemin standard de naissance.

- 1. Pour tout $x \in \mathbb{R}^n$, $b_0(x) = x_n$;
 pour tout $x \in \mathbb{R}^n (B \times J)$, $b_{\lambda}(x) = b_0(x) = x_n$ pour tout $\lambda \in I$.
 - 2. b a zéro point critique pour $\lambda \in [0, \frac{1}{2}[$;
 - 1 point critique (l'origine) pour $\lambda = \frac{1}{2}$;
 - 2 points critiques pour $\lambda \in \frac{1}{2},1$.

Les points critiques de b_1 sont les points $(0, ..., 0, \pm \frac{4}{3}(\frac{\varepsilon}{\varepsilon})^{3/2})$; la forme quadratique bitangente à b_1 en l'un et l'autre de ces points est respectivement :

(1)
$$-x_1^2 \cdot \cdot \cdot -x_1^2 + x_{1+1}^2 + \cdot \cdot \cdot + x_{n-1}^2 + \frac{\sqrt{3}}{4} \epsilon^2 x_n^2$$

3. On suppose $i \neq 0$ et $i \neq n-1$; on pose :

$$\sigma(x) = (-x_1, x_2, \dots, x_i, -x_{i+1}, x_{i+2}, \dots, x_n)$$

Alors on a :

(2)
$$b_{\lambda} \circ \sigma = b_{\lambda}$$
 pour tout $\lambda \in I$.

[En effet, on a d'une part : $\psi^{-1} \circ \sigma = \sigma \circ \psi^{-1}$; d'autre part l'hypothèse faite sur $\overline{\omega}$ entraîne $\overline{\omega} \circ \sigma = \overline{\omega}$, et par conséquent : $\ell_{\overline{\omega};\lambda} \circ \sigma = \ell_{\overline{\omega};\lambda}$].

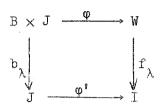
1.2. Chemins élémentaires de naissance.

Soit $f\in\mathcal{F}$. Un plongement $\phi:B\times J\to W$ est dit <u>adapté à</u> f s'il existe un plongement croissant ϕ' de $J\to I$ - (ensemble critique de f), tel que le diagramme :

soit commutatif.

Un chemin (f_{λ}) d'origine f dans $\mathscr C$ est appelé <u>chemin élémentaire</u> de naissance d'indice i s'il existe un plongement $\phi: B \times J \to W$, adapté à f, tel que pour tout $\lambda \in I$:

- a) $f_{\lambda} = f$ sur le complémentaire de l'image de ϕ ;
- b) il y ait commutativité du diagramme :



1.3. Unicité des naissances.

On considère l'espace $\mathscr{F}^{\circ}\cup\mathscr{F}^1_\alpha$ (cf.I,3.1.) muni de sa stratification naturelle et des opérations du groupe DiffW \times DiffI , lesquelles vérifient les conditions (a) et (a) de I.2.2..Chaque composante connexe de \mathscr{F}^1_α a deux côtés distincts ; un chemin de traversée de \mathscr{F}^1_α s'appelle chemin de naissance ou chemin de mort suivant que le nombre de points critiques augmente ou diminue le long de ce chemin.

A tout $f^* \in \mathcal{J}_{\alpha}^{1}$, on peut attacher deux entiers :

- l'indice i : c'est l'entier tel que, lorsqu'on traverse \mathcal{I}_{α}^{1} en f', il apparaît (cu disparaît) un couple de points critiques d'indices i et i + 1 .
- la <u>hauteur</u> k : c'est la hauteur de la variété de niveau de f' qui contient le point critique de codimension 1 de f' [autrement dit, k est le nombre de points critiques de Morse qui sont au-dessous de cette variété de niveau].

Il est clair que i et k ne dépendent que de la composante connexe par arcs de f' dans \mathcal{J}^{1}_{α} .

Désignons par 6 l'espace des chemins de naissance; 6 est réunion de composantes connexes par arcs de l'espace des chemins de traversée. Il résulte du lemme de forme canonique des points critiques de naissance (cf.[3], II, proposition 5) que par tout point de \mathcal{F}_{α}^{1} passe un chemin élémentaire de naissance. Il résulte donc du lemme des chemins élémentaires (cf. I,2.2) la

Proposotion 1. - Soit f (% . Toute composante connexe par arcs de l'espace des chemins de naissance d'origine f contient au moins un chemin élémentaire de naissance.

Corollaire 1.- Soit $f \in \mathcal{F}^{\circ}$. Tout chemin de naissance d'origine f est homotope (avec origine fixe) à un chemin de support arbitrairement petit.

Démonstration: D'après la proposition 1, on peut se borner au cas d'un chemin élémentaire β . Soit ϕ un plongement adapté définissant β ; ϕ est isotope (dans l'espace des plongements adaptés) à un plongement dont l'image est arbitrairement petite; on prend l'image de cette isotopie dans l'espace des chemins élémentaires.

Corollaire 2.- (Lemme d'unicité des naissances). Soit $f \in \mathcal{F}^c$; soit q le nombre de points critiques de f; soit k un entier tel que $0 \leqslant k \leqslant q$.

On suppose que les variétés de niveau de hauteur k de f sont connexes.

Alors l'espace des chemins de naissance d'origine f, de hauteur k et d'indice i, est connexe quel que soit i tel que $0 \leqslant i \leqslant dimW$.

Démonstration : Il suffit d'après la proposition 1 de montrer que l'espace des chemins élémentaires d'origine f , de hauteur k et d'indice i , est connexe. Soit V_k une variété de niveau de hauteur k ; la réunion W_k de ces variétés est difféomorphe à un cylindre de base V_k . L'espace des plongements : $B \times J \to W_k$ adaptés à f a donc même type d'homotopie que l'espace $\mathscr P$ des plongements de B dans V_k . On sait (cf.[2], II, proposition 7) que

cet espace est connexe si V_k est non-orientable. Si V_k est orientée, la partie \mathcal{S}^+ de \mathcal{S} définie par la condition de respecter l'orientation, est connexe ; soit ρ la symétrie de B par rapport à son équateur ; pour tout plongement adapté φ , φ et φ o (ρ x identité) définissent le même chemin élémentaire ; donc \mathcal{S} et \mathcal{S}^+ ont même image dans l'espace de ces chemins : ce a achève la démonstration.

§.2. Chemins et chemins élémentaires de mort ; critère de Smale.

2.1. Couples de nappes en bonne position; voisinages doubles et voisinages doubles saturés. (cf.[5], III, §.4).

Soit f une fonction de Morse : $W \to \mathbb{R}$; soit (c_1, c_2) un couple de points critiques consécutifs de f , d'indices respectifs i + 1 et i , tels que $f(c_1) > f(c_2)$. Soit D une nappe descendante de c_1 et soit A une rappe ascendante de c_2 . On dit que D et A sont en bonne position si (voir figure 1) :

- 10) elles sont limitées à une même variété de niveau (notée V_1); 20) ∂D et ∂A se coupent transversalement et en un seul point.
- Soit (D,A) un couple de nappes en bonne position ; il existe toujours une métrique riemannienne sur W, admettant D et A pour nappes de gradient. Soit \mathcal{N}_{0} une telle métrique ; soit \mathcal{N}_{0} (resp. \mathcal{N}_{2}) une variété de niveau située immédiatement au-dessus de \mathbf{c}_{1} (resp. immédiatement en-dessous de \mathbf{c}_{2}). Soit $\tilde{\mathbf{A}}$ l'adhérence de la réunion des lignes de gradient ascendantes de \mathbf{c}_{2} limitées à \mathbf{V}_{0} ; $\tilde{\mathbf{A}}$ est appelée nappe ascendante saturée de \mathbf{c}_{2} (définie par $\tilde{\mathbf{N}}_{0}$ et \mathbf{V}_{0}); elle est difféomorphe au demi-disque \mathbf{D}_{+}^{n-i-1} ; l'une des faces de $\tilde{\mathbf{A}}$ est la nappe de gradient ascendante de \mathbf{c}_{1} limitée

à V_0 (cf. figure 1). On définit de même \tilde{D} , nappe descendante saturée de c_1 définie par W_0 et V_2 ; on dit que (\tilde{D},\tilde{A}) est un couple de nappes saturées en bonne position; elles se coupent transversalement suivant une ligne joignant c_1 à c_2 , dont l'intérieur est une ligne de gradient.

Soient (D,A) et \mathfrak{M} comme ci-dessus, et soit T_1 (resp. T_2) un voisinage tubulaire de ∂D (resp ∂A) dans V_1 ; on suppose que T_1 et T_2 sont "en bonne position", c'est-à-dire (cf. figure 2) que $T_1 \cap T_2$ est saturé pour la fibration de T_1 et pour celle de T_2 , et qu'il existe un difféomorphisme : $D^1 \times D^{n-1-1} \to T_1 \cap T_2$ définissant une carte de chacune de ces fibrations. Soit M_1 (resp. M_2) l'adhérence de la réunion des lignes de gradient ascendantes issues de T_1 (resp. descendantes issues de T_2) limitées à V_0 (resp. V_2); soit U la réunion $M_1 \cup M_2$; U est appelé voisinage double de $\{c_1, c_2\}$ défini par M_0 , T_1 , T_2 , V_0 , V_2 . On appelle voisinage double saturé défini par les mêmes données l'adhérence \tilde{U} de la réunion des lignes de gradient rencontrant $T_1 \cup T_2$, limitées à V_0 et V_2 ; \tilde{U} est la réunion de M_1 , M_2 st de deux cylindres H_1 et H_2 ; par exemple, H_1 est la réunion des lignes de gradient descendantes issues de $T_1 - (T_1 \cap T_2)$, limitées à V_2 (cf. figure 3).

Propriétés.

- 1). Le bord supérieur d'un voisinage double saturé (c'est-à-dire son intersection avec la surface de niveau V_o) est difféomorphe à la variété à arêtes rentrantes obtenue en recollant $D^{n-i-1} \times D^i$ à $S^{n-i-2} \times D^{i+1}$ le long de $S^{n-i-2} \times D^i$ et $S^{n-i-2} \times S^i_+$; l'arrondie de cette variété est difféomorphe à D^{n-1} .
 - 2). Soit U un voisinage double de {c1, c2} et soit Ü un saturé

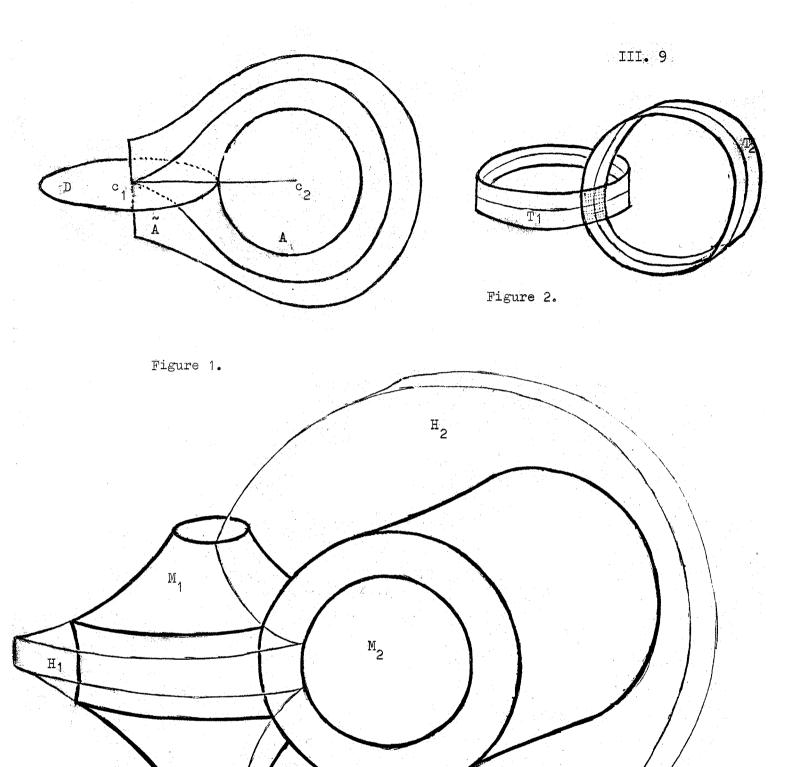


Figure 3.
voisinage double
et son saturé (traits fins).

de U. Dans toute classe d'homotopie de l'espace des bons chemins d'origine f., de support contenu dans l'intérieur de Ü., il existe un élément dont le support soit contenu dans un voisinage arbitrairement petit de U.

[Démonstration : Soit \mathfrak{M} une métrique riemannienne adaptée à U et $\widetilde{\mathbb{U}}$; soient \mathbb{M}_1 , \mathbb{M}_2 , \mathbb{H}_1 , \mathbb{H}_2 comme ci-dessus. On note \mathbb{J}_1 l'image de $\mathbb{F}|\mathbb{M}_1$ et \mathbb{L}_1 un voisinage tubulaire de la surface latérale de \mathbb{M}_1 dans \mathbb{M}_1 , engendré par des lignes de gradient de \mathfrak{M}_1 ; ces lignes de gradient permettent d'identifier \mathbb{H}_2 U \mathbb{L}_1 à $((\mathbb{H}_2$ U $\mathbb{L}_1) \cap \mathbb{V}_0) \times \mathbb{J}_1$.

Soit γ un bon chemin d'origine f , de support contenu dans l'intérieur de rieur de \ddot{U} ; soit (g^*_λ) une isotopie de R à support dans l'intérieur de J_1 ,

et soit (g_{\lambda}) une isotopie de M_1UH_2 , à support dans l'intérieur de cette variété, telle que, pour tout λ є I , on ait

(1)
$$g_{\lambda}(x,t) = (x,g_{\lambda}^{i}(t))$$
 pour tout $(x,t) \in ((H_{2}UL_{1}) \cap V_{0}) \times J_{1}$
Posons : $g_{\lambda}^{i} \circ f \circ g_{\lambda}^{-1} = \beta_{\lambda}$;

ceci définit dans l'espace des fonctions excellentes sur $\mathrm{M_1^0}$ $\mathrm{H_2}$ un chemin β d'origine $\mathrm{f} | \mathrm{M_1^0} \, \mathrm{H_2}$, de support contenu dans l'intérieur de $\mathrm{M_1}$. La restriction de γ à $\mathrm{M_1^0} \, \mathrm{H_2}$ est homotope au composé γ ' de β et du chemin $\mathrm{g_1^*} \circ \gamma \circ \mathrm{g_1^{-1}}$ dont le support est $\mathrm{g_1^*}(\mathrm{supp}\gamma)$. Il résulte donc de (1) qu'il suffit de choisir $(\mathrm{g_1^*})$ convenablement pour que le support de γ ' rencontre $\mathrm{H_2}$ dans un voisinage arbitrairement petit de $\mathrm{H_2^0} \, \mathrm{M_2}$. Une modification analogue des restrictions à $\mathrm{M_2^0} \, \mathrm{H_1}$ achève la démonstration].

3). Soient W,f, c_1 , c_2 , M_1 , M_2 , U, \tilde{U} , ... comme ci-dessus, et

scient de même W',f',c'' et c'' tels que c'' et c'' aient respectivement même indice que c'' et c''. On désigne par $\widehat{\mathcal{F}}$ l'espace des plongements $\varphi:(\widehat{U},c'',c'')\to(W',c''',c''')$ adapté à f et f' .

- a) Pour tout $\varphi \in \mathcal{F}$, $\varphi(D,A)$ est un couple de nappes en bonne position, $\varphi(\tilde{D},\tilde{A}) \text{ est un couple de nappes en bonne position, } \varphi(U) \text{ est un voisinage}$ double adapté à $\varphi(D,A)$ et $\varphi(\tilde{U})$ est une saturé de $\varphi(U)$.
- b) Pour tout voisinage double U' de $\{c_1', s_2'\}$ et tout saturé \tilde{U}' de U', il existe $\phi \in \mathcal{P}$ tel que $\phi(\tilde{U}, U) = (\tilde{U}', U')$.
- c) Pour que $\mathcal P$ soit non vide il suffit (et d'après a), il faut) que le couple (c'_1, c'_2) possède un couple de nappes en bonne position. Pour tout tel couple (D', A') la partie $\mathcal P'$ de $\mathcal P$ définie par la condition $\varphi(D,A)=(D',A')$ est connexe. En plus pour tout couple (D',A) de nappes saturées en bonne position contenant (D',A') il existe $\varphi\in\mathcal P'$ tel que $\varphi(U)$ soit contenu dans un voisinage arbitrairement petit de $D'\cup A'$, et $\varphi(\widetilde U)$ dans un voisinage arbitrairement petit de (D' \cup A').

2.2. Le voisinage double standard et son saturé.

Lemme 1. Désignons par (c₁, c₂) le couple de points critiques de la fonction b₁, extrémité du chemin standard de naissance (cf.1.1). Le couple (c₁, c₂) possède des voisinages doubles saturés arbitrairement grands.

Démonstration : Considérons d'abord la fonction $\ell_{\overline{\omega},1}$ définie (cf.1.1) par : $\ell_{\overline{\omega},1}(x) = -x_1^2 \dots - x_i^2 + x_{i+1}^2 \dots + x_{n-1}^2 - (2\lambda \overline{\omega}(x) - 1)\epsilon x_n ;$ soient c' et c' ses points critiques ; c' a une nappe descendante

D' (de gradient pour la métrique euclidienne) située dans la variété linéaire d'équation $\{x_{i+1} = \cdots = x_{n-1} = 0\}$; de même c_2 a une nappe de gradient ascendante A' située dans la variété $\{x_1 = \dots = x_i = 0\}$. Ces deux nappes, limitées à la variété de niveau zéro de $\ell_{\overline{\omega},1}$, sont en bonne position. On rappelle qu'il existe un difféomorphisme ϕ de \mathbb{R}^n tel que $b_1 = \ell_{\overline{u},1}$ o ϕ^{-1} ; qui coîncide avec l'image par o de la métrique euclidienne au voisinage de DUA, et avec la métrique euclidienne sur le complémentaire d'un compact. Soit \tilde{U} un voisinage saturé de $\{c_1, c_2\}$ défini par m_0 et limité aux surfaces de niveau V_0 et V_2 , d'équation respective $x_n = +\xi$ et $x_n = -\xi$ où ξ est très grand. Soit T un voisinage tubulaire de $\partial(\tilde{U} \cap V_{\Omega})$ dans V_{Ω} ; il existe un difféomorphisme χ de V_{o} , à support dans un voisinage arbitrairement petit de T , tel que : $\chi(\tilde{\mathbb{U}} \cap \mathbb{V}_{C}) = (\tilde{\mathbb{U}} \cap \mathbb{V}_{C}) \cup \mathbb{U}$. La réunion des lignes de gradient descendantes issues de (Unvo) u T et limitées à V est donc un voisinage double saturé Ü' de (c1, c2). D'après la propriété 1 de 1.1, T peut être choisi de façon que $(\tilde{\mathbb{U}} \cap \mathbb{V}_G) \cup \mathbb{T}$ soit arbitrairement grand dans \mathbb{V}_G ; $\tilde{\mathbb{U}}^i$ est alors arbitrairement grand dans la partie $\{|x_n| \leqslant \xi\}$ de \mathbb{R}^n .

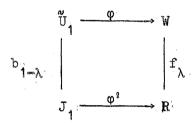
Choix d'un modèle. Le lemme 1 montre en particulier qu'il existe des voisinages doubles saturés de $\{c_1,c_2\}$ pour la fonction b_1 , assez grands pour contenir le support du chemin standard (b_{λ}) . On en choisit un une fois pour toutes, qu'on appelle <u>le voisinage double saturé standard</u>, et qu'on note \ddot{U}_1 ; on modifie au besoin le choix du modèle de naissance $B \times J$ (cf.1.1) de façon que $\ddot{U}_1 \subset B \times J$.

2.3. Chemins élémentaires de mort.

Définition 1. On appelle chemin élémentaire de mort d'indice i tout chemin dans \mathcal{H} dont l'opposé est un chemin élémentaire de naissance d'indice i .

Il résulte du choix particulier fait en 2.2 du voisinage double saturé standard et du modèle de naissance que la définition qui précède est <u>équi-</u>
valente à la

Définition 1'. Soit $f \in \mathscr{L}^\circ$; un chemin (f_λ) d'origine f est appelé chemin élémentaire de mort d'indice i s'il existe un plongement $\phi : \tilde{U}_S \to W$, adapté à b_1 et à f, tel que, pour tout $\lambda \in I$, f_λ soit égal à f sur le complémentaire de l'image de ϕ , et qu'il y ait commutativité du diagramme :



En procédant comme en 1.3, on déduit du corollaire du lemme des chemins élémentaires la

Proposition 2.

Soit f & f . Toute composante connexe par arcs de l'espace des chemins de mort d'origine f contient au moins un chemin élémentaire.

Corollaire. Soit $f \in \mathcal{I}^{\circ}$. Soit (f_{λ}) un chemin de mort d'origine f relatif à un couple (c_{1}, c_{2}) de points critiques.

- a) Il existe un couple (D,A) de nappes en bonne position relatives à (c_1, c_2) tel que (f_{λ}) soit homotope avec origine fixe à un chemin dont le support est contenu dans un voisinage arbitrairement petit de DUA.
- b) Il existe une nappe descendante prolongée issue de c, notée \tilde{D}_0 , (de bord situé dans la variété de niveau de c₂) telle que (f_{λ}) soit

homotope avec origine fixe à un chemin de support contenu dans un voisinage arbitrairement petit de \tilde{D}_0 . De même, il existe une nappe ascendante prolongée issue de c_2 ayant cette propriété.

Démonstration: D'après la proposition 2, on peut supposer que (f_{λ}) est élémentaire, défini par un plongement adapté φ du modèle double saturé standard. Soit (D,A) l'image par φ du couple standard de nappes en bonne position. D'après la propriété 2 de 2.1 , (f_{λ}) est homotope à un chemin dont le support est contenu dans un voisinage arbitrairement petit de $\varphi(U_S)$; et d'après le c) de la propriété 3 de 2.1., on peut supposer que $\varphi(U_S)$ est contenu dans un voisinage arbitrairement petit de DUA; ceci prouve le a).

Pour prouver le b), on considère une métrique riemannienne adaptée à (D,A) et on prend pour \tilde{D}_{c} l'adhérence de la réunion des lignes de gradient descendantes de c_1 , limitées au niveau de c_2 . Soit V_1' une variété de niveau séparant c_1 et c_2 ; soit $D^*(\text{resp. A}^*)$ la partie de D(resp. A) limitée à V_1^* ; (D^*,A^*) est un couple de nappes en bonne position, isotope à (D,A) par une isotopie adaptée à f; (D^*,A^*) a donc la propriété du a); il suffit de choisir V_1^* assez proche du niveau de c_2 pour que $D^* \cup A^*$ soit dans un voisinage arbitrairement petit de \tilde{D}_{c} .

Proposition 3.- (Critère de Smale). Soit f (%); soit (c1, c2) un couple de points critiques consécutifs de f. Pour qu'il existe un chemin de mort issu de f, relatif au couple (c1, c2), il faut et il suffit qu'il existe un couple de nappes en bonne position issues de ces points.

Démonstration : a) Condition nécessaire : d'après la proposition 2 , s'il existe un chemin de mort de (c_1, c_2) issu de f, il en existe un cui soit

élémentaire ; il existe donc un plongement φ du modèle double standard adapté à f en $(c_1$, $c_2)$; l'image du couple standard par φ est un couple de nappes en bonne position.

b) Condition suffisante: s'il existe un couple de nappes en bonne position relatif à (c_1, c_2) , il existe, d'après le c) de la propriété 3 de 2.1., un plongement du modèle double saturé standard adapté à f en (c_1, c_2) ; il existe donc un chemin élementaire de mort de (c_1, c_2) .

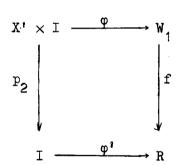
2.4. Le lemme d'unicité des morts.

Lemme 2.- Soit $f \in \mathcal{R}^\circ$. Soit (c_1, c_2) un couple de points critiques consécutifs de f possédant un couple (D,A) de nappes en bonne position; on note $\partial D = X$, $\partial A = Y$; on note V_1 la variété de niveau qui contient X et Y. Soit \mathcal{X} l'espace des couples de nappes en bonne position issues de (c_1, c_2) ; soit X l'espace des plongements $X \to V_1$; soit X_1 le sousespace de X formé des plongements dont l'image rencontre Y transversalement et en un seul point; soit X l'injection de X dans V_1 ; soient de même X, Y_1 , Y_2 , Y_3 , obtenus en échangeant les rôles de X et Y. Pour tout Y Y on a des isomorphismes :

$$\pi_{j}(\mathcal{N};)) \approx \pi_{j+1} (x, x_{1}; \xi) \approx \pi_{j+1}(\gamma, \gamma_{1}; \eta)$$

Démonstration: Lorsqu'on remplace f par -f, les rôles de (x, x_1) et de (y, y_1) s'échangent, alors que l'espace $\mathcal X$ correspond à lui-même; il suffit donc de montrer le premier isomorphisme. Soit $\mathcal X$ l'espace des nappes ascendantes de c_2 ; $\mathcal X$ est fibré sur $\mathcal X$, de fibre l'espace, noté $\mathcal D_y$, formé des nappes descendantes de c_1 limitées à v_1 dont l'intersection avec

V₁ coupe Y transversalement et en un seul point; d'après la proposition 4 de l'Appendice, \mathcal{X} est acyclique; donc \mathcal{Y} a même type d'homotopie faible que \mathcal{D}_y . Soit V' une surface de niveau de f située entre c₁ et V₁. Soit \mathcal{D}_y^i la partie de \mathcal{D}_y^i formée des nappes qui coîncident avec \mathfrak{p}_1^i au-dessus de \mathcal{D}_y^i ; il résulte du corollaire \mathcal{X} la proposition 3 de l'Appendice, et de la proposition 4 de l'Appendice, que \mathcal{D}_y^i a même type d'homotopie faible que \mathcal{D}_y^i . Soit \mathcal{M}_i^i une métrique riemannienne sur W pour laquelle D et A soient de gradient; \mathcal{M}_i^i définit un difféomorphisme de $\mathcal{V}_1^i \times \mathcal{I}_1^i$ sur la partie \mathcal{W}_1^i de W comprise entre \mathcal{V}_1^i et \mathcal{V}_1^i , ainsi qu'un prolongement noté A' de A jusqu'à \mathcal{V}_1^i ; on note : $\mathcal{D}_1^i\mathcal{V}_1^i = \mathcal{X}^i$, $\partial \mathcal{A}^i = \mathcal{Y}^i$. L'espace \mathcal{D}_y^i a même type d'homotopie que l'espace \mathcal{L}_1^i des plongements $\mathcal{V}_1^i \times \mathcal{I}_1^i \times \mathcal{I}_1^i$ qui vérifient $\mathcal{V}_1^i \times \mathcal{I}_1^i \times \mathcal{I}_1^i$ qui vérifient $\mathcal{V}_1^i \times \mathcal{I}_1^i \times \mathcal{I}_1^i \times \mathcal{I}_1^i$ qui vérifient qu'il y a commutativité du diagramme ;



dans lequel ϕ ' est l'application linéaire affine croissante de I sur $f(W_1)$. La projection de W_1 sur V_1 définit un homéomorphisme de $\mathscr E$ sur l'espace des chemins dans Υ d'origine ξ , d'extrémité dans Υ_1 ; l'isomorphisme annoncé en résulte.

Lemme 3.- [Notations du lemme 2]. Soit i l'indice du point critique c_2 ; soit v_2 une variété de niveau de f située immédiatement en-dessous de c_2 . Si i = 0 ou i = n - 1; ou si n > 6 , 1 \leq i \leq n - 2 et $\pi_1(v_2)$ = 0 , alors $\pi_1(x,x_1;\xi)$ = 0 .

Démonstration: Lorsque i < n - 4, s'est le résultat de la proposition 3

de I.5; les autres cas s'en déduisent par changement de f en - f, compte

tenu de l'isomorphisme du lemme 2.

Proposition 4.- (Lemme d'unicité des morts). Soit f f une fonction

excellente. Soit (c₁, c₂) un couple de points critiques consécutifs de f
en position de destruction mutuelle, tels que f(c₁) > f(c₂). Si dimW > 6,

et si les surfaces de niveau de f situées immédiatement au-dessus de c₁

[ou encore, ce qui revient au même, celles situées immédiatement au-dessous de c₂] sont simplement connexes, alors l'espace des chemins de mort de (c₁, c₂)

d'origine f, est connexe.

Démonstration: D'après la proposition 2 (cf.2.3) il suffit de montrer que l'espace $\mathcal{E}l$ des chemins élémentaires de mort de (c, , c₂), d'origine f, est connexe. Or soit \mathcal{P} l'espace des plongements du modèle double saturé standard dans W, adaptés à f en (c₁, c₂); et soit \mathcal{N} l'espace des couples de nappes en bonne position issues de (c₁, c₂). L'application naturelle $\mathcal{P} \to \mathcal{N}$ est une fibration localement triviale, dont la fibre est connexe (cf.2.1, propriété 3,c)); d'après les lemmes 2 et 3, \mathcal{N} est connexe; donc \mathcal{P} est connexe; d'après la définition 1' des chemins élémentaires de mort (cf.2.3), il existe une surjection $\mathcal{P} \to \mathcal{U}$; donc \mathcal{P} est connexe.

Corollaire. Soit (W,V,V^*) un h-cobordisme compact; on suppose dimW > 6 et $\pi_1(V) = 0$. Soit $f \in \mathcal{O}^\circ$ (espace des fonctions ordonnées excellentes $(W,V,V^*) \rightarrow (I,0,1)$; cf.V,1.1); soit (c_1,c_2) un couple de points critiques consécutifs de f, d'indices respectifs i+1 et i, en position de destruction mutuelle. Si i est différent de 1 et de n-2; ou si i=1 et c_2 est l'unique point critique d'indice 1 de f; ou si i=n-2 et c_1 est l'unique point critique d'indice n-1 de f, alors l'espace des chemins de mort de (c_1,c_2) , d'origine f, est connexe. [La condition $\pi_1(V_C) = 0$ de la proposition 4 est en effet remplie dans cha-

CHAPITRE IV

Etude semi-locale de la stratification de &.

3 - Traversée des singularités de codimension 2 .

Dans tout ce chapitre, (W,V,V°) désigne une triade compacte et \mathcal{F} l'espace des fonctions $C^{\infty}:(W,V,V^{\circ}) \longrightarrow (I,0,1)$ sans point critique sur le bord, muni de sa stratification naturelle. Les résultats sont le lemme des singularités indépendantes (§.1, proposition 1), le lemme du triangle (2.2., proposition 2), les lemmes d'apparition et de suppression des becs (3.2., proposition 3 et 3.3., proposition 4) et le lemme de la queue d'aronde (4.3., proposition 5). Tous concernent la possibilité de déformer certains chemins de manière à leur faire traverser une composante de \mathcal{F}^2 .

Solo Lemme des singularités indépendantes.

Définition l. Soit fe F. On dit que deux singularités de f sont indépendantes si elles sont à des niveaux différents.

On s'intéresse au cas où ces deux singularités sont de codimension l; trois cas sont alors possibles (cf.1.3.): deux
points critiques de naissance; un point critique de naissance et
une valeur critique double (les deux points critiques correspondants étant de Morse); deux valeurs critiques doubles (les quatre
points critiques correspondants étant de Morse).

Définition 2. Soit fe F une fonction excellente. Deux chemins

de traversée de F¹, d'origine f, sont dits indépendants si leurs supports sont disjoints, et si les images par f de ces supports sont disjointes.

Remarque. Deux chemins de naissance d'origine f peuvent être indépendants tout en étant relatifs à la même cocellule de ${\mathfrak F}^1$.

Lemme 1. Soit $f \in \mathcal{F}^{\circ}$, et soient γ_1 et γ_2 deux chemins de traversée de \mathcal{F}^1 d'origine f; on suppose que le paramètre de traversée est dans chaque cas 1/2. Si γ_1 et γ_2 sont indépendantes il existe $f \in \mathcal{F}^2$ (ayant deux singularités de codimension l'adépendantes), et une application $\gamma: 1^2 \longrightarrow \mathcal{F}$ telle que :

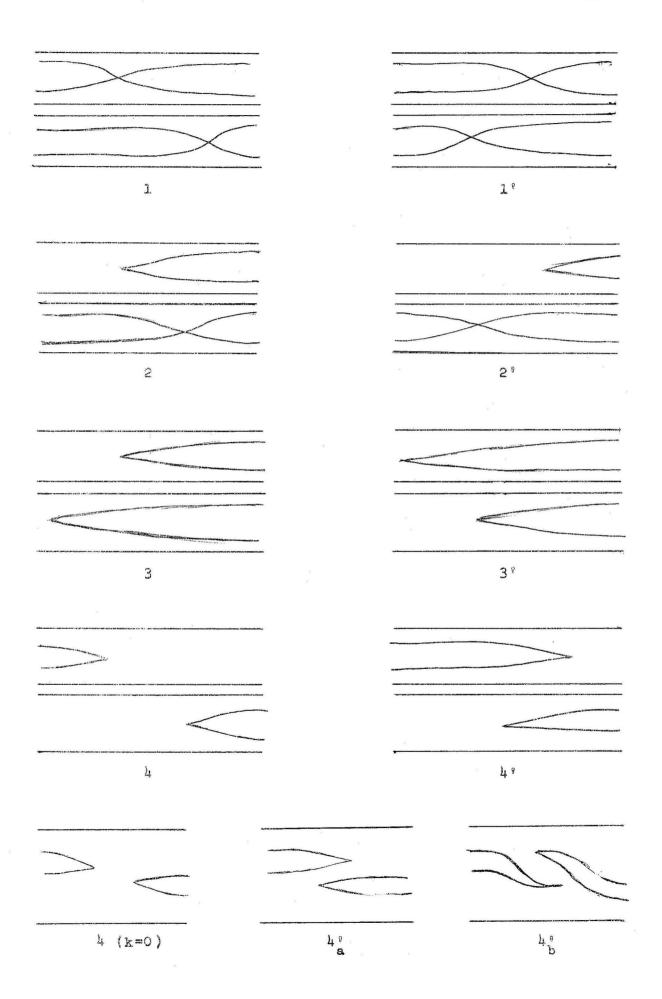
$$\gamma(t,0) = \gamma_1(t) \quad \underline{et} \quad \gamma(0,t) = \gamma_2(t)$$

pour tout el ; et que, si I est muni de la stratification produit par elle-même de la stratification de codimension l'addition par l'a = (1/2), y soit une carte transverse de F en f'

Application. Il résulte du lemme l que, dans tous les cas où l'application du lemme des chemins élémentaires permet de montrer qu'un bon chemin ayant deux points de traversée est homotope (dans l'espace des bons chemins) au composé de deux chemins de traversée dont les supports d'une part, et les images des supports d'autre part, sont disjoints, on obtient un lemme de traversée de T². Ces différents cas sont rassemblés dans la proposition suivante (ou s'y ramèment en changeant f en -f, ou en inversant le sens des chemins):

Proposition 1. (Lemme des singularités indépendantes).

Tout chemin dans F ayant un graphique du type 1 (resp. 2, 3, 4, 1, 2, 3, 4) ci-dessous, peut être déformé avec extrémités fixes en un chemin ayant un graphique du type 1 (resp. 2, 3, 4, 1, 1, 2, 3, 4). Dans tous les cas, le nombre k de points critiques séparant les singularités indépendantes est arbitraire;



dans le cas du type 4, lorsque le nombre k est nul, on peut obtenir indifféremment le graphique 4 ou le graphique 4 o

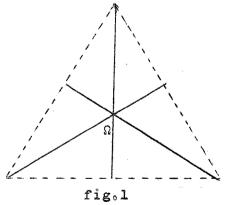
[En plus, dans tous les cas, la déformation peut se faire de façon que tous les chemins intermédiaires soient bons, à l'exception d'un seul, dont l'unique accident est le passage par un point de \mathfrak{F}^2 ayant deux singularités de codimension l indépendantes].

§ . 2. Traversée d'un point triple : Lemme du triangle

2.1. La singularité point triple.

<u>Définition</u>. On dit qu'une fonction de Morse $f \in \mathcal{F}$, est <u>un point triple</u> de \mathcal{F} si toutes ses valeurs critiques sont simples, à l'exception d'une seule, α , qui est triple, c'est-à-dire telle qu'il existe exactement trois points critiques de f dans $f^{-1}(\alpha)$ \circ

L'ensemble des points triples de F est une partie ouverte



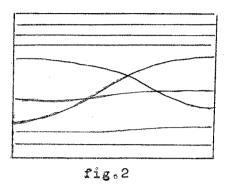
et fermée de \mathcal{F}^2 , strate de codimension 2 de la stratification naturelle de \mathcal{F} . En un point triple f, cette stratification admet pour modèle transverse l'étoile ouverte du centre Ω dans la première subdivision barycentrique du 2-simplexe standard (cf. fig.l).

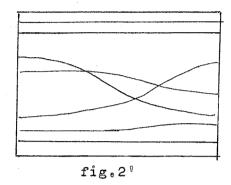
2.2. Le lemme du triangle.

Définition. Soit $f \in \mathcal{F}$ une fonction excellente. Soient c_1 , c_2 , c_3 trois points critiques consécutifs de f tels que $f(c_1) > f(c_2) > f(c_3)$. On dit qu'un bon chemin d'origine f a pour graphique un triangle de première (resp. deuxième) espèce relatif à c_1 , c_2 , c_3 , s'il a exactement trois points exceptionnels

qui sont, dans cet ordre, des croisements (c_2, c_3) , (c_3, c_1) et (c_1, c_2) $(resp.(c_1, c_2)$, (c_3, c_1) et (c_2, c_3)).

Dans le premier cas, le "triangle" a sa pointe vers le haut (fig.2), dans le second, il l'a vers le bas (fig.2').





Proposition 2. (Lemme du triangle). Soit $f \in \mathcal{F}$ une fonction excellente, soient c_1 , c_2 , c_3 trois points critiques consécutifs de f, d'indices respectifs i_1 , i_2 , i_3 , tels que $f(c_1) > f(c_2) > f(c_3)$.

l°) Soit γ un chemin d'origine f , dont le graphique soit un triangle de première espèce relatif à c₁, c₂, c₃; si 1'une au moins des conditions suivantes est remplie :

- (1) $i_1 + i_3 < n 1$;
- (2) $\inf(i_1, i_3) \leq i_2 1$;
- (3) $i_1 = i_2 = i_3 < n 2$;

alors y peut être déformé avec origine et extrémité fixe, en un chemin dont le graphique est un triangle de deuxième espèce relatif aux mêmes points critiques. [En plus, la déformation peut se faire de façon que tous les chemins intermédiaires aient des graphiques en triangles, à l'exception d'un seul, dont l'unique accident est le passage par un point triple].

2°) Si γ a pour graphique un triangle de seconde espèce, on a des conclusions analogues sous l'une quelconque des hypothèses :

- (1°) $i_1 + i_3 > n + 1$;
- (2°) $\sup(i_1, i_3) \ge i_2 + 1$;
- (3°) $i_1 = i_2 = i_3 > 2$

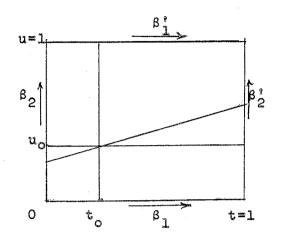
Démonstration : On se borne au 1° , le 2° s'en déduisant par passage de f à -f .

Soit $t_1 \in I$ une valeur du paramètre t de γ intermédiaire entre le premier et le second croisement. On note γ_1 le chemin opposé de celui défini par la restriction de γ à $\left[0,t_1\right]$, et γ_2 celui défini par la restriction de γ à $\left[t_1,1\right]$. La démonstration se fait en deux temps :

a) Sous les hypothèses de l'énoncé, γ_1 (resp. γ_2) est homotope dans l'espace des bons chemins d'origine f' à un chemin élémentaire β_1 (resp. β_2), les supports de β_1 et β_2 pouvant en plus être supposés disjoints

Soient en effet c_1^* , c_2^* , c_3^* les points critiques de f' qui correspondent respectivement à c, c, c, ; on a : $f^{\circ}(c_{1}^{\circ}) > f^{\circ}(c_{2}^{\circ}) > f^{\circ}(c_{2}^{\circ})$, On note V_{2}° une surface de niveau de f° située immédiatement en-dessous de c_2^* . D'après la proposition 2 de II.3.1., γ_1 est homotope à un chemin β_1 , élémentaire descendant relativement à c_3^* , dont le support est contenu dans un voisinage arbitrairement petit $d^{\, g}$ une nappe descendante $D_{\, f q}^{\, g}$ de c_3^{\dagger} , limitée à V_2^{\dagger} . De même, γ_2 est homotope à un chemin β_2 , chemin élémentaire descendant de 2-croisement relatif à ci dont le support est contenu dans un voisinage arbitrairement petit d'une nappe descendante D_1^* de c_1^* , limitée à V_2^* . Si la condition (1) est satisfaite, le théorème de séparation de Whitney permet de supposer que $D_1^{\mathfrak{g}}$ et $D_3^{\mathfrak{g}}$, et par conséquent les supports de β_1 et β_2 , sont disjoints. Si c'est la condition (3) qui est satisfaite, c'est le corollaire du lemme 4 de II.4.5. qui permet de séparer D; de D; et par conséquent les supports.

Cas de la condition (2) : toujours d'après la proposition 2 de II.3.1., on peut aussi déformer γ_1 en un chemin élémentaire ascendant relatif à c_2° , dont le support est contenu dans un voisinage arbitrairement petit d'une nappe ascendante A_2° de c_2° ; la dimension de A_2° est $n-i_2$; le théorème de Whitney donne donc, pour la séparation de A_2° et D_1° , la condition $(n-i_2)+i_1 \le n-1$, c'est-à-dire $i_1 \le i_2-1$; cette condition étant suffisante, la condition "symétrique" $i_3 \le i_2-1$ l'est aussi, ce qui achève l'examen du cas (2).



b) Fin de la démonstration : y est homotope dans l'espace des bons chemins, à β_1^{-1} . β_2 . Posons, $(t,u) \in I \times I$

$$\beta(t,u) = \begin{cases} \beta_1(t) & \text{sur le support de } \beta_1; \\ \beta_2(u) & \text{sur le support de } \beta_2; \\ f^* & \text{ailleurs.} \end{cases}$$

Soit $\mu_1(t)$ (resp. $\mu_2(u)$) la valeur de $\beta_1(t)$ (resp. $\beta_2(u)$) au point critique qui correspond à co (resp. c_1°); les fonctions μ_1 et

u, sont linéaires affines ; soient to et u les valeurs des paramètres respectivement définies par : $\mu_1(t_0) = f^*(c_2^0)$, et $\mu_2(u_2) = f^{\dagger}(c_2^{\dagger})$. La restriction de β à $I \times I$, stratifié par l'intersection avec les droites :

$$t = t_0 ; u = u_0 ; \mu_1(t) = \mu_2(u)$$

est une carte transverse du point triple $\beta(t_0, u_0)$. Posons :

$$\beta(t,1) = \beta_1^{\theta}(t) \quad \beta(1,u) = \beta_2^{\theta}(u) \quad \beta(1,u) = \beta_2^{\theta}(u)$$

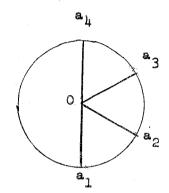
 β_1^{-1} . β_2 est homotope à β_2^* . β_1^{v-1} , et l'homotopie peut être choisie de façon à rencontrer une seule fois le point triple ; ceci termine la démonstration.

§.3. Les lemmes du bec.

3.1. La singularité bec ; étude locale dans l'espace fonctionnel.

Définition. On dit qu'une fonction fe F est un point bec de si tous les points critiques de f sont du type de Morse, à l'exception d'un seul, c_0 , qui est un point de naissance (cf. I.3.1); et si toutes les valeurs critiques sont simples, à l'exception de f(c), qui est double [c'est-à-dire qu'il existe exactement un point critique de Morse c_1 tel que $f(c_1) = f(c_2)$; en d'autres termes, f présente une naissance à un niveau critique].

Lemme 1. L'ensemble des points becs de F forme une partie ouverte et fermée de la strate F de la stratification naturelle de F.



En un point bec f, cette stratification admet pour modèle transverse

le cône ouvert, de sommet le centre O

de D², de la stratification de S¹

définie par quatre points a₁, a₂, a₃,
a₄ [ces points constituant la O-strate de S¹, et le complémentaire la

1-strate].

Remarque. Si l'on tient compte de la structure différentiable de ${\mathfrak F}$, on doit en plus supposer que ${\mathfrak a}_1$ et ${\mathfrak a}_4$ sont diamétralement opposés, et ${\mathfrak a}_2$ et ${\mathfrak a}_3$ d'un même côté de ce diamètre.

Démonstration: Soient f un point bec, c_0 et c_1 ; comme cidessus, ses points critiques de même niveau. L'étude locale des points critiques de naissance (cf. [3] pp. 32-34) montre qu'il existe une fonction $\overline{\omega}_0$, dont le support est un voisinage arbitrairement petit de c_0 , une sous-variété de codimension l de $\mathcal F$ passant par f, et un intervalle J_0 de centre O tels que l'application: (f', λ) \longmapsto f' + $\lambda\overline{\omega}_0$ définisse un homéomorphisme de $\mathbb V \times J_0$ sur un voisinage de f dans $\mathcal F$, de façon que (f', λ) ait, au voisinage de c_0 , zéro point critique si $\lambda < 0$, un point critique de naissance si $\lambda = 0$, et deux points critiques de Morse si $\lambda > 0$; les valeurs critiques correspondantes définissent pour f' \in $\mathbb V$ et $\lambda > 0$, deux fonctions continues $\alpha(f^{\dagger},\lambda)$ et $\beta(f^{\dagger},\lambda)$ telles que :

$$\alpha(f^{i}_{3}\lambda) > \beta(f^{i}_{3}\lambda)$$
 pour $\lambda > 0$

$$\alpha(f^{i}_{3}0) = \beta(f^{i}_{3}0) = 0$$

Soit \overline{w} , une fonction en cloche à support disjoint de celui de \overline{w}_0 , égale à lau voisinage de cl. Pour tout f'e $\mathfrak V$, suffisamment voisin de f, il existe un nombre μ et un seul, proche de

zéro, tel que $f^{\circ} + \mu \overline{\omega_{1}}$ soit un point bec. Il existe donc un voisinage $\mathfrak U$ de f dans l'ensemble des points becs, et un intervalle J_{1} de centre O, tels que l'application : $(f^{\circ}, \mu) \longmapsto f^{\circ} + \mu \overline{\omega_{1}}$ définisse un homéomorphisme de $\mathfrak U \times J_{1}$ sur un voisinage de f dans $\mathfrak V$. L'application Φ :

$$(f^{\circ}, \lambda, \mu) \mapsto f^{\circ} + \lambda \overline{\omega}_{0} + \mu \overline{\omega}_{1}$$

définit donc un homéomorphisme de $\mathbb{U} \times J_0 \times J_1$ sur un voisinage \mathbb{V} de f dans \mathbb{F} . Si \mathbb{U} est assez petit, le point critique c_1^{ℓ} de f^{ℓ} qui correspond à c_1 est tel que $\overline{\omega}_1(c_1^{\ell})=1$; le point c_1^{ℓ} est donc critique aussi pour la fonction $\Phi(f^{\ell},\lambda,\mu)$, et la valeur correspondante est $f^{\ell}(c_1^{\ell})+\mu$; or, puisque f^{ℓ} est un point bec, on a : $f^{\ell}(c_1^{\ell})=\alpha(f^{\ell},0)$. Les éléments de \mathbb{W} ayant une valeur critique double sont donc caractérisés (dans les coordonnées (f^{ℓ},λ,μ)) par 1^{ℓ} une ou 1^{ℓ} autre des équations :

$$\mu = \alpha(f^{\circ}, \lambda) - \alpha(f^{\circ}, 0)$$

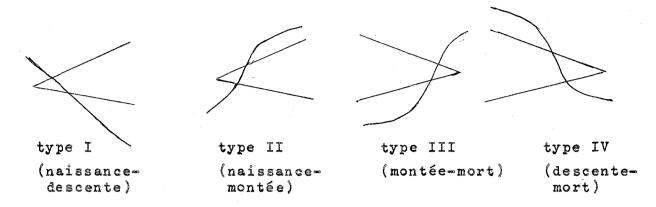
$$\mu = \beta(f^{\circ}, \lambda) - \beta(f^{\circ}, 0)$$

Il suffit donc de composer Φ avec un homéomorphisme convenable de $\mathcal{U} \times J_0 \times J_1$ (conservant f^g et λ), pour obtenir une carte locale de la stratification au voisinage de \mathcal{F} dont la restriction à $\{f\} \times J_0 \times J_1$ soit une carte transverse du modèle désiré.

3.2. Le lemme d'apparition d'un bec.

Définition. On dit qu'un bon chemin γ dans \mathcal{F} a <u>un graphique</u> en bec si γ (ou γ^{-1}) a pour accidents une naissance suivie du double croisement, avec les deux valeurs critiques nouvellement apparues, de la valeur critique située immédiatement audessus (ou au-dessous).

Il y a donc les quatre types suivants de chemins à graphique en bec :



On passe du type I au type I' et du type II au type II' par changement de sens ; on passe du type I au type II par "dualité" (c'est-à-dire remplacement de f par -f).

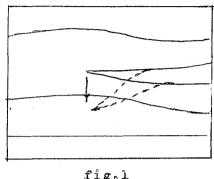
Lemme 2. Soit $f \in \mathcal{F}$ une fonction excellente à cesi près qu'elle a un point de naissance c_o (autrement dit , $f \in \mathcal{F}_\alpha^1$). Si le point critique c_l de f situé immédiatement au-dessous (resp. au-dessus) de c_o est d'indice différent de o (resp. différent de o), alors la composante connexe par arcs de f dans \mathcal{F}_α^1 contient dans son adhérence des points becs relatifs à l'égalité des valeurs critiques correspondant à c_o et c_l .

Démonstration : Supposons par exemple c_1 situé immédiatement au-dessous de c_0 et d'indice $\neq 0$; soit V_0 une surface de niveau séparant c_0 de c_1 . Il existe un voisinage cylindrique C_0 de c_0 , dont le bord inférieur est un disque de V_0 . Puisque l'indice de c_1 n'est pas zéro, il existe une nappe ascendante A_1 de c_1 limitée à V_0 , qui ne rencontre pas $C_0 \cap V_0$; A_1 peut donc être prolongée jusqu'au-dessus du niveau de c_0 ; il existe donc un chemin élémentaire ascendant relatif à c_1 , réalisant l'égalité des valeurs correspondant à c_0 et c_1 .

Proposition 3. (Lemme d'apparition d'un bec).

Soit γ un chemin de naissance; soit f° le point où γ traverse f ; si le point critique de f° situé immédiatement audessous du niveau de naissance est d'indice ≠ 0, γ peut être
déformé, avec origine et extrémité fixes, en un chemin à graphique
en bec du type naissance-descente (cf. fig.l). Si le point critique
situé immédiatement en-dessus du niveau de naissance est d'indice

🗚 n , γ peut de même être déformé en un chemin à graphique en bec du type naissance-montée (cf. fig.2). En plus, la déformation peut se faire de façon que les chemins intermédiaires soient bons à l'exception d'un seul, dont l'unique accident est le passage par un point bec] .



figol

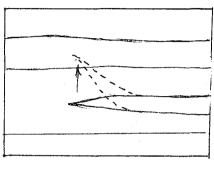
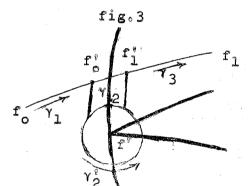


fig.2

Démonstration : Soient f et f l'origine et l'extrémité



de y; soit fo un point de l'image de γ situé un peu avant le point de traversée f°, soit de même situé un peu après f° . Soient γ_1 , γ_2 , γ_3 les arcs $\widehat{f_0}$ $\widehat{f_0}$, $\widehat{f_1}$, $\widehat{f_1}$, $\widehat{f_1}$ de γ . D'après le lemme 2, il existe un chemin β joignant f' un point bec f", et dont l'image

(à l'exception de son extrémité) est dans \mathcal{F}_{α}^{1} ; donc d'après le lemme l $_{0}$ γ_{2} est homotope avec extrémités fixes à un chemin γ_{2}^{*} à graphique en bec, tournant autour de f "; y est homotope à γ, γ, γ, , qui a les propriétés voulues.

3.3 Lemme de suppression d'un bec.

On se borne à étudier les chemins avec bec de naissance (cas I et II de 2,2,), les cas I° et II° se déduisant respectivement des cas I et II par changement de sens du chemin, les conditions de suppression du bec seront respectivement les mêmes.

Proposition 4. Soit y un chemin en bec du type naissance; soit le point où γ traverse F, et soit V la variété de

niveau du point critique de naissance de f°; soit j l'indice de la naissance (ce qui signifie qu'il apparaît un couple de points critiques d'indices j et j+l); soit i l'indice du point critique qui effectue le double croisement.

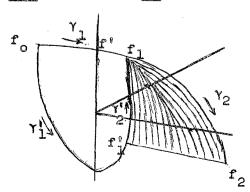
- 1°) On suppose que γ est du type I(naissance-descente). Si l'une des conditions suivantes est remplie :
 - (1) $i+j \le n-2$;
 - (2) i<j;
 - (3) i = j; $3 \le i \le n-3$; $\pi_1(V_0) = 0$;
 - (4) i = j+1; $3 \le i \le n-3$; $\pi_1(V_0) = 0$;

alors γ peut être déformé avec extrémités fixes en un chemin de naissance [En plus, la déformation peut se faire de façon que les chemins intermédiaires soient bons à l'exception d'un seul, dont l'unique accident est le passage par un point bec].

- 2°) On suppose que y est du type II (naissance-montée). Alors les mêmes conclusions subsistent pourvu que soit vérifiée la condition (3) ou la condition (4) du 1°), ou encore l'une des deux conditions suivantes :
 - (l°) i+j > n+l:
 - (2°) i > j+1 .

Démonstration: Le 2°) se déduit du 1°) par passage de la fonction f à la fonction -f; aux conditions (1), (2), (3), (4) correspondent ainsi respectivement les conditions (1°), (2°), (4), (3); on se borne donc au 1°).

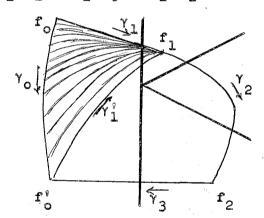
Cas (1), (2), et (3) . Soit f



l'origine de γ , soit f_2 son extrémité, et soit f_1 un point situé entre la naissance et le premier croisement; on note γ_1 l'arc f_0 f_1 de $\dot{\gamma}$ et $\dot{\gamma}_2$ l'arc f_1 f_2 . Chacune des conditions (1), (2), (3) entraîne en particulier $\dot{i} \neq n$; il résulte

donc de la proposition 2 que γ_1 est homotope à un chemin γ^* à graphique en bec, du type naissance-montée; soit f_1^* un point situé entre la naissance et le premier croisement de γ^* ; on décompose γ^* comme ci-dessus γ , en γ_1^* (d'extrémité f_1^*) et γ_2^* (d'origine f_1^*). D'après le lemme d'unicité du double croisement (cf.II.4.1. proposition 5'), γ_2^{*-1} et γ_2 sont homotopes en tant que chemins de double croisement d'origine f_1 ; donc γ est homotope (en tant que bon chemin d'origine f_0) à γ_1 o γ_2^{*-1} ; lequel est homotope à γ_1^* .

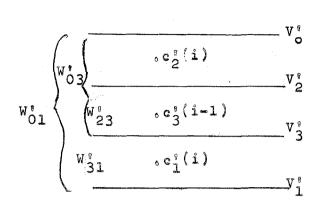
Cas (4). Soient f_0 , f_1 , f_2 , γ_1 , γ_2 comme ci-dessus; soient c_2 (d'indice i) et c_3 (d'indice i-1) les points critiques de f_1 apparus en f^0 , et soit c_1 (d'indice i) le point critique situé immédiatement au-dessus de c_2 ; soient c_2^i , c_3^i , c_1^i les points critiques correspondants de f_2 (de sorte que $f_2(c_3^i) > f_2(c_3^i) > f_2(c_1^i)$). Supposons démontré que c_2^i et c_3^i



sont en position de destruction mutuelle ; il existe alors un chemin de mort γ_3 d'origine f_2 relatif à c_2° et c_3° ; on note f_1° l'extrémité de γ_3 . Le chemin γ_3 o γ_2 est à graphique en forme de bec ; du type naissancemontée; par "dualité" (passage de f à -f) il lui correspond un

chemin du type naissance-descente vérifiant la condition (3); il est donc homotope avec extrémités fixes à un chemin de naissance γ_1° o D'après le lemme d'unicité des morts, $\gamma_1^{\circ-1}$ et γ_1^{-1} sont homotopes; donc γ_1 est homotope à un composé γ_0 o γ_1° ; où γ_0 est un chemin joignant f_0 à f_0° dans l'espace des fonctions excellentes. Donc γ est homotope à γ_0 o γ_1° o γ_2 ; puis à γ_0 o γ_3° ; qui est du type voulu.

Il reste à prouver que c_2^{\dagger} et c_3^{\dagger} sont en position de destruction mutuelle. Soient V_2^{\dagger} , V_3^{\dagger} , V_1^{\dagger} des surfaces de niveau de f_2 situées immédiatement en-dessous de c_2^{\dagger} , c_3^{\dagger} , c_1^{\dagger} respectivement, et soit V_0^{\dagger} située immédiatement au-dessus de c_2^{\dagger} .



 $V_{\mathbf{k}}^{\mathfrak{g}}$ est au-dessus de $V_{\ell}^{\mathfrak{g}}$). $\begin{array}{c} V_{0}^{\dagger} \\ V_{0}^{\dagger} \\$ $H_{i=1}(W_{o3}^{\circ}, V_{3}^{\circ})$ et $H_{i}(W_{o3}^{\circ}, V_{3}^{\circ})$ sont nuls. Or d'une part, on a

par excision : $H_{i-1}(W_{o3}^{\circ}, V_{3}^{\circ}) \approx H_{i-1}(W_{o1}^{\circ}, W_{31}^{\circ})$; le triple $(W_{01}^{\circ}, W_{31}^{\circ}, V_{1}^{\circ})$ donne la suite exacte :

$$H_{i=1}(W_{01}^{\circ}, V_{1}^{\circ}) \longrightarrow H_{i=1}(W_{01}^{\circ}, W_{31}^{\circ}) \longrightarrow H_{i=1}(W_{31}^{\circ}, V_{1}^{\circ}) ;$$

le terme de gauche est nul puisque c2 tue c3; le terme de droite est nul vu l'indice de c_1^* ; on a donc $H_{i-1}(W_{03}^*, V_3^*) = 0$. La suite exacte du triple $(W_{03}^*, W_{23}^*, V_3^*)$ donne alors :

$$0 \longrightarrow H_{\frac{1}{3}}(W_{O3}^{\mathfrak{g}}, V_{3}^{\mathfrak{g}}) \longrightarrow ZZ \longrightarrow ZZ \longrightarrow 0 .$$

Donc $H_{i}(W_{O3}^{0}, V_{3}^{0}) = 0$, ce qui achève la démonstration.

\$.4. Le lemme de la queue d'aronde.

4.1. La queue d'aronde standard et l'existence de lacets en queue d aronde o

Soit W une variété de dimension n , un point critique du type queue doaronde doune fonction for W -> R est un point critique c au voisinage duquel f s'écrit, dans des coordonnées locales convenables, sous la forme :

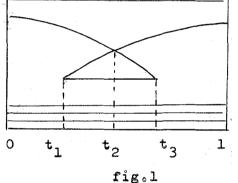
$$-x_1^2 = 0.00 = x_1^2 + x_{1+1}^2 + 0.00 + x_{n+1}^2 = x_n^4$$

i s'appelle l'indice du point critique c .

D'autre part, un chemin γ dans l'espace des fonctions $\mathbb{W} \longrightarrow \mathbb{R}$, tel que $\gamma(t)$ soit une fonction excellente, sauf pour trois valeurs t_1, t_2, t_3 du paramètre $(0 < t_1 < t_2 < t_3 < 1)$, est appelé chemin en queue d'aronde (d'indice i) si :

- 1) $\gamma(t_{i})$ est un point de naissance d'indice i ;
- 2) $\gamma(t_2)$ est un point de croisement du point critique c_2 d'indice (i+1) apparu en t_1 avec le point critique c_1 situé immédiatement au-dessus ;
- 3) $\gamma(t_3)$ est un point de mort, où c_1 se détruit avec le point critique c_3 d'indice i apparu en t_1 ; (ce qui suppose : indice $c_1 = i+1$).

Le graphique d'un chemin en queue d'aronde est du type da la figure lo



Lemme 1. Soit i tel que 0 < i < n-1. Soit h la fonction standard d'indice i+l dans \mathbb{R}^n et soit M_i le modèle de Morse correspondant. Il existe dans l'espace des fonctions $M_i \longrightarrow [-1,+1]$ coı̈ncidant avec h au voisinage du bord, un lacet en queue d'aronde, d'origine h, d'indice i.

Démonstration : Posons :

$$q(x_1, \dots, x_{n-1}) = -x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_{n-1}^2$$

Soient ξ et η deux paramètres réels ; posons

$$\mathbf{r}_{\xi_{n}\eta}(\mathbf{x}_{n}) = \mathbf{x}_{n}^{\mu} + \xi \mathbf{x}_{n}^{2} + \eta \mathbf{x}_{n}$$

et

$$f_{\xi_{n}\eta}(x_{1}, \dots, x_{n}) = q(x_{1}, \dots, x_{n-1}) - r_{\xi_{n}\eta}(x_{n})$$

Les points critiques de $f_{\xi,\eta}$ sont les points $(0,0,0,x_n)$ tels que x_n soit un zéro de la dérivée de $r_{\xi,\eta}$, c'est-à-dire tels que :

(1)
$$4x_n^3 + 2 \xi x_n + \eta = 0$$

Les valeurs de (ξ,η) pour lesquelles l'équation (1) a une racine double sont données par

(2)
$$8\xi^3 + 27\eta^2 = 0$$
.

La courbe (2) partage le plan des (ξ,η) en deux parties (cf.fig.2); dans celle de droite, (1) a une seule racine réelle; dans celle de gauche (1) a trois racines réelles; pour

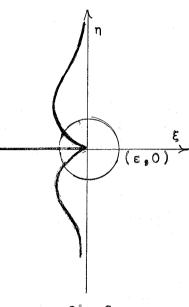


fig.2

 $\xi<0$ et $\eta=0$ (et seulement dans ce cas) $f_{\xi,\eta}$ a deux extréma distincts situés au même niveau. Il résulte de ceci que, pour tout $\epsilon>0$, le lacet d'origine $f_{\epsilon,0}$ décrit par $f_{\xi,\eta}$ lorsque λ décrit [0,1] et qu'on pose :

(3)
$$\begin{cases} \xi = \varepsilon \cos 2 \lambda \pi \\ \eta = \varepsilon \sin 2 \lambda \pi_0 \end{cases}$$

est un lacet en queue d'aronde.

Soit \overline{w} une fonction en cloche $\mathbb{R}^n \longrightarrow [0,1]$, égale à 1 sur le disque D_1 de centre 0 et de rayon 1, de support contenu dans le disque D_2 de centre 0 et de rayon 2. On choisit ε assez petit pour que, pour tout (ξ,η) tel que $\xi^2 + \eta^2 \leqslant \varepsilon^2$, les racines de l'équation (1) soient toutes contenues dans l'intérieur de D_1 . On pose :

$$\widetilde{\mathbf{r}}_{\xi_n \eta}(\mathbf{x}_1, \ldots, \mathbf{x}_n) = \mathbf{x}_n^{\mu} + \varepsilon \mathbf{x}_n^2 + \overline{\omega}(\mathbf{x})[(\xi - \varepsilon)\mathbf{x}_n^2 + \eta \mathbf{x}_n]$$

$$\widetilde{f}_{\xi,\eta}(x_1,\ldots,x_n) = q(x_1,\ldots,x_{n-1}) - \widetilde{r}_{\xi,\eta}(x)$$

La fonction $f_{\xi,\eta}$ coıncide sur \mathbb{R}^n-D_2 avec $f_{\varepsilon,0}$ elle n'a donc aucun point critique dans cette région. Sur le compact $D_2^{-D}_1$, dès que ε est assez petit et que $\varepsilon^2+\eta^2=\varepsilon^2$, $f_{\xi,\eta}$ est voisin de $q(x_1,0,0,0,x_{n-1})-x_n$, et par conséquent n'a aucun point critique. Enfin, sur D_1 , $f_{\xi,\eta}$ coıncide avec $f_{\xi,\eta}$. Donc le lacet décrit par $f_{\xi,\eta}$ lorsque (ξ,η) décrit le lacet défini par (3), a même graphique que celui décrit par $f_{\xi,\eta}$; c'est donc un lacet en queue d'aronde.

Soit ψ le difféomorphisme de \mathbb{R}^n défini par :

$$\psi(x_1, ..., x_n) = (x_1, ..., x_{n-1}, x_n + \sqrt{x_n^2 + \epsilon})$$

On a. :

$$f_{\varepsilon,0} = k_{\varepsilon} \psi$$

avec
$$k(x_1, ..., x_n) = q(x_1, ..., x_{n-1}) - x_n^2$$

Donc l'origine, unique point critique de $f_{\xi,0}$, a des voisinages de Morse arbitrairement grands. On en choisit un, noté $M_{i,0}$, qui contienne D_2 à son intérieur. On choisit un difféomorphisme ϕ de M_i sur $M_{i,0}$, adapté à h et à $f_{\xi,0}$; on note comme d'habitude ϕ ° le plongement : $\begin{bmatrix} -1+1 \end{bmatrix} \longrightarrow \mathbb{R}$ associé à ϕ ; le lacet décrit par ϕ , $f_{\xi,\eta}$, ϕ , lorsque (ξ,η) décrit le lacet défini par (3), a les propriétés voulues.

Corollaire. Soit W une variété différentiable ; soit f une fonction excellente : W \rightarrow R ; soit c₁ un point critique d'indice i+l de f . Il existe un lacet en queue d'aronde, d'origine f , d'indice i , relatif à c₁ [c'est-à-dire dont le niveau de naissance soit situé immédiatement en-dessous de c₁] .

Démonstration : il suffit de transporter le lacet donné par le lemme l, au moyen d'un plongement ϕ : $M_1 \longrightarrow W$, adapté à f en c_1 \circ

Remarque 1. Le lacet donné par le corollaire a la propriété supplémentaire d'être homotope à zéro par une homotopie au cours de laquelle la strate de codimension 2 de l'espace des fonctions réelles est rencontrée en un seul point [fonction ayant un point critique du type queue d'aronde].

Remarque 2. Dans le cas particulier où i=0, et où les nappes descendantes de c_1 rencontrent deux composantes connexes distinctes d'une variété de niveau V_1 située immédiatement endessous de c_1 , il existe pour chacune de ces composantes un lacet en queue d'aronde dont la naissance a lieu dans cette composante : il suffit de transporter le lacet du lemme l par un plongement adapté ϕ_1 d'une part, et, d'autre part, par le composé ϕ_2 de ϕ_1 avec la symétrie $(x_1, \dots, x_{n-1}, x_n) \mapsto (x_1, \dots, x_{n-1}, -x_n)$ de \mathbb{R}^n . Les deux lacets obtenus ne sent pas homotopes en tant que bons chemins d'origine f.

4.2. Classification des chemins en queue d'aronde d'origine donnée

Lemme 2. Soit $f \in \mathcal{F}$ une fonction excellente; soit c_1 un point critique d'indice i+l de f. On note V (resp. V_1) une surface de niveau de f située immédiatement au-dessus (resp. audessous) de c_1 . On suppose $n \ge 6$.

Si
$$0 \le i \le n-4$$
 et $\pi_1(V_1) = 0$;
ou si $i = n-3$ et $\pi_1(V_0) = 0$;

alors l'espace des chemins en queue d'aronde d'origine f relatifs à c₁ a exactement deux composantes connexes.

[Si i=0, et si les nappes descendantes de c_1 rencontrent deux composantes connexes distinctes de V_1 , c'est la naissance qui peut se faire de deux façons non équivalentes ; dans tous les autres cas, c'est le croisement].

Démonstration : Elle se partage en trois parties :

I. Classification des naissances admissibles :

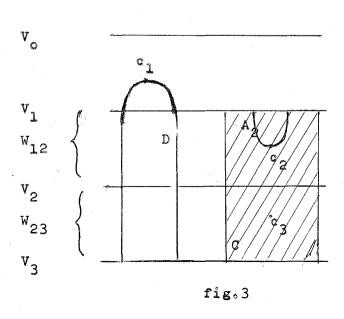
Les seules naissances qui peuvent conduire à un chemin en queue d'aronde sont celles qui ont lieu dans une composante connexe de V_{\perp} qui est effectivement rencontrée par les nappes descendantes de e_{γ} . Il faut donc distinguer deux cas :

- a) i=0 et les nappes descendantes de c_1 rencontrent deux composantes connexes différentes de V_γ ;
- b) les nappes descendantes de $\,c_1\,\,$ rencontrent une seule composante connexe de $\,V_{_{\rm T}}\,\,_{\rm o}$

D'après le lemme d'unicité des naissances (cf. III.l.3., proposition l) il y a, a priori, dans le cas a) deux chemins de naissance admissibles (à homotopie près) et dans le cas b), un seul.

II. Classification des croisements admissibles.

Plaçons-nous maintenant en l'extrémité f_1 d'un tel chemin de naissance ; appelons encore c_1 le point qui correspond à c_1 ; soient c_2 (d'indice i+1) et c_3 (d'indice i) les points critiques nouveaux-nés. On choisit comme d'habitude des surfaces de niveau qu'on note V_0 , V_1 , V_2 , V_3 , et on note W_{ij} la partie de W située entre V_i et V_j (cf. fig.3).



Soit $\mathfrak D$ l'espace des nappes descendantes de c_1 limitées à V_3 , et soit $D \in \mathfrak D$. Soit ζ l'application $\pi_o(\mathfrak D) \to \mathbb H_{i+1}(\mathbb W_{12}, \mathbb V_2)$ définie par une orientation de D (cf. II.4.2.; on identifie ici $\pi_o(\mathfrak D)$ avec $\pi_o(\mathfrak X)$). Il s'agit de déterminer les éléments D^a de $\mathcal D$ tels que le chemin élémentaire correspondant aboutisse à une fonction f_2 , telle que les points c_1^a et c_3^a (qui correspondent à c_1^a et c_3^a) soient en position de

destruction mutuelle. Il résulte du "cancellation lemma" de Smale (sous la forme forte qu'on trouvera par exemple en [10], p.70, remarque 2) qu'il est nécessaire et suffisant, pour qu'il en soit ainsi, que $\zeta(\mathring{D}^\circ)$ soit un générateur de $H_{\mathring{1}+1}(W_{12},V_2)$.

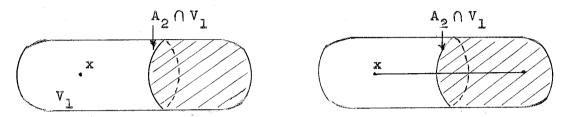
Soit A_2 une nappe ascendante de c_2 , limitée à V_1 ; par construction de f_1 , on sait que la composante connexe de V_1 qui rencontre A_2 rencontre également D; on peut supposer que $V_1 \cap D \cap A_2 = \emptyset$. Il faut maintenant envisager les différents cas possibles :

- l°) i \sharp 0 . Alors, dans toutes les hypothèses faites ci-dessus, ζ est bijectif, (de sorte qu'il y a exactement deux éléments de $\pi_{O}(\mathfrak{D})$ qui conviennent); en effet :
- = pour $2 \le i \le n-4$, l'hypothèse (b₁) de la proposition 4 de II.4.1. est satisfaite :
- = pour i = l , c'est l'hypothèse (b₂) de la même proposition qui est satisfaite, car $A_2 \cap V_1$ borde un disque de V_1 (parce que c₂ et c₃ se tuent).
- = pour i = n-3 , c'est l'hypothèse (b₃) qui est vérifiée, car $V_1 = (D \cap V)$ est difféomorphe à V_0 privé d'une l-sphère plongée ; cette variété est simplement connexe puisque par hypothèse $\pi_1(V_0) = 0$, et dim $V_0 > 4$.
- 2°) i = 0 . Reprenons dans ce cas le diagramme commutatif du lemme l de II.4.3., qui s'écrit ici :

Les flèches verticales sont des bijections d'après les lemmes 4 et 5 de II. 4 ; on est donc ramené à l'étude de $^\alpha$. Or $^A_2 \cap V_1$ sépare V_1 en deux composantes connexes, dont l'une est l'intersection avec V_1 d'une nappe ascendante saturée de $^\alpha$; on peut supposer que A 0 ne rencontre pas cette composante.

Il y a deux possibilités :

- ou bien D \cap V₁ se compose d'un seul point x (c'est le cas a) de I); alors $\pi_1(S_1, S_1^\circ; S_1) \approx \pi_1(V_1, V_1^-(A_2 \cap V_1); x)$; cet ensemble a deux éléments, dont des représentants respectifs sont :



Le premier a pour image 0, le second un générateur de $H_{i+1}(V_1, V_1-(A_2 \cap V_1))$. On trouve donc un seul croisement admissible.

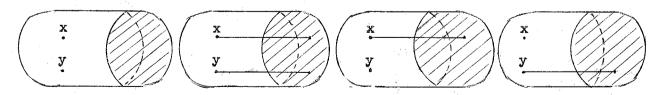
- ou bien $D \cap V_1$ se compose de deux points distincts x et y , 1^9 un affecté du signe + , 1^9 autre du signe - ; on a dans ce cas :

$$\pi_1(\mathcal{I}_1, \mathcal{I}_1; \xi_1) \approx \pi_1(\widetilde{\mathbf{v}}, \widetilde{\mathbf{v}} - \widetilde{\mathbf{A}}; (\mathbf{x}, \mathbf{y}))$$

où $\widetilde{V} = (V_1 \times V_1) - \text{diagonale},$ et $\widetilde{A} = (((A_2 \cap V_1) \times V_1) \cup (V_1 \times (A_2 \cap V_1))) \cap \widetilde{V},$

sibles.

De sorte que, dès que n>4, $\pi_1(\mathcal{S}_1,\mathcal{S}_1^0;\xi_1)$ a quatre éléments, dont des représentants respectifs sont :



Les deux premiers ont pour image O, les deux derniers ont pour image respective chacun des deux générateurs de $H_{i+1}(V_1, V_1-(V_1 \cap A_2))$. On trouve donc deux croisements admis-

III. Classification des morts.

Dans tous les cas considérés, le lemme d'unicité des morts s'applique au couple (c_1^i, c_3^i) (qui correspond à (c_1, c_3)). Ceci termine la démonstration du lemme 2.

4.3. Le lemme de la queue d'aronde.

Lemme 3. Soit i un entier tel que $1 \le i \le n-2$. Soit (b_{λ}) le chemin standard de naissance d'indice i sur le modèle cylindrique $C = B \times J$ de \mathbb{R}^n (cf. II.1.1.). On note V_2 la sousvariété $\{b_1 = 0\}$ de C; on note C^+ et C^- les parties en lesquelles V_2 découpe C. Il existe une isotopie (g_t) de C telle que :

- 1) le support de (gt) soit contenu dans l'intérieur de C;
 - 2) boog = b pour tout tel;
 - 3) $b_{\lambda} \circ g_{1} = b_{\lambda}$ pour tout $\lambda \in I$;
- 4) g₁ renverse l'orientation des nappes descendantes de chacun des points critiques de b₁ ; même propriété pour les nappes ascendantes.
- 5) L*application g_{1*} * $H_{i+1}(C^{+}, V_{2}) \rightarrow H_{i+1}(C^{+}, V_{2})$ induite par g_{1} est la multiplication par -1 . Même résultat pour $H_{n+1}(C^{-}, V_{2})$.

Démonstration : On suppose (en modifiant au besoin le choix de B \times J) qu'il existe une fonction en cloche α : \mathbb{R}^n \longrightarrow I , telle que :

- a) a(x) ne dépend que de la distance de x à l'origine ;
 - b) supp $\alpha \in C$.
- c) a est égal à l sur le support de (b_{λ}) . Soit g_t l'application $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ définie pour $t \in I$ par les équations :

$$\begin{cases} X_{1} = x_{1} \cos (t \pi \alpha(x)) - x_{i+1} \sin (t \pi \alpha(x)) \\ X_{i+1} = x_{1} \sin (t \pi \alpha(x)) + x_{i+1} \cos (t \pi \alpha(x)) \\ X_{j} = x_{j} \quad \text{pour } j \neq 1, i+1. \end{cases}$$

En premier lieu, g_t est un difféomorphisme pour tout $t \in I$; (on le vérifie pour la restriction de g_t à chaque plan obtenu en fixant les coordonnées autres que x_1 et x_{i+1}). Les conditions l) et 2) se vérifient immédiatement ; (on notera que les conditions i $\neq 0$ et i $\neq n$ interviennent pour la définition même de (g_t) ; la condition i $\neq n-1$ intervient pour la vérification de 2)).

Vérification de 3) : sur $\alpha^{-1}(1)$, g_1 coîncide avec l'application σ définie en II.l.l., propriété 3 ; donc d'après la formule (2) de II.l.l., on a : $b_{\lambda} \circ g_1 = b_{\lambda}$ dans cette région. Sur le complémentaire de $\alpha^{-1}(1)$, on a : $b_{\lambda} = b_{0}$ d'après la propriété c) ci-dessus ; il suffit donc d'appliquer la propriété 2).

Vérification de 4) : considérons par exemple le point critique $(0, \dots, \frac{4}{3}(\frac{\varepsilon}{3})^{3/2})$ de b_1 ; d'après la propriété 2 de II.l.l., la direction $\{x_{i+1} = \dots = x_{n-1} = 0\}$ est tangente à une nappe descendante de ce point; or, au voisinage de ce point, g_1 coïncide avec σ .

La propriété 5) est une conséquence immédiate de 4).

Corollaire. Soit W une variété différentiable ; soit f une fonction excellente : W \rightarrow R , et soient c_2 et c_3 deux points critiques consécutifs de f , d'indices respectifs i+l et i , en position de se tuer l'un l'autre. Soit V_1 (resp. V_2) une variété de niveau située immédiatement au-dessus (resp. audessous) de c_2 . Soit V_{12} la partie de W comprise entre V_1 et V_2 . Soit C un voisinage cylindrique de c_2 et c_3 .

Si $1 \le i \le d$ im W=2 , il existe une isotopie (g_t) de W telle que :

1) le support de (gt) soit contenu dans l'intérieur de C;

2) f o g = f;

- 3) g₁ renverse l'orientation des nappes descendantes de c₂ et c₃ : même propriété pour les nappes ascendantes.
- 4) $g_{1} * : H_{i+1}(W_{12}, V_2) \rightarrow H_{i+1}(W_{12}, V_2)$ est la multiplication par -1 .

Démonstration : on remplace au besoin C par un voisinage cylindrique C° contenu dans $C \cap W_{12}$; on transporte l'isotopie (g_t) du lemme 3 par un plongement adapté : $B \times J \longrightarrow C^*$, et on prolonge par l'identité. On a l), 2) et 3); 4) résulte du fait que le morphisme naturel : $H_*(C^*, C^* \cap V_2) \longrightarrow H_*(W_{12}, V_2)$ est un isomorphisme.

Remarque. Il résulte de 4) que le lacet (f o g, n'est pas homotope à zéro dans la cocellule de f o Par contre, soit f'lextrémité d'un chemin d'origine f réalisant la destruction de c, et c, i le lacet considéré est le bord d'un "cône" engendré par des chemins de naissance d'origine f'o

Proposition 5. (Lemme de la queue d'aronde).

Soit $f \in \mathcal{F}$ une fonction excellente. Soit c un point critique $\frac{d^{\circ} indice}{d^{\circ} indice}$ i+1 de f; soit V_{\circ} (resp. V_{1}) une variété de niveau située immédiatement au-dessus (resp. au-dessous) de c_{1} . On suppose n > 6.

Si:
$$0 \le i \le n-4$$
 et $\pi_1(V_1) = 0$;
ou si $i = n-3$ et $\pi_1(V_0) = 0$;

alors tout chemin en queue d'aronde Y, d'origine f, relatif
à c, est homotope (en tant que bon chemin d'origine f) à un
lacet; autrement dit f et l'extrémité f' de Y sont dans la
même composante connexe de l'espace des fonctions excellentes.

[En plus, γ peut être déformé avec extrémités fixes en un chemin dans l'espace des fonctions excellentes par une homotopie au cours de laquelle la seule fonction de codimension 2 rencontrée est une fonction ayant un point critique du type queue d'aronde].

Démonstration : D'après le lemme 2 , il suffit pour démontrer le

lemme de la queue d'aronde, de construire dans chaque cas deux lacets en queue d'aronde relatifs à c_l, non homotopes en tant que bons chemins d'origine f.

C'est déjà fait dans le cas où i = C , et où les nappes

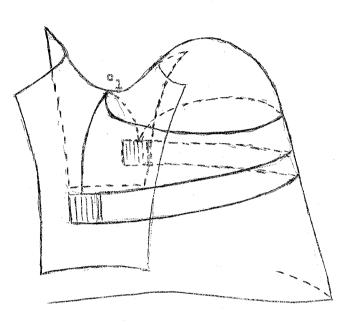


fig.4

descendantes de c₁ rencontrent deux composantes connexes distinctes de V_1 (cf. l.l., remarque 2). Lorsque i=0, et que les nappes descendantes de c₁ rencontrent une seule composante connexe de V_1 , le même procédé fournit encore deux lacets non homotopes. Soient en effet ϕ_1 et ϕ_2 comme dans la remarque 2 de l.l.; déformons le lacet standard fourni par le lemme 1 en un lacet, noté $\widetilde{\gamma}$, dont la naissance soit élémentaire, donc

definite par un plongement adapté ψ : B x J \longrightarrow M (dont l'image se trouve nécessairement dans la partie $\{x_n > 0\}$ de M); et soient $\widetilde{\gamma}_1$ et $\widetilde{\gamma}_2$ les lacets transportés de $\widetilde{\gamma}$ par ϕ_1 et ϕ_2 respectivement. Il existe une isotopie (g_t) de W , laissant fixe un voisinage de c_1 , telle que $g_1\circ\phi_1\circ\psi=\phi_2\circ\psi_\circ$ (p x identité) , où p est la symétrie de B par rapport à son équateur, de sorte que $g_1\circ\phi_1\circ\psi$ et $\widetilde{\gamma}_2$ ocincident jusqu'à un certain point f_1 , situé entre la naissance et le croisement. Les croisements de $g_1\circ\widetilde{\gamma}_1$ et $\widetilde{\gamma}_2$ ne sont pas homotopes en tant que chemins d'origine f_1 , car les nappes descendantes de c_1 qui leur correspondent ont des invariants opposés [ce sont les deux branches opposées qui, suivant le cas, descendent jusqu'à c_3 ; c_1 fig.4]. Donc $\widetilde{\gamma}_1$ et $\widetilde{\gamma}_2$ ne sont pas homotopes.

Cas où i \neq 0. Soit γ un lacet en queue d'aronde d'origine f, donné par le lemme l. On décompose γ en $\gamma_0, \gamma_1, \gamma_2$ de façon que l'extrémité f_1 de γ_0 soit après le naissance et celle f_2

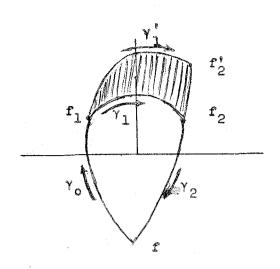


fig.5

de γ_1 , après le croisement, On utilise pour f_1 toutes les notations c_1 , c_2 , c_3 , V_0 , \ldots , \mathcal{D} , \mathcal{D} , \ldots , du II de
la démonstration du lemme 2; on choisit un voisinage cylindrique \mathcal{C} de c_2 et c_3 limité à V_1 et V_3 , de
façon que \mathcal{C} ne rencontre pas \mathcal{D} .
On note \mathcal{V} l'élément \mathcal{D} de $\pi_0(\mathcal{D})$ et \mathcal{V}_1 celui qui est associé à γ_1 .
On sait que $\zeta(\mathcal{V}_1)$ est un générateur
de $\mathcal{H}_{1+1}(\mathcal{W}_{12},\mathcal{V}_2)$; on le note e_1 .

Soit (g_t) l'isotopie de support C fournie par le corollaire du lemme 3; on note y_1^a le transformé de y_1 par g_1 ; l'extrémité f_2^b de y_1^a est jointe à f_2 par l'arc $(f_2 \circ g_t)$; soit v_1^a l'élément de $\pi_o(\mathcal{D})$ associé à y_1^a ; tout revient à montrer qu'on a : $\xi(v_1^a) = -e_1$. Soit à l'application $\pi_o(\mathcal{D}) \longrightarrow H_{i+1}(W_{o2}, V_2)$ obtenue en choisissant sur chaque élément de \mathcal{D} l'orientation cohérente avec celle de \mathcal{D} ; et soit \mathcal{D} le morphisme d'inclusion : $H_{i+1}(W_{i2}, V_2) \longrightarrow H_{i+1}(W_{o2}, V_2)$ on a :

$$\eta^{-1}(\theta(v_1) - \theta(v)) = e_1$$
.

Puisque g_1 induit l'identité au voisinage de c_1 , $g_1 \circ v_1$ est un élément de $\pi_{\alpha}(\mathfrak{D})$, et on a :

$$\zeta(v_1^{\circ}) = \eta^{-1}(\theta(g_1 \circ v_1) - \theta(v)) = \eta^{-1}(\theta(g_1 \circ v_1) - \theta(g_1 \circ v))$$
$$= g_1 * (\eta^{-1}(\theta(v_1) - \theta(v))) = g_1 * e_1 = -e_1 \circ$$

CHAPITRE V

Etude globale de l'espace F. 1. Connexité de l'espace des fonctions ordonnées et de l'espace F.

Dans ce chapitre, (W,V,V') désigne une triade compacte et \mathcal{F} l'espace des fonctions $\mathscr{C}^{\infty}: (W,V,V') \to (I,0,1)$. Les principaux résultats sont le théorème 1 (cf. 1.1) et le théorème 2 (cf. 2.1) qui constituent les deux premières étapes de la démonstration du théorème de pseudo-isotopie (cf. Introduction); tous deux concernent la connexité de certains sous-espaces de \mathcal{F} qui s'introduisent naturellement dans la théorie de Smale; le premier est valable sans aucune hypothèse sur W; le second est relatif au cas où W est un cylindre.

§.1. Connexité de l'espace des fonctions ordonnées.

1.1. Résultat.

Définition 1. Soit f $\in \mathcal{F}$; soient c_1 et c_2 deux points critiques de Morse de f; on dit que l'ensemble $\{c_1,c_2\}$ constitue une <u>inversion</u> de f si $(f(c_1)-f(c_2))$ (indice c_1 -indice c_2) < 0 .

<u>Définition</u> 2. Soit f une fonction excellente $(f \in \mathcal{F}^0)$; on dit que f est <u>ordonnée</u> si son nombre d'inversions est zéro. Soit plus généralement $f \in \mathcal{F}$, on dit que f est <u>ordonnée</u> si toute fonction excellente suffisamment voisine est ordonnée.

on note $\mathcal C$ la partie de $\mathcal F$ formée des fonctions ordonnées ; c'est un ouvert de $\mathcal F$. On note $\mathcal C^\circ$, $\mathcal C^1$, $\mathcal C^2$, $\mathcal C^1_\alpha$, $\mathcal C^1_\beta$ les intersections respectives de $\mathcal C$ avec $\mathcal F^\circ$, $\mathcal F^1$, $\mathcal F^2$, $\mathcal F^1_\alpha$, $\mathcal F^1_\beta$ (cf. I 3.1). Il est facile de caractériser explicitement ces ensembles, par exemple :

- f $\in \mathcal{O}_{\alpha}^{1}$ si f est ordonnée excellente à ceci près qu'il y a un point critique de naissance c et que (si i désigne l'indice de c) la variété de niveau de c sépare les points critiques d'indice \leqslant i de ceux d'indice \geqslant i+1 .
- $f \in \mathcal{O}_{\beta}^{1}$ si f est ordonnée excellente à ceci près qu'il y a exactement deux points critiques (nécessairement de même indice) situés au même niveau.
- si f est de Morse, f est ordonnée si son nombre d'inversions est zéro, et s'il n'y a aucun couple de points critiques d'indices différents situés au même niveau.

Théorème 1. Quelle que soit la triade compacte (W,V,V'), le sous-espace O de F formé des fonctions ordonnées est connexe par arcs.

Cet énoncé est visiblement équivalent au suivant :

Théorème 1'. Quelle que soit la triade compacte (W,V,V'), tout couple d'éléments de θ° (fonctions ordonnées excellentes) peut être joint par un bon chemin à valeurs dans $\theta^{\circ} \cup \theta^{\uparrow}$.

1.2. Principe de la démonstration.

On démontre le théorème 1'; on utilise pour cela la filtration de \mathcal{F}° définie par le nombre d'inversions : pour tout $\nu \geqslant 0$, on note $\mathcal{F}^{\circ}_{(\nu)}$ l'espace des fonctions excellentes dont le nombre d'inversions est au plus égal à ν , et on démontre le

Lemme 0. Quel que soit v > 0, tout bon lacet relatif de $(\mathcal{F}_{(v+1)}^{\circ}, \mathcal{F}_{(v)}^{\circ})$ est homotope sur \mathcal{F} , avec extrémités fixes, à un bon chemin de $\mathcal{F}_{(v)}^{\circ}$.

Démonstration du théorème 1' à partir du lemme 0 : Soient f et f' deux points de θ^o ; puisque $\mathcal F$ est connexe, f et f' peuvent être joints par un bon chemin γ de $\mathcal F^o \mathcal U \mathcal F^\dagger$; il existe un entier $\mathcal V$ tel que l'image de γ soit contenue dans un certain $\overline{\mathcal F}^0_{(\mathcal V+1)}$; γ est alors composé d'un nombre fini de

chemins de $\overline{\mathfrak{F}}_{(\nu+1)}^{\circ}$, et de lacets relatifs de $(\overline{\mathfrak{F}}_{(\nu+1)}^{\circ}, \overline{\mathfrak{F}}_{(\nu)}^{\circ})$; on applique le lemme O à chacun de ces derniers ; on a ainsi déformé γ en un bon chemin de $\overline{\mathcal{F}}_{(\gamma)}^{\circ}$, et on continue ainsi de proche en proche jusqu'à obtenir un bon chemin de $\mathfrak{F}_{(0)}^{0}$, c'est-à-dire un bon chemin de & U 01 .

1.3. Un système de générateurs pour $\pi_1(\overline{\mathcal{F}}_{(\nu+1)}^{\circ}, \mathcal{F}_{(\nu)}^{\circ})$.

<u>Définition</u>. Soit γ un chemin de traversée de ${\mathscr F}^1$ [on rappelle que cela signifie qu'il y a un seul point de traversée ; cf. I 2.1, définition 2] ; soient f_{o} et f_{1} l'origine et l'extrémité de γ . On dit que γ est <u>croissant</u> (resp. <u>décroissant</u>, resp. <u>stationnaire</u>) si le nombre d'inversions de f, est supérieur (resp. inférieur, resp. égal) à celui de f.

On va utiliser dans la suite le résultat suivant, utilisé en théorie de Smale (et qui est d'ailleurs impliqué par la proposition 3 de II 4.1) :

(*) <u>Soit</u> f_o ∈ 𝒯°; <u>si le nombre d'inversions de</u> f_o <u>est positif</u>, <u>alors</u> f est origine d'un chemin de croisement décroissant.

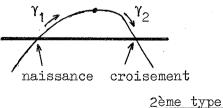
Lemme 1. Les lacets relatifs des trois types suivants constituent un système de générateurs de $\pi_1(\overline{\mathcal{F}}_{(\nu+1)}^0, \mathcal{F}_{(\nu)}^0)$:

<u>1er type</u>. γ est de la forme $\gamma_1 \cdot \gamma_2$, où γ , est un chemin de croisement croissant, et γ_2 un chemin de croisement décroissant.

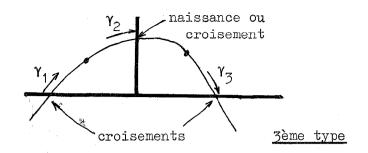
croisements

1er type

2ème type. γ ou γ^{-1} est de la forme $\gamma_{\textcolor{red}{1}}, \gamma_{\textcolor{blue}{2}}$, où $\gamma_{\textcolor{red}{1}}$ est un chemin de naissance croissant et γ_2 un chemin de croisement décroissant.



Zème type. γ est de la forme $\gamma_1 \cdot \gamma_2 \cdot \gamma_3 \ , \quad \text{où} \quad \gamma_1 \quad \text{et} \quad \gamma_3 \quad \text{sont}$ des chemins de croisement, et où $\gamma_2 \quad \text{est stationnaire.}$



Démonstration : On sait que les bons lacets relatifs constituent un système de générateurs ; soit γ l'un d'eux ; soit q le nombre de points de traversée de γ ; on décompose γ par le choix de q-1 points intermédiaires f_1, \dots, f_{q-1} en $\gamma_1, \gamma_2, \dots, \gamma_q$, de sorte que chaque γ_k soit un chemin de traversée (cf. fig.1). D'après la propriété (*), chaque f_k (k=1,...,q-1) est origine d'un chemin de croisement décroissant δ_k , dont l'extrémité est nécessairement dans $\mathcal{F}_{(\gamma)}^0$; γ est homotope au composé $(\gamma_1\delta_1).(\delta_1^{-1}\gamma_2\delta_2).....(\delta_{q-2}^{-1}\gamma_{q-1}\delta_{q-1}).(\delta_{q-1}^{-1}\gamma_q)$, dont chacun des éléments appartient à l'un des trois types considérés.

1.4. Démonstration du lemme 0.

Le lemme 1 ramène à montrer successivement que chaque générateur de 1er, 2ème, 3ème type est homotope à un chemin de $\overline{\mathcal{F}}^0_{(\nu)}$.

1. <u>Générateurs du 1er type</u>. Soit $\gamma = \gamma_1 \cdot \gamma_2$ un tel générateur ; on note f_0 l'origine de γ , f_i l'extrémité de γ_i (i=1,2). On distingue 3 cas :

ter cas. γ_1 et γ_2 sont relatifs au croisement du même couple de points critiques de f_0 : il résulte alors de la proposition 3 de II 4.1, que γ_1^{-1} et γ_2 sont homotopes en tant que bons chemins d'origine f_1 ; d'où le résultat (cf. fig.2).

2ème cas. γ₁ et γ₂ sont relatifs au croisement de deux couples de points critiques de f₀ ayant un élément commun. Supposons par exemple qu'il existe trois points critiques consécutifs c₁, c₂, c₃ de f₀ tels que

 $f(c_1) > f(c_2) > f(c_3) \text{ et que } \gamma_1 \text{ soit relatif au croisement de } c_2 \text{ et } c_3, \\ \text{et } \gamma_2 \text{ au croisement des points critiques de } f_1 \text{ qui correspondent à } c_1 \text{ et } \\ c_3; \text{ on a nécessairement } \text{: indice } c_1 < \text{indice } c_3 < \text{indice } c_2 \text{. Il existe } \\ \text{donc un chemin } \gamma_3 \text{ d'origine } f_2 \text{ réalisant le croisement des points critiques } \\ \text{de } f_2 \text{ qui correspondent à } c_1 \text{ et } c_2 \text{. Le chemin } \gamma_1, \gamma_2, \gamma_3 \text{ a pour graphique } \\ \text{un triangle de première espèce auquel s'applique le 1°) du lemme du triangle } \\ \text{(cf. IV 1.2 ; c'est la condition (2) qui est satisfaite), le chemin } \gamma_1, \gamma_2, \gamma_3 \\ \text{est donc homotope à un chemin } \gamma_3', \gamma_2', \gamma_1' \text{ (cf. fig.3) dont le graphique est un triangle de seconde espèce ; le nombre d'inversions à l'extrémité de } \gamma_1' \\ \text{(resp. } \gamma_2', \text{ resp. } \gamma_3') \text{ est } \nu-1 \text{ (resp. } \nu-2, \text{ resp. } \nu-1), \text{ de sorte que l'image } \\ \text{de } \gamma_3', \gamma_2', \gamma_1' \text{ est contenue dans } \overline{\mathcal{F}_{(\nu)}^0} \text{.} \\ \end{cases}$

3ème cas. γ_1 et γ_2 sont relatifs au croisement de deux couples disjoints de points critiques de f . Il suffit alors d'appliquer le lemme des singularités indépendantes (IV,1, proposition 1), cas 1.

2. Générateurs du 2ème type. On conserve les notations γ_1 , γ_2 , f_0 , f_1 , f_2 ; γ_1 est cette fois un chemin de naissance, on note c_1 et c_2 les points critiques nouveaux-nés de f_1 , i+1 et i leurs indices respectifs; γ_2 ne peut être relatif au croisement de c_1 et c_2 , car d'après le critère de Smale (cf. III,2.3, proposition 3), il n'existe aucune nappe de c_1 descendant jusqu'en dessous de c_2 . Deux cas sont donc possibles :

<u>1er cas.</u> γ_2 <u>est relatif au croisement d'un couple de points critiques disjoint de la couple de couple de points critiques disjoint de la couple de </u>

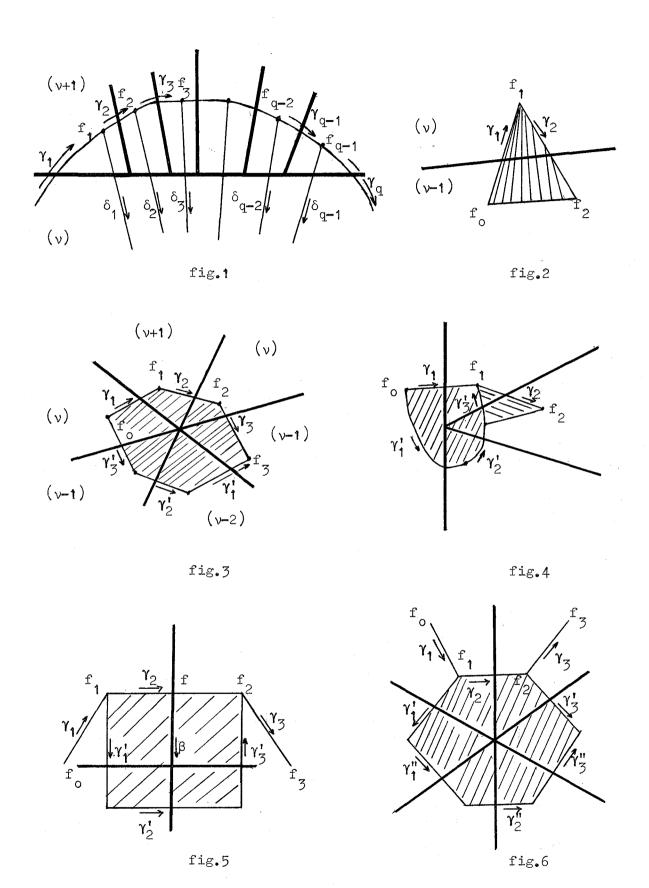
D'après le lemme d'appartion des becs (cf. IV, 3.2, proposition 3), γ_1 est homotope à un chemin $\gamma_1' \cdot \gamma_2' \cdot \gamma_3'$, à graphique en bec (cf. fig.4). A l'extrémité de γ_2' , le nombre d'inversions est ν ; γ est homotope au composé $(\gamma_1' \cdot \gamma_2') \cdot (\gamma_3' \cdot \gamma_2)$; $\gamma_3' \cdot \gamma_2$ est du 1er type; l'image de $\gamma_1' \cdot \gamma_2'$ est dans $\overline{\mathcal{F}}_{(\nu)}^0$, car le nombre d'inversions à l'extrémité de γ_1' est ν ou ν -1 suivant que j=i ou j < i.

3. Générateurs du 3ème type. Soit $\gamma = \gamma_1 \cdot \gamma_2 \cdot \gamma_3$ un tel générateur; on note f_0 l'origine de γ , et f_1 , f_2 , f_3 les extrémités respectives de γ_1 , γ_2 , γ_3 . On note f le point de traversée de γ_2 . Je dis que f a au moins un couple de points critiques (de Morse) consécutifs en inversion; c'est clair si $f \in \mathcal{F}_{\beta}^1$. Si la singularité de codimension 1 de f est une naissance, cela résulte du fait que, γ_2 étant stationnaire, le niveau de cette naissance ne peut être compris entre ceux de deux points critiques de Morse en inversion. Il y a donc 2 cas à considérer:

ter cas. f a une inversion $\{c_1,c_2\}$ telle que c_1 et c_2 soient consécutifs et les valeurs critiques $f(c_1)$ et $f(c_2)$ simples. On peut supposer γ_2 élémentaire. Il existe alors un chemin élémentaire β , d'origine f, de support disjoint de celui de γ_2 , réalisant le croisement de c_1 et c_2 . On en déduit (voir fig.5) que γ_2 est homotope à un chemin $\gamma_1^i \cdot \gamma_2^i \cdot \gamma_3^i$, tel que le nombre d'inversions aux extrémités de γ_2^i soit ν ; γ est donc homotope au composé $(\gamma_1 \cdot \gamma_1^i) \cdot (\gamma_2^i) \cdot (\gamma_3^i \cdot \gamma_3^i)$; $\gamma_1 \cdot \gamma_1^i$ et $\gamma_3 \cdot \gamma_3^i$ sont du 1er type, et l'image de γ_2^i est contenue dans $\mathfrak{F}_{(\nu)}^o$.

<u>2ème cas</u>, f <u>est un point de croisement, et les deux points critiques c <u>et c' de f qui sont au même niveau sont en inversion avec le point critique situé immédiatement au-dessus (ou au-dessous). Supposons par exemple que le point critique c de f situé immédiatement au-dessus de c et c' soit en inversion avec eux ; soit j l'indice de c , soit i celui de c et c',</u></u>

on a : j < i . Il existe un chemin γ_1' issu de f_1 réalisant le croisement de c_0 et c, et un chemin γ_3' issu de f_2 réalisant le croisement de c_0 et c'. D'après le 1°) du lemme du triangle (cf. IV,2.2 proposition 2 ; c'est la condition (2) qui est réalisée), le chemin $\gamma_1'^{-1} \cdot \gamma_2 \cdot \gamma_3'$ est homotope à un chemin $\gamma_1'' \cdot \gamma_2'' \cdot \gamma_3''$ (voir fig.6), tel que le nombre d'inversions aux extrémités de γ_2'' soit ν -1 ; γ est homotope à $(\gamma_1 \cdot \gamma_1') \cdot (\gamma_1'' \cdot \gamma_2'' \cdot \gamma_3'') \cdot (\gamma_3'^{-1} \cdot \gamma_3)$; $\gamma_1 \cdot \gamma_1'$ et $\gamma_3'^{-1} \cdot \gamma_3$ sont du 1er type, l'image de $\gamma_1'' \cdot \gamma_2'' \cdot \gamma_3''$ est contenue dans $\overline{\mathcal{F}}_{(\nu)}^0$; la démonstration est donc achevée.



§.2. Connexité de l'espace \mathcal{F}_{i} .

On suppose dans tout ce paragraphe que (W,V,V') est le cylindre $V \times (I,0,1)$ dans lequel on a identifié $V \times \{0\}$ à V. De sorte que \mathcal{F} est l'espace des fonctions \mathcal{C}^{∞} : $V \times (I,0,1) \rightarrow (I,0,1)$.

2.1. Résultat.

Définition des espaces $\mathcal{F}_{i,q}$ et \mathcal{F}_{i} .

Pour tout i tel que $0 \leqslant i \leqslant n-1$, et pour tout $q \geqslant 0$, on note $\mathcal{F}_{i,q}$ le sous-espace de \mathcal{F} formé des fonctions de Morse ordonnées qui ont en tout 2q points critiques, dont q sont d'indice i et q d'indice i+1. [On notera que, d'après la définition 2 de 1.1., si $f \in \mathcal{F}_{i,q}$, il peut y avoir égalité entre valeurs critiques d'indice i, égalité entre valeurs critiques d'indice i+1; mais toute valeur critique d'indice i est strictement plus petite que toute valeur critique d'indice i+1].

On note $\mathcal{F}_{i,q;\alpha}$ le sous-espace de codimension 1 de \mathcal{F} séparant $\mathcal{F}_{i,q}$ de $\mathcal{F}_{i,q+1}$; les éléments de $\mathcal{F}_{i,q;\alpha}$ sont les fonctions ordonnées dont l'ensemble critique se compose d'un point de naissance c , d'indice i , et de 2q points critiques du type de Morse, parmi lesquels q sont d'indice i et sont situés en-dessous du niveau de c , et q d'indice i+1 et situés au-dessus du niveau de c .

On pose:

$$\bigcup_{q \geq 0} (\mathcal{F}_{i,q} U \mathcal{F}_{i,q;\alpha}) = \mathcal{F}_{i}$$

Il est clair que \mathcal{F}_{i} est un ouvert non vide de l'espace \mathcal{O} des fonctions ordonnées (lui-même ouvert dans \mathcal{F}_{i} , et connexe d'après le théorème 1).

Théorème 2. Soit V une variété différentiable compacte connexe, de dimension n-1, et soit $W = V \times I$. Soit \mathcal{F}_i défini ci-dessus. Si n > 6, $\pi_i(V) = 0$, et si $2 \le i \le n-3$; alors \mathcal{F}_i est connexe par arcs.

Cet énoncé est visiblement équivalent au suivant :

Théorème 2'. Sous les hypothèses du théorème 2, tout couple d'éléments de \mathcal{F}_{i}^{o} (c'est-à-dire de \mathcal{F}_{i}^{o}) peut être joint par un bon chemin à valeurs dans $\mathcal{F}_{i}^{o} \cup \mathcal{F}_{i}^{1}$.

2.2. Principe de la démonstration.

Lemme 0. Si n > 6 et $\pi_1(V) = 0$; si en plus i < n-4, j > i+2 et k > 1, alors tout bon lacet relatif de $(\overline{f}_{[i,j];k}^{\circ}, \mathcal{F}_{[i,j];k-1}^{\circ})$ est homotope sur \mathcal{F} , avec extrémités fixes, à un bon chemin de $\overline{\mathcal{F}}_{[i,j];k-1}^{\circ}$.

Démonstration du théorème 2' à partir du lemme 0. On a la filtration :

$$\mathcal{F}^{\circ}_{[i+1,j]} = \mathcal{F}^{\circ}_{[i,j];0} \subset \mathcal{F}^{\circ}_{[i,j];1} \subset \cdots \subset \mathcal{F}^{\circ}_{[i,j];k-1} \subset \mathcal{F}^{\circ}_{[i,j];k} \subset \cdots \subset \mathcal{F}^{\circ}_{[i,j]}$$

Tout bon lacet de $(\overline{\mathcal{F}}_{[i,j]}^{\circ}, \overline{\mathcal{F}}_{[i+1,j]}^{\circ})$ a son image contenue dans un certain $\overline{\mathcal{F}}_{[i,j];k}^{\circ}$; de sorte que, par application répétée du lemme 0, on obtient le résultat suivant :

(1) Si i \langle n-4 et j \rangle i+2, alors tout bon lacet de ($\overline{\mathcal{F}}_{[i,j]}^{\circ}$, $\overline{\mathcal{F}}_{[i+1,j]}^{\circ}$) peut être déformé avec extrémités fixes en un bon chemin de $\overline{\mathcal{F}}_{[i+1,j]}^{\circ}$.

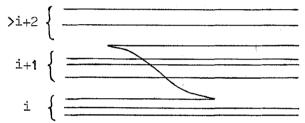
On en déduit par dualité:

(1') Si j > 4 et j > i+2 , alors tout bon lacet de $\overline{\mathcal{F}}_{[i;j]}^{\circ}, \overline{\mathcal{F}}_{[i,j-1]}^{\circ}$ peut-être déformé avec extrémités fixes en un bon chemin de $\overline{\mathcal{F}}_{[i,j-1]}^{\circ}$. Soient alors f et f' deux points de \mathcal{F}_{i}° ; d'après le théorème 1 (cf. 1.1.) f et f' peuvent être joints par un bon chemin γ de $\overline{\mathcal{F}}_{[0,n]}^{\circ}$; si i < n-3, l'application répétée de (1) permet de déformer γ , avec extrémités fixes, en un bon chemin γ' de $\overline{\mathcal{F}}_{[i,n]}^{\circ}$. Si en plus i > 2, l'application répétée de (1') permet de déformer γ' , avec extrémités fixes, en un bon chemin de $\overline{\mathcal{F}}_{[i,i+1]}^{\circ}$, c'est-à-dire de $\overline{\mathcal{F}}_{i}^{\circ}$.

2.3. <u>Un système de générateurs pour</u> $\pi_1(\mathcal{F}_{[i,j];k}^{\circ}, \mathcal{F}_{[i,j];k-1}^{\circ})$.

<u>Définition</u>. Soit $f \in \mathcal{F}_{[i,n]}^{\circ}$; on appelle <u>chemin de Smale</u> d'origine f tout bon chemin δ dont le graphique

est du type ci-contre. Autrement dit, les accidents successifs de δ sont : une naissance d'indice



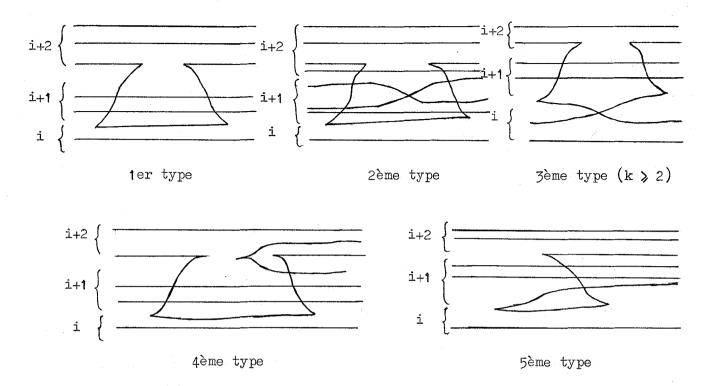
i+1 à un niveau intermédiaire entre

les points critiques d'indice i+1 et ceux d'indice i+2 de f ; le croisement successif du point d'indice i+1 nouveau-né avec tous les points critiques
d'indice i+1 de f , et enfin destruction de ce point critique avec le point
critique d'indice i le plus élevé de f .

Si f $\{\mathcal{F}^o_{[i,j];k}, \}$ l'extrémité de tout chemin de Smale d'origine δ est dans $\mathcal{F}^o_{[i,j];k-1}$ on démontre en théorie de Smale la propriété suivante :

(**) <u>Sous les hypothèses du lemme</u> 0, <u>tout point de</u> $\mathfrak{F}^{\circ}_{[i,j];k}$ <u>est origine</u> <u>d'un chemin de Smale</u>.

Lemme 1. Sous les hypothèses du lemme 0, les lacets relatifs dont les graphiques appartiennent à l'un des cinq types suivants constituent un système de générateurs de m, (Toi,j;k, Foi,j;k-1):



Démonstration : Comme pour le lemme 1 de 1.3, on se ramène à considérer un bon lacet relatif γ , à q croisements ; il est commode de supposer γ "irréductible" (c'est-à-dire tel que sauf aux extrémités, il ne soit jamais dans $\mathcal{F}_{[i,j];k-1}^{\circ}$). Comme en 1.3., on obtient une homotopie entre γ et un composé $(\gamma_1.\delta_1).(\delta_1^{-1}.\gamma_2.\delta_2)...(\delta_{q-1}^{-1}\gamma_q)$, où $\delta_1,...,\delta_{q-1}$ sont cette fois des chemins de Smale donnés par la propriété (**). Les lacets relatifs tels que $\gamma_1.\delta_1$ sont du 5ème type. Pour un lacet relatif tel que $\delta_1^{-1}.\gamma_2.\delta_2$ les diverses possibilités sont les suivantes :

1) γ_2 est un chemin de croisement.

- a) le croisement se fait entre points critiques d'indice > i+2 , ou entre points critiques d'indice i autres que les deux plus élevés : le lemme des singularités indépendantes (cf.IV, 1, proposition 1) ramène immédiatement à un lacet du 1er type.
- b) le croisement se fait entre points critiques d'indice i+1 : on obtient un lacet du 2ème type.
 - c) le croisement se fait entre les deux points critiques d'indice i

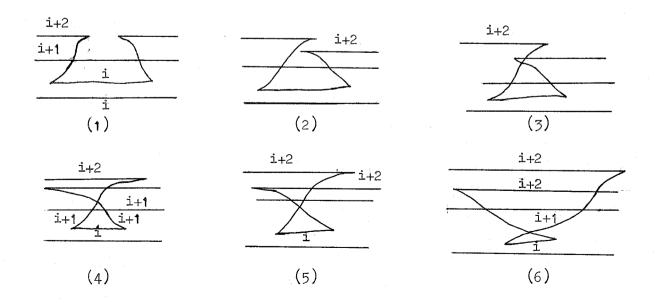
les plus élevés : on obtient un lacet du 3ème type.

- 2) γ_2 est un chemin de naissance (ou de mort). Le cas où cette naissance est d'indice i est écarté puisqu'on a supposé γ irréductible.
- a) l'indice de la naissance est i+1 : on obtient un lacet du 4ème type.
- b) pour toutes les autres valeurs de l'indice de naissance, le lemme des singularités indépendantes ramène au 1er type.
- 2.4. Démonstration du lemme 0 ; lère étape : réduction à la queue d'aronde.

 On va montrer que sous les hypothèses du lemme 0, tout lacet relatif appartenant à l'un quelconque des 5 types ci-dessus est homotope sur \$\mathbb{F}\$ à un composé de lacets relatifs en queue d'aronde (cf. IV, 4.1) et de lacets dont l'image est dans \$\mathbb{F}^0_{[i,j];k-1}\$.

Pour les lacets du 5ème type, c'est une conséquence immédiate du lemme des singularités indépendantes.

Cas des lacets du 1er type. Voici traduites sur les graphique les déformations successives qu'on fait subir au lacet :



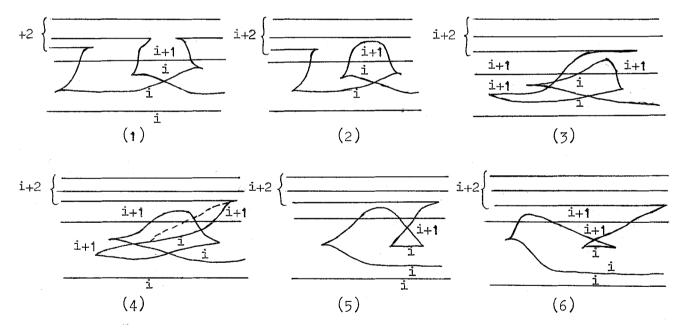
Passages de 1 à 2, de 3 à 4 et de 5 à 6 par le lemme des singularités indépendantes.

Passage de 2 à 3 par une apparition de bec (IV, 3.2., proposition 3).

Passage de 4 à 5 par le lemme du triangle (IV, 2.2., proposition 2 : c'est la condition (3) de cette proposition qui est réalisée, puisque $i \leq n-4$).

Cas des lacets du 2ème type. Le lemme du triangle (utilisé dans le même cas que précédemment) permet de se ramener à un lacet du 1er type.

Cas des lacets du 3ème type. De tels lacets n'existent que lorsque $k \geqslant 2$. Soit γ un tel lacet, d'origine notée f; soit δ un chemin de Smale d'origine f; (son extrémité est dans $\mathcal{F}^{\circ}_{[i,j];k-2}$). On déforme le lacet relatif $\delta^{-1}\gamma$ (avec extrémités fixes) de façon que son graphique, initialement de la forme 1 ci-dessous, prenne successivement les formes suivantes :



Passage de 1 à 2 par le lemme d'unicité des naissances (III, 1.3., corollaire 2); la surface de niveau séparant les points critiques d'indice i+1 de ceux d'indice i est en effet connexe dès que $0 \le i \le n-3$.

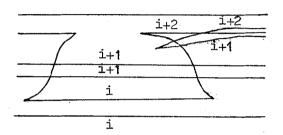
Passage de 2 à 3 par le lemme des singularités indépendantes et le lemme d'apparition d'un bec.

Passage de 3 à 4 par le lemme du triangle, cas (3), utilisé deux fois.

Passage de 4 à 5 par suppression d'un bec du type naissance-descente (cf. IV 3.2., proposition 4, 1°); pour $3 \le i \le n-3$, on peut en effet appliquer le cas (3) de cette proposition, car la surface de niveau séparant les points critiques d'indice i de ceux d'indice i+1 est simplement connexe pourvu que $2 \le i \le n-3$; et pour i = 0,1,2, c'est le cas (1) de cette proposition qui s'applique puisque $n \ge 6$.

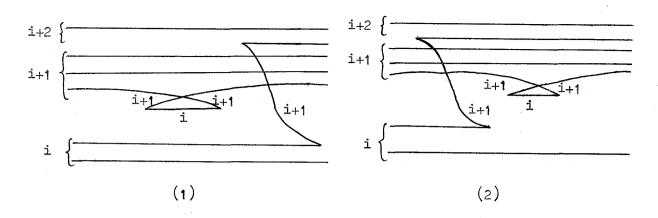
Cas des lacets du 4ème type. Par une apparition de bec, et par le lemme des

singularités indépendantes, on se ramène à un lacet relatif ayant le graphique ci-contre. On est donc ramené à un lacet du 1er type par une suppression de bec (et le lemme des singularités indépen-



dantes); c'est le cas (3) du lemme de suppression des becs qui s'applique pour $2 \le i \le n-4$, et le cas (1) pour i=0 et i=1.

2.5. Démonstration du lemme 0 ; 2ème étape : réduction de la queue d'aronde. Soit γ un générateur en queue d'aronde, d'origine f, d'extrémité f'. Si γ est homotope en tant que bon chemin à un lacet <u>absolu</u>, il est homotope sur \mathcal{F} à un chemin de $\mathcal{F}_{[i,j];k-1}^0$ (puisque \mathcal{F} est acyclique). Or le lemme de la queue d'aronde (IV, 4.3., proposition 5) montre qu'il en est ainsi (puisqu'on a supposé $i \leqslant n-4$) dès que la surface de niveau de f séparant les points critiques d'indice i de ceux d'indice i+1 est simplement connexe. Ceci se produit dans deux circonstances : a) si k=1; b) si $2 \leqslant i \leqslant n-3$. Il ne reste donc à examiner que le cas où i=0 ou i=1, avec $k \geqslant 2$. Soit alors δ un chemin de Smale d'origine f'; le graphique



de γ . δ est du type (1) ci-dessus ; on le déforme, avec extrémités fixes, jusqu'à ce que son graphique soit du type (2) ; on utilise pour cela, outre le lemme des singularités indépendantes, une apparition de bec, un triangle (dont les trois "côtés" ont l'indice i+1) et une suppression de bec du type naissance d'indice i-descente d'indice i+1 ; le cas (1) du lemme de suppression des becs est applicable, puisque, pour i=0 et i=1, on a : 2i+1 \langle n-2.

Préliminaires algébriques à la détermination du nerf de Fi.

Ce chapitre, entièrement indépendant de ce qui précède, fournit les modèles algébriques qui seront utilisés au chapitre suivant. Au §1, on rappelle la définition (classique) du complexe \mathcal{G}_q associée au groupe symétrique S_q ; puis on définit le complexe \mathcal{G}_q ; on en donne quelques propriétés dont la principale est la proposition 2. Le §2 est une description détaillée du 2-squelette de \mathfrak{E}_q ; les points les plus importants pour la suite sont la proposition 2', où l'on montre que les arêtes issues d'un sommet de \mathfrak{E}_q sont en correspondance bijective (et canonique à isomorphisme affine près) avec les entiers ; et le n° 2.4.2 où l'on associe à tout sommet de $\mathfrak{E}_q \times \mathfrak{E}_q$ un invariant entier noté $|a_{q,q}|$. Le §3 est entièrement consacré au lemme fondamental ; celui-ci est énoncé à la fin de 3.1 et démontré en 3.2 et 3.3 ; la démonstration se fait par récurrence sur q ; elle utilise une filtration assez compliquée, définie par l'invariant $|a_{q,q}|$ et d'autres invariants ; le lemme 7 de 3.3 constitue la clef de cette démonstration.

\$.1. Le complexe algébrique & q

1.1. <u>Préliminaires : propriétés élémentaires de quelques sous-aroupes de</u> GL(q,Z).

Notations. Soit que entier positif. On désigne par G_q le groupe GL(q,Z) des matrices inversibles d'ordre q sur Z. On note T_q le sous-groupe de G_q formé des matrices triangulaires inférieures.

Pour tout $J \subset \{1,2,\ldots,q-1\}$, on note T_J le sous-groupe de T_q formé par les matrices (a_{jk}) telles que les a_{jk} non diagonaux soient nuls pour $(j-1,k) \subset J \times J$. Pour tout $J' \subset J$, on a $T_{J'} \supset T_{J'}$; en particulier, $T_{J'} = T_{q'}$, at $T_{\{1,2,\ldots,q-1\}}$ est le sous-groupe de G_q formé des matrices diagonales; on le note $Diag_q$ Pour tout $J \subset \{1,2,\ldots,q-1\}$, on note $T_{J'}$ le sous-groupe de T_q formé des matrices (a_{jk}) telles que les a_{jk} non diagonaux soient nuls pour $(j-1,k) \not\in J \times J$. Pour tout $J' \subset J$, on a $T'_{J'} \subset T'_{J'}$. En particulier, $T'_{J'} = Diag_q$, et $T'_{\{1,2,\ldots,q-1\}}$ T_q . On note

On note \tilde{T}_q le noyau du projecteur canonique : $T_q \to \text{Diag}_q$; notations analogues : \tilde{T}_J , \tilde{T}_J , \tilde{T}_J , \tilde{T}_J ,

Pour tout $j \in \{1,2,...q-1\}$, on note s_i la transposition de matrice

Pour tout $J \subset \{1,2,\ldots,q-1\}$, on note S_J le sous-groupe de G_q engendré par les S_J , pour $J \subset J$. En particulier, $S_{g'} = \{e\}$ et $S_{g'} = \{e\}$ e

Lemme 1. 1) Pour tout couple (J,J') de parties de {1,2,...q-1} telles que J'C J,
on a une décomposition avec unicité

2) La composée des applications canoniques $\tilde{T}_{J',J} \rightarrow T_{J'}/T_{J}$ est une bijection.

Démonstration. 1) Le morphisme $T \to T'$ obtenuen remplaçant par zéro les a jk non diagonaux tels que $(j-1,k) \notin J \times J$ est un projecteur; par restriction, on

obtient un projecteur $\widetilde{T}_{J} \longrightarrow \widetilde{T}_{J} \longrightarrow \widetilde{T}_{J}$ d'où la décomposition en produit semi-direct

$$\tilde{T}_{i} = \tilde{T}_{j}, \tilde{T}_{j}$$
.

D'autre part, le projecteur naturel T_{j} , \longrightarrow Diag définit une décomposition en produit semi-direct $T_1 = \widetilde{T}_1$. Diag,

d'où la décomposition annoncée, et son unicité.

2) Du 1) on déduit aussitôt une décomposition en produit semi-direct

la bijection annoncée en résulte.

Lemme 2, 1) Four tout Jc {1,2,...,q-1}, T est stable pour les automorphismes intérieurs de G définis oar les éléments de S, .

2) Pour tout J'c J, on a

3) Soient g et g' deux éléments de 6 ; pour que gS et g'S aient même image dans $\frac{G}{q}$, il faut et il suffit que $g'^{-1}g \in T_1 \cdot S_1$.

<u>Démonstration</u>.Le 1) résulte du fait que pour tout $j \in J$, T_j est stable pour l'automorphisme intérieur défini par s . Le 2) est une conséquence immédiate du 1). Preuve du 3). [Pour toute partie A de G_q , on note À l'image canonique de A dans G_q/T_q]. Il résulte du 1) que pour $t \in T_q$ et $s \in S_q$, on a $tsS_q = tS_q = S_q$. Réciproquement, supposons que gS = S; cela entraîne en particulier $g^{-1} \in S$, autrement dit, il existe $s \in S$ et $t \in T$ tels que g = ts; on doit alors avoir $t\hat{S} = \hat{S}$; et ceci entraîne $t \in T$. On montre en effet sans difficulté que si une matrice triangulaire t n'est pas un élément de T, , alors tS, n'est pas contenu dans S . T].

Lemme 3. L'application naturelle

$$S \rightarrow T \setminus G /T$$

droite et à gauche modulo T] .

Démonstration. Soit T(q,R) le sous-groupe de GL(q,R) formé des matrices triengulaires inférieures. Il résulte d'un théorème de Bruhat (cf. [1], p.187) que l'application naturelle

$$S \longrightarrow T(q,R) \setminus GL(q,R)/T(q,R)$$

est bijective; le lemme en résulte aussitôt.

(Le lemme 3 peut également se démontrer sans difficulté par un calcul direct.)

1.2. Représentation géométrique du groupe symétrique S ; le complexe J q

On désigne par 5 le groupe symétrique de q variables (groupe des permutations q de l'ensemble {1,2,...,q}).

On désigne par Δ_{q-1} ou simplement Δ le simplexe-type de dimension q-1 défini dans l'espace euclidien \mathbb{R}^q par les conditions

$$\begin{cases} x_j \geqslant 0 & (j = 1, 2, ..., q) \\ p & \sum_{j=1}^{n} x_j = 1 \end{cases}$$

On fait opérer le groupe S_q à gauche dans \mathbb{R}^q en posant, pour tout $s \in S_q$

(1)
$$s.(x_1, x_2, ..., x_q) = (x_{s-1}(1), x_{s-1}(2), ..., x_{s-1}(q))$$

L'élément s de GL(q,R) défini par (1) laisse Δ stable; on note encore s sa restriction à Δ .

On désigne par Ω le barycentre de Δ , et par $\mathfrak{L}(\Delta)$ la première subdivision barycentrique de Δ ; c'est la subdivision de Δ déterminée par la famille d'hyperplans de \mathbb{R}^q d'équations

$$x_{j} = x_{j}, \qquad (1 \leqslant j < j' \leqslant q).$$

On appelle simplexe fondamental de $\mathfrak{G}(\Delta)$ celui qui est défini par les inégalités

$$(2) x_1 \ge x_2 \ge \cdots \ge x_q .$$

Soit $\mathcal{B}^2(\Delta)$ la seconde subdivision barycentrique de Δ . On note |K| l'étoile de Ω dans $\mathcal{B}^2(\Delta)$; on note K le complexe simplicial abstrait ordonné sous-jacent à |K|: les éléments de K sont les sommets de |K|, c'est-à-dire les barycentres des simplexes de $\mathcal{B}(\Delta)$ qui contiennent Ω ; la relation d'ordre sur K (notée b' \geq b") est : "le simplexe correspondant à b" est une face de celui qui correspond à b' ". On désigne par $\{K\}$ la structure naturelle de $\{M\}$ complexe de $\{K\}$, dont les cellules sont les étoiles descendantes des sommets de $\{K\}$; cf. pour tout ceci, au chapitre $\{M\}$, $\{M\}$ no 1.2., l'étude de la stratification naturelle d'une variété combinatoirement triangulée.

Pour tout $J = \{1,2,...,q-1\}$ on note F_J la fece du simplexe fondamental de $\mathfrak{B}(\Delta)$ qui est définie par le système d'équations

(3)
$$x_{j} = x_{j+1} \quad \text{pour tout } j \in J.$$

On note b_j le barycentre de F_j (le barycentre $b_{\not 0}$ du simplexe fondamental est noté simplement b); on note $F_{*,j}$ l'étoile descendante de b_j dans K, et $F_{*,j}$ la cellule correspondante de [K].

On a immédiatement le

Lemme 4. L'application $J \mapsto F_J$ (resp. $J \mapsto [F_*]$) est une bijection de l'ensemble des parties de $\{1,2,\ldots,q-1\}$ sur celui des faces du simplexe fondamental qui contiennent Ω (resp. celui des cellules de [K] qui contiennent b).

Pour tout $J \subset \{1,2,...,q-1\}$, on note S_{j} le sous-groupe de S_{q} engendré par les transpositions S_{j} pour $j \in J$; en particulier, $S_{g} = \{e\}$.

Proposition 1. Soit β l'application $5 \rightarrow \Delta$ définie par β (s) = s(b) pour tout s ϵ $5 \rightarrow \alpha$.

- 1) /3 est une bijection de 5 sur le 0-scuelette [K] de [K].
- 2) Pour tout Jc {1,2,...,q-1} et tout ses, s(s.S) est le D-squelette de la cellule s.[F,] de [K]. En particulier on s

$$\beta(S_{j}) = [F_{*j}] \cap [K]_{o}.$$

Ceci définit une bijection entre l'ensemble des classes s.S et celui des cellules de [K] (lui-même isomorphe à celui des sommets de K); en particulier l'ensemble des sous-groupes S correspond par cette bijection à celui des cellules de [K] qui contiennent b (lui-même isomorphe à celui des faces du simplexe fondamental qui contiennent Ω).

2) Les sommets de $F_{\pi,j}$ qui sont barycentres de faces de dimension q-1 de $\mathfrak{B}(\Delta)$ sont les symétriques itérés de b par rapport aux hyperplans (3); ceci traduit exactement (4). On en déduit

$$\beta(s.S_j) = s(\beta(S_j)) = [s(F_{*,j})] \cap [K]_0.$$

Comme chaque cellule de [K] est bien déterminée par son 0-squelette (cf. chapVII, n^0 †.2., propriété 3), ceci définit une application de l'ensemble des classes s.S, dans celui des cellules de [K]; cette application est injective puisque β est injective; elle est surjective d'après le lemme 4 et la surjectivité de β .

Application : définition du complexe y .

Soit J une partie de $\{1,2,\ldots,q-1\}$; on dit qu'une partie de S est une partie distinguée de type J si elle est de la forme s.S, avec s \in S. On note qu'une partie de type J si elle est de la forme s.S, avec s \in S. On note qu'une partie de type J si elle est de la forme s.S, avec s \in S. On note qu'une partie de S, est une partie de type J si elle est de la forme s.S, avec s \in S. On note qu'une partie de S, est une partie de si elle est de la forme s.S, avec s \in S. On note qu'une partie de S, est une partie de S, est une partie de S, est une partie de S, avec s \in S, on note qu'une partie de S, est une partie de S, est une partie de S, avec s \in S, on note qu'une partie de S, est une partie de S, avec s \in S, on note qu'une partie de S, est une partie de S, est une partie de S, est une partie de S, avec s \in S, on note q'une partie de S, est une partie de S, est une partie distinguée de type J si elle est de la forme s.S, avec s \in S, on note q'une partie de S, est une partie de S, est un

simplicial ordonné définie par l'inclusion; en particulier, l'ensemble des parties distinguées de type \emptyset s'identifie canoniquement à \mathbb{S}_0 .

Le complexe \mathcal{I}_n a les propriétés suivantes :

- 1) Pour tout Jc {1,2,...,q-1}, la famille des parties distinguées de type J est stable par toute translation à gauche de S_q . Il en résulte que <u>pour tout</u> $s \in S_q$, <u>la translation à gauche de S_q définie par s se prolonge de facon naturelle en un isomorphisme de Y_q (respectant le type de chaque élément) qu'on appelle translation à gauche de Y_q définie par s.</u>
- 2) Il résulte de la proposition 1) ci-dessus, et de la propriété 3 du chapitre**VII,** nº 1.2., que l'application $\beta:S_q \to [K]_q$ se prolonge de façon naturelle en un <u>isomorphisme</u> (encore noté β) de β_q sur K, muni de sa structure de complexe simplicial ordonné; pour tout $J \subset \{1,2,\ldots,q-1\}$, on a

$$\beta(\mathcal{S}_{J}) = F_{*J}$$
.

3) La réalisation géométrique $|Y_q|$ de Y_q a une structure de CW complexe, notée $[Y_q]$ dont les cellules sont les étoiles descendantes des sommets de $|Y_q|$; en particulier, le D-squelette $[Y_q]_0$ de $[Y_q]_0$ s'identifie à S_q ; β définit un isomorphisme de $[Y_q]_0$ sur $[K]_0$.

1.3. Le complexe & .

On désigne par G le groupe $GL(q,\mathbb{Z})$ et par T le sous-groupe de G q formé par les matrices triangulaires inférieures. Dans ce numéro , on construit un complexe [G] dont le O-squelette s'identifie à l'espace homogène G/T . Pour tout $g \in G$, on note χ_g l'application $s \mapsto \widehat{gs}$ de S dans G/T .

Lemme 5. Quel que soit $g \in G_q$, l'application χ_q est injective.

<u>Démonstration</u>. Spient s et s' \in S et t \in T ; l'égalité gs = gs't s'écrit s'-1s = t; ceci entraı̂ne s = s', puisque S \cap T \cap T \cap C \cap

Lemme 6. Soient g_1 et $g_2 \in G_q$. L'application $\chi_{g_2}^{-1} \circ \chi_{g_1}$ coı̈ncide sur son ensemble de définition avec une translation à qauche de S_q .

Démonstration. L'énoncé étant trivial lorsque l'ensemble de définition de χ^{-1} ° χ_{g_1} est vide, on suppose qu'il existe s $_1$ \in $_1$ ° $_2$ ° $_3$ et t \in $_4$ tels que

(5)
$$g_1 s_1 t = g_2 s_2$$
.

Comparons d'abord $\chi_{g_2s_2}$ et $\chi_{g_1s_1}$ l'égalité

$$\chi_{g_2s_2}(s) = \chi_{g_1s_1}(s')$$

 $\frac{1}{2}$ quivaut à : il existe t' $\in T$ tel que

$$g_1 s_1 st' = g_2 s_2 s'$$
.

Cette dernière égalité s'écrit d'après (5)

ce qui entraîne, d'après le théorème de Bruhat (cf. 1.1.,lemme 3), s = s'. Donc $\chi_{g_2s_2}^{-1}$ ° $\chi_{g_1s_1}$ est l'application indentique de son ensemble de définition, et celui-ci coîncide avec l'ensemble de définition de $\chi_{g_1s_1}^{-1}$ ° $\chi_{g_2s_2}$. Or on a, en désignant par τ_s la translation à gauche de s_q définie par s, $\chi_{g_js_j}=\chi_{g_j}$ ° χ_{g_j} (j = 1,2) . Donc $\chi_{g_2}^{-1}$ ° χ_{g_1} coïncide sur tout son ensemble de définition avec τ_{s_1,s_2}

Corollaire. Soit A une partie de G_q/T_q ; s'il existe $J \in \{1,2,\ldots,q-1\}$, et $g \in G_q$ tels que A soit l'image par χ_g d'une partie distinguée de type J de S_q , alors, pour tout $g' \in G$ tel que l'image de χ_g , contienne A, A est l'image par $\chi_{g'}$ d'une partie de type J de S_q .

(C'est une conséquence immédiate du lemme 6 et de l'invariance par translation à gauche du type des sous-ensembles $s.S_j$ de S_n .)

On note \mathcal{C}_q l'ensemble des parties distinguées de $\mathcal{G}_q/\mathcal{T}_q$, muni de la structure de complexe simplicial ordonné définie par l'inclusion; en particulier, l'ensemble des parties distinguées de type \emptyset s'identifie canoniquement à $\mathcal{G}_q/\mathcal{T}_q$.

Propriétés du complexe to

- 1) Four tout $J \subset \{1,2,\ldots,q-1\}$ l'ensemble des parties distinguées de type J de G/T est stable par toute translation à gauche de G/T. Il en résulte que pour Q Q tout $Q \in G$, la translation à gauche de G/T définie par Q se prolonge de façon naturelle en un isomorphisme de G (respectant le type de chaque élément), Q qu'on appelle translation à gauche de G définie par Q.
- 2) Chaque χ_g se prolonge de façon naturelle en une application (encore notée χ_g) de χ_g dans χ_g , qui détermine un <u>isomorphisme</u> entre χ_g et son image, munie de la structure de complexe simplicial ordonné induite par celle de χ_g .
- 3) L'étoile descendante de tout élément de 🖔 est définie par une partie distinguée de G /T et tous ses sous-ensembles distingués ; elle est donc contenue dans q q

l'image d'un certain χ_g ; elle est donc (d'après la propriété 2) isomorphe à son image réciproque par χ_g . Donc l'étoile descendante de tout sommet de type J de la réalisation géométrique $|\mathcal{C}_q|$ de \mathcal{E}_q est isomorphe au cône d'une sphère combinatoirement triangulée, laquelle est de dimension j-1 si card J = j. Ceci détermine sur $|\mathcal{C}_q|$ une structure de CW complexe, notée $[\mathcal{C}_q]$; la cellule de $[\mathcal{C}_q]$ définie par une partie distinguée A de $[\mathcal{C}_q]$ est notée $[\mathcal{A}]$; l'ensemble des cellules de $[\mathcal{C}_q]$ est en correspondance bijective avec \mathcal{C}_q ; cette correspondance est un isomorphisme pour les structures d'ordre respectivement définies par l'inclusion des cellules et celle des parties de $[\mathcal{C}_q]$. En particulier, le 0-squelette $[\mathcal{C}_q]$ et son image dans $[\mathcal{C}_q]$. Chaque χ_g détermine un isomorphisme entre $[\mathcal{F}_q]$ et son image dans $[\mathcal{C}_q]$. Chaque cellule de $[\mathcal{C}_q]$ est déterminée par l'ensemble des 0-cellules qu'elle contient; a fortiori, chaque cellule est déterminée par son bord.

4) Soient $\delta = [gS_j]$ et $\delta' = [g'S_j]$ deux cellules de type J de $[G_q]$; pour que $\delta = \delta'$, il faut et il suffit que $g'^{-1}g \in T_j.S_j$.

(C'est dans un langage différent le résultat du 3) du lemme 2, nº 1.1.)

5) Etude de l'ensemble des cellules de $\begin{bmatrix} \mathcal{E}_q \end{bmatrix}$ qui contiennent une cellule donnée. Les notations T_j , $T_{j'j}$, etc., sont celles de 1.1.

Proposition 2. Soit δ une collule de [\mathcal{E}_q]; soit J' le type de δ ; soit J une partie de $\{1,2,\ldots,q-1\}$.

1) Pour gu'il existe une cellule de type J contenent δ , il fout et il suffit que $J\supset J'$; pour toute telle cellule γ , il existe $g\in G$ tel que

 $T = [gS_j]$ et $\delta = [gS_j]$.

2) On suppose que $J \supset J'$. Pour tout $g \in G_q$ tel que $S = [gS_J,]$, l'application μ_g : $T_{J',J} \ni t \mapsto [gtS_J]$

est une bijection de j',, sur l'ensemble des cellules de type J de [Eq] contenent 6 .

3) Soient χ et χ' deux cellules de type J de [ξ $_q$] contenant δ ; on note $\mu_q^{-1}(\chi) = u$ et $\mu_q^{-1}(\gamma') = u'$. L'orbite de $u'^{-1}.u$ pour les opérations de ξ_q . Diag (opérant dans $\tilde{\tau}_{J'}$, par les automorphismes intérieurs) est un invariant du triple (χ, χ', δ). Cet invariant est conservé par toute translation à qauche de [ξ_q].

Démonstration. 1) Si J > J', et si $\delta = [gS]_1$, alors $[gS]_1$ contient δ . Réciproquement, supposons qu'il existe γ de type J contenant δ ; soit g un élément de G tel que $\gamma = [gS]_1$. D'après le corollaire du lemme δ , il existe $s \in S$ tel que $\delta = [gS]_1$. D'après le lemme δ , l'inclusion $\delta \subset \gamma$ entraîne $sS_1 \subset S_1$; ceci entraîne $s \in S$ et J' c J; on pose gs = g; g a la propriété voulue.

2) D'après le 1) et la propriété $\delta = (gS)_1$, $\delta = (gS)_2$, avec $\delta = (gS)_1$, $\delta = (gS)_2$, $\delta = (gS)_2$, avec $\delta = (gS)_2$, $\delta = (gS)_2$, $\delta = (gS)_2$, $\delta = (gS)_2$, avec $\delta = (gS)_2$, $\delta = (gS)_2$

$$T_{J}, \ni t \rightarrow [\widehat{gtS}_{J}]$$

3) L'élément g (astreint à la condition $\widehat{[gS_J,J]}=\delta$) est bien défini à multiplication près, à droite, par un élément arbitraire de S_J , T_J

$$\mu_{gs}(t) = \mu_{g}(sts)$$

Soit d'autre part t' \in T_J, ; et soit t' = t't' d' la décomposition de t' dans le produit T'_J . T_J . Diag (cf.1.1., 1) du lemme 1). La décomposition de t't dans le produit T'_J . T_J est

$$t^{\dagger}t = (t^{\dagger}_{1} d^{\dagger}t d^{\dagger-1}) (d^{\dagger}t^{-1} d^{\dagger-1}t^{\dagger}_{2} d^{\dagger}t)$$
.

Il en résulte qu'on a (pour tout $t' \in T_{j'}$ et tout $t \in \widetilde{T}_{j',j}$)

(7)
$$\mu_{gt}(t) = \mu_{g}(t', d't d'^{-1}).$$

Des formules (6) et (7) on déduit

$$\mu_{gs}^{-1}(\gamma) = s.\mu_g^{-1}(\gamma).s \quad \text{pour tout } s \in S_J;$$

$$\mu_{gt}^{-1}(\chi) = d^{i-1}t_1^{i-1} \cdot \mu_g^{-1}(\chi) \cdot d^i$$

pour tout teT,..

De la formule (6') résulte que si on remplace g par gs , $u'^{-1}u$ est remplacé par $s(u'^{-1}u)s$; de la formule (7') résulte que si on remplace g par gt', $u'^{-1}u$ est remplacé par $d'^{-1}(u'^{-1}u)$ d'; d'où le résultat annoncé, puisque d'après le 2) du lemme 2 de 1.1., appliqué avec $J = \{1,2,\ldots,q-1\}$, le sous-groupe de G engendré par G et Diag est G est G engendré par G engendré par G est G engendré par G engendré par G est G engendré par G est G engendré par G engendré par G est G engendré par G est G engendré par G engendré

- 6) <u>Le complexe</u> & <u>est connexe</u> : c'est une conséquence immédiate du fait que le groupe G est engendré par ses sous-groupes S et T .
- 1.4. Les complexes B_q , $[B_q]$ et \mathcal{A}_q .

 Notations. On désigne par B_q le produit $C_q \times C_q$, muni de sa structure natu-de la structure de CW-complexe [C_q] x [C_q] (cf. 1.3., propriété 3)); ce CW-complexe est noté

Opérations de G_0 dans G_n . Elles sont définies par la formule

(8)
$$g.(x,y) = (g.x, g.y)$$
, pour tout $(x,y) \in \mathcal{G}_{g}$

dans laquelle g.x désigne l'effet sur x de la translation à gauche de 🖰 g définie par g (cf. 1.3., propriété 1)); et g désigne la matrice g.

Le quotient 0 /G est muni naturellement d'une structure de complexe simplicial ordonné; ce complexe sera noté 🔥 .

Remarque. Les opérations de G respectent la structure de CV-complexe CG ; néanmoins il n'existe pas de structure naturelle de CW-complexe sur le quotient.

Filtration de G_q , $G_q = t / G_q$.

On définit un morphisme injectif $G_q : G_{q-1} \longrightarrow G_q$ en posant, pour tout g ∈ G_{q-1} :

 $e^{d}(a) = \left(\begin{pmatrix} a \\ 0 \end{pmatrix} ; \begin{pmatrix} a \\ 0 \end{pmatrix} \right)$

- Lemme 7. 1) L'injection 6 définit naturellement un morphisme injectif G : C -1 -> C q ; G anvois la classe neutre à de C q sur celle de C q et transforme tout élément en un élément de même type; 6 est compatible avec les structures de CW-complexes $[G_{q-1}]$ et $[G_q]$.
 - 2) 6×6 est un morphisme injectif $6 = 1 \rightarrow 6 = 1 \rightarrow$
- tures de CW-complexes [\mathfrak{B}_{q-1}] et [\mathfrak{B}_q].

 3) $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ définit naturellement un morphisme injectif $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G}}$ $\overset{\cdot}{\mathfrak{G$ <u>Démonstration</u>. 1) Le morphisme d'espaces homogènes $6:6/T \rightarrow 6/T$ défini par 6 est injectif, puisque

$$G_{q}(T_{q-1}) = T_{q} \cap G_{q}(G_{q-1});$$

il définit un morphisme $\mathcal{C}_{a-1} o \mathcal{C}_a$, car l'image de toute partie distinguée de

type J de G_{q-1}/T_{q-1} est une partie distinguée de type J de G_q/T_q Le 2) est immédiat.

Preuve du 3) : les opérations respectives de G_{q-1} et G dans G_{q-1} et G donnent lieu au diagramme

dont la commutativité permet de définir le morphisme é q .

Soient (x_i, x_i^*) (pour i=0,1) deux éléments de $\{3, 0, 0\}$, On introduit (pour la suite de cette démonstration) les notations $\{5, 0, 0\}$, $\{5, 0, 1\}$, $\{7, 0, 1\}$, etc., qui précisent celles définies en 1.1.

Il existe, par définition de $\, \, \mathfrak{G}_{q-1} \,$, des parties $\, \, J_{i} \,$ et $\, J'_{i} \,$ de $\{\, 1, \ldots, q-2\, \}$ et des éléments $\, g_{i} \,$, $\, g_{i}' \,$ de $\, G_{n-1} \,$ tels que

et des éléments
$$g_{i}$$
, $g_{i}^{!}$ de G_{q-1} tels que
(9) $(x_{i}, x_{i}^{!}) = (g_{i}^{S}J_{i}; q-1}, g_{i}^{!}S_{J_{i}^{!}; q-1})$ $(i = 0,1).$

(10)
$$\begin{cases} g. \otimes_{q} (g_{q}) = \otimes_{q} (g_{1}).s.t ; \\ g. \otimes_{q} (g_{0}') = \otimes_{q} (g_{1}').s'.t' . \end{cases}$$

Il résulte de (10) que

$$t \in G_q(G_{q-1}). \overset{\star}{T}_q. G_q(G_{q-1})$$
,

$$\begin{cases} g \cdot g_{D} = g_{1} & s \neq t \\ \vdots & \vdots & \vdots \\ g \cdot g_{D}^{*} = g_{1}^{*} & s \neq t \end{cases},$$

ce qui entraîne d'après (9) :

$$\frac{8}{9}$$
. $(x_0, x_1^*) = (x_1, x_1^*)$.

Application. Les injections $\ddot{\sigma}_1$, $\ddot{\sigma}_2$,..., $\ddot{\sigma}_q$ définissent une filtration de \mathcal{A}_q ; on en déduit par image réciproque une filtration de Ω_q ; ces filtrations jouent un rôle essentiel dans la suite de ce chapitre.

§.2. Etude particulière du 2-squelette des complexes [\mathcal{E}_q] et [\mathcal{G}_q] .

2.1. Le 2-squelette du complexe [].

Le complexe \mathcal{I}_q et le CV-complexe $[\mathcal{I}_q]$ ont été définis en 1.2.; en particulier, le 0-squelette $[\mathcal{I}_q]_0$ s'identifie au groupe symétrique S_q . Le 1-squelette peut être décrit comme suit. Pour tout entier i tel que $1 \le i \le q-1$, on désigne par S_q la transposition

Soient s et s' deux éléments de S ; on les joint par une arête (unique) si et seulement si il existe i $\in \{1,\dots,q-1\}$ tel que s' = ss .

Description du 2-squelette : les faces de dimension 2 (on dira désormais simplement "faces") correspondent aux parties sS_J de S_{η} pour lesquelles J est une partie de $\{1,\ldots,\eta-1\}$ ayant deux éléments; les groupes S_J correspondants sont de deux espèces :

1) J est de la forme $\{i,j\}$ avec $|i-j| \ge 2$. On a alors la relation

$$(s_i s_j)^2 = e$$
,

de sorte que $S_j = \{e, s_i, s_i, s_j\}$; c'est un groupe à 4 éléments. La face correspondant à sS_j a pour sommets s, ss_i, ss_is_j , ss_j ; on peut la définir par l'attachement d'un disque le long du 1-cycle

Les faces de cette espèce seront appelées les quadrilatères.

de sorte que $5_j = \{e, s_i, s_{i+1}, s_{i+1},$

[s, ss_{i} , ss_{i+1} , ss

Les faces de cette espèce seront appelées les bexagones.

2.2. Le 2-squelette du complexe [8].

Le complexe \mathcal{C}_q et le CW-complexe $\left[\mathcal{C}_q\right]$ ont été définis en 1.3.; en particulier, le O-squelette $\left[\mathcal{C}_q\right]$ s'identifie à l'espace homogène $\left[\mathcal{C}_q\right]$,

Description du 1-squelette : les couples de points de G/T qui sont joints par une arête de [G] sont ceux qui sont l'image des extrémités d'une arête de [Y] par une application $\chi_g: s \to \widehat{gs}$; ce sont donc les couples de la forme $\{\widehat{g}, \widehat{gs}_i\}$ (pour tout $i \in \{1, \ldots, q-1\}$ et tout $g \in G$).

Description du 2-squelette : les 1-cycles auxquels est attachée une face sont de deux espèces : 1) les cycles

[
$$\dot{g}$$
, \dot{g} , \dot{g} , \dot{g} , \dot{g} , \dot{g} , \dot{g}] pour tout (i , j) tel que | i - j | $>$ 1 et tout $g \in G_q$;

2) les cycles
$$[\dot{g}, \dot{\widehat{gs}}_{i}, \dot{\widehat{gs}}_{i+1}], \dot{\widehat{gs}}_{i+1}, \dot{\widehat{gs}}_{i+1}], \dot{\widehat{gs}}_{i+1}, \dot{\widehat{gs}}_{i}, \dot{\widehat{gs}}_{i}] \text{ pour tout}$$

$$i \in \{1, \dots, q-2\} \text{ et tout } g \in G .$$

Les propriétés suivantes (aisées à verifier directement) sont des cas particuliers de celles établies en 1.3.:

- 1) Chaque arête a un <u>type</u> qui est un entier i tel que $1 \le i \le q-1$. De même chaque face a un <u>type</u> qui est une partie $\{i,j\}$ de $\{1,\ldots,q-1\}$ ayant deux éléments.
- 2) Tout couple de sommets auquel est attachée une arête est formé de points distincts. De même les faces de première espèce définies ci-dessus ont 4 sommets distincts; on les appelle des <u>quadriletères</u>. Les faces de deuxième espèce ont 6 sommets distincts; on les appelle des <u>hexagones</u>. Une face est un hexagone ou un

quadrilatère suivant que son type est ou n'est pas formé de deux entiers consécutifs.

- 3) Chaque arête de $[C_q]$ est bien déterminée par ses deux extrêmités . De même, chaque face est bien déterminée par son intersection avec le 0-squelette.
- 4) Chaque translation à gauche de $\frac{G}{q}$ se prolonge naturellement en un isomorphisme de $[C_{q}]$ laissant invariant le type des arêtes et des faces.
- 5) Etude de l'ensemble des arêtes issues d'un sommet donné.

Notation. Soit $i \in \{1, ..., q-1\}$. On note t_i la "matrice élémentaire" classiquement notée $e_{i+1,i}$, c'est-à-dire la somme de la matrice unité et de la matrice $(e_{i,k})$ définie par

$$\begin{cases} a_{j,k} = 0 & pour (j,k) \neq (i+1,i), \\ a_{i+1,i} = 1 & . \end{cases}$$

Proposition 21. Soit $c \in G/T$; soit g un représentant de c dans G; soit $i \in \{1, ..., q-1\}$.

1) L'application
$$\mu$$
:

 $\mathbb{Z} \ni \lambda \longmapsto \left[\widehat{gt_i^{\lambda}}, \widehat{gt_i^{\lambda}s_i} \right]$

est une bijection de Z sur l'ensemble des arêtes de type i de [c] issues de c.

- 2) La seule donnée de c détermine μ à composition près avec un isomorphisme arbitraire de la structure affine de $\mathbb Z$.
- 3) Soient α et α' deux arêtes de type i de $[\mathcal{C}_q]$ issues de c; on pose $\mu^{-1}(\alpha) = \lambda$ et $\mu^{-1}(\alpha') = \lambda'$. L'entier $|\lambda \lambda'|$ est un invariant de l'ensemble $\{\alpha, \alpha'\}$. Cet invariant est conservé par toute translation à deuche de $[\mathcal{C}_q]$. Démonstration. Le 1) de la proposition 2' traduit le 2) de la proposition 2 de 1.3. dans le cas particulier où $J = \{i\}$ et $J' = \emptyset$. Le 2) résulte immédiatement

1.3. dans le cas particulier où $J = \{i\}$ et $J' = \emptyset$. Le 2) résulte immédiatemen de la formule (7) établie au cours de la démonstration du 3) de la proposition 2 de 1.3. Le 3) de la proposition 2' est la traduction, dans le cas particulier considéré, du 3) de la proposition 2; c'est par ailleurs un corollaire immédiat du 2) de la proposition 2'.

Voici trois applications importantes de la proposition 2':

Corollaire 1.(Lemme du quadrilatère). Soient c, c', c" trois sommets de [C].

On suppose que c et c' sont joints par une arête de type i, et que c' et c" sont joints par une arête de type j. Si |i - j| > 2, il existe un sommet c' et un seul de [C] tel que

c et c' soient joints par une arête de type j ; c' et c" soient joints par une arête de type i ; le 1-cycle [c, c', c", c', c] borde un quadrilatère de [[].

Démonstration. On se ramène par translation au cas où c = e. D'après le 1) de le proposition 2', il existe des entiers λ et λ ' tels que $c' = \widehat{t_i^{\lambda}}$ et $\mathbf{c}^{*} = \overrightarrow{\mathbf{t}_{i}^{\lambda}} \mathbf{s}_{i} \overrightarrow{\mathbf{t}_{i}^{\lambda'}} \mathbf{s}_{i}$. On pose $\overrightarrow{\mathbf{t}_{i}^{\lambda}} \overrightarrow{\mathbf{t}_{i}^{\lambda'}} = \mathbf{g}$; on a

$$gs_{i} = t_{i}^{\lambda} s_{i} t_{j}^{\lambda'}$$

$$gs_{i} = t_{i}^{\lambda} s_{i} t_{j}^{\lambda'} s_{j}$$

de sorte qu'on peut prendre c' = gs. .

L'unicité résulte du fait suivant : tout te T qui vérifie

vérifie aussi (lorsque |i - j| ≥ 2),

Corollaire 2. (Lemme de l'hexagone). Soient c,c', c", c"', quatre sommets de [6]. On suppose que c et c' (resp. c' et c", resp. c" et c'") sont joints par une arête de type i (resp. i+1, resp. i). Il existe alors deux sommets bien déterminés

c' et c" de [8] tels que c' et c' (resp. c' et c') soient joints par une arête de type i+1 (resp. i, resp. i+1);

le 1-cycle [c, c', c", c'", c", c', c] borde un hexagone de [6].

Démonstration. On se ramène par translation au cas où c = e. Il existe des entiers λ , λ' , λ'' tels que $c' = t \lambda s_i$, $c'' = t \lambda s_i t \lambda' s_i$, et $c''' = t \lambda s_i t \lambda'' s_i t \lambda'' s_i$. On pose

$$t^{\lambda} s_{i} t^{\lambda'} s_{i+1} t^{\lambda''} s_{i+1} s_{i} = g.$$

$$t^{\lambda} s_{i+1} t^{\lambda''} s_{i+1} t^{\lambda''} s_{i+1} s_{i} = g.$$

Puisque

 $s_{i+1}^{\lambda'}$ $s_{i+1}^{\lambda'}$ $s_{i+1}^{\lambda'}$ $s_{i+1}^{\lambda''}$ $s_{i+1}^{\lambda''}$

on a aussi

on a aussi $g \in T_{q}.$ On vérifie que $\left[g, \widehat{gs}, \widehat{gs}$ de sorte qu'on peut prendre $C' = gs_{i+1}$ et $C'' = gs_{i+1}s_i$.

L'unicité résulte du fait suivant : tout $t \in T$ qui vérifie

Corollaire 3. (Lemme du triangle). Soient c, c', c" trois sommets de [C q].

On suppose que c et c', ainsi que c' et c", sont joints par une arête de type i

et que ces deux arêtes sont "consécutives", c'est-à-dire que l'invariant défini

au 3) de la proposition 2' est égal à 1. Alors c et c" sont joints par une

arête de type i, consécutive à [c, c'] ainsi qu'à [c', c"].

Remarque. On notera que contrairement aux cas du quadrilatère et de l'hexagone, le 1-cycle dont on établit ici l'existence (c'est-à-dire [c, c', c", c]) ne borde aucune face de $[C_q]$.

<u>Démonstration du Corollaire 3.</u> D'après le 2) de la proposition 2', il existe $g \in G$ tel que $[c, c', c''] = [\widehat{gt}_{i,i}, g, \widehat{gs}_{i,j}]$. On se ramène par translation au cas où g = e. On a

st st st s = t t = 1 s , i i i i i i et on vérifie que le terme de droite est un élément de T ; donc

donc c et c" sont joints par une arête d'indice i. Calculons par exemple l'invariant $|\lambda'-\lambda''|$ du couple ([c, c'] , [c', c"]), en prenant t s comme représentant de c; puisque $t_{i,i} \equiv e \pmod{T},$

cet invariant est égal à 1.

2.3. Le 2-squelette du complexe [6].

On rappelle (cf.1.4.) que $[\mathfrak{G}_q] \approx [\overline{\mathcal{C}}_q] \times [\mathcal{C}_q]$; un certain nombre de propriétés de $[\mathfrak{G}_q]$ découlent immédiatement de cette définition et des propriétés de $[\mathfrak{C}_q]$:

- 1) Le O-squelette de $[\mathcal{B}_q]$ s'identifie à $(\mathcal{G}_q/T_q) \times (\mathcal{G}_q/T_q)$.

 2) Une arête de $[\mathcal{B}_q]$ est dite de <u>première</u> ou de <u>seconde espèce</u> suivant que sa seconde ou sa première projection sur [6] est ponctuelle.
- 3) Toute arête de [0] a un <u>type</u> (qui est un entier i tel que $1 \le i \le q-1$); c'est le type de sa projection non ponctuelle sur [6].
- 4) A tout couple d'arêtes de même espèce et de même type ayant une extrémité commune est associé un invariant $|\lambda-\lambda'|$.
- 5) Lemme du tri<u>engle</u> : même énancé que le corollaire 3 de 2.2., à ceci près qu'il faut préciser que toutes les arêtes considérées ou t de même espèce.
- 6) Les faces de $[\mathfrak{B}]$ sont d'une part les produits face x point (ou point x face) qui se répartissent en quadrilatères et hexagones; et d'autre part les produits arête x arête, qui sont une nouvelle sorte de quadrilatères.
- 7) Lemme du quadrilatère. Spient b, b', b" trois sommets de [6] . En suppose que b et b' sont joints par une arête de type i, et que b' et b" sont joints par une arête de type j. Si ces deux arêtes sont d'espèces différentes, ou si
- $|i-j| \ge 2$, il existe un sommet \tilde{b}' et un seul de $[\mathfrak{B}_q]$ tel que : b et \tilde{b}' soient joints par une arête de même espèce et même type que [b', b']; b' et b" soient joints par une arête de même espèce et même type que [b, b'] ; le 1-cycle [b, b', b", b', b] borde un quadrilatère de [6].
- 8) Lemme de l'hexagona : même énoncé que le corollaire 2 de 2.2., à ceci près que toutes les arêtes considérées doivent être de même espèce.
- 9) [8] est connexe : cela résulte de la connexité de 6 (cf. 1.3., prop. 6)).
 - 2.4. Opérations de G dans le 1-squelette de [\emptyset_q] et filtration de ce 1-squelette.
- 2.4.1. Opérations de G dans $[\mathcal{B}_q]_o$. La formule (8) de 1.4. définissant les opérations de G dans \mathcal{B}_q donne dans le cas particulier de $[\mathcal{B}_n]_c$:

(1)
$$g.(\dot{x},\dot{y}) = (g.\dot{x},g.\dot{y}) \text{ pour tout } (\dot{x},\dot{y}) \in (G/T) \times (G/T).$$

Ces opérations ont les propriétés suivantes :

1) On désigne par \check{T}_q le sous-groupe de G_q formé des matrices triangulaires supérieures et par $\check{T}_q G_q / T_q$ l'ensemble des doubles classes de G_q à gauche modulo T_q et à droite modulo \check{T}_q .

Soit le diagramme

où les applications verticales sont les applications canoniques, et où « et ∝ sont respectivement définis par

$$\propto (x,y) = {}^{t}x.y$$

$$\approx (x,y) = {}^{t}x.y$$
pour tout $(x,y) \in G_q \times G_q$

Ce diagramme est commutatif, et <u>l'application</u> \propto <u>définit dans</u> (G /T) \times (5 /T) a q q q q la même relation d'équivalence que les opérations de G . Comme \propto est surque q jective, il en résulte que [B] /6 est naturellement isomorphe à l'ensemble T\G /T .
q q q
2)Le sous-arouce de G formé des éléments qui leissent fixe (e,e) est Diag q
q q (e,e) ést des éléments qui leissent fixe (e,e) est Diag q est des éléments qui leissent fixe (e,e) est Diag q est des éléments qui leissent fixe (e,e) est Diag q est des éléments qui leissent fixe (e,e) est Diag q est de la fixe (e,e) est de la fixe (e, (En effet, le fait pour g de laisser fixe (e,e) équivaut à

2.4.2. L'invariant le q, q et la filtration de [6]. Le terme a de la matrice g=(a, j) est invariant en valeur absolue si on multiplie g à droite par un élément arbitraire de T et à gauche par un élément arbitraire de T . Ceci permet d'associer à tout élément de [6] un q o entier positif ou nul qu'on appelle son invatient a , , et qui ne dépend que de son image dans $[B_q]_{q}$; d'après la commutativité du diagramme (2), l'invariant $[a]_{q,q}$ de l'élément (\dot{x},\dot{y}) de $[B]_q$ est égal à la valeur absolue du terme de la dernière ligne et de la dernière colonne de x.y .

Lemme 1. Pour qu'un élément de [B] /G soit dans l'image de 6 (cf. 1.4.) il faut et il suffit que son invarient | a | soit égal à 1. (Autrement dit, pour qu'un élément (x,y) soit équivalent modulo les opérations de G à un élément qui soit dans l'image de $\sigma_q \times \sigma_q$, il faut et il suffit que son invariant |a | soit égal à 1.)

- Lemme 2. 1) L'invariant | a | prend la même valeur aux extrémités de toute arête de [6] dont le type est différent de q 1.
 - 2) Pour qu'une arête de [\mathfrak{B}_q] soit dans l'image de $\mathfrak{S}_q \times \mathfrak{S}_q$ (\mathfrak{B}_{q-1}), il faut et il suffit que l'invariant la q,q prenne la valeur 1 en l'une de ses extrémités, et que son type soit différent de q-1.

Démonstration. Le 1) est immédiat, ainsi que la nécessité de la condition du 2). Preuve de la suffisance de cette condition : soit $(x,y) \in [\mathcal{B}_q]_0$, tel que l'invariant $[a]_n$ de $[b]_n$ soit 1; il existe alors d'après le lemme 1, des représentants respectifs $[a]_n$ de $[b]_n$ de $[b]_n$ de $[b]_n$ de $[b]_n$ de $[b]_n$ d'origine $[b]_n$ supposons par exemple $[b]_n$ de seconde espèce (cf. 2.3., propriété 2); alors l'arête $[b]_n$ a pour seconde projection sur $[b]_n$ une arête $[b]_n$ d'origine $[b]_n$ d'origine $[b]_n$ d'après le 1) de la proposition 2', l'arête $[b]_n$ est du type $[b]_n$ est dans $[b]_n$ si le type i est différent de $[b]_n$ est dans $[b]_n$ est dans

Corollaire. Tout point de [6] qui est dans l'image de 6 q x 6 q peut être joint à un point de l'orbite de (é, é) par un chemin dont toutes les arêtes soient de première espèce et de type différent de (q - 1).

(Même résultat en remplaçant "première espèce" par "seconde espèce".)

Démonstration. C'est une conséquence immédiate du 2) du lemme 2 et de la connexité de [6] q .

§.3. Le lemme fondamental.

3.1. Arêtes de [Ω] issues de (e,e); énoncé du lemme fondamental. Soit $i \in \{1,2,\ldots,q-1\}$. D'après le 1) de la proposition 2' (cf. 2.2.), les arêtes de première espèce d'indice i de $[\Omega]$ issues de (e,e) sont les arêtes [e, t_i^{λ} s] \times e, où λ décrit Z. On rappelle d'autre part que le sous-groupe de G laissant fixe (e,e) est Diag (cf. 2.4.1.).

Lemme 1. Pour que les arêtes [e, t_i^{λ} s] x e et [e, $t_i^{\lambda'}$ s] x e de [0]

soient équivalentes par une opération de Diag, il faut et il suffit que $|\lambda| = |\lambda'|$. Si $|\lambda| \neq |\lambda'|$, les extrémités des arêtes correspondantes ne sont pas

$$(t_{\mathbf{i}}^{\lambda} s_{\mathbf{i}})^{-1} t (t_{\mathbf{i}}^{\lambda'} s_{\mathbf{i}}) \in T_{\mathbf{q}};$$

ceci entraîne te $\overset{\checkmark}{I}_q$. Ceci prouve la seconde assertion, laquelle entraîne une partie de la première : la nécessité de la condition $|\lambda|=|\lambda'|$. Réciproquement, posons

$$i \cdot = \gamma_i \quad ;$$

on a

$$y_{i}t_{i}^{\lambda} = t_{i}^{-\lambda}y_{i}$$
,

et

$$\gamma_{ii} = s_i \gamma_{i+1};$$

on en déduit

$$\eta_{i,i}^{\lambda} s_{i} = t^{\lambda} s_{i} \eta_{i+1}$$

et ceci prouve que les arêtes $[\acute{e}, \overbrace{t_i^{\lambda} s_i}] \times \acute{e}$ et $[\acute{e}, \overbrace{t_i^{\lambda} s_i}] \times \acute{e}$ sont équivalentes par l'opération de γ .

Lemme 2. Pour que le point $(t_{i}^{\lambda}s_{i}^{}, e)$ de $[\beta_{q}^{}]_{0}$ soit équivalent à (e,e) par une opération de $[\beta_{q}^{}]_{0}$, il faut et il suffit que $[\lambda]_{0} = 1$.

Démonstration. Un calcul immédiat montre que

$$t_{\underline{i}} \underline{s} = t_{\underline{i}} \pmod{T};$$

$$t_{\underline{i}} \underline{s} = (\underbrace{t_{\underline{i}}}, \underbrace{t_{\underline{i}}}) = (\underbrace{t_{\underline{i}}}, \underbrace{s}, \underbrace{s}).$$

donc

Ceci prouve que la valeur $|\lambda| = 1$ convient; c'est la seule d'après le lemme 1.

Lemme 3. Pour tout $\lambda \in \mathbb{Z}$, l'extrémité $(t_i^{\lambda} s_i^{}, s_i^{})$ de l'arête de seconde espèce $(t_i^{\lambda} s_i^{}, s_i^{})$ est équivalente à $(t_i^{\lambda} s_i^{}, s_i^{})$ par une opération de $(t_i^{\lambda} s_i^{}, s_i^{})$ par une opération de $(t_i^{\lambda} s_i^{}, s_i^{})$ est équivalente à $(t_i^{\lambda} s_i^{}, s_i^{})$ par une opération de $(t_i^{\lambda} s_i^{}, s_i^{})$

<u>Démonstration</u>. La matrice t_i^{λ} s est symétrique; il en résulte que t_i^{λ} s = $(t_i^{\lambda}$ s $)^{-1}$ = s $t_i^{-\lambda}$;

$$t_{i}^{\lambda} s_{i}(\dot{e},\dot{e}) = (\widehat{t_{i}^{\lambda} s_{i}}, \widehat{s_{i}^{-\lambda}}) = (\widehat{t_{i}^{\lambda} s_{i}}, \widehat{s_{i}})$$
.

Notations.

On désigne désormais par E l'orbite de (é,é) pour les opérations de G . Les lemmes qui précèdent mettent en évidence certains lacets relatifs de [\mathfrak{G}_n] modulo \mathfrak{E}_n :

d'après le lemme 3, le chemin composé de l'arête de première espèce [è, $\widehat{t_i^{\lambda}}$ s] \times è et de l'arête de seconde espèce $\widehat{t_i^{\lambda}}$ s \times [é, s] est un lecet relatif de [$\mathbb D$] modulo $\mathbb E$; on le note $\gamma_{i,\lambda}$, on note $\gamma_{i,\lambda}$; (pour tout $g \in \mathbb G$) le transformé de $\gamma_{i,\lambda}$ par l'opération de g;

- d'après le lemme 2, l'arête [è, $\widehat{\mathbf{t}}_{i}$] x è est un lecet relatif de [$\widehat{\mathbf{G}}_{i}$] modulo \mathbf{E}_{i} ; on note δ_{i} ; on note δ_{i} ; on note δ_{i} ; or note δ_{i} ;

- d'après le lemme du triangle (cf.2.3., propriété 5) les points (s, , s) et (\hat{t} , s), extrémités de deux arêtes "consécutives" issues de (é,é), sont joints par une arête de première espèce, de type i. Le chemin [é, s, , \hat{t} , son est un lacet relatif de [\hat{b}] modulo $\hat{\epsilon}$, on le note $\hat{\zeta}$; on note $\hat{\zeta}$ i; g transformé par l'opération de $g \in \mathcal{G}$.

On note $\gamma'_{i,\lambda}$, δ'_{i} , ζ'_{i} , etc., les lacets relatifs transformés des précédents par la symétrie naturelle de $[\mathfrak{B}_{j}]$; par exemple

$$\chi_{i,\lambda} = \left[(\dot{e},\dot{e}), (\dot{e}, t\lambda \dot{s}), (\dot{s}, t\lambda \dot{s}) \right]
\delta_{i} = \dot{e} \times \left[\dot{e}, t\lambda \dot{s} \right] .$$

On vérifie qu'on a les relations suivantes :

(1)
$$\chi_{i,\lambda;t_{\dot{i}}}^{\lambda;t_{\dot{i}}} = (\chi_{i,\lambda})^{-1}$$

(2)
$$\delta'_{i;t_is_i} = (\gamma_{i,1})^{-1} \delta_i$$
.

Lemme fondamental. Les lacets relatifs $\gamma_{i,\lambda;g}$, $\delta_{i;g}$ et $\zeta_{i;g}$ (pour tout $i \in \{1,2,\ldots,q-1\}$, tout $\lambda \in \mathbb{Z}$ et tout $g \in G$) constituent un système de q dénérateurs de π_1 ([G], E).

 $\frac{\text{générateurs de T(}_1 ([\mathcal{B}_q], E).}{q},$ (Autrement dit, tout lacet relatif de $[\mathcal{B}_q]$ modulo E_q est homotope avec extrémités fixes à un composé des précédents et de leurs opposés.)

3.2. Trois lemmes de déformation.

Définition. On appelle chemin de première (resp. seconde) espèce tout chemin composé d'arêtes de première (resp. seconde) espèce.

Lemme 4. Tout chemin β de $[\beta_q]$, d'origine dans $[\beta_q]$, est homotope à un composé $[\gamma, \beta]$, où $[\gamma]$ est composé de chemins du type $[\gamma]$, $[\gamma]$; $[\gamma]$; $[\gamma]$ et où $[\beta]$ est de seconde (resp. première) espèce.

Démonstration. Démontrons par exemple l'énoncé dans lequel $\tilde{\beta}$ est de seconde espèce. Il résulte du lemme du quadrilatère que tout chemin de $\begin{bmatrix} \beta \\ q \end{bmatrix}$ est homotope au composé d'un chemin de première et d'un chemin de seconde espèce. On est donc remené au cas où β est de première espèce, c'est-à-dire du type

$$\beta = \beta_1 \cdot \beta_2 \cdot \cdots \cdot \beta_r$$

où β_1 , β_2 ,..., β_r sont définis par des arêtes de première espèce. D'après le lemme 3, il existe un chemin β_1 défini par une arête de seconde espèce d'origins l'extrémité de β_1 , tel que β_1 ... β_1 soit un $\gamma_{i,\lambda;g}$. Le chemin β est homotope à $(\beta_1 \cdot \beta_1) \cdot (\beta_1^{-1} \cdot \beta_2 \cdot \dots \cdot \beta_r)$;

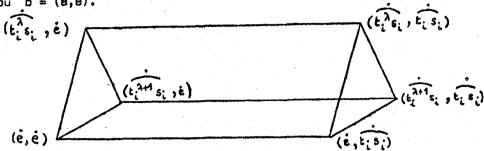
il résulte du lemme du quadrilatère (appliqué r-1 fois) que le chemin $\beta_1^{-1} \cdot \beta_2 \cdot \dots \cdot \beta_r \text{ est homotope à un chemin du type } \beta^{\dagger} \cdot \beta_1^{\dagger}, \text{ où } \beta^{\dagger} \text{ est de fini par r-1 arêtes de première espèce, et où } \beta_1^{\dagger} \text{ est de seconde espèce; ceci, par récurrence, achève la démonstration.}$

(Pour l'énoncé dans lequel \tilde{eta} est de première espèce, la démonstration est analogue à ceci près qu'on utilise la formule (1) de 3.1.)

Lemme 5. Soit β = [b, b', b", b] un lacet de [β_q] défini par trois arêtes orientées de même type qui sont deux à deux consécutives. Soit α un chemin d'orique dans ϵ_q , d'extrémité en b. Le lacet $\alpha \cdot \beta \cdot \alpha^{-1}$ est homotope à un composé des lacets relatifs $\gamma_{i,\lambda;g}$, $\delta_{i;g}$, $\gamma_{i;g}$, et de leurs opposés.

Démonstration. On suppose par exemple que β est de première espèce. D'après le lemme 4, α est homotope à un chemin de type γ . α , où γ est composé de chemins du type $\gamma_{i,\lambda;g}$, et où α est de seconde espèce; on est donc ramené au cas où α est de seconde espèce. Dans ce cas l'application répétée du lemme du quadrilatère montre que α . β . α^{-1} est homotope à un lacet β du même type que β , dont l'origine β est dans β . Puisque la famille des lacets relatifs $\gamma_{i,\lambda;g}$, etc.,

est stable par les opérations de G , on peut se ramener au moyen d'une telle opération au cas où b = (s,e).



Il existe alors d'après la proposition 2' (cf. 2.2.) un entier λ tel que

$$\widetilde{\beta} = \left[\dot{\mathbf{e}}, \ \dot{\mathbf{t}}_{\dot{\mathbf{i}}}^{\lambda} \dot{\mathbf{s}}_{\dot{\mathbf{i}}}, \ \dot{\mathbf{t}}_{\dot{\mathbf{i}}}^{\lambda+1} \dot{\mathbf{s}}_{\dot{\mathbf{i}}}, \ \dot{\mathbf{e}} \right] \times \dot{\mathbf{e}}.$$

$$\left[\dot{\dot{\mathbf{e}}}, \ \dot{\mathbf{t}}_{\dot{\mathbf{i}}}^{\lambda} \dot{\mathbf{s}}_{\dot{\mathbf{i}}}, \ \dot{\mathbf{t}}_{\dot{\mathbf{i}}}^{\lambda+1} \dot{\mathbf{s}}_{\dot{\mathbf{i}}}, \ \dot{\mathbf{e}} \right] \times \dot{\mathbf{t}}_{\dot{\mathbf{i}}} \dot{\mathbf{s}}_{\dot{\mathbf{i}}} = \widetilde{\beta}^{1}.$$

On pose

Le lacet $\tilde{\beta}$ ' est homotope à δ ! $\cdot \beta$ ' $\cdot \delta$! ; donc d'après la formule (2) de 3.1., il est équivalent de montrer le résultat cherché pour $\widetilde{m{\beta}}$ ou pour $\widetilde{m{\beta}}$ '. Or le transformé de $\tilde{\beta}$ ' par l'opération de t est $[\dot{e}, \, \dot{t_i^{\lambda+1}}_s, \, \dot{t_i^{\lambda+2}}_s, \, \dot{e}] \times \dot{e}$

 $(car t_i = t_i s_i)$; c'est un lacet du même type que β , mais dans laquel l'entier λ est remplacé par λ + 1. On peut donc, de proche en proche, se ramener au cas où $\tilde{\beta}$ correspond à la valeur $\lambda = 0$; dans ce cas, $\tilde{\beta}$ n'est autre que le composé ζ, .δ⁻¹.

Lemme 6. Soit \propto un chemin de $[\mathfrak{B}_q]$ défini par une arête orientée dont les daux extrémités b et b' soient dans l'image de $\mathfrak{S}_q \times \mathfrak{S}_q$, et qui ne soit pas ellemême contenue dans cette image; alors α est homotope à un composé β.δο-1:a . β $\underline{o}\underline{\circ}$ β et β sont composés d'arêtes de $\delta_0 \times \delta_0$ ([β_{q-1}]).

Démonstration. D'après le 2) du lemme 2 de 2.4.2., l'arête considérée est de type q-1 ; supposons-la de première espèce. D'après la connexité de $[\mathcal{G}_{q-1}]$, il existe un chemin de seconde espèce eta , d'origine b, tel que l'extrémité de etasoit un point (noté b") de E $_{f q}$, et que toutes les arêtes de f eta soient dans l'image de $\dot{G}_{q} \times \dot{G}_{q}$; toutes les arêtes sont donc de type $\neq q-1$. Soit β ' le chemin #translaté de β par α " (c'est-à-dire le chemin d'origine b' obtenu à partir de par l'application répétée du lemme du quadrilatère); soit b'" l'extrémité de eta '. Toutes les arêtes de eta' sont de seconde espèce et de type eq q-1; elles

sont donc toutes dans l'image de $G_q \times G_q$ (cf. 2) du lemme 2 de 2.4.2.). D'après le 1) du même lemme, l'invariant la l prend en b'" le même valeur qu'en b', c'est-à-dire 1; de ceci et du lemme 2 de 3.1. résulte que l'erête α ' qui joint b" à b'" est du type $\delta_{q-1;q}$; le composé $\beta \cdot \alpha' \cdot \beta'^{-1}$ convient donc.

3.3. Démonstration du lemme fondamental.

Le principe de la démonstration est le suivant : les lemmes 8, 9, et 10 cidessous montrent que tout lacet relatif β de $\begin{bmatrix} \beta_q \end{bmatrix}$ modulo ξ_q est homotope au composé d'un certain nombre de $\chi_{i,\lambda;g}$, $\delta_{i;g}$ et $\zeta_{i;g}$, et d'un lacet relatif qui se trouve dans l'image de $G_q \times G_q$; ceci, par récurrence, démontre le théorème. Le lemme 7 sert à démontrer le lemme 8.

Définition. On dit qu'une arête orientée [b,b'] de [8] est constante (resp. décroissante, etc.) suivant que la valeur en b' de l'invariant la lest égale (resp. strictement inférieure, etc.) à la valeur de cet invariant en b.

Lemme 7. Soit b un sommet de $[G_q]$ en lequel on ait $|a_{q,q}| > 2$.

- 1) Il existe une arête de première espèce décroissante d'origine b; toute telle arête est de type q 1.
- 2) <u>Tout couple d'arêtes de première espèce de type q 1 issues de b, dont l'une est décroissante, l'autre non croissante, est consécutif.</u>

<u>Démonstration</u>. Soient x et y deux éléments de G tels que b = (\dot{x},\dot{y}) ; les arêtes de première espèce issues de b sont les $[\dot{x},\dot{x}t^{\lambda}]$ x \dot{y} . On sait (cf. 2.4.2., 1) du lemme 2) que toute arête de type différent de q-1 est constante; ei i=q-1, la valeur en b' de l'invariant $|a_{i,q}|$ est

$$|b_{q-1,q} + \lambda b_{q,q}|$$
.

(où l'on a noté $(b_{k,\ell})$ la matrice xy). Il y a deux cas à distinguer :

a) b est un multiple de b q,q Soit λ_0 l'entier défini par :

$$b_{q-1,q} + \lambda_0 b_{q,q} = 0.$$

L'arête correspondant à $\lambda = \lambda_0$ est décroissante; celles qui correspondent à $\lambda = \lambda_0 + 1$ et $\lambda = \lambda_0 - 1$ sont constantes; toutes les autres sont croissantes.

 toutes les autres valeurs de λ donnent lieu à des arêtes croissantes.

Lemms 8. Tout lacet relatif β de $\{\emptyset_q\}$ modulo $\{\emptyset_q\}$ est homotope à un composé de lacets du type $\{\emptyset_i,\lambda\}_{i,j}$ etc., et de lacets en tous les sommets desquels l'invariant $\{\emptyset_q\}$ ne prend que les valeurs \emptyset et 1.

Démonstration. D'après le lemme 4, on peut se borner au cas où β est <u>de première espèce</u>.

Soit ξ le maximum des valeurs prises par l'invariant la q,q aux différents sommets de β . Onva montre γ que si $\xi \geqslant 2$, β est homotope à un composé de lacets du type $\gamma_i, \lambda; q$, $\delta_i; q$, etc., et d'un lacet <u>de première espèce</u> en tous les sommets duquel l'invariant α est $\alpha \leqslant 1$; ce qui démontrera le lemme par récurrence sur $\alpha \leqslant 1$.

 $\frac{1^{\frac{3}{2}}}{6}}{6}$: suppression des arêtes de β aux deux extrémités desquelles $a_{n,0} = \xi$.

Soit [b,b'] une telle arête; il faut distinguer trois cas suivent la type i de cette arête.

Premier cas. i < q-2 . D'après le 1) du lemme 7, il existe une arête de première espèce [b',b"] qui soit décroissante; son indice est q-1. L'application du lemme du quadrilatère à [b,b',b"] fournit un point b'; le chemin [b,b'] est homotope à [b,b',b",b'] , donc à [b,b',b",b'] . En b', la valeur de l'invariant la , l est la même qu'en b", elle est donc $\leq \xi-1$; on a donc remplacé [b,b'] par un chemin homotope qui ne contient aucune arête du type considéré.

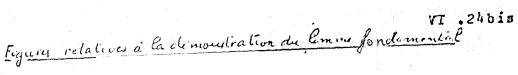
Deuxième cas. i=q-2. On prend deux arêtes de première espèce décroissantes, issues l'une de b, l'autre de b', et on applique le lemme de l'hexagone.

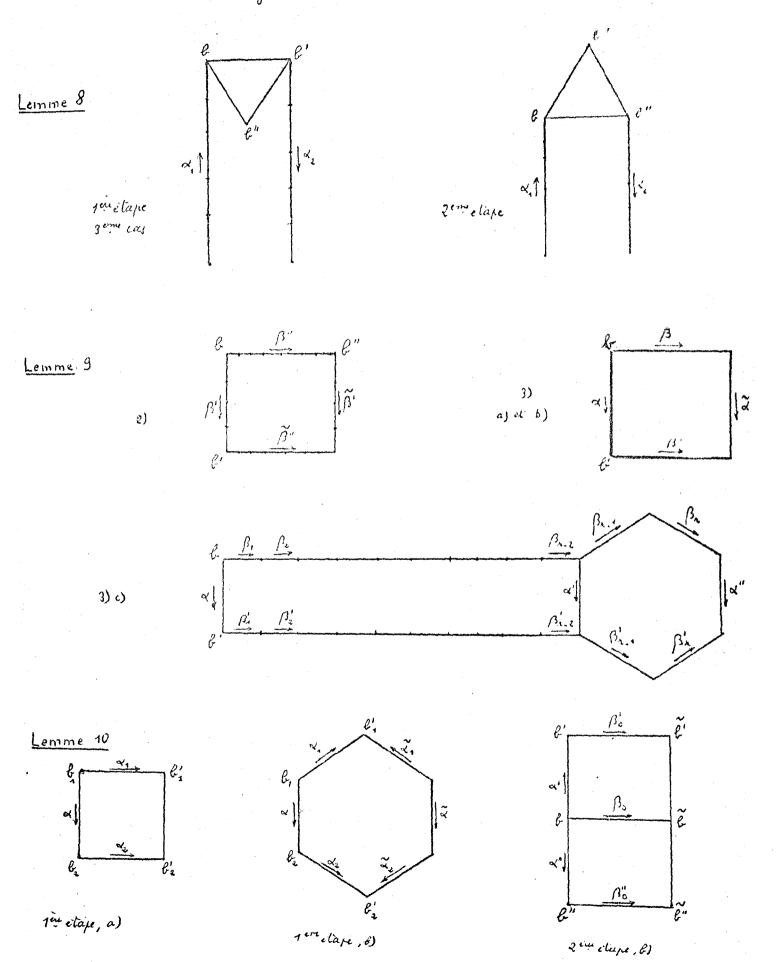
Troisième cas. i=q-1. Soit b" comme pour le premier cas ci-dessus; d'après le 2) du lemme 7, les arêtes [b,b'] et [b',b"] sont consécutives. On décompose β comme suit : $\beta = \beta_1 \cdot [b,b'] \cdot \beta_2 = \beta_1 \cdot [b,b'] \cdot \beta_3 = \beta_1 \cdot [b,b']$

Le chemin eta est homotope au composé des deux chemins suivants :

 $\beta_1 \cdot [b,b',b'',b] \cdot \beta_1^{-1}$ qui, d'après le lemme 5, est homotope à un composé des lacets $\{i,\lambda;g',\delta_i;g'\}$ et $\{i,j\}$ et $\{i,j$

 β_1 . [b,b",b"] . β_2 , dont le nombre d'arêtes du type considéré est inférieur d'une unité à celui de β .





 $\frac{2^{\frac{2me}{n}} \text{ étape : suppression des sommets "isolés" où la q, q}}{\text{Soit b' un tel sommet; } \beta \text{ admet une décomposition :}}$

$$\beta = \beta_1 \cdot [b,b',b''] \cdot \beta_2$$

où les valeurs de $[a_{q,q}]$ en b et b" sont $\leq \xi - 1$. D'après le 2) du lemme 7, les arêtes [b',b] et [b',b''] sont consécutives ; b et b" sont donc joints par une arête, et β est homotope au composé des deux chemins suivants :

 β_1 . [b,b',b",b] $\cdot \beta_1^{-1}$, auquel s'applique le lemme 5;

 $\beta_1\cdot [b,b]\cdot \beta_2$, dont le nombre de sumets du type considéré est inférieur d'une unité à celui de β .

Définition: l'invariant la q-1,q . Soit $g=(a_1,j)$ un élément de G tel que la G le G

Remarque. Dans les mêmes conditions, on peut aussi définir l'invariant $\begin{vmatrix} a \\ q,q-1 \end{vmatrix}$.

Lemme 9. Soit $[\widehat{\mathbb{G}}_q]_0$ la partie de $[\widehat{\mathbb{G}}_q]_0$ formée des éléments qui vérifient soit $|a_{q,q}| = 1$, soit $|a_{q,q}| = 0$ et $|a_{q-1,q}| = 1$. Tout lacet relatif β de

<u>Démonstration</u>. Le lemme est trivial si q=2; on suppose $q\geqslant 3$. Soit b un sommet de [B,q] en lequel [a,q] soit égal à 0 ou 1; on utilisere les deux définitions suivantes :

chemin standard de première espèce issu de b : chemin de première espèce, dont les types des arêtes sont tous différents de q-1, et qui aboutit à un point de $\begin{bmatrix} \hat{B} & \hat{J} \\ 0 & 0 \end{bmatrix}$.

chemin standard de seconde espèce issu de b : chemin de seconde espèce, dont les types des arêtes sont différents de q-1 sauf éventuellement celui de la dernière arête, et qui aboutit à un point où |a-1|=1. (On notera que le nombre d'arêtes composant un chemin standard peut éventuellement

être nul.)

Ceci posé, on montre successivement, les trois résultats suivants, d'où la lemme découle immédiatement:

1) Tout point b du type ci-dessus est origine d'un chemin standard de première espèce et d'un chemin standard de seconde: espèce.

<u>Preuve.</u> On choisit dans la double classe définie par b, une matrice qu'on note $(b_{j,k})$; (autrement dit, $(b_{j,k})$ est la matrice xy relative à un couple (x,y) tel que b = (x,y).

a) <u>chemin standard de première espèce</u>. Soit b' l'extrémité d'une arête de type i, de première espèce, issue de b; il existe dans le double classe de b' une matrice (b' j,k) dont les éléments de la dernière colonne soient

$$b_{1,q}, \dots, b_{i-1,q}, b_{i+1,q}, b_{i,q} + \lambda b_{i+1,q}, b_{i+2,q}, \dots, b_{q,q}$$
(avec $\lambda \in \mathbb{Z}$).

On peut, par une suite de telles opérations correspondant toutes à des types différents de q-1, remplacer b soit par 0, soit par 1.

b) chemin standard de seconde espèce. Les éléments de la dernière ligne de (b j,k) :

sont premiers entre eux dans leur ensemble; par une suite d'arêtes de type 1 choisie de manière à appliquer à $b_{q,1}$ et $b_{q,2}$ l'algorithme d'Euclide, on remplace $b_{q,1}$ et $b_{q,2}$ par $b'_{q,1}$ et $b'_{q,2}$ tels que $b'_{q,1}$ soit un multiple de $b'_{q,2}$; il existe alors des entiers $\lambda_2, \ldots, \lambda_q$ tels que

$$b_{q,1}^{i} + \lambda_{2q,2}^{b_{i}} + \lambda_{3}^{b_{q,3}} + \dots + \lambda_{q,q,q}^{b_{q,q}} = 1;$$

il existe donc une suite d'arêtes de types successifs 1,2, ..., q-1, telle qu'à l'extrémité de la dernière arête, la valeur de l'inveriant a | soit 1.

Preuve. On note b' et b" les extrémités respectives de β ' et β ". D'après le 1), on peut se borner au cas où β ' et β " sont respectivement de première et de seconde espèce. L'application répétée du lemme du quadrilatère fournit deux chemins β ' et β ", respectivement "translatés" de β ' par β " et de β " par β '. Les chemins β ' β " et β " . β " ont homotopes. Or l'invariant la β , β

est égal à 1 en tous les sommets de $\tilde{\beta}$ ' (car les arêtes de $\tilde{\beta}$ ' sont de même type que les arêtes correspondantes de β '; elles sont donc de type \neq q-1, donc l'invariant la la même valeur en chacun des sommets de $\tilde{\beta}$ '; or cette valeur est 1 à l'origine de $\tilde{\beta}$ ' puisque celle-ci coı̈ncide avec l'extrémité du chemin standard de seconde espèce β "). De même l'origine de $\tilde{\beta}$ " est dans $[\tilde{G}_{q}]_{0}$; et les arêtes de $\tilde{\beta}$ ", autres que la dernière, étant de types différents de q-1, ne font pas sortir de $[\tilde{G}_{q}]_{0}$.

- 3) Soit \propto un chemin défini par une arête de $[\mathfrak{G}_q]$ aux deux extrémités \mathfrak{b} et \mathfrak{b} ' de laquelle la valeur de l'invariant $\mathfrak{a}_{q,q}$ soit \mathfrak{G} ou 1. Il existe deux chemins standard \mathfrak{G} et \mathfrak{G} ', respectivement issus de \mathfrak{b} et \mathfrak{b} ', tels que le chemin \mathfrak{G}^{-1} . \propto . \mathfrak{G} ' soit homotope à un chemin dont tous les sommets soient dans $[\mathfrak{G}_q]_{\mathfrak{G}}$. Preuve. On examine les différents cas.
- a) α est de type \neq q-1. Supposons par exemple α de première espèce; on choisit alors pour β un chemin de seconde espèce, et on prend pour β ! le chemin d'origine b' déduit de β par application répétée du lemme du quadrilatère. L'extrémité de β et celle de β ! sont jointes par une arête α , homotope à β^{-1} . α . β ! l'invariant α prend la valeur 1 aux deux extrémités de α . Démonstration analogue si α est de seconde espèce.
- b) \propto est de première espèce et de type |q-1|. Si |a-q|=1 à l'une des extrémités de $|\alpha|$, l'autre extrémité est dans $|\alpha|$, de sorte que l'on peut prendre $|\beta|$ et $|\beta|$ constants. Le seul cas non trivial est donc celui où |a-q|=0 aux deux extrémités de $|\alpha|$.

On peut supposer (en transformant au besoin α par une opération de G) que G b est de la forme (e,y); G est alors de la forme $(t^{\lambda})_{q-1}$, G, G); il en résulta que la valeur de G0, G1 en G2 est égale à celle de G3, G4 en G5; il en G6 de la G7, G8 aux deux extrémités de G8. On va montrer qu'il existe un chemin standard de seconde espèce issu de G9 de la forme G9. Une chemin standard; on va pour cela prouver qu'il existe un élément G9 de G9 de la forme

(1) $yt_{i_1}^{\mu_1} s_{i_1} t_{i_2}^{\mu_2} s_{i_2} \dots t_{i_r}^{\mu_r} s_{i_r}$,

(avec i_1 , i_2 ,..., $i_{r-1} \neq q-1$) tel que l'invariant $|a_{q,q}|$ de (e,y) et celui de $(t_{q-1}^{\lambda}s_{q-1},y)$ aient tous deux la valeur 1; ceci s'écrit

(2)
$$\begin{cases} |b_{q,q}^{\dagger}| = 1 \\ |b_{q-1,q}^{\dagger}| + \lambda b_{q,q}^{\dagger}| = 1 \end{cases}$$

Ces conditions sont réalisées en particulier si on a

$$\begin{cases} b_{q,q}^{t} = 1 \\ b_{q-1,q}^{t} = 1 - \lambda \end{cases}$$

Pour réaliser (3), on détermine d'abord une matrice y" de la forme (1) dont les deux dernières lignes soient

0...0 1 0 0 ,
$$y' = y'' s_{n-2} t_{n-2}^{1-\lambda} s_{n-2}^{3} s_{n-1}^{1-\lambda}$$

puis on pose

c) α est de seconde espèce et de type q-1. Si l'invariant a prend la valeur 1 en l'une des extrémités de α , par exemple b, le cas est trivial (on prend β constant et $\beta'=\alpha^{-1}$).

Si l'invariant $\alpha_{q,q}$ est nul aux deux extrémités de α , il en est de même pour l'invariant $\alpha_{q-1,q}$ (c'est le résultat dual de celui établi au début du b)). Il en résulte qu'il existe un chemin standard de seconde espèce issu de b, noté β , ayant les propriétés suivantes : toutes ses arêtes sont de type α q - 3, sauf l'avant-dernière qui est de type α - 2, et la dernière, qui est de type α - 1. Soient α 1, α 2, α 1 les arêtes qui composent α 1 l'application répétée du lemme du quadrilatère donne α 1, α 1, α 2, α 1, α 2, α 1, α 2, α 1, α 1, α 2, α 1, α 3, α 1, α 1, α 2, α 1, α 2, α 1, α 1, α 2, α 1, α 1, α 1, α 1, α 2, α 1, α 1, α 2, α 1, α 1, α 2, α 1, α 1, α 1, α 2, α 1, α 1, α 1, α 2, α 1, α

$$\beta_1 \cdot \beta_2 \cdot \dots \cdot \beta_{r-2} \cdot \alpha^{r-1}$$

soient homotopes. Puis l'application du lemme de l'hexagone donne les arêtes $\beta_{r-1}^{1}, \beta_{r}^{1}, \alpha'', \alpha'', \text{ de types respectifs } q-2, q-1, q-2 \text{ telles que les chemins } \alpha'^{-1} \cdot \beta_{r}^{1} \cdot \beta_{r}^{1} \text{ et } \beta_{r-1}^{1} \cdot \beta_{r}^{1} \cdot \alpha''^{-1} \text{ soient homotopes. Puisque } \alpha'' \text{ est de type } q-2, \text{ la valeur de l'invariant la } q,q \text{ à l'extrémité de } \alpha'_{r}^{1} \text{ est la même qu'à celle de } \beta_{r}^{1}, \text{ c'est-à-dire 1.}$

Lemme 10. Tout lacet relatif de $[B_q]_o$ modulo E_q dont tous les sommets sont dans $[B_q]_o$ est homotope à un composé des lacets relatifs $Y_{i,\lambda;g}$, $S_{i;g}$ at de leurs opposés, et de lacets relatifs dont toutes les arêtes sont dans l'image de $G_q \times G_q$.

Démonstration. D'après le lemme 6, il suffit de montrer que tout lacet relatif β du type considéré dans l'énoncé est homotope à un composé des lacets relatifs λ_i , etc., et de lacets relatifs dont tous les sommets sont dans l'image de $\dot{c}_q \times \dot{c}_q$. La démonstration se fait en deux étapes; elle utilise la propriété suivante (de vérification immédiate) :

(*) Soit b un sommet de $\begin{bmatrix} \beta \\ q \end{bmatrix}$ en lequel $\begin{vmatrix} a \\ q,q \end{vmatrix} = 0$ et $\begin{vmatrix} a \\ q-1,q \end{vmatrix} = 1$. Toute arête de première espèce de type q-1 issue de b est telle qu'en son extrémité l'invariant $\begin{vmatrix} a \\ q,q \end{vmatrix}$ soit égal à 1.

Première étape: déformation de β en un lacet relatif ne contenant aucune arête aux deux extrémités de laquelle |a| = 0.

Soit & une telle arête; soient b_1 et b_2 les extrémités de α ; soient α_1 et α_2 deux arêtes de première espèce de type q-1 issues respectivement de b_1 et b_2 ; il suffit d'après la propriété (*) de montrer que, pour un choix convenable de α_1 et α_2 , α_1 . α . α_2 est homotope à un chemin en tous les sommets duquel $|a_{q,q}| = 1$. On examine les différents cas possibles; celui où α_1 est de première espèce et de type q-1 est exclu (cf. 3) b) de la démonstration du lemme 9). On note b_1' l'extrémité de α_1 , b_2' celle de α_2 .

- a) α est soit de seconde espèce, soit de première espèce et de type α α α 0n choisit alors α arbitrairement, et on prend pour α la translatée de α par α .
- b) \propto est de première espèce et de type q-2. On choisit alors $\propto 1$ et $\propto 2$ arbitrairement. D'après le lemme de l'hexagone, b' et b' sont joints par un chemin ≈ 1 . ≈ 1 .

Seconde étape: suppression des sommets "isolés" de β où |a| = 0.

Soit b un tel sommet; soit α'^{-1} (resp. α'') le chemin défini par l'arête de β qui a son extrémité (resp. son origine) en b; on décompose β comme suit :

$$\beta = \beta_1 \cdot \alpha'^{-1} \cdot \alpha'' \cdot \beta_2.$$

Il y a deux cas à distinguer :

a) α ' et α " sont de même espèce. S'il existe une arête de seconde espèce issue de b en l'extrémité de laquelle l'invariant $\begin{vmatrix} a & c \\ q,q \end{vmatrix}$ est égal à 1, alors la valeur en b de l'invariant $\begin{vmatrix} a & c \\ q,q \end{vmatrix}$ est 1; il en résulte que le cas où α ' et α "

sont de seconde espèce est dual de celui où elles sont de première espèce; on peut donc se borner à ce dernier cas.

Sait alors p l'invariant du couple (α',α'') ; il existe des arêtes de première espèce, de type q-1, qu'en note α_1 , ..., α_{p-1} , telles que les couples (α',α_1) , (α_1,α_2) , ..., (α_{p-1},α'') soient consécutifs. On note b', b_1 , ..., b_{p-1} , b'' les extrémités respectives des arêtes α',α_1 , ..., α_{p-1} , α'' ; il résulte de la propriété (*) que l'invariant $a_{q,q}$ de chacun de ces points est égal à 1, et il résulte du lemme du triangle que chacun des couples (b',b_1) , (b_1,b_2) , ..., (b_{p-1},b'') est joint par une arête. Le lacet relatif β est homotope au composé des deux lacets relatifs suivants :

 $\beta_1 \cdot \alpha'^{-1} \cdot \alpha'' \cdot [b'', b_{p-1}, \dots, b_1, b'] \cdot \beta_1^{-1} , \text{lui-même}$ homotope au composé de placets relatifs du type considéré au lemme 5;

 $\beta_1\cdot [\,b',\,b_1\,,\ldots,\,b_{p-1}\,,\,b'']\cdot \beta_2\,\,,\,\, dont\,\, le\,\, nombre\,\, de\,\, sommets\,\, en\,\, lesquels\,\, |\,a_{q,q}\,|\, =\, 0\,\,$ est inférieur d'une unité à celui de β .

b) & est de première et & ' de seconde espèce. Toute matrice g représentant la double classe définie par b vérifie dans ce cas (d'après la remarque du début du a)) $\begin{vmatrix} a \\ q,q \end{vmatrix} = 0$, $\begin{vmatrix} a \\ q-1,q \end{vmatrix} = \begin{vmatrix} a \\ q,q-1 \end{vmatrix} = 1$. Un calcul immédiat montre alors qu'il existe $t \in T_q$ (resp. $t' \in T_q$) qu'on peut en plus choisir de façon que tous les termes non diagonaux des q-2 premières lignes (resp. colonnes) soient nuls, de façon que t'gt soit du type

Il existe donc un chemin de première espèce β_0 issu de b dont toutes les arêtes sont de type $\leq q-3$, et dont l'extrémité b soit telle que la double classe qu'elle définit soit celle de s_{q-1}. Soient β_0 ' et β_0 " les translatés respectifs de β_0 par α' et α'' ; soient b' et b'' leurs extrémités respectives; on note $[b,b'] = \alpha'$ et $[b,b''] = \alpha''$. Le lacet relatif β est homotope au composé $(\beta_1 \cdot \beta_0') \cdot (\alpha'') \cdot (\beta'') \cdot (\beta'')$

Le nombre de sommets de $\beta_1 \cdot \beta_0$ en lesquels l'invariant la q,q prend la

Beur D est strictement inférieur à celui de β ; de même en ce qui concerne $\beta_{i}^{-1} \cdot \beta_{2}$. Tout revient donc à montrer que $\alpha'^{-1} \cdot \alpha''$ est homotope à un composé de $\gamma_{i,\lambda;g}$, etc. On peut, par l'opération d'un élément convenable de $\gamma_{i,\lambda;g}$, etc. On peut, par l'opération d'un élément convenable de $\gamma_{i,\lambda;g}$, etc. On peut, par l'opération d'un élément convenable de $\gamma_{i,\lambda;g}$, et le seconde est du type considéré au a) ci-dessus, n'est autre que $\gamma_{i,\lambda;g}$, et le second est du type considéré au a) ci-dessus,

3.4. Un complément au lemme fondamental.

Toute homotopie entre chemins composés d'arêtes de $[\beta_q]$ est composée d'un nombre fini d'opérations appartenant à l'un des types suivants :

- a) insertion d'un lacet composé d'une arête et de son opposés;
- b) suppression d'un lacet composé d'une arêta et de son opposée;
- c) insertion d'un lacet défini par le bord d'une face.

Toute opération du type (c) peut être décomposée en un nombre fini d'opérations du type (a) et en une opération appartenant à l'un des deux types suivants:
c'₁) remplacement du chemin défini par deux arêtes orientées adjacentes d'un quadrilatère par le chemin de même origine et extrémité défini par les deux autres arêtes.

c'₂) remplacement du chemin défini par trois arêtes orientées deux à deux adjacentes d'un hexagone par le chemin de même origine et extrémité défini par les trois autres arêtes.

Il résulte donc du lemme fondamental que tout lacet relatif de $[B_q]$ modulo E_q peut être déformé en un composé des lacets relatifs $\chi_{i,\lambda;g}$, etc., par une suite finie d'opérations des types (a), (b), (c'₁) et (c'₂). Ce résultat peut être précisé comme suit :

Complément au lemme fondamental. Tout lacet relatif de [β_q modulo ξ_q peut être déformé en un composé des lacets relatifs $\gamma_{i,\lambda;g}$, $\delta_{i;g}$ et de leurs opposés, par une suite finie d'opérations appartenant à l'un des types suivants : (a), (c'₁), (c'₂) et

b₂) <u>suppression d'un lacet composé d'une arête de seconde espèce et de son</u>
opposée.

Démonstration. Soit β un lacet relatif de $\begin{bmatrix} \beta \\ \alpha \end{bmatrix}$ modulo $\mathbf{E}_{\mathbf{q}}$ qui admette une décomposition de la forme β = β_1 . α . α^{-1} . β_2 , où α est une arête de première espèce. On peut transformer β par une suite d'opérations du type (a) en le chemin $(\beta_1 \cdot \alpha \cdot \alpha^{-1} \cdot \beta_1^{-1}) \cdot (\beta_1 \cdot \beta_2)$. Le chemin $\beta_1 \cdot \beta_2$ est celui qu'on obtient à partir de β en suppriment le lacet α . α ; on pourra donc réaliser toute telle opération à l'aide des opérations permises, pourvu que la propriété de l'énoncé soit vraie dans le cas particulier des lacets du type $\beta_1 \cdot \alpha \cdot \alpha^{-1} \cdot \beta_1^{-1}$. Toutes les déformations utilisées au cours de la démonstration du lemme 4 sont du type (a) ou du type (c'₁); on peut donc se borner au cas où β_1 est de seconde espèce. Par des opérations du type (c'₁) et (b₂), on se ramène au cas de $\alpha \cdot \alpha^{-1}$, où α est une arête de première espèce d'origine dans $\mathbf{E}_{\mathbf{q}}$, c'est-à-dire du type $\begin{bmatrix} \mathbf{e} \\ \mathbf{e} \end{bmatrix}$, $\begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}$ x \mathbf{e} . En procédant comme dans la démonstration du lemme 5, on montre qu'il est équivalent de démontrer le résultat cherché pour la valeur α 0 cu pour la valeur α 1. On peut donc se ramener au cas où α 2 1; dans ce cas α 3. α 4 1 0 1.

Etude globale de l'espace \$\mathbf{T}\$ 2. Structure du nerf de l'espace \$\mathbf{T}_i\$

Le §1 est de caractère général : on définit le nerf d'une stratification et on donne quelques propriétés simples de cette notion. Au §2, ces propriétés sont appliquées au cas particulier des nerfs $\phi_{i,q}$ et ϕ_{i} des espaces $\mathcal{F}_{i,q}$ et \mathcal{F}_{i} définis au chapitre V, ainsi qu'à celui du nerf ϕ_{M} de l'espace \mathcal{F}_{M} obtenu à partir de $\mathcal{F}_{i,q}$ en fixant une variété intermédiaire. Au §3, on définit une flèche : $\phi_{M} \rightarrow \mathcal{C}_{q} \times \mathcal{C}_{q}$ (où \mathcal{C}_{q} est le complexe défini au chapitre VI), et on montre en utilisant essentiellement le lemme des croisements à indices égaux que, sous certaines conditions, c'est un revêtement. Au §4, on démontre sous les hypothèses n > 6, $\pi_{q}(V) = 0$, le théorème de connexité de l'espace des fonctions sans point critique (théorème 3); la démonstration utilise la plupart des résultats semi-locaux des chapitres II, III, IV, la connexité de \mathcal{F}_{i} (chapitre V) et le lemme algébrique fondamental (chapitre VI). Au §5, on en déduit (à l'aide d'un lemme sur la "presque isotopie") que la flèche $\phi_{M} \rightarrow \mathcal{C}_{q} \times \mathcal{F}_{q}$ est un isomorphisme, ce qui donne également la structure de $\phi_{i,q}$ et de ϕ_{i} (théorème 4 ; l'hypothèse de dimension est ici n > 7).

§.1. Nerf d'une stratification.

1.1. Définition et propriétés du nerf.

Soit E un espace stratifié (cf. I,1.1); pour tout $i\geqslant 0$, on note \dot{E}_i l'ensemble (classiquement noté $\pi_0(E^i)$) des composantes connexes par arcs de E^i . On note

$$\dot{\mathbf{E}}_{0} \mathbf{U} \, \dot{\mathbf{E}}_{1} \, \mathbf{U} \, \dots \mathbf{U} \, \, \dot{\mathbf{E}}_{1} \, \mathbf{U} \, \dots \, = \, \dot{\mathbf{E}} \, .$$

Soient A et B deux éléments de É; la relation $\overline{A}\supset B$ est une relation de préordre sur É (en général, elle n'est pas antisymétrique), on la note A>B.

D'une façon générale, soit É un ensemble muni d'une relation de préordre \rangle , on appelle <u>complexe simplicial préordonné</u> (<u>ordonné</u> si \rangle est une
relation d'ordre) <u>défini par la relation</u> \rangle , l'ensemble É muni simultanément
de la structure de préordre \rangle et de la structure simpliciale qu'elle définit
naturellement (un q-simplexe est une partie de É formée de q éléments
qu'on peut ranger en une suite $\Lambda_1, \ldots, \Lambda_q$ telle que $\Lambda_1 > \Lambda_2 > \ldots > \Lambda_q$).

<u>Définition</u> 1. On appelle <u>nerf</u> de l'espace stratifié E et on note $\mathcal{N}(E)$ le

<u>Définition</u> 1. On appelle <u>nerf</u> de l'espace stratifié E et on note $\mathscr{N}(E)$ le complexe simplicial préordonné défini par la relation > sur l'ensemble E.

Propriétés du nerf.

- 1. Soit E un espace stratifié dont toutes les strates sont localement connexes par arcs; soient A et B deux éléments distincts de É; si A é É et B é É , la relation A > B entraîne j < k . Il en résulte que la relation > est une relation d'ordre. Donc d'après la remarque 2 de I,1.2 : Si E est un espace stratifié localement trivial et localement connexe par arcs, la relation > est une relation d'ordre.
 - 2. Soit E' un espace stratifié localement trivial; soient A et B deux éléments de É'; s'il existe un point x de B qui soit adhérent à A, alors A) B. De ceci, résulte que si E est un espace stratifié arbitraire, et f un morphisme : $E \to E'$, alors l'application $f: E \to E'$ définie de façon naturelle par f est un morphisme : $\mathcal{N}(E) \to \mathcal{N}(E')$. En particulier : Le nerf définit un foncteur covariant de la catégorie des espaces stratifiés localement triviaux dans celle des complexes simpliciaux préordonnés.
 - 3. Soient E et E' deux espaces stratifiés; $\mathcal{N}(E \times E')$ est naturellement isomorphe au complexe défini sur $\mathring{E} \times \mathring{E}'$ par la relation de préordre produit de celles définissant respectivement $\mathcal{N}(E)$ et $\mathcal{N}(E')$.

(En effet les deux relations $\overline{A} \times \overline{A}^! \supset B \times B^!$ et $(\overline{A} \supset B$ et $\overline{A}^! \supset B^!$) se correspondent par l'isomorphisme naturel $\widehat{E \times E}^! \stackrel{\sim}{\sim} \mathring{E} \times \mathring{E}^!$).

4. Soit E un espace stratifié localement trivial, toute famille (ψ_j) de cartes transverses de E définit une structure simpliciale sur \mathring{E} , celle dont les simplexes sont les parties de \mathring{E} qui sont images d'un simplexe pour l'une au moins des applications $\mathring{\psi}_j: \mathscr{N}(X_j) \to \mathring{E}$; c'est la structure simpliciale la moins fine qui rende simpliciales toutes les applications $\mathring{\psi}_j$; (on a noté X_j la source de ψ_i).

Soit E un espace stratifié localement trivial et localement connexe par arcs. Soit (ψ_i) une famille de cartes transverses de E : si pour tout A \in E il existe un indice j tel que l'origine de ϕ_j soit dans A , alors la structure simpliciale définie sur È par la famille $(\mathring{\psi}_{i})$ est celle de $\mathscr{N}(E)$. (En effet, toute application $\mathring{\psi}_{i}$ est un morphisme d'après la propriété ci-dessus il reste donc à montrer que pour tout simplexe σ de $\mathscr{N}(\mathtt{E})$, il existe un indice j tel que σ soit l'image par ϕ_i d'un simplexe de $\mathscr{N}(x_i)$. Soient A_1, \dots, A_q les sommets de σ rangés dans l'ordre décroissant (i.e. $A_q > A_{q-1} > \dots > A_1$). Il existe un indice j tel que l'origine x, de ϕ_j soit dans A_1 ; soit ϕ_1 une carte locale : $X_1 \times Y \to E$ correspondant à ψ_1 , soit U l'image de ϕ_j . D'après la remarque 2 de I,1.2, A_1,\dots,A_q sont localement connexes par arcs; donc $A_1 \cap U, \dots, A_d \cap U$ le sont aussi; il existe donc une composante connexe par arcs bien déterminée de A, n U à laquelle x, soit adhérent, notons-la A_1^i ; soient de même A_2^i, \dots, A_q^i ; pour la stratification induite par E sur U , A_1^i , A_2^i , ..., A_q^i sont des éléments de \dot{U} , et l'on a A_{α}^{\prime} > $A_{\alpha-1}^{\prime}$ >...> A_{i}^{\prime} , de sorte que σ est dans l'image du morphisme $\mathcal{N}(U) \to \mathcal{N}(E)$. Or d'après la remarque 1 de I,1.2, on peut choisir Y connexe par arcs ; dans ce cas, $\dot{\phi}_{i}$ induit (d'après la propriété 3 ci-dessus) un isomorphisme $\mathcal{N}(X_i) \to \mathcal{N}(U)$; ceci achève la démonstration).

5. Si E est localement connexe par arcs et muni d'une stratification conique (cf. I,1.3, définition 4), le nerf d'un modèle conique (ouvert) transverse en un point x est un invariant de la cocellule de x; d'une façon précise:

Soit E un espace localement connexe par arcs muni d'une stratification conique. Soient x et x' deux points situés dans la même composante connexe d'une strate de Ε; soient ψ et ψ' deux cartes transverses de Ε respectivement en x et x', dont les modèles respectifs X et X' sont des cônes ouverts.

- a) Il existe un isomorphisme $\chi: \mathscr{N}(X) \to \mathscr{N}(X^{\mathfrak{p}})$ tel que $\mathring{\psi} = \mathring{\psi}^{\mathfrak{p}} \circ \chi$. ($\mathring{\psi}$ désigne le morphisme : $\mathscr{N}(X) \to \mathscr{N}(E)$ défini par ψ).
- b) Si $X = X^{\dagger}$, si $x = x^{\dagger}$, et si ψ et ψ^{\dagger} sont deux sections d'une même projection locale sur un modèle transverse, alors $\mathring{\psi} = \mathring{\psi}^{\dagger}$.

Démonstration. a) On peut se borner au cas où $x=x^{*}$. Soit, pour $\lambda \in]0,1], \phi_{\lambda}$ la carte transverse composée de ϕ et de l'homothétie de rapport λ de X; on a visiblement $\dot{\phi}_{\lambda} = \dot{\phi}$. D'autre part, E étant localement connexe par arcs, on peut choisir pour tout λ une carte locale ϕ_{λ} associée à ϕ_{λ} , de façon que les images U_{λ} des ϕ_{λ} forment un système fondamental de voisinages connexes de x. On définit de même une famille de cartes ϕ'_{λ} , d'images U'_{λ} . Il est clair que si $U_{\lambda} \subset U_{\lambda}$, le morphisme naturel $\mathcal{N}(U_{\lambda}) \to \mathcal{N}(U_{\lambda})$ est un isomorphisme, et que les U'_{λ} ont la même propriété. On en déduit (à l'aide d'une suite d'ensembles emboîtés appartenant alternativement à l'une et l'autre famille) que si $U_{\lambda} \subset U'_{\lambda}$, le morphisme naturel $\mathcal{N}(U_{\lambda}) \to \mathcal{N}(U'_{\lambda})$ est un isomorphisme ; on prend pour χ le composé des isomorphismes

$$\mathscr{N}(X) \to \mathscr{N}(U_{\lambda}) \to \mathscr{N}(U_{\lambda_{i}}) \to \mathscr{N}(X^{i})$$
.

b) Dans ce cas particulier, le χ obtenu au a) est associé à l'homothétie de rapport λ/λ^{γ} de X ; c'est donc l'identité.

1.2. <u>Le nerf de la stratification naturelle d'une variété combinatoirement triangulée.</u>

Soit V une variété combinatoirement triangulée ; on a défini en I,1.1 la stratification naturelle de V ; c'est une stratification combinatoire dont le nerf $\mathcal{N}(V)$ a les propriétés particulières suivantes :

1. La réalisation géométrique de $\mathscr{O}(V)$ est naturellement isomorphe à $\mathscr{B}(V)$, première subdivision barycentrique de V.

(L'application qui à tout élément de \mathring{V} associe son barycentre définit en effet un isomorphisme de $\mathscr{K}(V)$ sur le complexe simplicial abstrait sous-jacent à $\mathscr{B}(V)$).

2. Soit B \in \mathring{V}_i , soit b le barycentre de B; l'ensemble des éléments A de \mathring{V} tels que A \rangle B s'appelle <u>étoile descendante de</u> B <u>dans</u> $\mathscr{N}(V)$; le sous-complexe correspondant de $\mathscr{B}(V)$ s'appelle <u>étoile descendante de</u> b <u>dans</u> $\mathscr{B}(V)$; il est isomorphe au cône d'une (i-1)-sphère combinatoirement triangulée.

On note $[\mathcal{B}(V)]_{i}$ (pour $0 \leqslant i \leqslant n-1$) la réunion de toutes les étoiles transverses de dimension $\leqslant i$. Les étoiles transverses de dimension i+1 ont leurs intérieurs deux à deux disjoints ; le bord de chacune d'entre elles est un sous-complexe de $[\mathcal{B}(V)]_{i}$ isomorphe à une i-sphère combinatoirement triangulée. Ceci définit sur $\mathcal{B}(V)$ une structure naturelle de CW-complexe ; ce complexe est classiquement appelé <u>complexe dual de la triangulation de</u> V; on le notera $[\mathcal{B}(V)]$; il a d'après ce qui précède la propriété suivante :

L'application qui à tout élément B de \mathring{V} associe l'étoile descendante dans $\mathfrak{G}(V)$ du barycentre de B est une bijection de \mathring{V} sur l'ensemble des cellules de $[\mathfrak{G}(V)]$; si $\mathfrak{B} \in \mathring{V}_{\mathbf{i}}$, la cellule correspondante est de dimension i.

3. Considérons l'application $\nu : \mathring{V} \to (\text{ensemble des parties de }\mathring{V}_{\mathbf{o}})$, qui à tout élément B de \mathring{V} associe l'intersection de $\mathring{V}_{\mathbf{o}}$ avec l'étoile descendante de B; soit $\mathring{\boldsymbol{V}}_{\mathbf{i}}$ l'image de $\mathring{V}_{\mathbf{i}}$ par ν (en particulier, $\mathring{\boldsymbol{V}}_{\mathbf{o}}$ s'identifie à $\mathring{V}_{\mathbf{o}}$);

on note $\mathbf{v}_0 \cup \mathbf{v}_1 \cup \dots \cup \mathbf{v}_n = \mathbf{v}_n$

L'application v définit un isomorphisme de d'(V) sur le complexe simplicial ordonné défini sur par la relation d'inclusion.

On notera que $m{\ell}_i$ s'identifie à l'ensemble des intersections du O-squelette $[B(V)]_O$ avec les i-cellules de [B(V)], donc <u>chaque cellule de</u> [B(V)] <u>est bien déterminée par l'ensemble des O-cellules qu'elle contient</u>; a fortiori, <u>chaque cellule est bien déterminée par son bord</u>.

1.3. Nerf d'un espace stratifié muni d'une fibration compatible avec la stratification.

<u>Définition</u> 2. Soit E un espace topologique stratifié; soit B un espace topologique; soit $p: E \to B$ une fibration localement triviale; pour tout $x \in B$, l'image réciproque $p^{-1}(x)$, munie de la stratification induite par E, est notée F_x . On dit que p est <u>compatible avec la stratification de</u> E si pour tout $x \in B$ il existe un voisinage ouvert U de x dans B et une trivialisation

$$\tau : U \times \mathbb{F}_{\mathbf{x}} \to p^{-1}(U)$$

qui soit un isomorphisme (pour la stratification produit sur $\mathbb{U} \times \mathbb{F}_{\mathbf{x}}$ et la stratification induite par \mathbb{E} sur $p^{-1}(\mathbb{U})$).

On peut choisir alors τ de façon que $\tau(x,y)=y$ pour tout $y\in F_x$.

Proposition 1. Soit E un espace topologique stratifié; soit B un espace topologique; soit p: $E \to B$ une fibration localement triviale compatible avec la stratification de E; soit $x \in B$.

Le groupe $\pi_1(B;x)$ opère à droite de façon naturelle dans $\mathscr{N}(F_x)$, et on a un morphisme injectif naturel :

(1)
$$\mathscr{N}(\mathbb{F}_{\mathbf{x}})/\pi_{1}(\mathbb{B};\mathbf{x}) \to \mathscr{N}(\mathbb{E}).$$

Le morphisme (1) est surjectif si B est connexe; c'est un isomorphisme si les conditions suivantes sont en plus satisfaites:

- (i) B est localement connexe par arcs;
- (ii) la stratification de F, est localement triviale;
- (iii) tout point de F_x n'est adhérent qu'à un nombre fini de cocellules de F_y .

Démonstration. Soit γ un chemin dans B , d'extrémités x et x'. Si γ est contenu dans un ouvert U au-dessus duquel E est trivial, le choix d'une trivialisation (compatible avec la stratification) de E au-dessus de U définit un isomorphisme $F_{\chi} \to F_{\chi'}$. Cet isomorphisme ne dépend en fait ni du choix de U , ni de celui de la trivialisation au-dessus de U , car il peut être défini à l'aide des relèvements de γ dans les strates de E . On note cet isomorphisme h_{γ} ; il a visiblement les deux propriétés suivantes : a) Si $\gamma = \gamma_1 \cdot \gamma_2$ est une décomposition arbitraire de γ , alors

$$h_{\gamma} = h_{\gamma_2} \circ h_{\gamma_{\uparrow}}$$
;

b) si γ et γ^{\imath} ont mêmes extrémités et si leurs images sont contenues dans un ouvert U de B au-dessus duquel E est trivial, alors $h_{\gamma} = h_{\gamma}$, .

Soit maintenant γ un chemin arbitraire dans B; toute subdivision de [0,1] en un nombre fini q d'intervalles consécutifs I_1,\dots,I_q définit une décomposition $\gamma=\gamma_1,\dots,\gamma_q$ de γ . Si la subdivision est assez fine, $h_{\gamma_1},\dots,h_{\gamma_q}$ existent; le composé $h_{\gamma_q},\dots,h_{\gamma_q}$ est (d'après a) ci-dessus) invariant par raffinement de la subdivision, il est donc indépendant du choix de la subdivision, pourvu qu'elle soit assez fine; on note ce composé h_{γ} . Il est clair que la propriété a) est encore satisfaite; et, d'après la propriété b), h_{γ} ne dépend que de la classe d'homotopie (avec extrémités fixes) de γ . Ceci définit les opérations de $\pi_1(B;x)$ dans $\mathcal{N}(F_x)$.

On a d'autre part (sans hypothèse supplémentaire sur la stratification de E) un morphisme naturel $\mathcal{N}(F_x) \to \mathcal{N}(E)$, lequel définit dans $\mathcal{N}(F_x)$ la même relation d'équivalence que les opérations de $\pi_{\bullet}(B;x)$. D'où le morphisme injec-

tif (1), qui est visiblement surjectif lorsque B est connexe. C'est un isomorphisme si, en plus, la structure de préordre sur $\mathscr{N}(E)$ est l'image de celle de $\mathscr{N}(F_X)/\pi_{\gamma}(E;x)$. Cr soit (A,A^{γ}) un couple d'éléments de $\mathscr{N}(E)$ tels que $\overline{A}\supset A^{\gamma}$; soit $y\in A^{\gamma}\cap F_X$; la condition i) entraîne que y est adhérent à $A\cap F_X$; ceci, compte tenu de la condition iii), entraîne qu'il existe au moins une composante connexe par arcs de $A\cap F_X$, notée A_y , à laquelle y soit adhérent; soit A_y^{γ} la composante connexe par arcs de y dans y la condition ii) entraîne y al adémonstration.

§.2. <u>Les espaces stratifiés</u> $\mathcal{F}_{i,q}$, \mathcal{F}_{M} , \mathcal{F}_{M}^{+} , \mathcal{F}_{M}^{-} , \mathcal{F}_{i} ; relations entre les nerfs de ces espaces

Dans toute la suite, W est le cylindre $V \times I$ dans lequel on identifie $V \times \{0\}$ à V; on désigne par n la dimension de W.

 \mathcal{F} est l'espace des fonctions de classe C : $V \times (I,0,1) \rightarrow (I,0,1)$, sans point critique sur le bord. Les espaces $\mathcal{F}_{i,q}$ et \mathcal{F}_{i} (0 \leqslant i \leqslant n-1, q \geqslant 0) sont les sous-espaces de \mathcal{F} définis en V,2.1. Ces espaces et les autres sous-espaces de \mathcal{F} qu'on introduira sont munis de la stratification induite par la stratification naturelle de \mathcal{F} (cf. I,3).

2.1. <u>Décomposition de l'espace</u> $\mathcal{F}_{i,q}$ <u>et de son nerf</u>.

Notation. Pour tout $f \in \mathcal{F}$, et pour toute variété de niveau M de f, on note $\mathbb{W}_{\mathbb{M}}^+$ (resp. $\mathbb{W}_{\mathbb{M}}^-$) l'adhérence de la partie de \mathbb{W} comprise entre $\mathbb{V} \times \{1\}$ (resp. $\mathbb{V} \times \{0\}$) et M.

Définition 1. Soit f $\{\mathcal{F}_{i,q}\}$; soit M une variété de niveau de f . On dit que M est une variété intermédiaire pour f si tous les points critiques d'indice i+1 de f sont à l'intérieur de $\mathbb{W}_{\mathbb{M}}^+$, et tous ceux d'indice i à l'intérieur de $\mathbb{W}_{\mathbb{M}}^-$.

Lemme 1. Soit $\tilde{\mathcal{F}}_{i,q}$ le sous-espace de $\tilde{\mathcal{F}}_{i,q}$ formé des fonctions f pour lesquelles $f^{-1}(\frac{1}{2})$ est une variété intermédiaire. Il existe un isomorphisme $\tilde{\mathcal{F}}_{i,q} \to \tilde{\mathcal{F}}_{i,q}$ homotope à l'injection naturelle. (Tout ceci dans la catégorie des espaces stratifiés).

Démonstration. Soit A la partie de I \times I formée des couples (y,y) tels que 0 < y' < y < 1. Le groupe Diff I opère dans A de façon que pour tout $(y,y') \in A$ l'application $g \mapsto g_*(y,y')$ admette une section au-dessus de A. Le groupe Diff I opère aussi dans $\mathcal{F}_{i,q}$ par la formule habituelle :

 $(g,f)\mapsto gof$; les opérations de Diff I dans $\mathfrak{F}_{i,q}$ et dans A sont compatibles avec l'application $\alpha:\mathfrak{F}_{i,q}\to A$, qui à tout f associe le couple (y,y^i) , où y est la plus petite valeur critique d'indice i+1 de f, et y' la plus grande valeur critique d'indice i . Il en résulte (en raisonnant comme dans la démonstration du lemme 1 de I,3.2) que α est une fibration qui admet une trivialisation compatible avec la stratification de $\mathfrak{F}_{i,q}$. Or $\mathfrak{F}_{i,q}$ n'est autre que $\alpha^{-1}(\tilde{A})$, où \tilde{A} est la partie de A définie par $0 < y' < \frac{1}{2} < y < 1$; A et \tilde{A} sont contractiles et homéomorphes.

Définition 1'. On dit qu'une sous-variété M de W est (i,q)-intermédiaire (ou simplement intermédiaire) s'il existe f $\mathcal{F}_{i,q}$ telle que M soit intermédiaire pour f .

On désigne par \mathcal{M} l'espace des sous-variétés intermédiaires de W, munide la topologie habituelle des espaces de sous-variétés (c'est-à-dire la topologie quotient de la topologie C^{∞} des espaces de plongements).

Lemme 2. 1) L'application $\tilde{\mathcal{F}}_{i,q} \to \mathcal{H}$ définie en associant à tout $f \in \tilde{\mathcal{F}}_{i,q}$ la variété de niveau $f^{-1}(\frac{1}{2})$ est une fibration localement triviale compatible avec la stratification de $\tilde{\mathcal{F}}_{i,q}$.

2) Soit $M \in M$ et soit \mathcal{F}_M la fibre de $\mathcal{F}_{i,q}$ située au-dessus de M. Soit \mathcal{F}_M^+ (resp. \mathcal{F}_M^-) l'espace des fonctions de Morse : $(W_M^+, M, V \times 1) \to ([\frac{1}{2}, 1], \frac{1}{2}, 1) \text{ (resp. } (W_M^-, V \times 0, M) \to ([0, \frac{1}{2}], 0, \frac{1}{2})) \text{ ayant en }$ tout q points critiques, tous d'indice i+1 (resp. i). Soit f $\in \mathcal{F}_M$ et soient respectivement $\mathcal{F}_{M,f}$, $\mathcal{F}_{M,f}^+$ et $\mathcal{F}_{M,f}^-$ les sous-espaces de \mathcal{F}_M , \mathcal{F}_M^+ et \mathcal{F}_M^- formés des fonctions qui sont tangentes d'ordre infini à f le long de M. Dans le diagramme commutatif :

où toutes les flèches sont les morphismes naturels, la flèche verticale de gauche est un isomorphisme; \mathcal{F}_{M} (resp. \mathcal{F}_{M}^{+} , resp. \mathcal{F}_{M}^{-}) est isomorphe au produit de $\mathcal{F}_{M,f}$ (resp. $\mathcal{F}_{M,f}^{+}$), resp. $\mathcal{F}_{M,f}^{-}$) et d'un espace stratifié trivial.

Démonstration.

- 1) Le groupe Diff W opère à gauche dans $\tilde{\mathcal{F}}_{i,q}$ et dans \mathcal{M} de façon compatible avec la stratification de $\tilde{\mathcal{F}}_{i,q}$ et avec l'application $\tilde{\mathcal{F}}_{i,q} \to \mathcal{M}$. D'autre part il résulte de [3], Appendice, théorème 3, p.114, que pour tout $\mathbb{M} \in \mathcal{M}$ l'application $g \mapsto g.\mathbb{M}$ de Diff W dans \mathcal{M} admet des sections locales. On en déduit le résultat en raisonnant comme dans la démonstration du lemme 1 de I,3.2.
- 2) L'isomorphisme $\mathcal{F}_{M,f}$ $\approx \mathcal{F}_{M,f}^+ \times \mathcal{F}_{M,f}^-$ est clair. On définit une fibration de \mathcal{F}_{M} en associant à tout f' $\in \mathcal{F}_{M}$ son jet d'ordre infini le long de M ; la base est un espace topologique contractile ; on montre que la fibration est triviale et compatible avec la stratification par le même procédé que ci-dessus, le groupe à considérer étant ici le sous-groupe de Diff W formé des difféomorphismes qui laissent M stable ; il est clair que $\mathcal{F}_{M,f}$ est la fibre de \mathcal{F}_{M} située au-dessus du jet de f . Même démonstration pour la décomposition de \mathcal{F}_{M}^+ et celle de \mathcal{F}_{M}^- .

Corollaire. La stratification naturelle des espaces $\mathcal{F}_{M,f}^+$, $\mathcal{F}_{M,f}^-$, \mathcal{F}_{M}^+ , \mathcal{F}_{M}^- ,

Démonstration. Dans le cas de $\mathcal{F}_{i,q}$, \mathcal{F}_{M}^{+} , \mathcal{F}_{M}^{-} , cela résulte du corollaire du lemme 1 de I,3.2; dans le cas de $\mathcal{F}_{M,f}^{+}$ et $\mathcal{F}_{M,f}^{-}$, cela résulte de la remarque finale de I,3.2. On passe de là à $\mathcal{F}_{M,f}$, puis à \mathcal{F}_{M} , par le lemme ci-dessus.

Application aux nerfs.

Notations. Soit M \in oU,; on conserve les notations $\mathcal{F}_{\mathbb{N}}$, $\mathcal{F}_{\mathbb{N}}^+$, $\mathcal{F}_{\mathbb{N}}^-$, etc. introduites dans l'énoncé du lemme 2; on note $\Phi_{\mathtt{i},\mathtt{q}}$, $\Phi_{\mathbb{N}}$, $\Phi_{\mathbb{N}}^+$, $\Phi_{\mathbb{N}}^-$ les nerfs res-

pectifs des espaces stratifiés $\mathcal{F}_{i,q}$, \mathcal{F}_{M} , \mathcal{F}_{M}^{+} , \mathcal{F}_{M}^{-} .

On note $\mathfrak{G}_{\mathbb{M}}$ le sous-groupe de Diff W formé des difféomorphismes qui sont dans la composante connexe de l'identité et qui laissent stable M; on note $\pi_{O}(\mathfrak{G}_{\mathbb{M}}) = \Pi$.

Proposition 2. 1) Le morphisme $\Phi_{\overline{M}} \to \Phi_{\overline{M}}^+ \times \Phi_{\overline{M}}^-$ défini par le morphisme naturel $\mathcal{F}_{\overline{M}} \to \mathcal{F}_{\overline{M}}^+ \times \mathcal{F}_{\overline{M}}^-$ est un isomorphisme.

- 2) <u>Le groupe</u> Π <u>opère à gauche de façon naturelle dans</u> $\Phi_{\overline{M}}$; <u>de même le groupe</u> $\pi_{\overline{O}}(\text{Diff }W_{\overline{M}}^+)$ (resp. $\pi_{\overline{O}}(\text{Diff }W_{\overline{M}}^-)$) <u>opère à gauche dans</u> $\Phi_{\overline{M}}^+$ (resp. $\Phi_{\overline{M}}^-$); <u>ces opérations sont compatibles avec les morphismes naturels</u> $\Phi_{\overline{M}} \to \Phi_{\overline{M}}^+ \times \Phi_{\overline{M}}^- \underline{\text{et}} \Pi \to \pi_{\overline{O}}(\text{Diff }W_{\overline{M}}^+) \times \pi_{\overline{O}}(\text{Diff }W_{\overline{M}}^-).$
- 3) Soit \mathcal{H}_{0} la composante connexe de M dans \mathcal{M} ; soit $\mathcal{F}_{i,q;0}$ la partie de $\mathcal{F}_{i,q}$ formée des fonctions dont les variétés intermédiaires appartiennent à \mathcal{M}_{0} ; Φ_{M}/Π est naturellement isomorphe au nerf $\Phi_{i,q;0}$ de $\mathcal{F}_{i,q;0}$.

Démonstration. 1) C'est une conséquence immédiate du 2) du lemme 2 et du fait que le foncteur nerf est compatible avec les produits (cf. 1.1, propriété 3).

- 2) Les groupes \P_M , Diff W_M^+ , Diff W_M^- opèrent à gauche (de la façon habituelle) respectivement dans \mathcal{F}_M , \mathcal{F}_M^+ , \mathcal{F}_M^- de façon compatible avec les morphismes naturels $\mathcal{F}_M \to \mathcal{F}_M^+ \times \mathcal{F}_M^-$ et $\P_M \to \mathrm{Diff} \ W_M^+ \times \mathrm{Diff} \ W_M^-$. D'où, par passage au quotient, les opérations et la propriété de compatibilité annoncées.
- 3) L'espace $\mathcal M$ est localement connexe par arcs, et, d'après le corollaire du lemme 2, la stratification de $\mathcal F_{\mathbb M}$ est combinatoire ; il résulte donc de la proposition 1 de 1.3 que $\pi_1(\mathcal M;\mathbb M)$ opère à droite dans $\Phi_{\mathbb M}$ et qu'on a un isomorphisme naturel :

$$\Phi_{\mathbf{M}}/\pi_{1}(\mathcal{U};\mathbf{M}) \stackrel{\mathbf{3}}{\sim} \Phi_{\mathbf{i},\mathbf{q};0}$$
 .

Soit \mathfrak{g}_e la composante connexe de e dans Diff W; soit f $\mathfrak{F}_{\mathbb{N}}$; l'application $g\mapsto g(\mathbb{N})$ est une fibration localement triviale de \mathfrak{g}_e sur \mathscr{M} ; la

fibre située au-dessus de M est $\mathcal{G}_{\mathbb{M}}$. Cette fibration peut se factoriser par l'application $g\mapsto fog^{-1}$ de \mathcal{G}_{e} dans $\widetilde{\mathcal{F}}_{i,q;o}$, et la fibration de $\widetilde{\mathcal{F}}_{i,q;o}$ sur \mathcal{M} ; (on a noté $\mathcal{F}_{i,q;o}\cap\widetilde{\mathcal{F}}_{i,q}=\widetilde{\mathcal{F}}_{i,q;o}$). Il en résulte que les opérations de $\pi_{i}(\mathcal{M};\mathbb{M})$ dans $\Phi_{\mathbb{M}}$ sont composées de l'antimorphisme $\pi_{i}(\mathcal{M};\mathbb{M})\to \Pi$ défini par la fibration $\mathcal{G}_{e}\to\mathcal{M}$, et des opérations à gauche de Π dans $\Phi_{\mathbb{M}}$. On a donc le diagramme commutatif

$$\Phi_{\mathbf{M}}/(\pi,\mathcal{A};\mathbf{M}) \xrightarrow{\tilde{\mathbf{x}}} \Phi_{\mathbf{i},q;0}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad$$

La flèche verticale de gauche est un isomorphisme, car la suite exacte d'homotopie

$$\ldots \rightarrow \pi_{1}(\mathcal{U};\mathbb{M}) \rightarrow \pi_{0}(\mathcal{G}_{\mathbb{M}}) \rightarrow \pi_{0}(\mathcal{G}_{\mathbb{R}}) \rightarrow \ldots$$

de la fibration $\mathcal{G}_e \to \mathcal{U}$ montre que l'antimorphisme $\pi_1(\mathcal{U};\mathbb{M}) \to \Pi$ est surjectif. La flèche verticale de droite est un isomorphisme d'après le lemme 1. Ceci achève la démonstration.

Corollaire. Pour que le morphisme naturel $\Phi_{M}/\Pi \to \Phi_{i,q}$ soit bijectif, il faut et il suffit que l'espace \mathcal{U}_{D} des variétés intermédiaires soit connexe.

<u>Démonstration</u>. D'après le 3) de la proposition 2, la bijectivité du morphisme naturel $\Phi_{\mathbb{M}}/\Pi \to \Phi_{\mathbf{i},\mathbf{q}}$ équivaut à $\Phi_{\mathbf{i},\mathbf{q};\mathbf{0}} = \Phi_{\mathbf{i},\mathbf{q}}$; ceci équivaut à $\Phi_{\mathbf{i},\mathbf{q};\mathbf{0}} = \Phi_{\mathbf{i},\mathbf{q}}$; c'est-à-dire à la connexité de \mathcal{M} .

La proposition suivante donne une condition suffisante pour que \mathcal{M} soit connexe, et par conséquent pour que $\Phi_{\overline{M}}/\Pi \approx \Phi_{i,q}$. Elle est utilisée pour la démonstration du théorème 4 du §4 (structure de $\Phi_{i,q}$) mais non pour celle du théorème 3 (connexité de l'espace des fonctions sans point critique).

Proposition 3. Si $\pi_1(V) = 0$, $n \ge 6$ et $2 \le i \le n-3$, l'espace # des variétés (i,q)-intermédiaires est connexe pour tout $q \ge 0$. [On rappelle que

n = dim W].

Démonstration. Soit $f \in \mathcal{F}_{i,q}$; toutes les variétés intermédiaires de f sont isotopes, et il résulte du lemme des chemins élémentaires de croisement (cf. II,3.1, proposition 2) que l'élément de $\pi_o(\mathcal{W})$ ainsi déterminé ne dépend que de la classe d'homotopie de f dans $\mathcal{F}_{i,q}$. Ceci définit une application $\pi_o(\mathcal{F}_{i,q}) \to \pi_o(\mathcal{W})$ qui est visiblement surjective ; il suffit donc de montrer que deux éléments quelconques de $\pi_o(\mathcal{F}_{i,q})$ ont même image dans $\pi_o(\mathcal{W})$; on procède par récurrence sur g:

- a) q=0. Les variétés "intermédiaires" d'une fonction ayant zéro point critique sont les variétés de niveau autres que $V \times \{0\}$ et $V \times \{1\}$. Soient f et f' deux telles fonctions ; on peut déformer f' par isotopie pour qu'elle coïncide avec f au voisinage de $V \times \{0\}$ (cf. 5.2, démonstration de la proposition 8) ; donc 'f et f' ont même image dans $\pi_0(M)$.
- b) Soit $q \geqslant 1$; supposons la propriété démontrée pour l'entier q-1. Soient σ et σ' deux éléments de $\pi_0(\mathcal{F}_{1,q})$. D'après le lemme de la base (cf. [10], théorème 7.6, p.92) et le "cancellation lemma" (cf. [10], théorème 6.4, p.69), les conditions de l'énoncé permettent de choisir dans σ (resp. σ') un représentant f (resp. f') qui appartienne à $\mathcal{F}_{1,q}^0$ et qui soit origine d'un chemin de mort α , d'extrémité notée f (resp. α' , d'extrémité notée f'). Soit M (resp. M') une variété intermédiaire de f (resp. f'). Par hypothèse de récurrence, M et M' sont isotopes ; on peut donc supposer, en modifiant au besoin f' par une isotopie, que M'=M, et que f' et f coîncident sur un voisinage ouvert U de M. Soit β un chemin élémentaire de naissance d'origine f, à support contenu dans U; β définit de façon naturelle un chemin β' d'origine f'; on note f_1 (resp. f_1^1) l'extrémité de β (resp. β^1). Les fonctions f_1 et f_1^1 ont une variété intermédiaire commune ; or d'après le lemme d'unicité des naissances, f_1 est isotope à f, et f_1^1 est isotope à f'; donc f et f' ont même image dans π_0 (W).

2.2. Le nerf de l'espace & comme "limite" des nerfs des espaces & ., q

On rappelle que l'espace \mathcal{F}_{i} a été défini en V,2.1 comme réunion des $\mathcal{F}_{i,q}$ et des $\mathcal{F}_{i,q;\alpha}$, où $\mathcal{F}_{i,q;\alpha}$ est la sous-variété de codimension 1 de $\mathcal{F}_{i,q}$ qui sépare $\mathcal{F}_{i,q}$ de $\mathcal{F}_{i,q+1}$. La codimension d'un élément f de \mathcal{F}_{i} est définie par la formule (5) de I,3.1 :

codimension
$$f = v_1(f) + v_2(f)$$
;

ici $\nu_1(f)$ est égal à 1 ou 0 suivant que va ou non un point de naissance, et $\nu_2(f)$ est égal au nombre de points critiques de Morse de f , diminué du nombre correspondant de valeurs critiques. La stratification de \mathcal{F}_i est définie de la manière habituelle : f appartient à la strate \mathcal{F}_i^j si et seulement si $\nu_1(f) + \nu_2(f) = j$.

<u>Définition</u> 2. On désigne par Y le complexe simplicial ordonné défini sur l'ensemble {-1,0,1} par les relations -1 > 0 et 1 > 0.

Soit $\chi:\Phi\to\Phi^{\circ}$ un morphisme de complexes simpliciaux ordonnés; on appelle <u>mapping cylinder</u> de χ le quotient de la réunion disjointe de $\Phi\times Y$ et de Φ° par la relation d'équivalence : $(x,1)\sim \chi(x)$ pour tout $x\in\Phi$. Soit

$$(1) \qquad \Phi_{0} \xrightarrow{\chi_{0}} \Phi_{1} \rightarrow \dots \rightarrow \Phi_{q} \xrightarrow{\chi_{q}} \Phi_{q+1} \rightarrow \dots$$

une suite de morphismes de complexes simpliciaux ordonnés ; on note Ψ_q le mapping cylinder de χ_q . On appelle <u>limite en escalier</u> de la suite (1) le quotient de la réunion disjointe des Ψ_q par la relation d'équivalence suivante :

$$x \sim (x,-1)$$
 pour tout $x \in \Phi_{\alpha+1} \subset \Psi_{\alpha}$ et tout $q > 0$.

Proposition 4. Soit, pour tout q > 0, $\Phi_{i,q}$ le nerf de $\mathfrak{F}_{i,q}$ et soit Φ_{i} le nerf de \mathfrak{F}_{i} . Si $\pi_{1}(V) = 0$, si n > 6, et si 1 < i < n-1, il existe une suite d'injections naturelles

(2)
$$\Phi_{i,o} \xrightarrow{\chi_o} \Phi_{i,1} \xrightarrow{\ldots} \cdots \xrightarrow{\Phi_{i,q}} \Phi_{i,q+1} \xrightarrow{\chi_q} \cdots \cdots$$

et Φ_i est naturellement isomorphe à la limite en escalier de la suite (2).

Démonstration. Pour tout $q \geqslant 0$, on note $\mathcal{F}_{i,q+1;\sigma}$ la partie de $\mathcal{F}_{i,q+1}$ formée des fonctions qui sont extrémité d'un chemin de naissance issu de $\mathcal{F}_{i,q}$. Soit A une cocellule de la stratification définie sur $\mathcal{F}_{i,q}$ $\mathcal{U}\mathcal{F}_{i,q;\alpha}$ $\mathcal{U}\mathcal{F}_{i,q+1;\sigma}$ par la fonction à valeurs entières ν_2 . Il résulte du lemme des chemins élémentaires de croisement que A rencontre $\mathcal{F}_{i,q;\alpha}$ transversalement , de sorte que A $\cap \mathcal{F}_{i,q;\alpha}$ est de codimension 1 dans A . Il en résulte que le lemme des chemins élémentaires de naissance s'applique dans A aux chemins de traversée de A $\cap \mathcal{F}_{i,q;\alpha}$ dont l'origine est dans $\mathcal{F}_{i,q}$. Le lemme d'unicité des naissances s'applique donc dans toute ν_2 -strate A , ce qui permet de définir un morphisme

(3)
$$\Phi_{i,q} \times Y \rightarrow \text{nerf de la stratification naturelle de}$$

$$(\mathcal{F}_{i,q} \cup \mathcal{F}_{i,q;\alpha} \cup \mathcal{F}_{i,q+1;\sigma})$$

prolongeant l'isomorphisme naturel $\Phi_{i,q} \times \{-1\} \to \Phi_{i,q}$. De même, sous les conditions de l'énoncé, le lemme d'unicité des morts s'applique dans toute v_2 -strate A, ce qui permet de définir un morphisme réciproque de (3), de sorte que (3) est un isomorphisme et définit, par restriction à $\Phi_{i,q} \times \{1\}$, un isomorphisme $\tilde{\chi}_q$ de $\Phi_{i,q}$ sur le nerf $\Phi_{i,q+1;\sigma}$ de $\mathcal{F}_{i,q+1;\sigma}$. Comme $\mathcal{F}_{i,q+1;\sigma}$ est réunion de cocellules de $\mathcal{F}_{i,q}$, le morphisme naturel μ_q de $\Phi_{i,q+1;\sigma}$ dans $\Phi_{i,q+1}$ est injectif, et le nerf de la stratification naturelle de $\mathcal{F}_{i,q} \cup \mathcal{F}_{i,q;\alpha} \cup \mathcal{F}_{i,q+1}$ est naturellement isomorphe au mapping cylinder de l'injection $\chi_q = \mu_q \circ \tilde{\chi}_q$ de $\Phi_{i,q}$ dans $\Phi_{i,q+1}$. Ceci définit la suite (2), et montre que pour tout q, le nerf de $\mathcal{F}_{i,0} \cup \mathcal{F}_{i,q;\alpha} \cup \ldots \cup \mathcal{F}_{i,q}$ est isomorphe à la limite en escalier de la suite (2), limitée à $\Phi_{i,q}$; d'où le résultat.

2.3. Compléments sur la "structure locale" du nerf $\phi_{\rm M}^+$ de $\sigma_{\rm M}^+$.

Conformément aux notations de VI,1.2, on appelle Δ le (q-1)-simplexe type de \mathbb{R}^q ; on appelle Ω le centre de Δ et $\mathcal{G}(\Delta)$ la première subdivision barycentrique de Δ . La stratification symétrique de \mathbb{R}^q est canoniquement isomorphe au produit de \mathbb{R} (trivialement stratifié) et de la stratification induite sur Δ - $\partial\Delta$ par la stratification naturelle de $\mathcal{G}(\Delta)$. Il résulte donc de 1.2, propriété 1, que <u>le nerf de la stratification symétrique de \mathbb{R}^q est canoniquement isomorphe au complexe simplicial ordonné K, sous-jacent à l'étoile de Ω dans la seconde subdivision barycentrique de Δ .</u>

On va appliquer la description de K faite en VI,1.2, à l'étude "locale" du nerf de $\mathfrak{T}_{\mathrm{M}}^+$; le résultat obtenu sera utilisé au \S suivant (démonstration du lemme 1 de 3.1).

<u>Définition</u> 3. Soit f $\in \mathfrak{F}_{\mathbb{N}}^+$; on dit qu'un ordre μ de l'ensemble critique de f est <u>décroissant</u> si

$$f(c_1) \gg f(c_2) \gg f(c_q)$$

Soit $\sigma \in \phi_M^+$; soit f un représentant de σ et soit μ un ordre <u>décroissant</u> de l'ensemble critique de f . Soit J la partie de $\{1,2,\ldots,q-1\}$ définie par

$$j \in J \iff f(c_j) = f(c_{j+1}).$$

L'ensemble J ne dépend ni du choix de f , ni de celui de μ , ce qui justifie la

Définition 3'. L'ensemble J est appelé type de o.

Lemme 3. Pour tout $J \subset \{1,2,\ldots,q-1\}$, on note F_J la face correspondante du simplexe fondamental de $\beta(\Delta)$ (cf. VI,1.2), b_J le barycentre de F_j , et F_{*J} l'étoile descendante de b_J dans K.

- 1) Soit $\sigma \in \phi_{\mathbb{N}}^+$, de type J; le choix d'un représentant f de σ et d'un ordre décroissant μ de l'ensemble critique de f détermine un morphisme $\mathring{\Psi}_{\mathbf{f},\mu}$ de F_{*J} sur l'étoile descendante de σ dans $\phi_{\mathbb{N}}^+$.
- 2) Toute famille $(\mathring{\Psi}_{f,\mu})$ obtenue par le procédé précédent, en faisant décrire à σ tout l'ensemble $\phi_{\mathbb{N}}^+$, définit la structure simpliciale de $\phi_{\mathbb{N}}^+$.
- 3) L'élément σ et son représentant f étant donnés, l'ordre décroissant μ est défini à composition près avec un élément arbitraire du groupe S_J (sous-groupe de S_q engendré par les transpositions s_j , pour $j \in J$); les opérations de S_J dans \mathbb{R}^q laissent stables F_j et F_{*J} , et on a $\Psi_{f,\mu os} = \Psi_{f,\mu} \circ s$. pour tout $s \in S_J$.

Démonstration. 1) Choisissons un cône ouvert X_J , normal à F_J dans Δ , de sommet b_J (de dimension card J). Les points b_J et $\eta_\mu(f)$ appartiennent à la même cocellule de la stratification symétrique de \mathbb{R}^q . Soit τ une carte transverse en $\eta_\mu(f)$, de source X_J , définie par composition d'une homothétie de rapport assez petit de X_J par rapport à son centre, et de la translation de \mathbb{R}^q qui transporte b_J en $\eta_\mu(f)$. D'après le lemme 1 de I,3.2, l'application η_μ admet une section vau-dessus d'un voisinage de $\eta_\mu(f)$; et d'après le b) de la propriété 5 de 1.1, le morphisme $\mathscr{N}(X_J) \to \phi_M^+$ défini par por est indépendant du choix de ρ ; d'autre part il est visiblement indépendant du choix de τ ; on prend pour $\Psi_{f,\mu}$ le composé de ce morphisme et du morphisme canonique $F_{*,T} \to \mathscr{N}(M)$.

- 2) C'est une conséquence immédiate de la propriété 4 de 1.1 .
- 3) Il est clair que si μ est un ordre décroissant, tous les autres sont les éléments de μoS_J . Il résulte de la définition des opérations de S_q dans \mathbb{R}^q (cf. VI,1.2, formule (1)), qu'on a pour tout s $\in S_J$

$$\eta_{\mu os} = s^{-1} \circ \eta_{\mu}$$
;

la formule (4) ci-dessus en découle immédiatement.

§ 3. Revêtement de $\mathcal{C}_q \times \mathcal{C}_q$ par Φ_M ; invarient algébrique d'un élément de $\Phi_{i,q}$.

3.1. Le morphisme &.

Les notations de ce numéro sont celles de 2.1. ci-dessus et du § 1 du chapitreVI.

Soit M une variété intermédiaire de W; soit, conformément aux notations de 2.1., W_{M}^{+} l'adhérence de la partie de W comprise entre $V \times \{1\}$ et M. On sait que $H_{i+1}(W_{M}^{+}, M)$ est isomorphe à \mathbb{Z}^{q} ; une base de $H_{i+1}(W_{M}^{+}, M)$ (on dira simplement : une base) est un isomorphisme φ de \mathbb{Z}^{q} sur $H_{i+1}(W_{M}^{+}, M)$.

<u>Définition 1.</u> Soit $f \in \mathcal{F}_{M}^{+}$ (cf. 2.1., lemme 2). Une base φ est dite <u>adaptée</u> à f s'il existe un ordre décroissant c_1 , c_2 ,..., c_q de l'ensemble critique de f (cf. 2.3., définition 3) et un système de nappes descendantes orientées D_1 , D_2 ,..., D_q de f, issues respectivement de c_1 , c_2 ,..., c_q tels que (en désignant par $(\mathcal{E}_1,\mathcal{E}_2,\ldots,\mathcal{E}_q)$ la base canonique de \mathbb{Z}^q), $\varphi(\mathcal{E}_j)$ soit, pour tout $j \in \{1,\ldots,q\}$, l'image dans $H_{i+1}(W_M^+,M)$ de la classe fondamentale de D, .

On notera qu'à toute base φ adaptée à f est associé un ordre bien déterminé de l'ensemble critique de f; on note cet ordre $\mu(\varphi)$. Si on fait opérer le groupe symétrique S_q de la manière habituelle (cf. $\overline{\Sigma}$, 1.2., formule (1)), on a

(1)
$$\mu(\varphi \circ s) = \mu(\varphi) \circ s$$
 pour tout $s \in S_n$.

Lemme 1. Soit $f \in \mathcal{F}_{M}^{+}$; si ϕ est une base adaptée à f, alors ϕ est aussi adaptée à tout élément \widehat{f} de \mathcal{F}_{M}^{+} suffisamment voisin de f, et situé dans la strate de f (pour la stratification naturelle de \mathcal{F}_{M}^{+}).

<u>Démonstration</u>. Si \tilde{f} est assez voisin de f, alors d'après la propriété 2 de \tilde{I} , 3.2., il existe $(\tilde{g},\tilde{g}) \in DiffW \times DiffI$, proche de l'élément neutre, tel que $\tilde{f} = \tilde{g}' \circ f \circ \tilde{g}^{-1}$. On pose $\tilde{g}(c_j) = \tilde{c}_j$; il résulte du 1) du lemme 1 de \tilde{I} , 3.2. que le point $(\tilde{f}(\tilde{c}_j),\ldots,\tilde{f}(\tilde{c}_q))$ est dans la même strate de la stratification symétrique de \tilde{R}^{n} que le point $(f(c_1),\ldots,f(c_n))$. En particulier on a

$$\tilde{f}(\tilde{c}_1) \geqslant \tilde{f}(\tilde{c}_2) \geqslant \dots \geqslant \tilde{f}(\tilde{c}_d)$$
;

sutrement dit, l'ordre $(\tilde{c}_1,\ldots,\tilde{c}_n)$ de l'ensemble critique de \tilde{f} est détroissant. D'autre part $\tilde{g}(D_j)$ est une nappe descendante orientée de \tilde{f} issue de \tilde{c}_j puisque \tilde{g} est proche de l'élément neutre, l'image dans $H_{i+1}(U_i^+, I_i)$ de la classe fondamentale de $\tilde{g}(D_j)$ est la même que celle de D_j , c'est-ù-dire $\varphi(\tilde{c}_j)$.

Le lemme 1 justifie la <u>Définition 1'. Soit G un élément de Φ_{M}^{+} (nerf de \mathfrak{F}_{N}^{+}). On dit qu'une base φ est <u>adaptée</u> à 6 s'il existe un représentant f de 6 auquel φ soit adaptée; (φ est alors adaptée à tout représentant de 6).</u>

- Lemme 2. Soit $G \in \Phi_{\mathfrak{N}}^+$; soit J le type de G (cf. 2.3., définition 3'). Soit φ une base adaptée à G.
- 1) L'ensemble de toutes les bases adaptées à 6 est contenu dans l'ensemble $\varphi \circ (T_j \cdot S_j)$; ces deux ensembles coıncident si $1 \le i \le n-3$. (Pour la définition de T_j , cf. VI, 1.1.)
 - 2) φ <u>définit un morphisme</u> $\varphi_*: F_* \to \Phi_{11}^+$, <u>dont l'image est l'étoile</u>

 <u>descendante de G</u>; <u>pour tout</u> $s \in S_J$, <u>on a</u>

 (2) $(\varphi \circ s)_* = \varphi_* \circ s$.
 - 3) Soit $\xi \in \mathbb{F}_{*}$; si ξ est un point du simplexe fondomental, alors φ est adaptée à $\psi_{*}(\xi)$.

Démonstration. 1) Soit f un représentant de σ ; soient c_1 , c_2 ,..., c_q les points critiques de f rangés dans un ordre décroissant; soit D_1 , D_2 ,..., D_q un système de nappes descendantes orientées issues respectivement de c_1 , c_2 ,..., c_q , représentant φ . Soit M' une variété de niveau non critique située immédiatement en dessous de c_1 (c'est -à-dire de façon qu'il n'y ait aucun point critique entre M' et la variété de niveau de c_1); soit M' la partie de M' située entre M et M'; on note M' l'image du morphisme

$$H_{i+1}(W',M) \rightarrow H_{i+1}(W_{i}^{+},M)$$
.

Soit \widetilde{D}_{j} une nappe descendante arbitraire issue de c_{j} , orientée de façon cohérente avec l'orientation de D_{j} en c_{j} ; soient α et $\widetilde{\alpha}$ les éléments de $H_{i+1}(V_{M}^{i}, M)$ respectivement représentés par D_{j} et \widetilde{D}_{j} ; la classe $\alpha - \widetilde{\alpha}$ est dans H'. Il en résulte que toute base adaptée à f (et par conséquent toute base adaptée à G) est de la forme $\varphi \circ g$, où g appartient au sous-groupe de $GL(q, \mathbb{Z})$ engendré par S_{j} et T_{j} ; or ce sous-groupe est identique à T_{j} . S_{j} (sinsi d'ailleurs qu'à S_{j} . T_{j} ; cf. V_{j} , 1.1., 2) du lemme 2).

Si la condition $1 \le i \le m-3$ est réalisée, on sait d'après le lemme de la base, (cf. [n], p. 92) que l'on peut choisir [n] de façon que $\alpha - \tilde{\alpha}$ soit un élément arbitraire de H'; on peut donc choisir [n], [n], [n], [n] de façon à représenter un élément arbitraire de [n] (T_J.S_J).

2) On a vu que, pour tout représentant f de $\mathbf{6}$, $\mathbf{9}$ définit un ordre décroissant μ ($\mathbf{9}$) de l'ensemble critique de \mathbf{f} ; le morphisme $\mathbf{v}_{\mathbf{f},\mu}(\mathbf{9})$ défini par le 1) du lemme 3 cle 2.3. , est indépendant du choix de \mathbf{f} (puisqu'il garde la même valeur si on remplace \mathbf{f} par \mathbf{f} suffisamment voisin de \mathbf{f}). On pose

$$\dot{\psi}_{f,\mu(\varphi)} = \dot{\varphi}_{\#}$$

On a d'après (1) ci-dessus et d'après le 3) du lemme 3 de 2.3.

ceci prouve (2).

3) Soit f un représentant de G . Soient c_1 , c_2 ,..., c_q les points critiques de f dans l'ordre défini par φ . Soit $\xi \in F_*$, si ξ appartient au simplexe fondamental, ses coordonnées vérifient

soit J' la partie de J définie par

$$j \in J' \Leftrightarrow \xi_j = \xi_{j+1}$$
.

Par une petite modification de f au voisinage des points critiques c. (pour je J - J'), on peut obtenir une fonction f, ayant même ensemble critique que f, telle que

$$\widetilde{f}(c_1) \geqslant \widetilde{f}(c_2) \geqslant \ldots \geqslant \widetilde{f}(c_q)$$
,

et que

$$j \in J' \Leftrightarrow f(c_j) > f(c_{j+1})$$
.

Une telle fonction \tilde{f} est un représentant de $\phi_*(\xi)$, et admet ϕ comme base adaptée.

Choix d'une base. On choisit une fois pour toutes une base $\varphi: Z^{q} \to H_{i+1}(W_{M}^{+}, M)$. A toute base φ on associe la matrice $\varphi_{0}^{-1} \circ \varphi$.

Soit $G \in \stackrel{\bullet}{\mathbb{Z}}_{M}^{+}$; on dit qu'un élément $g \in GL(q,\mathbb{Z})$ est adapté à G s'il est de la forme $\varphi_{0}^{-1} \circ \varphi$, où φ est une base adaptée à G .

On utilise la notation G pour $GL(q, \mathbb{Z})$ ainsi que les notations T , T , G , définies M \overline{V} , G

Proposition 5. 1) Soit $G \in \Phi_{M}^{+}$, de type J; soit g une matrice adaptée à G; la partie $\widehat{\mathfrak{gS}}_{\mathfrak{gS}}$ de $\mathfrak{G}/\mathfrak{T}_{\mathfrak{gS}}$ est indépendante du choix particulier de $\mathfrak{g}_{\mathfrak{gS}}$ 2) L'application $\widehat{\omega}^+$ qui à tout $\mathfrak{G} \in \Phi_{\mathfrak{M}}^+$ associe l'élément de $\mathfrak{G}_{\mathfrak{g}}$ ainsi

défini est un morphisme $\Phi_{M}^{+} \to G_{\mathbf{q}}$

3) La réalisation géométrique $|\bar{\Phi}|_{M}^{+}$ de $\bar{\Phi}_{M}^{+}$ a une structure naturelle de ([C] est la structure naturelle de CV-complexe de C (cf. VI, 4.3., propriété 3)).

- 4) Le morphisme ω^+ est surjectif si $1 \le i \le n-3$.
- 5) Si $2 \le i \le m \frac{1}{4}$ et si $\pi_1(V) = 0$, le morphisme $\vec{\omega}^{\dagger}$ fait de $\left[\Phi_{M}^{\dagger} \right]$ un revêtement de [G].

Démonstration. 1) Il résulte du 1) du lemme 2 que l'ensemble des matrices adaptées à G est contenu dens $g.T_1.S_1$; la propriété annoncée résulte donc du 3) du lemme 2 de VI, 1.1.

2) Pour montrer que $\overline{\omega}^+$ est un morphisme, il suffit d'après la propriété 4 de 1.1., de montrer que toutes les applications composées

$$F_{*J} \xrightarrow{\varphi_*} \Phi_M^+ \xrightarrow{\overline{\omega}^+} \aleph_{\mathfrak{q}}$$

 Π , 4.2 ; on sait (loc.cit., propriété 2) que $\beta(Y) = F_{*,1}$; il suffit donc, pour montrer que $\bar{\omega}^{\dagger}$ o φ_{*} est un morphisme, de montrer que pour tout G de type J et toute base ϕ adaptée à G , il y a commutativité dans le diagramme suivant (dans lequel g = φ_0^{-1} \circ φ , et χ_g désigne le morphisme défini au début de VI, 1.3. :

(3)
$$\begin{array}{ccc}
F_{*J} & \xrightarrow{\beta^{-1}|F_{*J}} & & & \downarrow \\
& & & & & \downarrow \\
& &$$

Or tout sommet de F_{*J} est de la forme s. ξ , où s \in S_J et où ξ est un sommet de $F_{*,1}$ appartenant au simplexe fondamental. Soit J' le type de ξ ;

$$\chi_g \circ \beta^{-1} (s\xi) = \widehat{gs S_J},$$

D'autre part, d'après le 2) du lemme 2, on a

$$\varphi_* (s\xi) = (\varphi \circ s)_* (\xi) ;$$

donc, d'après le 3) du même lemme, φ o s est adaptée à $\varphi_*(s\xi)$. Il résulte donc du 1) du même lemme et de la définition de $\widetilde{\omega}^+$ que

$$\vec{\omega}^{\dagger} \circ \varphi_{*}(s\xi) = \widehat{gsS}_{j}, ;$$

ceci prouve la commutativité du diagramme (3).

3) C'est une conséquence immédiate de la commutativité du diagramme (3) : l'application χ_g étant injective (cf. \overline{VI} , 4.3. , propriété 2), chaque ψ_* est injectif, et la restriction de $\overline{\omega}^+$ à l'étoile descendante de 6 est une bijection sur l'étoile descendante de $\overline{\omega}^+$ (G).

La démonstration des propriétés 4) et 5) utilise le lemme suivant :

- Lemme 3. 1) Pour tout couple (χ, δ) de cellules de $[\mathcal{E}_{\eta}]$ telles que $\delta \subset \chi$, et tout relèvement \mathcal{E}_{η} de χ dens $[\Phi_{\eta}^+]$, il existe un relèvement G de χ tel que $\mathcal{E} \subset G$.
 - 2) Si $\pi_1(V) = 0$ et $2 \le i \le n 4$, le relèvement donné par le 1) est unique (lorsque γ , δ et τ sont donnés).

Soit f un représentant de Υ ; g est adapté à Υ , donc il existe une base φ adaptée à f telle que $\varphi_0^{-1} \circ \varphi = g$. Soit f'une fonction de type J obtenue à partir de f par une déformation qui conserve un système de nappes descendantes donné, représentant φ ; soit G la cellule de $L\overline{\Psi}_N^+$ définie par f'; G contient Υ , et g est adapté à G; l'ensemble des matrices adaptées à G est donc gS_j ; donc $\overline{\omega}^+(G) = \gamma$.

2) On va donner la démonstration de ce résultat dans le cas particulier suivant (le seul qui sera utilisé dans la suite) : $J' = J - \{j_1\}$, où j_1 est le plus petit élément de J. Soit $\{1,\ldots,\ell\}$ la plus grande suite d'entiers <u>consécutifs</u> tels que $j_1 + 1,\ldots,j_1 + \ell$ appartiennent tous à J. Soient g, f, φ comme ci-dessus;

soient c_1 , c_2 ,..., c_q les points critiques de f dans l'ordre défini par ϕ . Soient M' et M" les variétés de niveau de f relatives aux valeurs $f(c_{j_1+j_1})-\gamma$ et $f(c_{j_1+j_1})+\gamma$, où le nombre positif γ est choisi assez petit pour que c_{j_1+1} ,..., $c_{j_1+\ell}$ soient les seuls points critiques de f situés dans la partie χ de χ_{M}^{\dagger} délimitée par M' et M". Considérons le diagramme suivant :

où T est défini en V, 1.1. , et où les morphismes considérés sont les suivants :

- la flèche verticale de gauche est la composée de l'isomorphisme $H_{i+1}(X,M') \approx \mathbb{Z}^\ell$ défini par φ et de l'isomorphisme $(\lambda_1,\lambda_2,\ldots,\lambda_\ell) \mapsto t_\lambda$, où

$$t_{\lambda} = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & &$$

- la flèche horizontale du bas est définie par $t \mapsto [gtS_j]$; c'est une bijection d'après le 2) de la proposition 2 de [a, 1.3].
- la flèche horizontale du haut est définie comme suit :

Soit & l'espace des

chemins issue de f, réalisant le croisement de c_{j_1} avec l'ensemble de points critiques $\{c_{j_1+1},\ldots,c_{j_1+\ell}\}$ (toutes les valeurs critiques égales par ailleurs le restant). Puisque $\mathcal{T}_1(V)=0$ et $3\leqslant i+1\leqslant n-4$, le lemme des croisements à unclics égaint $(\mathcal{C}_{i_1},\mathcal{C}_{i_2},\mathcal{C}_{i_3})$ donne un isomorphisme : $\mathcal{C}_{i_1},\mathcal{C}_{i_2},\mathcal{C}_{i_3}$. D'autre part

il est clair

qu'on a une surjection naturelle

$$\pi_{o}(\mathcal{E}_{\ell}) \longrightarrow \{\text{ensemble des.J-cellules de } \mathbb{L}_{M}^{+} \text{]} \text{contenant } \mathcal{L} \}$$

D'où par composition la flèche du diagramme; c'est une surjection.

Pour achever de prouver le 2) du lemme 5, il reste à montrer la commutativité du diagramme (4). Or l'élément de $H_{i+1}(X,H^i)$ dont les coordonnées dans la base définie par φ sont $(\lambda_1,\lambda_2,\ldots,\lambda_\ell)$ donne un élément de ξ dont le point de croisement admet $\varphi \circ t_\lambda$ pour base adeptée, et par conséquent gt_λ pour matrice adaptée $(t_\lambda$ étant définie par (5)).

<u>Démonstration du 4) de la proposition 5</u> : dans l'hypothèse faite sur i, le théorème de la base est applicable à V_{M}^{+} ; l'image de $\overline{\omega}^{+}$ contient donc le D-squelette de $\begin{bmatrix} \mathcal{C} \\ \eta \end{bmatrix}$; il résulte donc du 1) du lemme 3 que $\overline{\omega}^{+}$ est surjectif.

Démonstration du 5) de la proposition $\overline{5}$: elle se fait en grimpant sur le squelette de [\mathbb{C}_n], en commençant au 1-squelette.

Soit χ une 1-cellule de $[\mathcal{C}_q]$, soient δ et δ ' ses extrémités. D'après le 1) et le 2) du lemme 3, la relation "être joints par une arête de $[\Phi_M^+]$ "définit une bijection entre les images réciproques de δ et δ ' par $\overline{\omega}^+$; la restriction de $\overline{\omega}^+$ au 1-squelette de $[\Phi_M^+]$ est donc un revêtement.

Supposons démontré que la restriction de $\overline{\omega}^+$ au j-squelette (j \geqslant 1) soit un revêtement; soit γ une (j + 1)-cellule de $[C_{ij}]$, soit J le type de γ , soit J' l'ensemble obtenu en privant J de son premier élément; on choisit une cellule δ , de type J', contenue dans γ ; d'après le 1) et le 2) du lemme 3, $\overline{\omega}$ est un revêtement (produit) au-dessus de γ ; donc $\overline{\omega}^+$ est un revêtement au-dessus du (j + 1)-squelette de $[\Phi]_{ij}^+$; ceci achève la démonstration par récurrence.

3.2. Le morphisme ω et l'invariant algébrique d'une fonction de $v_{i,q}^{\circ}$.

On conserva les notations du n° précédent; $\omega_{i,q}^{\circ}$ $\omega_{i,q}^{\circ}$ dim $w_{i,q}^{\circ}$ $\omega_{i,q}^{\circ}$.

3.2.1. On a vu ci-dessus en 3.1. que pour tout $M \in \mathcal{H}$, le choix d'une base φ_0 de $H_{i+1}(W_M^+, M)$ détermine un morphisme $\overline{\omega}^+: \overline{\Phi}_M^+ \to \mathcal{C}_{\overline{q}}$. De même, le choix d'une base φ_0^+ de $H_{i+1}(W_M^-, M)$ détermine un morphisme $\overline{\omega}^-: \overline{\Phi}_M^- \to \mathcal{C}_{\overline{q}}$; d'après le 4) de la proposition \overline{b} de 3.1., $\overline{\omega}^-$ est surjectif si

 $1 \le n - i - 1 \le n - 3$;

c'est-à-dire si

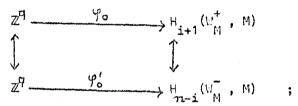
$$(6) 2 \le i \le n-2;$$

De même, d'après le 5) de la même proposition, $\vec{\omega}$ est un revêmement si $\mathcal{H}_4(V)$ = 0 et si

$$(7) 3 \le i \le n-3.$$

Donc, compte tenu de la décomposition $\Phi_{M} \approx \Phi_{M}^{+} \times \Phi_{M}^{-}$ (cf. 2.1., 1) de la proposition 2) le choix d'un couple $(\varphi_{0}, \varphi_{0}^{+})$ de beses respectives de $H_{i+1}(W_{M}^{+}, M)$ et de $H_{i+1}(W_{M}^{+}, M)$ détermine un morphisme $\overline{\omega}$ de Φ_{M} dans $G_{i} \times G_{i}$; $\overline{\omega}$ est surjectif si la condition $2 \le i \le n-3$ est vérifiée; c'est un revêtement si la condition $3 \le i \le n-4$ est vérifiée et si $\mathcal{H}_{1}(V) = 0$.

<u>Définition 2.</u> Soit (φ_0, φ_0') un couple de bases respectives de $H_{i+1}(W_M^+, M)$ et de $H_{m-i}(W_M^-, M)$. On dit que φ_0' est la <u>base duale</u> de φ_0 s'il y a compatibilité dans le diagramme suivant :



la dualité de \mathbb{Z}^{q} avec lui-même étant celle définie par le produit scalaire usuel, et la dualité entre $H_{\mathbf{i}+1}(\mathbb{N}^{+}, \mathbb{N})$ et $H_{\mathbf{n}-\mathbf{i}}(\mathbb{N}^{-}, \mathbb{N})$ étant la dualité de Poincaré. Le couple formé par une base de $H_{\mathbf{i}+1}(\mathbb{N}^{+}, \mathbb{N})$ et la base duale de

Le couple formé par une base de H (W_M^+, M) et la base duale de H (W_M^-, M) sera appelé simplement "couple de bases duales". Les propriétés suivantes sont immédiates :

- 1) Si (ϕ_0^-,ϕ_0^+) est un couple de bases duales relatives à M, alors l'ensemble de tous les autres couples de bases duales relatives à la même variété M est celui des couples $(\phi_0^- \circ g^+,\phi_0^+ \circ g^+)$, où g décrit G_0^- , et $g^+ = (g^+)^{-1}$.

Soit $\overline{\omega}$ le morphisme $\Phi_{\overline{M}} \to B_{\overline{Q}}$ défini par le couple (ϕ_0,ϕ_0') de bases duales; le morphisme défini par le couple $(\phi_0 \circ g_0,\phi_0' \circ g_0')$ est alors $g_0' \circ \overline{\omega}$.

Lemme 4. Soit $M \in \mathcal{M}$; soit φ_o une base de $H_{i+1}(W_M^+, M)$, et soit φ_o^* la base duele de $H_{m-i}(W_M^-, M)$; soit $\overline{\omega}$ le morphisme $\Phi_M \to \mathfrak{B}_n$ défini par $(\varphi_o^-, \varphi_o^+)$. Il V a commutativité dans le diagramme

où los opérations de $\Pi_{-\pi}(G_M)$ sont celles définies en 2.1., proposition 9; où f^{\dagger} est le composé du morphisme naturel $\Pi \rightarrow \pi$ (Diff W_M^{\dagger}) et du morphisme $\pi_{\alpha}(\text{Diff }W_M^{\dagger}) \Rightarrow g \longmapsto \varphi_{\alpha}^{-1} \circ g_* \circ \varphi_{\alpha} \in G_{\alpha};$

et où les opérations de G_q dens G_q sont définies par la formule (8) .

Remarque. Les opérations de \overline{T} dans $\overline{\Phi}_{M}$ sont compatibles avec la structure de complexe simpliciel ordonné de $\overline{\Phi}_{M}$, elles définissent donc de façon naturelle des opérations dans la réalisation géométrique $|\overline{\Psi}_{M}|$ de $\overline{\Phi}_{M}$, et dans le CW-complexe associé $|\overline{\Phi}_{M}|$. De même les opérations de G dans |G| s'étendent de façon naturelle à |G| et |G|. Le lemme de commutativité ci-dessus est évidemment encore valable pour ces opérations.

<u>Démonstration du lemme 4.</u> On a vu (cf. 2.1., 2) de la proposition 3) que les opérations de $\overline{11}$ dans $\overline{2}$ se font par l'intermédiaire du morphisme

$$T \ni g \longmapsto (g^{\dagger}, g^{-}) \in (\mathcal{T}_{o}(Diff W_{M}^{+}), \mathcal{R}_{o}(Diff W_{M}^{-})) ,$$

et des opérations respectives de $\pi_{0}(\text{Diff}\ W^{+})$ dans Φ^{+}_{M} et de $\pi_{0}(\text{Diff}\ W^{-}_{M})$ dans Φ^{-}_{M} . Or le diagramme

est commutatif; cela traduit le fait que, pour tout $f \in \mathcal{T}_{M}^{+}$ et tout

ge Diff W_M^+ , si φ est une base adaptée à f, alors $g_* \circ \varphi$ est adaptée à f $\circ g^{-1}$. La même propriété a lieu relativement à Φ_M , ρ et ω . Il suffit donc, pour achever la démonstration, de montrer que

$$p^{-}(g) = p^{+}(g)$$
 pour tout $g \in T$

Or cela résulte de la compatibilité du diagramme suivant :

(La compatibilité du carré central exprime que g_*^+ et g_*^- , provenant d'un même difféomorphisme de W, sont compatibles avec la dualité de Poincaré; la compatibilité des carrés latéraux traduit l'hypothèse : ϕ est duale de ϕ .)

3.2.2. Application: invariant d'une fonction de 3, q

Le lemme 4 montre que le morphisme ϖ définit par passage au quotient un morphisme $\Phi_{\rm M}/T \longrightarrow \beta_{\rm n}/{\rm G}_{\rm n} \approx A_{\rm c} \ ,$

et la propriété 2 des couples de bases duales (cf. 3.2.1.) montre que ce dernier morphisme est indépendent du couple de bases duales choisi. Soit \mathcal{M}_0 la composante connexe de M dans \mathcal{M}_0 ; d'après 2.1., 3) de la proposition 9, Φ_{M}/T est canoniquement isomorphe au nerf $\Phi_{\mathrm{i},\eta;0}$ de la partie de $\mathcal{F}_{\mathrm{i},\eta}$ formée des fonctions dont les variétés intermédiaires appartiennent à \mathcal{M}_0 . Le morphisme

$$\Phi_{i,q;o} \longrightarrow \mathcal{A}_{q}$$

obtenu par composition ne dépend que de \mathcal{M}_{σ} (on le voit en remplaçant M par une variété voisine). En procédant de même pour chaque composante connexe de \mathcal{M} , on obtient un morphisme <u>canonique</u> :

$$\Phi_{i,n} \longrightarrow \mathcal{A}_n$$

L'invariant ainsi attaché (par l'intermédiaire de son image dans $\overline{\mathfrak{Q}}_{i,q}$) à un élément de $\mathfrak{F}_{i,q}^{0}$ (c'est-à-dire à une fonction dont toutes les valeurs critiques sont distinctes) appartient à $\left[\left(\mathbb{G}_{q}/\mathbb{T}_{q}\right)\times\left(\mathbb{G}_{q}/\mathbb{T}_{q}\right)\right]/\mathcal{G}_{q}$, c'est-à-dire, compte tenu deVI, 2.4.1, propriété 1), à \mathbb{T}_{q}^{1} \mathbb{G}_{q}^{1} \mathbb{T}_{q}^{1}

<u>Définition 3.</u> Soit $f \in \mathcal{F}_{1,q}^{G}$; on dit que f est <u>homologiquement primitive</u> si son invariant dans $f \setminus G / T$ est l'image ë de l'élément neutre e de G.

- Si (ϕ_0^-, ϕ_0^+) est un tal couple, tous les autres sont les $(\phi_0^-, \phi_0^+, \phi_0^+)$ tels que g. $(\mathring{e}, \mathring{e}) = (\mathring{e}, \mathring{e})$, c'est-à-dire tels que g E Diag (cf. VI, 2.4.1., propriété 2).
- 2. Rappelons qu'une fonction $f \in \mathcal{F}_{i,q}^{o}$ est dite <u>primitive</u> si elle est l'origine d'un chemin dans l'espace des fonctions de Norse, ayant comme seuls points exceptionnels n points de mort, et aboutissant par conséquent à une fonction sins aucun point critique. (En d'autres termes, tous les points critiques de f peuvent se détruire successivement par couples.) On mentre en théorie de Smale :
- a) Toute function primitive est hemologiquement primitive.
- b) Si $\pi_1(V) = 0$, $m \ge 6$, et $2 \le i \le m 3$, alors toute fonction homologiquement primitive est primitive (cf. par exemple [30], théorème 6.4. et corollaire 6.5., p. 69-70).

§.4. La connexité de l'espace des fonctions sans point critique.

4.1. Le relèvement des générateurs de $\pi_1(\Theta_q, E_q)$.

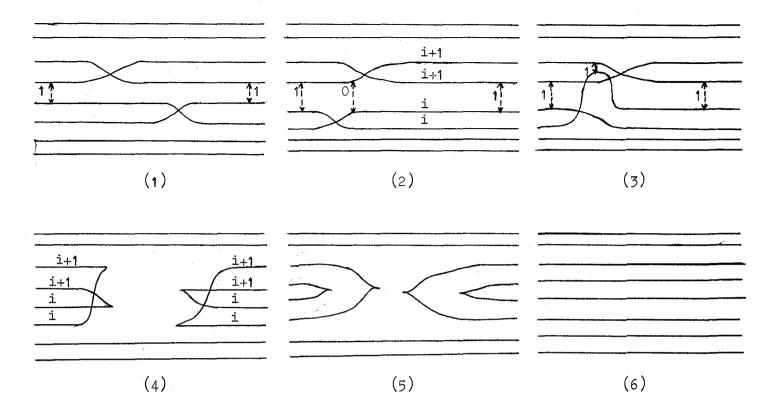
On rappelle qu'on a défini des opérations de G_q dans G_q par la formule $g_\bullet(x_\bullet y) = (g_\bullet x_\bullet g_\bullet y)$;

E est la classe de (é, è) pour ces opérations. On a pour tout M & b un diagramme commutatif

Proposition 6. On suppose $\pi_1(V) = 0$, n > 6 et 2 < i < n-3. Alors tout relèvement dans Φ_M d'un quelconque des générateurs $\gamma_{j,\lambda;g}$, $\delta_{j;g}$ et $\zeta_{j;g}$ de $\pi_1(\mathcal{B}_q,E_q)$ a ses extrémités équivalentes par une opération de Π .

Démonstration. D'après le 3) de la proposition 2 de 2.1, il suffit de montrer que les extrémités de tout relèvement dans $\Phi_{\widetilde{M}}$ d'un quelconque des générateurs ont la même image dans $\Phi_{i,q}$, autrement dit, peuvent être représentés par deux fonctions qui sont dans la même composante de $\mathfrak{F}_{i,q}^{0}$. On se borne à faire les vérifications dans le cas j=q-1; les autres cas s'y ramènent sans difficulté par le "cancellation lemma" et le lemme d'unicité des naissances.

a) Relèvement de $\gamma_{q-1,\lambda;g}$. Le graphique d'un bon chemin α qui est un relèvement de $\gamma_{q-1,\lambda;g}$ dans \mathcal{F}_{M} est du type 1 ci-dessous. On déforme α avec extrémités fixes de façon que son graphique prenne successivement les formes 2, 3, 4, 5, 6 ci-dessous :



Passage de 1 à 2 par le lemme des singularités indépendantes (IV.1, proposition 1). Passage de 2 à 3 : soit α le chemin correspondant au graphique 2, et soit f' un point de l'image de α' qui soit situé entre les deux points de croisement; il existe un couple de bases duales relatives à f' (cf.3 2.2) dont la matrice d'intersections est s ; soient c et c (dans l'ordre décroissant) les deux points critiques d'indice i+1 les plus bas de f', et soit c'a le plus élevé des points critiques d'indice i de f'; il existe des nappes descendantes disjointes D et D relatives à c et c , et une nappe q-1ascendante A relative à c' (toutes trois limitées à la variété intermédiaire M) telles que le nombre d'intersection de M \cap A_q avec M \cap D_{q-1} (resp. $M \cap D_{G}$) soit $\stackrel{+}{=}1$ (resp. zéro). Le procédé de Whitney (cf.[10], théorème 6.6, p.71) permet donc de déformer A de façon que MNA rencontre MND de la contre MND de la transversalement et en un seul point, et ne rencontre pas $M \cap D_q$; on peut alors prolonger $\mathbf{A}_{\mathbf{q}}$ jusqu'au-dessus du niveau de $\mathbf{c}_{\mathbf{q}}$, et par conséquent définir un chemin α " d'origine f' réalisant le croisement de c et c', de façon qu'en l'extrémité de α ", les points critiques qui correspondent à $c_{\alpha-1}$ et

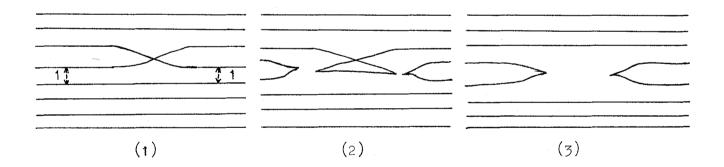
 c_q^i soient en position de destruction mutuelle; le chemin correspondant au graphique 3 est $\alpha_1^i.\alpha_2^{i*}.\alpha_2^{i*}.\alpha_2^{i*}$ (où $\alpha_1^i.\alpha_2^i$ désigne la décomposition de α^i définie par f^i).

Passage de 3 à 4 : par le cancellation lemma.

Passage de 4 à 5 : le bec de droite peut-être supprimé d'après le lemme de suppression des becs (IV, 3.3, proposition 4 ; le bec est du type II et c'est la condition (4) qui est vérifiée). Le bec de gauche est dual du précédent.

Passage de 5 à 6 : par le lemme d'unicité des naissances (cf.III, 1.3).

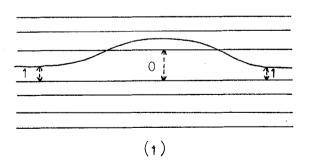
b) Relèvement de $\delta_{q-1;g}$. Le graphique d'un bon relèvement est ici du type 1 ci-dessous ; on le déforme en un chemin à graphique du type 2 par le cancellation lemma ; puis en un chemin à graphique du type 3 par le lemme de la queue d'aronde (IV,4.3, proposition 5).

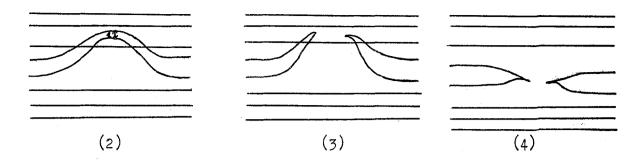


On termine comme au a) par le lemme d'unicité des naissances.

c) Relèvement de Cq-1;g.

Le graphique d'un bon relèvement est du type 1. On le déforme successivement en chemins dont le graphique est du type 2, 3, 4.





Le passage de 1 à 2 est analogue au passage de 2 à 3 dans le cas a); le passage de 2 à 3 se fait par le cancellation lemma; le passage de 3 à 4 se fait par le lemme de suppression des becs (applimé dans les mêmes conditions qu'au a)).

On termine comme précédemment par le lemme d'unicité des naissances.

Corollaire. On suppose dim V > 5 (i.e. n > 6), $\pi_1(V) = 0$, et 3 < i < n-3 . Alors tout relèvement dans Φ_M d'un quelconque lacet relatif de \mathcal{B}_q modulo \mathbf{E}_q a ses extrémités équivalentes par Π .

Démonstration. D'après le lemme fondamental du chapitre VI (cf.VI, 3.1) tout lacet relatif β de \mathfrak{F}_q modulo E_q est homotope à un composé des générateurs $\gamma_{1,\lambda;g}$, etc. Il suffit donc, d'après la proposition 6, de montrer que pour tout relèvement φ de β dans Φ_M , l'homotopie de β donnée par le lemme algébrique fondamental peut se relever en une homotopie de φ . Cela est clair lorsque $3 \leqslant i \leqslant n-4$, car alors Φ_M est un revêtement surjectif de \mathfrak{F}_q (cf. 3.2.1). Lorsque $5 \leqslant i \leqslant n-3$ (donc en particulier dans le cas n=6, i=3), le morphisme $\bar{\omega}$ est surjectif, et le morphisme $\bar{\omega}$: $\Phi_M \to \mathfrak{F}_q$ est un morphisme de revêtement (surjectif). D'après le complément au lemme algébrique fondamental (cf.VI, 3.4), l'homotopie de β peut être décomposée en homotopies élémentaires des types (a), (\mathfrak{b}_2) , (\mathfrak{c}_1^i) et (\mathfrak{c}_2^i) . Les opérations du type (a) se relèvent d'après le 1) du lemme 3 de 3.1; celles du type (\mathfrak{b}_2) se relèvent puisque $\bar{\omega}$ est un revêtement; celles des types (\mathfrak{c}_1^i) et (\mathfrak{c}_2^i) se relèvent d'après le lemme des singularités indépendantes (IV.1) et le lemme du triangle (IV.2.2).

4.2. Le théorème de connexité.

Théorème 3. On suppose $\pi_1(V) = 0$ et dim V > 5. Alors l'espace des fonctions $C^{\infty}: V \times (I,0,1) \rightarrow (I,0,1)$ ayant zéro point critique est connexe.

(On sait (cf. Introduction) que ceci entraîne que dans le groupe Diff V , les relations d'isotopie et de pseudo-isotopie sont les mêmes).

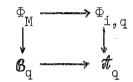
<u>Démonstration</u>. Soient f et f' deux fonctions ayant zéro point critique. On sait (cf.V, 2.1, théorème 2) que l'espace \mathcal{F}_i est connexe ; il existe donc dans \mathcal{F}_i un bon chemin β joignant f à f'; le chemin β ne rencontre \mathcal{F}^1 qu'en un nombre fini de points, donc en particulier il n'a qu'un nombre fini de points de naissance ; il existe donc un entier q tel que l'image de β soit contenue dans

$$\mathcal{F}_{i,0}$$
 $\mathcal{F}_{i,0;\alpha}$ $\mathcal{F}_{i,1}$ $\mathcal{F}_{i,q-1}$ $\mathcal{F}_{i,q-1;\alpha}$ $\mathcal{F}_{i,q}$.

Soient α et α' deux chemins de \mathscr{F}_{i} , d'origine respective f et f', composés l'un et l'autre de q chemins de naissance, de sorte que \widetilde{f} et $\widetilde{f'}$, extrémités respectives de α et α' , appartiennent à $\mathscr{F}_{i,q}$. Je dis que <u>le chemin $\alpha^{-1}.\beta.\alpha'$ peut être déformé (avec extrémités fixes) en un chemin $\widetilde{\beta}$ de $\mathscr{F}_{i,q}$. (Soient en effet f_p , f_{p+1},\ldots,f_{p+r-1} , f_{p+r} des points exceptionnels consécutifs de $\alpha^{-1}.\beta.\alpha'$, tels que f_p soit une mort, f_{p+r} une naissance, f_{p+1},\ldots,f_{p+r-1} des croisements ; le lemme des singularités indépendantes permet de faire passer f_{p+r} successivement avant f_{p+r-1},\ldots,f_{p+1} ; on peut alors appliquer le lemme d'unicité des naissances, ce qui permet de supprimer f_p et f_{p+r} ; on continue ainsi de proche en proche tant qu'il existe au moins un point du chemin en lequel le nombre de points critiques est strictement plus petit que 29).</u>

Soit alors M une variété intermédiaire de f; tout chemin de croisement de deux points critiques d'indice i (ou de deux points critiques d'indice i+1)

issu de \tilde{f} est homotope à un chemin élémentaire dont le support ne rencontre pas M . Il en résulte que, de proche en proche, $\tilde{\beta}$ peut être déformé <u>avec origine fixe</u> en un bon chemin β ' contenu dans \mathcal{F}_M , de telle façon que le chemin α " décrit par l'extrémité de $\tilde{\beta}$ au cours de la déformation reste dans $\mathcal{F}_{1,q}^{o}$. Le chemin β ' définit un chemin ϕ ' composé d'arêtes de Φ_M ; les extrémités de β ' sont des fonctions primitives, elles sont donc homologiquement primitives (cf. 3.2.2), leur invariant dans \mathcal{H}_q est donc \tilde{e} . Donc d'après la commutativité du diagramme



l'image de φ' dans \mathcal{B}_q est un lacet relatif de \mathcal{B}_q modulo \mathbf{E}_q . Il résulte donc du corollaire de la proposition 6 que l'image de φ' dans $\Phi_{\mathbf{i},q}$ est un lacet ; autrement dit, les deux extrémités de β' sont dans la même composante connexe de $\mathcal{F}_{\mathbf{i},q}^0$; donc $\hat{\mathbf{f}}$ et $\hat{\mathbf{f}}'$ sont dans la même composante connexe de $\mathcal{F}_{\mathbf{i},q}^0$. On en déduit, par \mathbf{q} applications successives du lemme d'unicité des morts, que \mathbf{f} et \mathbf{f}' sont dans la même composante connexe de l'espace des fonctions ayant zéro point critique.

Remarque. On peut donner à cette démonstration une forme différente, dans laquelle les lemmes d'unicité des naissances et des morts interviennent par l'intermédiaire de la proposition 4 de 2.2. Soit β comme ci-dessus, et soit ϕ le chemin composé d'arêtes de Φ_i qui lui correspond ; étant donné que Φ_i est isomorphe à la "limite en escalier" des $\Phi_{i,k}$, il est équivalent de montrer que ϕ est un lacet, ou de montrer que sa projection ϕ ' sur $\Phi_{i,q}$, définie pour ϕ assez grand, est un lacet.

§.5. Structure du nerf des espaces Fi,q et Fi.

5.1. Surjectivité du morphisme p⁺.

Proposition 7. On suppose n > 6, $\pi_{1}(V) = 0$ et $2 \leqslant i \leqslant n-3$. Soit $M \in \mathcal{M}$ et soit φ_{0} une base de $H_{i+1}(W_{M}^{+},M)$; le morphisme $\rho^{+}: \Pi \to G_{q}$ défini par ces données (cf. 3.2, lemme 4) est surjectif.

<u>Démonstration</u>. Le groupe G_q est engendré par la réunion de $Diag_q$, des transpositions s_j et des matrices élémentaires t_j $(j=1,2,\ldots,q-1)$.

a) Tout élément de Diag se relève dans Π . Le groupe Diag est engendré par les matrices η_j $(j=1,2,\ldots,q)$ où η_j est la matrice diagonale définie par

$$a_{k,k} = (-1)^{\delta_{j,k}};$$

il suffit donc de montrer que chaque matrice $\,\eta_{\,\mbox{\scriptsize i}}\,\,$ se relève.

On choisit dans $\mathcal{F}_{\mathbb{N}}^{\circ}$ une fonction homologiquement primitive f; soit σ l'image de f dans $\Phi_{\mathbb{N}}$, $\overline{\omega}(\sigma)$ est l'élément (é, è) de $\mathbf{G}_{\mathbf{Q}}$. Soient $\mathbf{C}_{\mathbf{1}},\mathbf{C}_{\mathbf{2}},\ldots,\mathbf{C}_{\mathbf{Q}}$ les points critiques d'indice i+1 de f, mis dans l'ordre décroissant; soient $\mathbf{C}_{\mathbf{1}}^{i},\mathbf{C}_{\mathbf{2}}^{i},\ldots,\mathbf{C}_{\mathbf{Q}}^{i}$ les points critiques d'indice i mis dans l'ordre croissant. La fonction f est homologiquement primitive, elle est donc primitive (cf. 3.2.2, propriété 2b). Il existe donc une famille $\mathbf{C}_{\mathbf{1}},\mathbf{C}_{\mathbf{2}}^{i},\ldots,\mathbf{C}_{\mathbf{Q}}^{i}$ de "cylindres" (i.e. de sous-variétés de \mathbb{W} difféomorphes à $\mathbb{D}^{n-1} \times \mathbb{I}$), deux à deux disjoints, situés dans l'intérieur de \mathbb{W} , tels que, pour tout \mathbb{J} , $\mathbb{C}_{\mathbb{J}}^{i}$ contienne $\mathbb{C}_{\mathbb{J}}^{i}$ et $\mathbb{C}_{\mathbb{J}}^{i}$, et qu'il existe un chemin de mort d'origine \mathbb{J}^{i} dont le support soit contenu dans $\mathbb{C}_{\mathbb{J}}^{i}$. On note, pour tout \mathbb{J}^{i} , \mathbb{M}^{i} $\mathbb{C}_{\mathbb{J}}^{i}$ et $\mathbb{C}_{\mathbb{J}}^{i}$ les adhérences des deux parties en lesquelles $\mathbb{M}_{\mathbb{J}}^{i}$ coupe $\mathbb{C}_{\mathbb{J}}^{i}$. Soit $\widetilde{\varphi}_{\mathbb{J}}^{i}$ une base de $\mathbb{H}_{\mathbb{J}+1}(\mathbb{W}_{\mathbb{N}}^{i},\mathbb{M})$ dont le \mathbb{J} -ième élément soit l'image d'un générateur de $\mathbb{H}_{\mathbb{J}+1}(\mathbb{C}_{\mathbb{J}}^{i},\mathbb{M}_{\mathbb{J}}^{i})$; soit $\widetilde{\varphi}_{\mathbb{J}}^{i}$ la base duale. Le couple $(\varphi_{\mathbb{J}},\varphi_{\mathbb{J}}^{i})$ est un couple de bases duales adaptées à f; donc, d'après 3.2.2,

propriété 1, $\tilde{\phi}_{0}^{-1} \circ \phi_{0} \in \text{Diag}_{q}$; on peut même supposer, par un choix convenable du signe de chaque générateur de $\text{H}_{i+1}(\text{C}_{i}^{+},\text{M}_{i})$, que $\tilde{\phi}_{0} = \phi_{0}$.

Or l'un des résultats que l'on démontre en même temps que le lemme de la queue d'aronde (cf.IV, 4.3, lemme 3) est le suivant : il existe dans le groupe des difféomorphismes de C_j tangents d'ordre infini à l'identité le long du bord, un élément g_j , situé dans la composante connexe de l'élément neutre, laissant f (et par conséquent M_j) stables, et tel que l'automorphisme g_j de $H_{i+1}(C_j,M_j)$ défini par g_j soit la multiplication par -1 . Notons g_j le difféomorphisme de W obtenu en prolongeant g_j par l'identité, et g_j * son effet sur $H_{i+1}(W_M^+,M)$. Il est clair que

$$\varphi_0^{-1} \circ \overline{g}_j * \circ \varphi_0 = \eta_j$$
.

b) Tout s (j = 1,...,q-1) se relève. Les extrémités du chemin $\gamma_{j,0}$ sont (e,e) et (s,s); on a

$$s_{j}(\hat{e},\hat{e}) = (\hat{s}_{j},\hat{s}_{j})$$
.

La proposition 6 montre qu'il existe g $\in \Pi$ tel qu'on ait

$$\rho^{+}(g_{j}) \cdot (\mathring{e}, \mathring{e}) = (\mathring{s}_{j}, \mathring{s}_{j}) \cdot$$

Il en résulte que s_j . $(\rho^+(g_j))$ laisse fixe (é,ê), et par conséquent appartient à Diag $_q$; donc compte tenu du a), s_j se relève dans II .

c) Tout t_j ($j=1,\ldots,q-1$) se relève. Les extrémités du chemin δ_j sont ($\mathring{e},\mathring{e}$) et ($\overbrace{t_j}$, \mathring{e}); on a

$$t_{j}(\mathring{e},\mathring{e}) = (t_{j}, t_{j}^{-1}) = (t_{j}, \mathring{e}).$$

On termine comme au b) ci-dessus.

5.2. Presque isotopie.

On démontre dans ce numéro un résultat indépendant de ce qui précède, relatif aux triades compactes sur lesquelles il existe une fonction ayant q points critiques tous de même indice.

Proposition 8. Soit $(\tilde{W},\tilde{V},\tilde{V}^i)$ une triade compacte de dimension n . On suppose (sans quoi l'énoncé qui suit est vide) qu'il existe deux entiers i et q tels que $H_{i}(\tilde{W},\tilde{V}) = 0$ pour $j \neq i$ et $H_{i}(\tilde{W},\tilde{V}) \approx \mathbf{Z}^q$. On note $\mathcal{H}_{i,q}$ l'espace des fonctions de Morse $(\tilde{W},\tilde{V},\tilde{V}^i) \to (I,0,1)$ ayant exactement q points critiques, tous d'indice i . On suppose :

$$(1) \pi_{\bullet}(\vec{v}) = 0 ;$$

Alors pour tout couple (f,f') de points de $\mathcal{K}_{i,q}$ tels qu'il existe une base de $H_{i}(\tilde{W},\tilde{V})$ adaptée à la fois à f et à f', et pour tout voisinage U de \tilde{V}' dans \tilde{W} , il existe un chemin (f_{t}^{i}) d'origine f' dans $\tilde{\mathcal{K}}_{i,q}^{o}$, tel que f' coîncide avec f sur \tilde{W} -U. [On dit que f et f' sont presque isotopes dans $\tilde{\mathcal{K}}_{i,q}^{o}$].

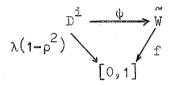
Remarque. Il résulte du théorème 3 que si $\pi_1(\tilde{V}) = 0$ et n > 6, alors la presque isotopie de deux éléments de $\tilde{V}_{1,q}^0$ entraîne leur isotopie.

Démonstration. On démontre, par récurrence sur q, que la propriété est vraie pour l'entier q <u>et pour toute triade compacte</u>.

a) cas q=0. Le seul cas où l'énoncé n'est pas vide est celui où $\widetilde{\mathbb{W}}$ est difféomorphe au cylindre $\widetilde{\mathbb{V}} \times \mathbb{I}$. Soit $\widetilde{\mathcal{G}}$ le groupe des difféomorphismes de $\widetilde{\mathbb{W}}$ induisant l'identité sur $\widetilde{\mathbb{V}}$; on sait (cf. Introduction) que pour tout couple (f,f') de fonctions sans point critique, il existe g $\in \widetilde{\mathcal{G}}$ tel que f = f'og . Le procédé de la "rétraction d'Alexander" fournit, pour tout voisinage $\widetilde{\mathbb{U}}$ de $\widetilde{\mathbb{V}}$ dans $\widetilde{\mathbb{W}}$, un chemin (g_t) dans $\widetilde{\mathcal{G}}$, d'origine g , tel que

 g_{t} induise l'identité sur le complémentaire de U; on pose $fog_{t}^{-1} = f_{t}^{*}$.

b) cas q > 1 . Supposons la propriété démontrée pour l'entier q-1 . Soient f et f' comme dans l'énoncé ; soit c (resp. c') le point critique de niveau le plus bas de f (resp. f'). On modifie f' par l'effet d'une isotopie du but [0,1] de façon que f(c) = f'(c') ; soit λ cette valeur commune. Soit ψ un plongement : $(D^{\dot{1}},S^{\dot{1}-1}) \to (\tilde{W},\tilde{V})$, tel que si on désigne par p la fonction distance euclidienne au centre dans $D^{\dot{1}}$, il y ait commutativité du diagramme



L'image de o est alors une nappe descendante de f relative à c; nécessairement, $\psi(0)=c$, $\psi(S^{\mbox{\scriptsize i-1}})\subset \tilde{V}$. On définit de même le plongement $\psi^{\mbox{\tiny l}}$, relatif à f' et c'. D'après l'hypothèse faite sur le couple (f,f'), l'image de la classe fondamentale de (D^{i},S^{i-1}) par le morphisme $\psi_{\!_{\!\!\boldsymbol{x}}}^{\!\!\!\boldsymbol{i}}\,:\, \mathrm{H}_{_{\!\!\boldsymbol{i}}}(\mathrm{D}^{\dot{\boldsymbol{i}}},\mathrm{S}^{\dot{\boldsymbol{i}}-\boldsymbol{1}}) \to \mathrm{H}_{_{\!\!\boldsymbol{i}}}(\overset{\sim}{\mathrm{W}},\overset{\sim}{\mathrm{V}}) \quad \text{est au signe près la même que par le morphisme} \quad \psi_{\!_{\!\!\boldsymbol{x}}}\;;$ on modifie au besoin 🎳 par une symétrie de façon que ces deux images soient les mêmes. Les conditions (1) et (2) de l'énoncé entraînent $\pi_{_{\!\!4}}({\tt W})=0$; il résulte donc du théorème de Hurewicz relatif que ψ et ψ sont homotopes. La condition (2) et le théorème d'isotopie de Hudson (énoncé en [7], théorème 10.2, p.199, dans la catégorie PL, mais valable également dans la catégorie DIFF) entraînent que ψ et ψ^{\imath} sont <u>isotopes</u>. Il existe alors une isotopie (γ_{t}) de $\widetilde{\mathbb{W}}$ telle que $\gamma_1 \circ \psi^i = \psi$; de sorte que f'o γ_1^{-1} et f coı̈ncident sur $\phi(extstyle D^1)$; on est donc ramené au cas où f et f' ont en commun une nappe descendante N de leur point critique de plus bas niveau, et coîncident sur cette nappe, et où on a choisi ψ^{*} égal à ψ . Il existe alors une isotopie $(\gamma_{+}^{!})$ de W telle que f'o γ_1^{i-1} coîncide avec f <u>au voisinage</u> de N . (En effet, ψ

peut se prolonger en un plongement $\phi: M_i \to W$ du modèle standard de Morse, adapté à f et à la fonction quadratique standard h sur M_i , ce qui signifie qu'il existe un plongement $\phi: [-1,+1] \to [0,1]$ rendant commutatif le diagramme

$$\begin{array}{ccc}
M_{\underline{1}} & \xrightarrow{\Psi} & \widetilde{W} \\
h \downarrow & & \downarrow f \\
[-1,+1] & \xrightarrow{\Psi} & [0,1]
\end{array}$$

De même ψ peut se prolonger en ϕ ', adaptée à f' et à h; le plongement $\tilde{\phi}$ ' correspondant à ϕ ' coîncide avec $\tilde{\phi}$ sur [-1,0], et d'après le lemme 3 de II, 1.2 on peut modifier ϕ ' de façon que $\tilde{\phi}$ ' coîncide avec $\tilde{\phi}$ au voisinage de [-1,0]. Il résulte du théorème d'unicité des voisinages tubulaires, appliqué à un voisinage tubulaire de D^1 dans M_1 , qu'il existe une isotopie (γ_1^i) de W telle que $\gamma_1^i \circ (\phi^i \circ \phi^{-1})$ induit l'identité au voisinage de N. La comparaison du diagramme ci-dessus et du diagramme

$$\begin{array}{ccc}
M_{1} & \xrightarrow{\gamma_{1}^{i} \circ \varphi^{i}} & \widetilde{\mathbb{W}} \\
h \downarrow & & \downarrow & f^{i} \circ \gamma_{1}^{i-1} \\
[-1,+1] & \xrightarrow{\widetilde{\varphi}^{i}} [0,1]
\end{array}$$

montre que f'o γ_1^{-1} coîncide avec f au voisinage de N).

On se trouve donc ramené au cas où f et f' coîncident sur un voisinage U de N; soit T un voisinage de Morse de c, contenu dans U, définissant la nappe descendante N; soit a la borne supérieure de f sur T. Le complémentaire de T dans $f^{-1}[-1,a]$ est difféomorphe à un cylindre; par la méthode du a) ci-dessus, on déforme f' de façon que sa restriction à T reste invariable, et que sa restriction à \widetilde{W} -T coîncide avec f, sauf sur un petit voisinage de $f^{-1}(a)$. On a ainsi déformé f' en une fonction qui coîncide avec f entre \widetilde{V} et une variété de niveau \widetilde{V}_1 , située au-dessus du niveau de c; on est donc ramené au même problème pour le cas q-1, ce qui achève

la démonstration de récurrence.

Corollaire. Soit W la triade compacte V \times (I,0,1), de dimension n . Soit M $\in \mathcal{U}$ et soit \mathcal{F}_{M} le sous-espace correspondant de $\mathcal{F}_{i,q}$ (cf.2.1). On suppose:

$$(1) \pi_{1}(V) = 0$$
.

(2) $3 \le i \le n-4$ (ce qui entraîne n > 7).

Alors pour tout couple (f,f') de points de $\mathcal{F}_{\mathbb{N}}^{\circ}$ tel qu'il existe une base de $H_{i+1}(\mathbb{W}_{\mathbb{N}}^{+},\mathbb{M})$ et une base de $H_{n-1}(\mathbb{W}_{\mathbb{N}}^{-},\mathbb{M})$ qui soient adaptées à la fois à f et à f', il existe un chemin $(f_{t}^{!})$ d'origine f' dans $\mathcal{F}_{\mathbb{N}}^{\circ}$ tel que f' coincide avec f sauf sur un voisinage arbitrairement petit de $\partial \mathbb{W}$. [On dit que f et f' sont presque isotopes dans $\mathcal{F}_{\mathbb{N}}^{\circ}$].

<u>Démonstration</u>. On applique le lemme 1 successivement à W_M^+ et W_M^- ; on trouve les conditions 1 \leq i \leq n-4 et 3 \leq i \leq n-2 .

5.3. Structure du nerf de Fig et de Fi.

Théorème 4. Soit V une variété compacte sans bord et soit W le cylindre $V \times I$; on désigne par n la dimension de W . Les espaces fonctionnels $\mathcal{F}_{i,q}$, \mathcal{F}_{i} et \mathcal{F}_{M} sont ceux définis en V,2.1 et en 2.1; on désigne par $\phi_{i,q}$, ϕ_{i} et ϕ_{M} leurs nerfs respectifs. Les complexes \mathcal{B}_{q} et \mathcal{A}_{q} sont définis en VI, 1.4 . On suppose $\pi_{1}(V) = 0$, $n \ge 7$, $3 \le i \le n-4$. Alors

- 1°) Le morphisme $\overline{\omega}: \phi_{\overline{M}} \to \mathcal{B}_{\overline{Q}}$ défini en 3.2 est un isomorphisme pour tout $\underline{\omega}: \phi_{\overline{M}} \to \mathcal{B}_{\overline{Q}}$ définissant $\underline{\omega}: \overline{\omega}: \overline$
- 2°) <u>Le morphisme</u> $\phi_{i,q} \rightarrow \mathscr{A}_q$ <u>défini par passage au quotient de $\overline{\omega}$ est un isomorphisme</u>.
 - 3°) D, est isomorphe à la limite en escalier de la suite

(définie en VI, 1.4, lemme 7).

Démonstration. 1°) Il résulte de la proposition 5 de 3.1 que, sous les hypothèses du théorème 4, $\overline{\omega}$ est un morphisme de revêtement (surjectif). Soient σ et σ' deux éléments de $\Phi_{\overline{M}}$ situés au-dessus de (ê,ê); soient f et f' des représentants respectifs de σ et σ' dans $\mathcal{F}_{\overline{M}}$. D'après le corollaire ci-dessus, f et f' sont presque isotopes dans $\mathcal{F}_{\overline{M}}^{0}$. D'après le théorème 3, la presque isotopie dans $\mathcal{F}_{\overline{M}}^{0}$ entraîne l'isotopie dans le même espace, autrement dit, f et f' sont dans la même composante connexe de $\mathcal{F}_{\overline{M}}^{0}$; donc $\sigma=\sigma'$. Donc $\Phi_{\overline{M}}$ est le revêtement identique de $\mathcal{B}_{\overline{M}}$.

2°) On a le diagramme commutatif

$$\begin{array}{cccc}
\Pi & \times \Phi_{M} & \longrightarrow \Phi_{M} & \longrightarrow \Phi_{M}/\Pi \\
\rho^{+} \times \overline{\omega} & \overline{\omega} & \downarrow & \downarrow \\
G_{q} & \times G_{q} & \longrightarrow G_{q} & \longrightarrow \mathcal{H}_{q}
\end{array}$$

D'après la proposition 3 de 2.1 (et le corollaire de la proposition 2 de 2.1) $\Phi_{\rm M}/\Pi$ est naturellement isomorphe à $\Phi_{\rm i,q}$. Or d'après le 1°) ci-dessus et la surjectivité de ρ^+ (cf. proposition 7), le morphisme naturel $\Phi_{\rm M}/\Pi \to t_{\rm q}$ est un isomorphisme.

3°) Notons $\overline{\omega}_q$ le morphisme désigné ci-dessus par $\overline{\omega}$; on a le diagramme commutatif

où toutes les flèches verticales sont des isomorphismes d'après le 2°) cidessus ; il suffit donc d'appliquer la proposition 4 de 2.4, d'après laquelle $\Phi_{\rm i}$ est isomorphe à la limite en escalier des $\Phi_{\rm i,c}$.

Corollaire. Sous les hypothèses du théorème 4, les éléments de $\mathfrak{F}_{i,q}^{\circ}$ [fonctions "de type (i,q)" ayant toutes leurs valeurs critiques distinctes] sont

classifiés à isotopie près par leur invariant dans $T_q G_q / T_q$.

<u>Démonstration</u>. La restriction de l'isomorphisme $\Phi_{i,q} \to \mathcal{H}_q$, donné par le 2) du théorème 4, au 0-squelette de $\left[\phi_{iq}\right]$, est un isomorphisme : $\pi_o(\mathfrak{F}_{i,q}^\circ) \to \mathring{T}_q \backslash \mathfrak{G}_q / \mathfrak{T}_q$.

Remarques.

- 1. Il résulte de sa définition même (cf. 3.2) que l'"invariant" d'un élément de $\mathfrak{F}_{i,q}^{0}$ est invariant par tout difféomorphisme de $V \times (I,0,1)$. Le corollaire ci-dessus a donc la conséquence suivante : si deux éléments de $\mathfrak{F}_{i,q}^{0}$ sont transformés l'un de l'autre par difféomorphisme, alors ils sont isotopes. Ceci est la généralisation à $\mathfrak{F}_{i,q}^{0}$ du résultat du théorème 3, concernant les fonctions sans point critique.
- 2. On peut donner d'autres applications du théorème 4 du même type que le corollaire précédent, par exemple la classification des fonctions de type (i,q) ayant toutes leurs valeurs critiques d'indice i et toutes leurs valeurs critiques d'indice i+1 respectivement égales.
- 3. Il est possible de démontrer directement le théorème 4, et d'en déduire ensuite le théorème 3 comme cas particulier (q=0). Mais la démonstration est rendue difficile par le fait que rien ne permet d'affirmer a priori que $\phi_{i,q}$ est un revêtement de \mathcal{H}_q . D'autre part la démonstration directe du théorème 3 est la seule applicable au cas n=6.

APPENDICE.

Lemmes de fibration et d'acyclicité.

On a rassemblé ici, avec des indications sur leur démonstration, divers énoncés de "topologie différentielle élémentaire"; il s'agit essentiellement de généraliser les théorèmes classiques de fibration et d'acyclicité des espaces de plongements (cf. par exemple [2] ou l'appendice [3]) aux espaces de plongements qui sont adaptés à une fonction de Morse, ou qui la laissent invariante.

- §1. Compléments au théorème de fibration de Mather (cf. I. 3).
- Proposition 1.- Soit W une variété à bord compacte. Soit f une fonction de Morse W \rightarrow R (ce qui implique en particulier que f n'a pas de point critique sur ∂W).
 - 1°) Soit & l'espace des fonctions de Morse W → R qui ont mêmes points et valeurs critiques que f et qui sont tangentes d'ordre infini à f le long de ∂W. Soit G le groupe des difféomorphismes de W qui laissent fixes tous les points critiques de f et qui sont tangents d'ordre infini à l'identité le long de ∂W. Les opérations naturelles de G dans & admettent des sections locales continues.
 - 2°) Soit X une sous-variété fermée de W; on suppose que pour tout $c \in X$ qui est un point critique de f, l'espace tangent à X en c ne rencontre pas (en dehors de l'origine) le cône $f_c^{(2)} = 0$ $[f_c^{(2)}]$ est la forme quadratique bitangente à f en c]. Soit \mathcal{E}_X (resp. \mathcal{G}_X) le sous-

espace de & (resp. 4) défini par la condition de coîncider avec f (resp. avec l'identité) sur X. Les opérations de 4X dans & admettent des sections locales continues.

Démonstration :

1°) Elle se fait par recollement à l'aide du lemme local suivant : Soit a $\in W$; il existe un voisinage U de a dans W , un voisinage W de f dans \not et une application continue f' $\mapsto \phi_f$, de W dans l'espace des plongements de U dans W , tels que f' o ϕ_f , coîncide avec f sur V , et que ϕ_f soit l'injection de U dans W .

Le lemme local se démontre comme suit : si a est non critique, on choisit au voisinage de a des coordonnées locales (x_1,\ldots,x_n) dans lesquelles $f(x)=x_n$. On pose pour f' voisin de f:

$$\psi_{f}$$
, $(x) = (x_1, \dots, x_{n-1}, f'(x_1, \dots, x_n))$;

le théorème des fonctions implicites uniforme montre qu'on peut inverser $\psi_{\mathbf{f}}$, sur un voisinage U de a, valable pour tous les f' assez voisins de f; on pose $\psi_{\mathbf{f}^{-1}}^{-1}|\mathbf{V}=\phi_{\mathbf{f}}$. Si a est un point critique de Morse, on choisit des coordonnées locales dans lesquelles on a $\mathbf{f}(\mathbf{x})=\mathbf{u}(\mathbf{x})$, où u est une forme quadratique; on applique alors à tout f' assez voisin de f le procédé standard de mise sous forme canonique au voisinage de a (utilisant la formule de Taylor avec reste sous forme d'intégrale); on met ainsi $\mathbf{f}'(\mathbf{x})$ sous la forme $\mathbf{u}_{\mathbf{f}}$, o $\chi_{\mathbf{f}^{+1}}(\mathbf{x})$, où $\mathbf{u}_{\mathbf{f}}$, est une forme quadratique et $\chi_{\mathbf{f}}$, un difféomorphisme local, dépendant l'un et l'autre continuement de f', tels que $\mathbf{u}_{\mathbf{f}}=\mathbf{u}$ et $\chi_{\mathbf{f}}=$ identité; donc $\mathbf{f}'(\mathbf{x})$ est de la forme \mathbf{u} o $\chi_{\mathbf{f}^{+1}}$ où $\chi_{\mathbf{f}^{+1}}$ est un élément de SL(n) dépendant continuement de f'; on pose $\chi_{\mathbf{f}^{+1}}=\psi_{\mathbf{f}^{+1}}$ et on termine comme dans le cas non critique.

2°) Il suffit d'apporter au lemme local le complément suivant : si X est une sous-variété convenable passant par a, on peut imposer à ϕ_f , d'être l'identité sur X lorsque f' coîncide avec f sur X . Il n'y a aucune difficulté lorsque a est non critique. Lorsque a est un point critique de Morse, on choisit une décomposition $\mathbf{x}=(\mathbf{y},\mathbf{z})$ telle que l'équation locale de X soit $\mathbf{y}=0$, et que f soit de la forme $\mathbf{v}(\mathbf{x})+\mathbf{w}(\mathbf{y})$, où \mathbf{v} et \mathbf{w} sont deux formes quadratiques. Le lemme local du 1°) montre alors que toute fonctions f' assez voisine de f est localement de la forme $\mathbf{v}(\xi)+\mathbf{w}(\eta)$ où η s'annule avec \mathbf{y} , et où $\xi=\mathbf{x}$ lorsque f' et f coîncident pour $\mathbf{y}=0$.

Proposition 1'.- Soit W une variété à bord compacte; soit A un fermé de W - ∂W . Soit f une fonction de Morse W \rightarrow R; soit J un ouvert de R tel que, pour tout t $\in \overline{J}$, $f^{-1}(t)$ soit transversal à ∂W . Alors à tout g' \in Diff $_{\mathbb{C}J}^{\mathbb{R}}$ (groupe des difféomorphismes de R induisant l'identité sur le complémentaire de J), proche de l'élement neutre, on peut continuement associer g \in Diff $_{\mathbb{A}}^{\mathbb{W}}$ tel que, sur tout un voisinage de $\mathcal{J}W$, on ait:

g' of = fog .

La démonstration de la proposition 1 est immédiate ; voici quelques conséquences des propositions 1 et 1:

- Corollaire 1.- Soit W une variété à bord compacte; soit J un ouvert de R; soit f une fonction de Morse W \rightarrow R telle que:
 - a) les valeurs critiques de f appartiennent à J;
 - b) les variétés de niveau critiques de f coupent transversalement dW.
 - Soit $\stackrel{\circ}{\xi}$ l'espace des fonctions de Morse : $W \to \mathbb{R}$ qui vérifient a), et b)

et qui sont tangentes d'ordre infini à f le long de $\partial W \cap f^{-1}(J)$. Il existe alors au-dessus d'un voisinage de f dans \tilde{Z} une section pour l'application $(g,g') \to g'$ o f o g^{-1} de Diff $W \times \text{Diff}_{CJ} R$ dans l'espace des fonctions de Morse : $W \to R$.

Corollaire 2.- Soit M_i le modèle de Morse d'indice i de \mathbb{R}^n et soit h la forme quadratique correspondante (cf. II., 1.1). A toute fonction h' suffisamment voisine de h et tangente d'ordre infini à h le long de ∂M_i on peut associer de façon continue un élement (ψ,ψ') de Diff $M_i \times \text{Diff }[-1,+1]$ tel que :

$$\psi^{,-1} \circ h \circ \psi = h'$$

- - (1) $\mathcal{P} \rightarrow \mathbb{I}$ (dont les fibres sont les \mathcal{P}_{λ});
 - (2) $\mathcal{P}_{\lambda} \rightarrow \text{Plgt} ([-1, +1], \mathbb{I})$;
 - (3) $\mathcal{G} \rightarrow \text{Plgt}([-1, +1], I);$

sont des fibrations triviales.

<u>Démonstrations</u>: Celle du corollaire 1 est immédiate, et le corollaire 2 en est un cas particulier. Voici la demonstration du corollaire 3.

Cas de (1).- Soit $\varphi \in \mathcal{P}_{\lambda}$; l'adaptation de φ à h_{λ} et f signifie qu'il existe $\varphi' \in \text{Plgt}([-1,+1]$, I) tel que φ' o $h_{\lambda} = f$ o φ ; en particulier (puisque $h_{\lambda}(0) = -\lambda \epsilon$) on a :

$$\varphi^{\ell}(-\lambda\epsilon) = f(c)$$

ce qui montre la continuité de (1). D'autre part le corollaire 2 donne un chemin continu $(\psi_{\lambda}$, $\phi^{i}_{\lambda})$ dans DiffM $_{i}$ × Diff[-1, + 1] tel que pour tout $\lambda \in I$;

$$\psi_{\lambda}^{*-1} \circ h \circ \psi_{\lambda} = h_{\lambda}$$

L'application $(\lambda, \varphi) \rightarrow (\varphi \circ \psi_{\lambda}, \varphi^{\dagger} \circ \psi_{\lambda}^{\dagger})$

de I \times $\mathscr{P}_{_{\!\!O}}$ dans \mathscr{P} est une trivialisation de \mathscr{P} au-dessus de I .

<u>Cas de (2).-</u> La trivialité de la fibration (2) est une conséquence immédiate de celle de la fibration

où Diff ad M_i est le groupe des difféomorphismes de M_i adaptés à h . Pour montrer la trivialité de (2'), il suffit de montrer l'existence de sections au voisinage de e . Soit T un voisinage tubulaire du bord de M; à tout ψ' \in Diff[-1, +1], proche de e, la proposition 1' permet d'associer $\widetilde{\psi}$ \in Diff M_i , laissant fixe un voisinage de 0, tel que ψ o ψ et h o $\widetilde{\psi}$ coîncident sur T; on termine en appliquant la proposition 1 à ψ' o h o $\widetilde{\psi}^{-1}$, qui a même point et valeur critique que h et qui coîncide avec h au voisinage de ∂M_i .

<u>Cas de (3)</u>. - La trivialité est une conséquence immédiate de celles de (1) et (2).

§2. Fibration des espaces de plongements adaptés sur les espaces de nappes.

Soit W une variété compacte; soit f une fonction de Morse: $W \to R$ et soit c un point critique de f. On note $\mathcal K$ (resp. $\mathfrak D$, resp. $\mathfrak B$) l'espace des nappes ascendantes (resp. des nappes descendantes, resp. des binappes) de f issues de c. On rappelle la définition de la topologie de ces espaces: $\mathcal K$ et $\mathcal D$ sont munis de la topologie habituelle des espaces de sous-variétés, c'est-à-dire la topologie quotient de la topologie C^∞ des espaces de plongements correspondants; $\mathcal B$ s'identifie au sous-espace de $\mathcal K \times \mathcal D$ défini par la condition de conjugaison des variétés tangentes en c.

- Remarque: Il résulte immédiatement de la contractilité de l'espace des sous-variétés tangentes en c aux nappes ascendantes (ou descendantes) que ${\cal B}$ a même type d'homotopie que ${\cal A} \times {\cal D}$.
- Proposition 2. Soient W,f,c, A, D, B comme ci-dessus. Soit g_f le groupe des difféomorphismes de W qui laissent f invariante. Les opérations à gauche de g_f dans \mathcal{X}, \mathcal{D} et B admettent des sections locales continues.
- <u>Démonstration</u>: Démontrons-le par exemple pour \mathcal{K} . Soit $A \in \mathcal{K}$, et soit A' voisine de A. D'après le théorème de fibration des espaces de plongements sur les espaces de sous-variétés (cf.[3], p.114, théorème 3), il existe dans le groupe Diff(W) un élément g_1 , dépendant continuement de A', tel que $g_1(A) = A'$; les restrictions à A des fonctions f et f o g ont chacune le point c pour unique point critique, et coîncident sur le bord; il existe donc d'après le 1° de la proposition 1, un difféomorphisme g_2 de A, laissant fixe c, dépendant continuement de g_1 , tel que f o g_2 coîncide avec f sur A; on peut prolonger g_2 en un difféo-

- morphisme $\overline{g_2}$ de W dépendant continuement de g_2 . D'après le 2°) de la proposition 1, il existe un difféomorphisme g_3 de W laissant fixe A, dépendant continuement de $g_1 \circ \overline{g_2}$, tel que f o $g_1 \circ \overline{g_2} \circ g_3 = f$; ceci achève la démonstration, puisque $g_1 \circ \overline{g_2} \circ g_3(A) = g_1(A) = A'$.
- Corollaire 1.- [Notations de la proposition 2]. Soit $\mathcal P$ l'espace des plongements de $\mathbb M_i$ (modèle de Morse d'indice i) dans $\mathbb W$ qui sont adaptés à fet à la forme quadratique standard $\mathbb M_i$ Les applications naturelles $\mathbb M_i$ sont des fibrations localement triviales.
- Corollaire 2.- Soient V_0 et V_0' deux variétés de niveau de f situées audessus de c, V_0 étant au-dessus de V_0' ; soit \mathcal{K}_0 (resp. \mathcal{K}_0') la partie de \mathcal{K}_0 formée des nappes dont le bord est dans V_0 (resp. V_0'). L'application naturelle: $\mathcal{K}_0 \to \mathcal{K}_0'$ est une fibration localement triviale. [Résultat analogue pour les nappes descendantes et les binappes].

Les deux corollaires sont des conséquences immédiates de la proposition 2.

- §3. Fibration des espaces de plongements adpatés sur leurs espaces de jets.
- <u>Démonstration</u>: On rappelle que " ϕ adapté à h et f " signifie qu'il existe un plongement $\phi' = [-1, +1] \to \mathbb{R}$ tel que ϕ' o h = f o ϕ . On se ramène, en choisissant des coordonnées locales définies par un prolongement de ϕ à \mathbb{R}^n entier, au cas où $\mathbb{W} = \mathbb{R}^n$ et f = h . Alors h o $\phi^{\left(1\right)} = \phi'^{\left(1\right)}$ o h

est le terme du second ordre dans le développement h o φ ¬ φ' o h , c'est donc-zéro.

Proposition 3.- Soient W,f, c, n, i comme dans le lemme ci-dessus. Soit \mathcal{P} l'espace des plongements du modèle de Morse M, dans W qui sont adaptés

à f en c et dont l'orientation en 0 est donnée. L'application naturelle $\mathcal{P} \rightarrow \mathcal{F}_{\bullet}^{1}$ \mathcal{P}_{de} \mathcal{P}_{sur} l'espace des 1-jets en 0 de ses éléments est une fibration localement triviale.

Même résultat pour les espaces suivants : \mathcal{F}_{ϕ} , (sous-espace de $\mathcal{F}_{\underline{formé}}$)

des plongements pour lesquels l'application ϕ' : $[-1, +1] \to \mathbb{R}$ correspondante est donnée); \mathcal{G}_{h} (groupe des difféomorphismes de $\mathbb{M}_{\underline{i}}$ qui laissent

le bord fixe et h invariant); $\mathcal{G}_{1,2}$ (groupe des difféomorphismes de $\mathbb{M}_{\underline{i}}$ qui laissent invariantes les fonctions $x_1^2 + \cdots + x_{\underline{i}}^2$ et $x_{\underline{i+1}}^2 + \cdots + x_{\underline{n}}^2$).

En plus on a des isomorphismes canoniques :

$$J_{o}^{1} \mathcal{P} \approx SO(i,n-i) \times]0, \infty[$$
;
 $J_{o}^{1} \mathcal{P}_{\phi} \approx J_{o}^{1}(G_{h}) \approx SO(i,n-i)$;
 $J_{o}^{1}G_{1,2} \approx O(i) \times O(n-i)$.

Démonstration: Démontrons par exemple les résultats qui concernent \mathcal{G}_h . Soit \mathcal{L}_h le sous-groupe de SL(n) formé des applications qui sont adaptées à la forme quadratique h; le groupe \mathcal{L}_h est canoniquement isomorphe à $\mathrm{SO}(\mathrm{i},\mathrm{n-i}) \times \mathbb{R}_{\times}^+$. D'après le lemme ci-dessus, il existe une application naturelle $\mathcal{G}_h \to \mathcal{G}_h$, qui se factorise par l'intermédiaire de $\mathrm{J}_0^1 \mathcal{G}_h$; il suffit donc de montrer l'existence des sections locales $\mathcal{L}_h \to \mathcal{G}_h$ au voisinage de tout point de \mathcal{L}_h . Le théorème classique de fibration des espaces de plongements sur les espaces de jets (cf [3], théorème 2, p.114) donne des

relèvements locaux à valeurs dans le groupe de tous les difféomorphismes de M. qui laissent fixe le bord ; on modifie ce relèvement à l'aide de la proposition 1 de façon qu'il prenne ses valeurs dans gh (c'est le procédé déjà utilisé ciédessus au §2).

Le cas de $g_{1,2}$ est plus simple, car $0(i) \times 0(n-i)$ s'identifie à un sous-groupe de $g_{1,2}$. Le cas des espaces de plongements adaptés se ramène à celui des groupes de difféomorphismes adaptés par le procédé habituel (cf.[3], p.115, lemme 1).

- §4. Acyclicité de certains espaces de plongements adaptés ou de nappes.
- Proposition 4.- Soit W une variété de dimension n; soit f une fonction

 de Morse: W o R; soit c un point critique d'indice i de f. Soient

 V et V deux variétés de niveau de f situées la première au-dessus,

 la seconde au-dessous de c, telles que c soit l'unique point critique de

 la partie fermée W of de W délimitée par V et V .
 - 1°) Soit M_i le modèle de Morse d'indice i ; soit \mathcal{T}_J l'espace des plongements de $(M_i$, bord supérieur de M_i , bord inférieur de M_i) dans (W_{01}, V_{0}, V_{1}) qui sont adaptés à f en c , et dont le 1-jet en 0 est donné. L'espace \mathcal{T}_J est acyclique. Même résultat pour le sous-espace $\mathcal{T}_{J,\nu}$ de \mathcal{T}_J formé des plongements pour lesquels l'image de la binappe standard de M_i est donnée.
 - 2°) Soit $\mathcal{K}(\text{resp. }\mathcal{D},\text{resp }\mathcal{B})$ l'espace des nappes ascendantes (resp. des nappes descendantes, resp. des binappes) de f issues de c , limitées à V_0 et V_1 . Les espaces \mathcal{K},\mathcal{D} , \mathcal{B} sont acycliques. Même résultat pour les espaces \mathcal{K}_J , \mathcal{D}_J obtenus en fixant la variété tangente (ou le couple

de variétés tangentes) en 0 .

Démonstration : L'acyclicité de $\mathcal{T}_{\!\!
m J}$ et celle de $\mathcal{B}_{\!\!
m J}$ entraînent celle de $\mathcal{P}_{\!\!
m J,\nu}$ d'après le corollaire 1 de la proposition 2 (cf. $\S 2$). L'acyclicité de $\mathscr{K}_{\mathtt{T}}$ entraîne celle de $\mathscr R$, puisque l'espace des variétés linéaires tangentes en O aux éléments de \mathscr{R} est acyclique ; de même l'acyclicité de \mathscr{Q}_{τ} entraîne $\mathfrak{F}_{\!_J}$ a $\mathscr{K}_{\!_J} imes \mathscr{D}_{\!_J}$. On est donc ramené à démontrer l'acyclicité de $\mathscr{F}_{\!_J}$ celle de $\mathcal{R}_{_{\mathrm{J}}}$; les deux démonstrations sont analogues ; voici la démonstration de l'acyclicité de $\mathcal{T}_{\mathbf{J}}$. Soil $\mathcal{P}_{\mathbf{J}}^{*}$ l'espace des plongements M \rightarrow W o 1 qui sont adaptés à f en c et dont le 1-jet en 0 est donné; d'après le corollaire 3 du §1 , l'acyclicité de $\mathcal{P}_{\mathtt{J}}^{\imath}$ entraîne celle de $\mathcal{P}_{\mathtt{J}}$. Soit U un voisinage de Morse de c dans l'intérieur de W ; soit K un compact de $\mathcal{O}_{\mathtt{T}}^{\,\imath}$; par composition avec une rétraction de $\mathtt{M}_{\mathtt{r}}$ laissant fixe un voisinage de l'origine, on peut déformer K jusque dans $\int_{-1}^{1} \mathbf{n} \operatorname{Plgt}(M_{i}, \mathbf{U})$, de façon que les éléments de $K \cap Plgt(M_i,U)$ restent dans $Plgt(M_i,U)$ au cours de la déformation. On est ainsi ramené au cas où $W = \mathbb{R}^n$, f = het c = 0 ; d'après le corollaire 3 de la proposition 2 , il suffit de montrer l'acyclicité du sous-espace $\mathscr{T}_{\mathtt{J}:\mathtt{h}}$ de $\mathscr{T}_{\mathtt{J}}$ formé des plongements qui laissent himariant. La méthode classique de rétraction par "transmutation par les homothéties", utilisée pour démontrer l'acyclicité de l'espace des plongements avec 1-jet fixe en 0 de M_{i} dans \mathbb{R}^{n} , donne également l'acyclicité de $\mathcal{P}_{\mathtt{J:h}}$, car cet espace reste stable au cours de la rétraction; en effet, si ho $\phi = h$, alors pour tout $\lambda > 0$, on a:

$$h(\frac{1}{\lambda} \varphi(\lambda x)) = \frac{1}{\lambda^2} h \circ \varphi(\lambda x) = \frac{1}{\lambda^2} h(\lambda x) = h(x).$$

Bibliographie.

- [1] BRUHAT (F.) Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, 84, (1956), p.97 205.
- [2] CERF (J.) Topologie de certains espaces de plongements, Bull. Soc. Math. France, 89 (1961) p.227-380.
- [3] CERF (J.) Sur les difféomorphismes de la sphère de dimension trois, Lecture Notes in Math. n°53, Springer 1968.
- [4] CERF (J.) C.R. Congrès Int. Math., Moscou 1966, p. 429-437.
- [5] CERF (J.) et GRAMAIN (A.) Le theorème du h-cobordisme, Ecole Normale Superieure, Paris 1968 (multigraphie).
- [6] CHENCINER (A.) et LAUDENBACH (F.) Theorie de Smale à 1 paramètre dans le cas non simplement connexe, C.R. Acad. Sc. Paris, série A,270 (1970) p.176 et 307.
- [7] HUDSON (J.F.P.) Concordance and isotopy, Bull. Amer. Math. Soc., 72 (1966) p.534-535.
- [8] HUDSON (J.F.P.) Piecewise linear topology, Benjamin, 1969.
- [9] MATHER (J.) Stability of C mappings:

 I. The Division theorem, Ann. of Math.,87 (1968) p.89 104.

 II. Infinitesimal stability implies stability, Ann. of Math.,89 (1969), p.254-291.

 III. Finitely determined map-germs, Pub. Math. I.H.E.S., 35 (1968).

 IV. Classification of stable germs by R-algebras, à paraître aux Pub. Math. I.H.E.S.
- [10] MILNOR (J.) Lectures on the h-cobordism theorem, Princeton Math. Notes (1965).
- [11] MILNOR (J.) Notes on algebraic K-theory, Princeton 1968 (multigraphié).
- [12] MORLET (C.) Plongements et automorphismes de variétés, Collège de France, Paris 1969 (multigraphié).
- [13] NOVIKOV (S.P.) Homotopy properties of the group of diffeomorphisms of the sphere, Dokl. Akad. Nauk SSSR 148 (1963), p.32-35.
- [14] SEMINAIRE H. CARTAN, 9° année (1956-57) Quelques questions de Topologie (multigraphie).

- [15] SIEBENMANN (L.) Peripheral invariants for pseudo-isotopies, Notices Amer. Math. Soc., 14 (1967), p.852.
- [16] SIEBENMANN (L.) Torsion invariants for pseudo-isotopies on closed manifolds, Notices Amer. Math. Soc., 14 (1967), p. 942.
- [17] TOUGERON (J.-C.) Stabilité des applications différentiables (d'après J. Mather), Séminaire Bourbaki, n°336, 1967 (multigraphié).

ma 0 0 mm 0 0 mm 0 0 mm 0 0 mm

