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On the fractional parts of x/n and related seguences. I 

B. SAFFARI and R.C. VAUGHAN 

..L... Introduction. 

1. Throughout tnis paper {x} = x-[x] denotes the fractional part of 

the real number x. we write Il xi!= min lx-kl and e(x) = e2nix_ 
kEZ 

.Also, the implied constants· in the Q symbol of Landau and the 

~ and<{ symbols of Vinogradov are absolute. 

Finally, by a distribution function we always mean a distribution 

function in the sense of probability theory, defined on the real line. 

2. Let (x ) 
n 

be a sequence of real numbers. The usual study of the 

distribution modulo 1 of 

of the sequence 

of investigating 

(e(x )) 
n 

(x ) · is essentially that of the distribution 
n 

on the circle T. The main problems are those 

(i) the existence of the asymptotic (or limit) distribution measure 

where 

denoting the Dirac measure at v E '11, and 

(ii) the size of the discrepancy 

where w runs through those arcs of T whose endpoints have 

µ-measure zeroo 



2. 

It is classical that the existence of µ together with the assump­

tion that the point 1 ET has µ-measure zero is equivalent to the 

existence of a distribution function F such that 

( 1. 4) F( O+) = O, 

and 

F(a) = lim ~A([o,a),k,(xn)) 
k ➔ oo 

at every a at which F is continuous, the counting function 

being here defined for all real numbers a and P· The conditions (1.4) 

mean that F is continuous at O and 1, and imply that F is constant 

on the intervals (- oo, o] and [ 1, oo). In this case F is called the 

asymptotic (or limit) distribution function modulo 1 of the sequence 

(x ), and the discrepancy (1.3) is equal to 
n 

sup IJA([a,p),k,(xn))-(F(p)-F(a))I 
~a<p~ 1 

where a and S run through the continuity points of F. 

In some situations it may be more appropriate to consider the 

existence of the A- asymptotic distribution function modulo 1, namely 

the existence (outside a countable set), and the continuity at a= O 

and a = 1, of 

where 

lim 
k ➔ oo 

k 
~ a_ c (x ) 
L_ k,n a n 
11=1 

C (u) = {
1 

a 0 otherwise 

is the characteristic function modulo 1 of [ O, a), and A = (a. ) 
K:,n 

is 

a, positive Toeplitz matrix. Here by a positive Toeplitz matrix we mean 
00 00 

that ~ n ❖ 0, L ~ n < 00 

' n=1 ' 
and lim L ~ n = 1 • 

k ➔ ooI1=1 ' 



The sequence (x ) is, of course, inde pendant of k. OUr object 
n 

is to investigate the distribution modulo 1 of xh (n) vô. th x a large 

real number, h(n) an arithmetical function, and the integer n 

belonging to S () [ 1,k] where Sc N and k depends on x. For our 

pur poses i t is somewhat more convenient to replace k by a real para­

m2ter y. we call .>{-= (an(y):y ( [1, oo), n = 1,2, ... ) a positive 
00 

Toeplitz transformation if an (y) >/ O for all n and y, L an (y) < oo 

n=1 
00 

for every y, and lim L. an (y) = 1. we are particularly interested 
y ➔ oo Il=1 

in the special case where the a (y) are the simple Riesz means 
n 

and 

(m ~ Y) 

a (y) = 
n 

0 (m > y) 

which we assume henceforward, al though several of our proofs go through 

in the general case (see Appendix). Let 

CO 

4) (a;h) = L a (y )c (xh(n)}. 
x,y n a 

n=1 

A good deal of our attention .will be taken up wi th h(n) = 1/n and 

we write 

4)x,yla) = f:_ an (y )c /x/n). 
Il=1 

The problems arising from the study of ~ (a) as x and y= y(x) 
x,y 

tend together to infinity are closely related to the Dirichlet diviser 

problem. 



and 

If there exists a distribution function ~h such that 

iJ) ( 1-) = 1 
h 

~h(a) = lim iJ) ( )(a,h) x,y X 
X -+oo 

at every a at which ~h is continuous, then we call ~h the 

4. 

4- asymptotic distribution function modulo 1. This situation is equi­

valent to the existence on the circle T of the-4- limit (or4-

asymptotic) distribution measure 

00 

v = lim L an(y)oe(xh(n)) 
X -+ oo n=1 

together with the fact that the point 1 € T has v-measure zero. 

However, if there exists no distribution function ~h satisfyi:ng both 

(1.14) and (1.15), then it is more appropriate to investigate the dis­

tribution modulo 1 of xh(n) via (1.16). 

4. Our interest in this problem arose from investigating the asymp­

totic behaviour of 

L c (x/n). 
n<.y a: 
' 

Duri:ng our investigation it became obvious that there were methods 

which could be applied in a much more general situationo In this paper 

we present these methods, deferri:ng to the sequel the study of special 

methods. 

As an example of the application of Theorem 2, consider a subset 

A of N* such that the counting function 

A(x) = L. 1 
a~x 
a(A 
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satisfies 

where a is a constant wi th O < a~ 1 and L is a slowly varying 

function, that is 

1
. L(cx) 

1 im L"CxJ = 
X ➔ oo 

for any positive constant c. Then 

lim 
X ➔ oo 

Moreover, there exists a function 

and y = o(x) as x ➔ oo, then 

lim 
X ➔ oo 

Y (x) 
0 

such that if y> y (x) 
0 

Relation ( 1.18) means that the fractional parts {x/ a}, where a runs 

over [ o,y J n A, are, asyrnptotically uniformly distributed, whereas 

( 1 o 17) means that if a runs over the whole of [ o,x] nA, then the 

{x/a} have the asymptotic distribution function 

00 

L(n-o-(n+a)-a). 
n=1 
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2..... Theorems and proofs. 

1. we first of all state a theorem which gives a sufficient condition 

for the (R,À )- asymptotic distribution to be uniform. This is essen-
n 

tially due to E:rd3s and Turan [1], [2] and is a finite form of Weyl's 

criterion. It is also possible, of course, to give a necessary condition 

corresponding to weyl's criterion, and to give results when the asymp­

totic distribution is non-uniform but continuous, but we have no 

applications in mind for these. 

Theorem 1 is somewhat divorced from the following theorems. However, 

it clearly applies to the general situation. As an application we have 

in mind the case 

h(n) = log n. 

THEOREM 1 • Let the discrepancy D (h) 
x,y be defined by 

D (h) = x,y sup l<I?x,y(f3,h)-<I>x,y(a,h)-(f3-a) 1. 
~a<f3~ 1 

Then, for any positive integer m, 

6 
m oo 

D (h) < -+1I:=Jk1--1 )!~a (y)e(kxh(n))j. x ,Y m+ 1 n k m+ 1 L_ n 
=1 n=1 

Theorem 1 is a generalization of Theorem 2.2.5 of Kuipers and 

Niederreiter [3], and can be proved in exactly the same way. 

2. The following theorem (together with the observations made in 

Lem.mas 2, 3, 4) shows that the (R,Ïl.n) asymptotic distribution functioh 

modulo 1 of x/n can exist under very general conditions provided that 

y is not too small compared with Xo 

Whenever , ~ 1 and a~ o define 
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0 

F(a ç,,o) = e(a ç,)( 1-1;0 ([1;]+0:)- 0 )+1;0 L (k- 0-(k+a)- 0
) 

k>I; 

( 0 < a < 1 , d > o) 

( o < a < 1 , ($ = o) 

where 

O otherwise. 

THEOREM 2. Suppose that for every real number t wi th O < t < 1 

the lirnit 

lim L, an(y) 
y -+co ll$tY 

exists and for at least one value of t is non-zero. Then there is a 

non-negative real number o such that for every real number t with 

O < E < ½ there is a real number y
0

( 8 ,o)} 1 so that whenever 

y
0

(t:,cr) ,$. y~ x we have 

Lemma 1 below will show that the limit (2 0 6) is · t 0
, which defines 

cr. we observe that when o = O Theorem 2 fails to give non-trivial 

information. Very likely @x,y(a)-+ o: still holds in this case, at 

least when L Àn -+oo, but even when Àn = 1/n this is a deep result. 
n~y 

Before _proceeding with the proof of Theorem 2 we state a corollary 

concerning the case when the integer n is allowed only to run through 

a shorter interval [y,z]. 
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COROLLARY 2.1. With the assumptions of Theorem 2, if 

"- c (x/n) n o: 

- a 

we remark that, in this case, the asymptotic distribution is always 

the uniform one, at least when a > O. 

3o The proof of Theorem 2 requires the following lemrna. 

LEMMA 1, On the hypothesis of Theorem 2 there is a non-negative real 

number a such that for every real number e: wi th O < e: < 1/ 2 there 

is a real number y (e,o) ~ 1 so that whenever y~ y (e:,o) we have, 
0 0 

for every t wi th e ,$. t ~ 1, 

2+a 
E 

Proof, The existence of (2.6) for every real number t with O < t < 1 

together wi th the assumption that for some t in this range the limi t is 

non-zero imply that there is a non-negative real number O such that for· 

every t with O < t ~ 1 we have 

Let 
-2-e 

N = (2ee max:(1,0)]+1 

and choose y
0

(e,o) >.,.1 so that if y 1'y
0

(e,o), then for every integer 

r wi th 1 ~ r ~ N we have 



(2.1 o) 

Now choose an integer q such that 

which is always possible if ~ ~ t ~ 1. Note that 

( -1 -a) (_ -1 ( 
~ a max N , N ~ max ~N , e 1 og 

Thus, by (2. 1 O) and ( 2. 11), 

and 

These lçi.st two inequalities give (2.9) as required. 

4. Proof of Theorem 22 Since (2. 7) is trivially true when a:,$.. O or 

a ~ 1 , we may assume 0 < a < 1. Let K = [~a]. Then, by (1. 13), 
E:;/" 

and (2.5), 



1 o. 

Hence, by Lemma 1 and (2.4), 

The proof of ( 2. 7) is completed by observing that e:K ~ x/y and 

Jk+a f k+1 -o -o -o-1 -o-1 L (k -(k+a) ) = L ou du~ L ou du 
k>K k>K k k>K k 

5. Proof of Corollary 2.1. We use (2.7) and Lemma 1. The condition 

that (y/z)f 1 < 1-e:2+0 means that we can assume that a> o. suppose 

that '> 1. Then, by (2.4), 

F(a ; ,,o) ❖ t;o f [t;]+a:u- 0du + Q fe(a ; t;) f 1 
ouo- 1du\ 

[~] \ ~/([~]+a) / 

~ •Ü;/[s])0+ Q ~(. ; sia~-s/([sl+•V max ~·<cs1+/,...~ 

= o:+ Q (a2°t;- 1). 

Similarly 
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We complete the proof of (2.8) by observing that by (1.11) and Lem.ma 1, 

6. In this section we make some observations concerning the nature of 

LEMMA 2. suppose that O ,< a ~ 1 and ç ~ 1. Then 

and 

lim F(a; ç,o) =a= F(a; ç,O) 
a-+ O+ 

00 

F(a; 1,a) = L(k- 0-(k+a)- 0 ) 

k=1 

B.Y (2.14) with a= 1, F(a; 1,1) = _r'(a)/r(a)+y+1/a where r is 

the gamma function and y is Euler's constant. 

;eroof, The àsymptotic formula (2.12) was established in the proof of 

(208), (2.13) then follows trivially, and (2.14) is immediate from (2.4). 

LEMMA '38 For each ç 4' 1 and a > O the function F(a ; t;,O) .!.§..1! 

continuous function of a and is analytic on R,{ o,{t;l,1} with 

0 

(2. 15) F' (a) = oç0 L (k+aro- 1 

k)ç 

a~0 ([ç]+a)-o- 1+o~0 L (k+a)-o- 1 

k>~ 

The points O, { ç} ~ 1 are angular points of F. 

(a < O, a > 1) 

(o <a< {~}) 
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LEMMA 4. Suppose that O < a < 1 and a > O. Then considered as a 

function of s, F(a ; ç,,o) is continuous on [ 1,oo) '- {2,3,4, ••• } and 

for each integer n ~ 2, 

00 

(2.16) lim F(a; s,o) = n°L_(k-a-(k+ara) 
ç.-+ n- k=n+1 

00 

(2.11) lim F(a; ç:,a) = nO'L_(k- 0-(k+a)-a) = F(o:; n,a). 
ç: -+ n+ k=n 

7. we now establish upper and lower bounds for the mean square of 

~ (a)-a which in turn imply respectively x,y 

(i) that if y is small compared with x then the only possible 

(R,Xn) asymtotic distribution modulo 1 is the uniform one, and 

(ii) that the discrepancy cannot be tao small. 

THEOREM 3a Suppose that x ~ x are non-negative real numbers. 
0 

y ❖ 1 and O < o: < 1. Then 

where 

(2.20) 

This theorem can be thought of in a rather loose way as a law of 

the iterated loga.ritrun .. This will be discussed further in a later paper. 

(see [5]). 



THEOREM 4, On the hypothesis of Theorem 3, 
X +X 

(2.21) f O 

lillu,y(a)-aj 
2
du ~ ma.x(J1 ,J 2 ) 

·X 
0 

where 

and 

:av taking the real part of the innermost sum in (2.22) and (2.23) 

and then discarding all the t erm.s wi th m > 1 one o btains in ( 2. 21) the 

particularly simple lower bound max(L ,L ) , where 
1 2 

and 

However, in certain circumstances this loses a factor as large as 

loglog y. 

COROLLARY 42 18 Let the discrepancy D be given by x,y 

D = x,y 

f 
x

0
+x 

n2 du~ 
X u,y 

0 

sup max(J ,J ). 
aE:[ O, 1) 1 2 
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:av analogous methods it is possible to obtain corresponding ine­

qualities for 

but the bounds obtained are more complicated and not so illuminating. 

8,. To prove Theorems 3 and 4 we require the following lemma which is 

Theorem 2 of Montgomery and Vaughan [4]. 

LEMMA 5. Suppose that x
1
,x

2
, ••• ,xR ~ R distinct real numbers, 

and that v
1

,v
2

, ••• ,vR ~ R complexnumbers. Also, let 

where 

ô = minlxr-xsl 
r,s 
rf,s 

1 

R R V v 1 L Lxr_: 
r=1 s::1 r s 

r/:s 

~ ôr = minlxr-xsl • 
s 

s/=r 

,;h. Proofs of Theorems 3 and 4. Let K be a positive integer. Then it 

is easily seen that the function c (u) given by (1.9) can be w.ritten 
a 

in the form 



(20 30) ( ) L 1-e(-ak) (uk) 
C U = o:+L.-,,----- . e 

a O<lkl~K 2nik 

Clearly 

X +X 

f o 1 1 K 
min( 1 ,---)du ~ (x+n) i 

xo Kll:~11 

Hence, by (1.9) and (2.30), 

X +X 

(2.32) Jx O 

l[/n(y)ca(u/n)-al2du = I+Q (<x+y/°i K) 
0 

where 

Clearly, if n. f y, O < lk-1 ~· K, (n.,k.) = 1 for j = 1,2 and 
J J J J 

k/n
1 

-/= k/n
2

, then jk/n(k/n) ~ 1/(yn
1
) ~ y-

2
• 

Therefore, by (2.33) and Lem.ma 5, 

and 

where le
1
1 ~ 1, je

2
1 ❖ 1. Theorem 3nowfollows from (2.32) on 

letting K - oo. Theorem 4 follows in the same way on discarding all 

the terms wi th lkl ! 1 o 

15. 
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Sometimes, when the simple Riesz means (R,Àn) are specified, 

it may be more appropriate to use (2.34) and (2.35) rather than appeal 

to Theorems 3 and 4. 

10. By (2.1), (2.8) and (2.13) we see that if y is small compared 

with X but not too small, then under very general conditions 

lim ~ ( )(a)= a. x,y X 
X ➔ oo 

we now show, as a consequence of Theorem 3, and again under very general 

conditions, that even if y is very small compared with x, then (2.36) 

still holds. 

THEOREM 5 e suppose that O < e < 1, o < a < 1, 

and 

lim ~ /a) 
X ➔ oo X,X 

exists. Then 

lim ~ 
0

(a) = a. 
X ➔ oo x,x 

we remark that (2.37) is rather a weak condition. For instance, if 

À = 1 for every n, then it holds for every e with o < e < 1. 
n 

Proof, Let y be large and define z = y-y( 3e- 1)/ 2e. Then by Theorem 3, 
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Furthermore, by Cauchy' s inequali ty (inégalité de Schwarz en français ! ) , 

It is easily vèrified that 

Y2 ~ (y 1/e_z 1/e)y(3e-1 )/20. 

Thus, by (2.41) and (2.37), 

inf lm 
0 

(a)-o:I _ o as y - =. 
z1/e~u~y1/e u,u 

This gives the desired result. 
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~ Appendix. 

1 0 Theorem 1 does not require that the a (y) 
n 

be the simple Riesz 
00 

means (R,An). It isvalidprov.idedthatL_an(y) = 1. 
n=1 

2. Theorem 2 can be generalized in the following way. We say that the 

positive Toeplitz transformation 4 = (an(y)) has asymptotic (or limit) 

distribution function cp with respect to the ordinary Cesaro method 

(c,1) if there exists a distribution function cp such that 

at every t at which cp is continuous. For ex ample, if the a (y) 
n 

are 

the simple Riesz means (R,An) and if cp exists, then by Lemma 1 it is 

either a continuous function given by 

0 

cp(t) = 

1 

(t f o) 

(o<t<1) 

(t ~ 1) 

( wi th a > 0) , 

or is one of the "Heaviside" îunctions y 
0 

and y , where y (t) = O 
1 a 

if t < a, 

<p(t) = 0 

y (t) = 1 if t )}-a. (In the generai case, necessarily 
a 

for t < o). on examining the proof of Theorem 2, one sees that 

provided ~ exists, is continuous and satisfies cp(O) = o, cp(1) = 1, 

then i t is possible to replace Theorem 2 by a similar but more general 

statement. In particular F( a ; ç:, a) is to b.e replaced by 

0 

( when O < a < 1 ) , 
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but some care is needed vvi th the error terms. Besides the above example 

where cp is given by' (3.2), there are other interesting instances in 

which cp exists. 

3. Theorems 3 and 4 do not re~uire the a (y) 
n 

to be the simple Riesz 

means (R,Àn). They remain valid wi thout modification provided that 

a (y)= O for n > y. Otherwise, there are extra error-terms involving 
n 

L._ an (y). Thus one can still obtain meaningful information in case 
ll)Y 

lim L. an (y) = O. 
y ➔ oo n)y 
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on the fractional parts of x/n a.~d related seguences. II 

B. SAFFARI and R.C. VAUGHAN 

1. Introduction and statement of theorems. 

1.1. In this paper we assume the notation of [9]. Throughout, the 

implici t constants in the Q, ~ and ~ notations are absolute 

unless otherwise indicated. In addition, we use the symbol X. 

:ay U ~ V one means that U ~ V and V ~ U. The letter p 

always designates a prime number. 

1. 2. The standard case. In this section we study the case 

h(n) = 1/n. we are :primarily interested in the behaviour of 

8 (a) = y- 1 L c (x/n) 
x,y ll(Y a 

where x and y tend to infinity together. we observe that this is 

essentially the same as taking the simple Riesz means (R, >,.n) 

with À = 1 n for n ~ y and À = O for n > y. In fact, we are n 

considering the positive Toeplitz transformation 

with a (y)= y- 1 
n for n ~ y and a (y) = o for n > y. 

n 

we recall the definition of F(a,~,a) (cf. [9], (2.4), (2.5)). 
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o (a,$. o) 

1 (a~ 1) 

( 1.2) F(a,~,a) = e(a,d( 1 - ~0
([~] + a)- 0

) + ~o L(k-o - (k+a)- 0
) 

k>~ 

(o < a < 1 , o > o) 

a ( 0 < a < 1, o = o) 

where 

0 otherwise, 

and write 

The connection between 6 and the Dirichlet divisor problem x,y 

can be seen, for example, via 

or 

where 

(1.1) b(x) = L d(n) - x log x - (zr-1)x 
ll$X 

and as usual d is the divisor function and y is Euler I s constant. 

THEOREM. 1. suppose that 1 ~ y ~ x. Then 
1 

( 1.8) 0 (a) = F(a,x/y) + O(x3 y- 1 log x). 
x,y -



Itf adapting the van der corput method of trigonometric SUIDS it 

would be possible to improve the error term here, muchas in the 

Dirichlet divisor problem. However, we have carried. out no detailed 

calculations in this direction, partly because we do not believe 

that the ~mall improvements that could be obtained are anywhere 

near the truth. In fact, Theorem 2 below suggests that 0 (a) - a x,y 

even when y = xB where B is any fixed number wi th O < e: < 1. 

There are three immediate consequences of Theorem 1. 

COROLLARY 1. 1. As x - =, 
2 

CO --

e (a) = L k(~ ) + O (x 31og x). x,x 1• +a -
x..=1 

COROLLARY 1.2. Let t be a fixed number with O < t < 1. Then 
2 --

e t (a) = F(o:, -t
1) + O (x 31og x). 

X 1 X -

COROLLARY 1. 3. Suppose that y/x ...... 0 ~ x - =. Then 

1 
(1.11) 0 (a)= a +O (yx- 1 + x3 y- 1 log x). 

x,y -

If y is quite close to x, the error term in ( 1. 11) is not 

very good, and at first sight one might hope · to do better. However, 

on inspecting F(a,ç,) one finds that the error can indeed be this 

large, and is essentially due to the irregular behaviour o:f F(a,1;,) 

as a function of ç, at the points 2,3, ••• (see Lemma 4 of [9]). 



The next theorem suggests that Theorem 1 is some way from 

being best possible. 

THEOREM 2. Suppose that y = y(x) is increasing, y = o(x) and 

y - oo as x - oo. suppose further that 

exists. Then 

lim 8 (a) = a. 
X - = x,y 

0(0:(1 and lime (a) 
-- x,y 

X -oo 

The next three theorems put some limitations on how good the 

error term can really be in (1.s) and on how small y can be for 

there to be an asymptotic distribution. 

THEOREM 3. suppose that y( u) is increasing and y( u) - oo ~ 

u -=. Let ô = o(a) be sufficiently small, and suppose that x 

and X satisfy the ineQualities 

(1.12) O<X~x, 

(1.13) (y(x+x) - y(x))(1og(y(x+x)))4 < 0y(x) 

and 

Then, for 

1 

2 ~ y(x) ~ ix2 • 

X ) X (a), 
0 

As an immediate consequence we have 



COROLLARY 3. 1. Suppose that O<a<1 and O < f3 < 1. Then there 
2 

are numbers 6 (a) and x (A) 
1 -- 1 1-' 

such that 1 whenever x > x 
1 
( f3) , 

l
x+ o

1
(a)x(log xr 4 

je (a) - a! 2 du 
u uf3 X , 

Moreover 

lim sup xf3/21 e (a) - o:j > o. 
x-,, = x,xf3 

THEOREM 4. Suppose that the continuous function G(u) satisfies 

the differential difference equation 

Then, for each u > O, 

(1.19) lim sup 0 (a)~ G(u) x,y x-= 

1(u) = 1 

Theorem 5 is an immediate corollary of Theorems 2 and 4. 

THEOREM 5.. Suppose that O < a < G( u). Then 

ex,
1

(a) (y= (log x)u) 

does not have a limi t as x -,. oo. 

The function G, often called Dickman 1s function, has been 

studied by a number of people (see references in Norton [7]), who 

have shown that it is monotone decrea,sing and satisfies 

5. 
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and 

It is easily seen that 

(1.22) G( u) = 1 - log u ( 1 < u ~ 2) 

and 

G(u) = 1 - log u + J ulog(v-1 /V 
2 V 

1.3. The "logarithmic case". As one might expect, when one considers ---------·-------
limit distributions of {x/n} in the sense of the logarithmic density, 

things can be pushed a good deal further. '\'ll:'i te 

(1.24) e (a) = (log y)- 1 L 1 c (x/n). 
x,y n~y n a 

" 
There is a close connection between e and the error term x,y . 

1t2 2 
- -x 12 

where <1 is the sum o:f the divisors :function. It is easily s.een that 

E(x) = x(log z) J 1 
(e (o:) - a)da + 

· O x,z 

1 2 -2 J î + -x z (cp / (a) - a)da 
2 O x,x z 

where z ~ x and 



1 

when x 2 ,{. z ~ x this reduces to 

E(x) = x(log z) J \e (a) - o:)da + Q (x). 
O x,z 

There is also a simple relation connecting cp wi th E, namely x,y 

E(x) = .1x2 f \cp (a) - F(o:,1,2))do: +O (x). 
2 O x,x -

we do not study cp in detail, since its general behaviour can 
x,y 

be easily deduced from that of e . 
x,y 

The next theorem shows that, not only does one obtain the 

uniform distribution for E 
e when y= x, but even when y= x. x,y 

THEOREM 6. suppose that y ,< x. Then 
2 

e (o:) = o: + o ((log x) 3(1og y)- 1). 
x,y -

we would conjecture that e (o:) ➔ o: providing that 
x,y 

loglog x = o(log y). 

THEOREM 7. Suppose that y = y(x) is increasing to infinity and 

y~ x. Suppose that O < o: < 1. Then, whenever ex,y(o:) tends to a 

limitas x ---=, the limit must be a. 

In the opposite direction we can do somewhat better than the 

analogue of Theorem 4. (Note that by (1.20) and (1.21), for u > 1. 

whereas JuG(v)dv > 1 
0 

and J uG(v)dv..,,. ey as u ➔ c:o). 
0 

7. 



THEOREM 8. For each u > O, 

( 1. 26) lim sup e (a) 1-1 J uG(v)dv 
x,y u 

x-= o 

where G is given by (1.1s). 

As an immediate consequence of Theorems 7 and 8 we have 

THEOREM 9. Suppose that u > 0 and O < a < ~ J uG( v )dv. Then 
0 

does not have a limi t as x - 00 0 

rt is very likely that both Theorems 5 and 9 hold with the 

upper bounds 1 for a for every fixed u. 

1.4. The prime numbers. The following theorem shows that the prime 

numbers, sui tably normalized, behave in much the same way as the 

natural numbers. Let 

'\,9--- (a) = y- 1 ~ (log p)c (x/p). 
x,y L- a 

p~y 

THEOREM 1 O. Suppose that 

6 
-+E 

E) 0 and x 11 <Y<X ' . Then 

1 

'\J-' (a)= F(a,x/y) +O (exp(- c(E)(
1 

1
~ x )3)) x,y - og og X 

where c(E) is a positive number depending at most on E. 

8. 
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we remark that on the density h_ypothesis concerning the distri­

bution of the zeros of the Riemann zeta function the_§_ could be 
11 

replaced by 1. 
2 

h 6 . c h T e - arises as - w ere 
11 c+2 

N(o,T) ~ Tc( 1-a) + e 

c is such that 

and where N(a,T) is the number of zeros p = ~ + iy of the Riemann 

zeta function with p ~ a and !ri~ T. The e in Theorem 10 could 

be made an explicit function of x, but there is little point in 

doing so. 

As far as the un-normalized case is concerned, providing that 

the candi tions of Theorem 1 O are satisfied, partial summation gives 

L c (x/p) = ~F(a,x/y) + J y F(a,x/v )dv + 
~Y a og y 2 (log v) 2 

The asymptotic distribution is the same, but there is a second order 

term which has no very simple closed form, although the main terms can 

be combined to give 

f oo ocx:du 

x/y (u - ( 1-a){u}) 21og(x/(u - ( 1-a)ful)) • 

It is trivial that "\J"'. ( a) does not have an asymptotic dis-x,y 

tribution when y= (log x)u with O < u ❖ 1. (Indeed, this is so for 

all choices of Àn. we hope to discuss this further in a later paper). 

However, we have not been able to extend this to the region u > 1. 

It is a simple application of Theorem 5 of [9], that if 

0 < 0 < 1, Y = x0 and '\Y (a) has a limit as x tends to infi­x,y 

nity, then the limit must be a. Moreover~ this can be sharpened alon,g 

the lines of Theorem 2o 



1. 5. A"law of the i terated 1 ogarithm". In all the applications of 

Theorems 3 and 4 of [9] hitherto, the expressions 

and 

I: ( i: 1 a (y) ) 2 
n mn 

n m 

i: II:~ amn(y)(1 - e(arn))!2 
n m 

have behaved very much like }: a2(y). We now show that this is not 
n 

n 

always so, even under fairly reasonable conditions. In particular, 

the following theorem justifies our remark below Theorem 4 of [9] 

1 o. 

to the effect that taking I; a!(y) in that theorem can lose a factor 
n 

as large as loglog y. 

THEOREM 11 o There is an infinite subset © of N* wi th the 

following property. Let 

.be the Toeplitz transformation where the a (y) 
n 

are the simple Riesz 

means obtained by taking À to be the characteristic 
n 

function of :g • Then there are arbi trarily large y such that 

whenever x
0 

>,. O and x > O, 

X +X 

supf o (çriu (o:) - o:)2 do:~ 
0: X ,Y 

0 

2 
x+y • 

1.6. In conclusion we mention an exa.mple with h(n) = 1/n in which -
the asymptotic distribution function differs from F(o:,~). Suppose 

that k € N* and let À = 1 n 
if n is a k th power and 

otherwise. Then trivially by the method of the hyperbola, 

À = 0 n 



1 1 

éJ? (a)= F(a,x/y),1/k) +Q (xk+ 1 y- k), 
x,y 

and deeper methods doubtless enable one to improve a little further 

+.he range of validi ty for y. 

11 • 



2. P.roof of Theorem 1. 

2.1. The following lermna is implied by satz 566 of Landau [ 4]. -
LEivTIVlA 1 • Let 

{z} 

b(z) = 

0 

1 
2 

(z i z) 

(z € z). 

Suppose that u < w, f(v) is positive and twice differentiable 

12. 

fo:r: u ~ v .$. w and f 11
( v) is non-zero and always has the same sign. 

Suppose also that for u ~ v ~ w we have O < À.~ f' (v) ❖ µ ~ 

that p is any real nwnber wi th p > 1, p > À.- 3 and 

Let N be the number of pairs of integers m,n for wich u ❖ m ~ w 

and O ~ n ~ f(m) where any pair m,n for which ei ther m = u, 

m == w, n = O or n = f(m) is counted wi th weight i. Then 

w 2 

N= J f(u)du- b(w)f(w) + b(u)f(u) +Q (/5µ). 
u 

2.2. To prove Theorem 1, consider six sets s
1 

, s
2

, s;, s
3

, s3 
and 

s1 

s2 

S' 
2 

s3 
. . 

S . of pairs of integers m,n, defined as follows ; 
4 

X x.1/3 X x - < m & ~< n<-y "i: ' " m 

x1/2 < m < x2/3 X X - < n < -. . ~ ' m+a \: m 

~ < m ~ x2/3, X X - < n < -
'! m+a " m 

X x2/3 X X 
X 1/3 ( n ~ X 1/2 

X 1/2+0: 
< m ❖ - - a(n ❖ m' , 

m 



S' • 3 • 
X X 
--a(n(-
m " m' 

X X - - a< n ( -, m " m 

X 1/2 
- ( Il ( X 
y " 

Let jsl denote the number of elements of the set S. :ay-(1.1), 

where 

and 

M = 1 

M "" 2 

M == 
3 

M == 
4 

X X X 4 e (a)=([-] - [- - a])([y] - --) +LM. 
x ,Y y y [~] + a j= 1 J 

y 

if x 213 < y,$. X 

0 

0 

0 

if X 
1/ 3 ( y~ X 

0 

13. 
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Suppose first of all that x 2/ 3 < y f x. By (2.2) and (2.5), 

and 

If x 1/ 2 ~ m ~ x2/ 3, then there are ~ 1 integers n with 

X X - < n,, -m+a ~ m' 

and the number of pairs m,n with either n(m+a) = x or mn = x 

where the dashes are used to indicate that if the pair m,n is on 

the "boundary 11 of the region under consideration, then i t is counted 

with weight i• The same argument is applied to M. Note that there 
3 

is at most one integer n in [ 
213 

, x 1/ 3] and likewise in 
X · +a 

(2.s) where 

Now write 

M' = N ( o) - N ( a) 
2 2 2 

where, for A with O ,, A < 1 ,., ~t'\:, 

and 



15. 

1 • 

It is now a straightforward application of Lem.ma 1 to intervals of 

and 

+ Q (x 1/\og x)o 

Therefore, by (2.7), (2.s), (2.9), (2.10) and (2.11), 

and 

~ ax . ( 1/3 ) = "-----.----,- ( ) + Q X 1 og X • 
/ m m+a -

X 1 3<m(X 1 2 
' 

Hence, by (2.6), 

4 
L. M. =L (ax) +O (x 1f31og x) 
j=1 J m>x/y m m+a -



and Theorem 1 in the case x 2/ 3 <y~ x now follows from (2.1). 

The cases x 1/ 2 < y ~ x 2/ 3 and x 1/ 3 < y ~ x 1/ 2 are treated 

similarly. 

16. 
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3. P.r'oofs of Theorems 2, 3 and 7. 

3.1. First of all we state a lemma which is a conseg_uence of Theorems -
3 and 4 of [ 9 J . 

LEMMA 2. Suppose that x and X are non-negative real numbers, 

y ~ 1 and O < a < 1 • Then 

4 2 ( :x:+x 2 2 
(sin 1ta) (X-y )y 1 J IL.(c (u/n) - a)j du { (X+Y )y. 

x n<y a 
' 

3. 2. we require a resul t in which in the integrand y can be made -
a function of u. In order to obtain this we first of all require 

some information concerning short intervals. 

LEMJ\'.!A 3. Suppose that x,z and X are non-negative real numbers 2 

y~ 1, Y:=: max(z,y) and O <a< 1. Then 

P.roof. EY Theorem 3 of [9], the left hand side is 

4 (x+Y2)L(,_L __ ~)2 
n m 

z{nmfz+y 

as required 0 



LEMî1A 4. On the hypothesis of Lenuna 3, 

where the supremum is taken over all non-negative real numbers wi th 

P.roof. This uses a technique whiéh goes back to Menchov [5] and 

Rademacher [8]. rt may certainly be supposed that the supremum is 

taken only over those numbers of the lorm 

k 
v = Y L er2-r 

r=o 

where e:r = O or 1 and k == [log y /log 2]. For such a y_ let 

Then 

and 

r-1 . 
m == m (v) = L ë. .{-J, 
r r j=o J 

m = O. 
0 

Now for given u choose some v == v(u) for which the supremum 

occurs .. Then 

18. 



where the inner surnmation is over those integers n such that 

Hence, 

(3.1) 

where the inner surn is over those n such that 

-r ( ) -r z+ym 2 < n ,< z + y m + 1 2 • r r 

The right hand side of (3.1) is 

r 
k 2 -1 f x+X 

~ (log 2Y) L_ L · IIJc (~) - a) l 2du 
r::;;o Ill=O J x a n 

where the inner surnmation is over those n such that 

and, by Lemma 3, (3.2) is 

k 
~ (log 2Y) Ll(x+Y 2)y2-r(log 2Y)2 { Cx+Y2)y(log 2Y)4, 

r=o 

as required. 

3.3. First of all we prove Theorem 2. Observe that -
1 . "nf y(2x) - y(x) 

im J. y(x) ~ 1, 
X -+ oo 

for otherwise y(x) ~ x. Therefore the set 

19. 
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is unbounded. By Lemma 4, 

c (ujn) - a 
inf jL_ a 12.$ 

X(U(2X ~ y(u) 
... " ' 

If s contains an unbounded subset S* such tbRt 

whenever ~ € S*, 

then by (3.3)i (3.4) and (3w5) 
c (x/n) - a 

lim infjL a y(x) 1 = O. 
x -+co n(y(x) 

" 
This gives the desired conclusion if such an S* exists. Otherwise 

there is a constant x > 1 such that 
0 

(3.6) y(2x) > x(log x)- 5 whenever 

Then, by ( 3. 6) and corollary 1. 3, 

lim 0 ( ) = a. 
X 

2x,y 2X 
➔ co 

X € S 

This completes the proof of Theorem 2. 

X € S, X ) X • 
0 

3.4. To prove Theorem 3 we use both .Lemma 2 and Lemrna 4. By Lemma 2, -
4 J x+X . 2 

(sin na) x-y(x) 1 1~ (c (*) - a)j du~ :xy(x), 
X ~ a 

Thus, if y is sufficiently small in terms of x, then 



) 4 X ,;;fx+xl () [y(()jl2 /;, X 
(sin rca y(xJ ~ eu,y(u) a - a. y u du ~ y(xJ· 

X 

This gives (1.15), provided that x > x (a). 
0 

3.5. The proof of Theorem 7 follows the same pattern as that of 
~ 

Theorem 2. we observe that Theorem 3 of [9] gives 

J 2x 1 2 
I> ÏÏ(c (~) - a)J du ~ x. 

X ~ a ... 

Thus 

( 3. 7) 

1 f 2X 1 2 ~ ----- IL n(c (~) - a)J du 
" x(log y(x) ) 2 x ~ a 

If there exists an unbounded set of real numbers x > 1 on which 

y(2x)/y(x) is bounded, then Theorem 7 follows at once from (3.1). 

Qtherwise 

y(x) ~ x, 

21. 

and Theorem 7 follows from (3.8) and Theorem 6, which we shall prove 

in Section 5. 



22. 

4. proofs of Theorems 4 and 8. 

Let 

n 
( 4. 1) x = exp(L_ A(r)) n 

r=1 

where A is Von Mangoldt's function, and 

Thon 

u 
' c (x /m) = -ç- c (x /m) + O (-

1
n) 

L--an L-an - ogn 
m~yn m~nu 

~ 

where L_1 means that the sum is restricted to those m which hava 

no prime divisor exceeding n. (very probably the part of the sum 

thrown away contributes an amount infinitely often as large as 

(a - e)(1 - G(u)), and if this is so, then Theorem 5 also holds 

when G( u) ,< a < 1). }W" ( 4. 1), tlle number of these m not exceeding 

u n and not divising x is at most 
n 

Thus we have 

u-1 
2 n 

de :Bruijn [1] has shown.that if y(X,Y) is the number of natural 

numbers not exceeding X which have no prime factor exceeding Y, 

then 



(4.5) -p(yu,y) = G(u)yu + Q (yu-1(u+1)2 max IR(x)j) 
2~X~Y 

uniformly for y>,, 2, u ~ o, where R(x) = n(x) - li x is the 

error term in the prime nwnber theorem. This with (4.4) and (4.2) 

gives Theorem 4. 

The proof of Theorem 8 proceeds in the same manner. Thus 

~ 1 c (x /m) 1' ~ 1 .1 c (x /m) + 0 (
1
_j_) 

L-m an L-m an - ogn 
m~y n m(n u 

' 
and 

Rence 

(4.6) 

}ly" partial integration, 

Combining (4.5), (4.6) and (4.7) now establishes Theorem Bo 

23. 
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5. Proof of Theorem 6. 

suppose that 

0 < ~ < 1. 

Let 

and 

Then 

e (a:)log y = s(o) - s(o:) + (M - M ) ~ 1. 
x,y o o: ~ n 

llfY 

Let 

providing that N ~ M • This also holds when N < M , providing that 
~ ~ 

the convention 

is adopted. Hence 



25. 

+ ~ ~ - \ <~ - ~> _ 1 L 1 
'-- 2 L-..y-- 2 n 2 ~-...,,,n 

X n . n. . X X 
n(- n(- -<n/-

" N " N+a N+a ~ U 

1 B(~ - a) 
n n 

where B(u) = {u} - 1• Therefore, by (5.4), 

y(M + a) N 
e {a)log y = (M - M )log 

O + alog ;;- + O ( 1) 
x,y · o a x il -

0 

+ alog ~ - T(o) + T(a) 
:N-,-a 

where 

o: ,< 1 + ( a-1 )l .< l ( M + a) < 2 
X ' X 0 

and 

Hence, by (5.6), 

(5.8) e (a)log y= aJ.og y + o( 1) + T(o:) - T(o). 
x,y 



The proof is completed by observing that a trivial modification of 

the proof of satz 3.2.2 of Walfisz [11, p. 98] gives 

T(~) {_ (log x) 2/ 3• 

26. 



6. Proof of Theorem 10. 

§..:.1.: we require a lernma which has some independant interest. Let 

(x) = log p. 
P(X 

LEMMA 5. Let N(a,T) denote the number of zeros p = ~ + iy of 

the Riemann zeta f.\mction with ~ ~ a, lrl ,$. T. Suppose that there 

are positive constants B,C (with C ~ 2) such that 

X e: - 2/c < 0 ~ Then, whenever x ~ 4 and ~ 1 , we have 

f 
2X 

l '\J"( u+ue) -
X 

27. 

where is a sui table positive :irnmber depending · at most on e:. If 

the Riemann hypothesis is assumed instead, then whenever x ~ 4 

uniformly in 0 wi th O < 0 ,$. 1 • 

This is essentially due to Selberg [10]. It differs firstly in 

that in (6.4) the bound is uniform for e close to 1 whereas Selberg 

apparently requires e ~ x-E, and secondly i t is slightly weaker when 

-c 
e ,< x 2 with o < C

1 
< 1 since Selberg obtains 



Moreno [ 6] has observed (6. 3) with C = 5/2 and '\:Y replaced by y 

(where 

(6.6) 

28. 

and A(n) is von Mangoldt 1 s function), and given only a weaker result 

for 1J'. In fact, there are at least two obvious ways of deducing a 

corresponding resul t for '\Y. 

P.roof of Lemma 5. Clearly 

r12XV 2 
~ C (y(u+eu) - y(u) - eu) du)dv. 

1 xv/2 

Let L_ denote summation over all the complex zero of c grouped in 
p 

complex conjugate pairs, that is, lim L._. Then, by the explicit 
T --+ oo j y j~T 

formula (Ingham [3], Theorem 29), whenever y ~ 2 

~ , yP l;;' ( 0) 1 -2 
L_ A(n) = y - L - - ctoJ' - - log( 1 - y ) 
n~y p p Ç O 2 

where the dash means that if y E 2, then A(y) is to be replaced by 

i A(y). The sum over the zeros is boundedly convergent (cf. Ingham [3], 

P. 80). Thus 



29. 

and 

1 + P + P2 - 1 - P - P2 1 + P1 + P::,_. 
2 1 - 2 1 

Trivially 

----------(xv) 
1 + P 1 + P2 

EY Theorem 25a of Ingham [3], 

N(O,T+1) - N(O,T) ~ log T 

Thus, the double sum on the right of (6.9) converges absolutely, and 

uniformly in v on [ 1 ,2]. Thus, by ( 6. 6), ( 6.8), ( 6. g) and ( 6.1 o) 

(6.12) f 2X 2 2 3 
('!l'(u+eu) - y(u) - eu) du ~ e x- + L 

X 1 

where 
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- 1 

2+p1+P2 
2 - 1 

2 + P 1 + P2 
• X 

Thus, by ( 6. 11 ) , 

( 6. 13) ~ ~ L x 1+
2

~rnin(e
2

, y-
2

)1og y. 
p 

r>o, ~~ 1/2 

If the Riemann hypothesis is assumed, then at once from (6.11) and 

(6. 13), 

This with (6.12) establishes (6.4) with '\J' replaced by ~. To deduce 

the corresponding inequality involving ~, observe that for y ~ 1, 

y I. z, 

~(y) _ '\J'(y) _ y 1/ 2 + 1 = 

1 . -+iT 

= _1__ lim J 2 (- Ç' ~2S~ - _1_ + 
2nJ. T - oo 1 . C 2s 2s-1 

--iT 
2 

s 
~ log p )L.a.s. 
L s( 2s ) s pp p - 1 



Let 

A(v,e) = (r(ev( 1+e)) - '.f(ev) - '\J-(ev( 1+e)) - '\?'(ev) -

v/2( 1 e) 1/2 v/2)· -v/2 -e + +e e 

and 

F(t) __ ct(1+2it) __ 1_ 
- cC1+2it) 2iT + 

Then, by Plancherel 1 s theorem, 

4::J 
00 

(log( 1+jt!)) 2min(e 2, ( 1+jtl)- 2)dt 
-oo 

This combined with the observàtion 

enables one to deduce (6.4) from the corresponding result with 

replaced 'Y. A:nother line of approach is to use the relation 

"LY(x) = L µ(k)y(x 1/k) 
k 

31. 

where µ is the NUbius function, but in the proof of (6.3) this gives 

rise to complications of detail. 

To prove (6.3) note that by (6.11), 

L_ x1+2~ lo; Y~ 1• 
p y 

y>x4 
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Th us , by ( 6. 13) , 

(6.14) 

where 

and 

Hence 

( 6. 16) 

L2 = L ·x2f3 
p 

O(Y~e- 1 

f3~ 1/ 2 

By (2), page 226, of Walfisz [11], we have 

(6. 17) N(a,x 4 ) = 0 whenever a~ 1-C/log xr 2/ 3(1oglog x)- 1/ 3• 

This with (6.2) and (6.11) gives 

1 

L « xe- 1 (log ~) + 2 J 1-ë x2U(log x)e- 1 (log ~)du + 
2 ~ e 

1 
e 

2 

J 
1-C (log x)- 2/ 3(1oglog x)- 1/ 3 ( ) 

2 2u( ) -C 1-u ( 2)B + 2 X log X 0 log - du. 
1 e 

1--c 
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2 C Cc: 
rt is assumed that x e ~ x > 1. Thus 

( 6.1s) 
2 G 1 ) . lœ: - - loo- x ~ -1 2 2 Bt1 . 

0
2 ° 0 e 2 0 

L { x e log - + x (log x) exp( . /, / ) • 
2 e (log x)2 3(1oglog x) 1 3 

The sum I:"
3 

is estimated in the same way. By (6.16), (6.11), (6.17) 

and (6.2), 

E:::3~ L p 

e-1<r<x4 

f3> 1/ 2 

( 2R )(log y 4log x) (log x)
2 

(l 2)2 
X 1-' -x - - ------ + ------------ + 0X og -2 s 2 e y X X 

4 

J1JX . 1 t { ex(log ~) 2 + ( x~u(2log x)N(u,t) og dt)du 
~ 0 1 -1 t 3 

- e 
2 

~ 2 2 2 
Bt

2 
c

2
( c log i - 2log x) 

~ ex (log-) + x (log x) exp( / . / ). 
e (log x) 2 3(1oglog x) 1 3 

This, with (6.12), (6.14) and (6.18), gives (6.3) with ·'\J- replaced 

by If!. The deduction for '\J" is the same as in the proof of (6.4). 

6 0 2 0 rt is possible to deduce Theorem 10 directly from Lemma 5, or even -
from the corresponding result with Î..J" replaced by w. However, the 

argument is then somewhat more complicated than wi th the metho we are 

going to use. Moreover, the following two lemmas also have some interest 

of their own. 
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LEMI'1A 6. Let h be any real number with O ~ h ,< x. If (6.2) holds, 

then 

whenever and x ~ 3. On the Riemann hypothesis, 

( 6. 20) f 2x('V'(u+h) - '\J(u) -h) 2du ~ h 2x(log ~x) 2 

X 

uniformly in h. 

proof. rt suffices to prove the lemma with h ~ x/6. Suppose that 

2h ~ v ~ 3h and x .$. u ,< 2X, so that h ❖ v-h .$. 2h and x $. u+h ,$. 3X. 

Then, since 

(V'( u+h) - '\J'( u) - h).::'. 1 (V'( u+v) - V(u) - v )<'.'. + 

+ ('\Y(u+v) - '\Y( u+h) - ( v-h)) 2 , 

on making the substitution w = eu (h ~ w ~ 311) and on observing that 

one has 

.f 2x 2 
hj_ ('0'(11,th) - ~(u) - h) du~ 

X 

f 3Xf 3h 2 1 ( (V(u+w) - '\J(u) - w) dw)du 
X h 

J 3XJ 3h/x 
x ( ('\J'(u+ue) - '\J(u) - eu) 2de)du. 

X h/3X 

The integrand in the last double integral is continuous on 

[x,3X] x [h/3X, 3h/x] except on a subset having zero content. Thus the 

order of integration can be inverted. Hence 



J '5h/x J 3X 1 ~ ( (V-(u+eu) - '\J(u) - eu) 2du)de. 
h/3X X 

Using this, (6.20) follows from (6.4). If x ~ 32/E, then (6019) is 

trivial. Thus it can be assumed that 

2 
C 

Combining (6.3) and (6 .• 21) then gives (6.19). 

LE!'®'IA 7. Suppose that (6.2) holds. Then 

whenever 

2 
E - - + 1 

X C < h ,..( X and X ' 3 ' "l • 
r,roreover, on the Riemann 

hypothesis, 

f ~ 2 4 
max jV( u+v) - '\J'( u) - v j du 1 hx(log x) 

x o~v~h 

whenever o ~ h ~ x. 

This follows from Lemma 6 by a similar argument to that used to 

deduce Lemma 4 from Lefililla 3. 



~ we now proceed. wi th the pro of of Theorem 1 o. EY L' i t is meant 
m 

that possible terms with m < [x/y] are omitted, [x/y] is only 

counted when x < y([x/y] + a), and if [x/y] is counted, then 

x/[x/y] is replaced by y in all the appropriate places. Observe 

now that, by (1.27), 

Y'V'x (a) = ~ L log p + 
,y -=-=~ 1/'2 X X m(x -<P<-

" m+a 'm 

+ S112 ) log p 
m 

\ x-ap<mp~x 

-} ) log p. 
m(x1/2 

\ 
~(p(x 1/2 
m+a '-

Clearly the contribution from the second double sum is O (x1/ 2), and 

from the third is Q (log x). Thus, by (6.24), 

so that, by (1.2), 

y(V- (a) - F(a,x/y)) = 
x,y 

Suppose that 

(6.26) 0 < ô < 1 

and 

36. 



then 

Let X 

where 

Then 

X oXa 
O ~ u - n;::;:Œ ,< m(m+a) • 

"q,(?:) - V(_::_) - ax -
V m m+a m(m+a) -

X X bX = '\Ï(-) - '\J(u) - (- - u) + O ((- + 1)log x). 
m m - 2 

be of the form 

k 
X = ( 1+6) , 

m 

k is a non-negative integer, and suppose that 

2 
X ,$. x. 

x2 J x/x <{ ox sup IV'( u+v) - V{ u) - v Id u 
x/(X+oX+1) V,$.XX2 

Before proceedi:ng further with the proof consider the consequence of 

assuming the Riemann hypothesis 0 BY Lemma 7 and (6.30), 

x2 oX x x 4 1/2 I oX ~ -(-. - • -(log x) ) + L (- + 1)log x. 
"'- ôX X X2 X -X<m<X+ôX m2 

37. 



38. 

Thus, summing over those X, given by (6.28), for which (6.29), holds, 

one finds that 

which with (6.25) and the choice O = y- 2/ 5x 1/ 5(1og x) 4/ 5, which is 

consistent with (6.26), gives 

To return to the :µroof, suppose that (6 0 2) holds. Then, provi­

ding that 

one has, by (6.30),the Schwarz inequality and Lemma 7, 

2 2 
h !..cox . ~ . ~ ex (-c ( log x )1/3))1/2 
~ ôX X x4 X P 5 loglog x + 

+ L (0x + 1 )log x. 
X<m~X+ôX m

2 

Thus summing over all the numbers X of the form (6.28) for which 

(6.29) holds gives 



39. 

This with the choice ô = exp(- 1c
6

(
1

10f x ) 1/ 3) and Huxley's 
2 ogogx 

theorem [2] that (6.2) holds with C = 12/5 establishes Theorem 10. 



y, Proof of Theorem 11. 

Define N. inductively by 
J 

(101) N = 3 and N. = 
1 J+1 

where the product is over all those 

( 7. 2) 

Let 

( 7. 3) J)j 

and 

(7.4) :J) 

Further, 1 et 

N. 
p ~ e J 

= {n n!N., log N. 
J J 

00 

= u :J) .• 

j=1 J 

j be large and wri te 

y= N.• 
J 

IlP 

primes p 

< n ❖ N.} 
J 

such that 

Let À be the characteristic function of J) and 
n 

(n ❖ y) 

a (y) = 
n 

0 (n > y)• 

BY (1.1), (1.2), (1.3) and (7.4), all the elements of ~ are odd. 

Let a= 1/2. Hence, by Theorems 3 and 4 of [9], 

40. 



41. 

BY (1.1), (1.2), (7.3), (7.4) and (7.5), it is easily seen that y 

is squarefr~e and the elements of 

:JJ n(log N., N.] 
J J 

are precisely the divisors of y in the range 

À. is the characteristic function of J) , 
n 

( 7. 8) L >..m = 2P + Q (1 og y) 
m~y 

(log N., N. J. Since 
J J 

where P is the number of prime divisors of y. Also, 

L(L ~>..mn)2 = L (L_ ~)2 + Q ((log y)3) 
n(y m<y/n n m 

' ' log y<n~y mnly 

= L ( L~)2 + Q ( (log y )3) 
n m 

nly mnjy 

Theorem 11 now follows in a straightforward fil8.llllcer from ( 7 .1), C7. 2), 
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on the fractionnal parts of x/n and related seguences. III 

B. SAFFARI and R.C. VAUGHA..'lll" 

L. Introduction. 

The abject of this paper is to investigate the behaviour of ~ (a,h) x,y 

(for notation see [2] and [3]) when h(n) = -
1 

1 (n > 1) and og n 

h(n) = log n. In contradistinction to the case h(n) = 1/n it is immedia­

tely apparent that the behaviour of ~ is non-trivi<'3.l even when y is 
x,y 

as large as ex. For simplicity we only investigate the situation when~ is 

the Toeplitz transformation formed from the simple Riesz means (R,Àn) 

wi th À = 1. . n 

Theorems and 2 deal with the case h(n) = 1/log n, whereas Theorem 3 

deals with h(n) = log n. While it is well known ([1], Example 2.4, p.8) 

that the sequence log n is not uniformly distributed modulo 1, Theorem 

3 shows that it is uniformly distributed in the present context. 

b._ Theorems and proofs. 

2 .. 1.. Let -
( 2.1) 

r--, -L......t x,y 

1 

THEOREM 1. Suppose that O < a < 1 and log y~ x2
• Then 

.--, -..__, (a) = a + Q (xy- 1 (log x)- 1) + Q (x- 1 log2y). 
x,y 



1 

C0R0LL.A,.1i.Y 1 .1. Suppose that x = o(y log x) and log y = o(x 2 ) as 

x - oo • Then 

'"=-' (a) - a ....... as x - oo • 

x,y 

Froof. Clearly by (2.1), 

r-, 
y~ ( a) = s( o) - s( a) 

x,y 

where 

and 0~~<1. Let 

X 
}j = [- - ~] 
~ log y 

and 

(2.6) 

where H is a real number at our disposal. Hence, by (2.4), 

2. 



whenever H ~ M
0 

+ 1. Thus 

( 2.8) T ( 0) - T (a) = I ( 0) - I ( a) + Q ( H) + Q ( ex /H) , 

where 

Let b(u) denote the first Bernoulli polynomial modulo one, 

b(u) = {u} - 1/2. Then, by (2.9), 

(2. 1 o) r(~) = J H (v - M - ~ - 1/2)ex/v xv- 2 dv 
M + ~ ~ 
~ 

The argument now divides into two cases according as 

M = M + 1., o a 

M = N 
o a 

or 

The case M = M • write M for the common value. Then, by (2.1 o), 
o a 

( ) ( ) J M+a( 1) x/v -2 J H x/v -2 
I O - I a = v - M - - e xv dv + a e xv dv 

M 
2 M+a 

JH JH - b(v)ex/v xv- 2 dv + b(v-a)ex/v xv- 2 dv. 
M ~a 

The first integral contributes ~ ex/M x1t 2, the second is 

a(ex/(M+a) - ex/H) and by partial integration the last two are easily 

seen to contribute ~ ex/M xM-2• Hence, by (2.8), 



T(o) - T(a) = aexf(M+a) + Q (H) + 

+ Q (ex/H) + Q (ex/M xM-2). 

Recall that M = M
0 

= [x/log y] and log y ~ x 1/ 2 • Thus 

ex/(M+a) = exp(log y + Q (x- 1 log 2 y)) 
, 

= y( 1 + Q (x- 1 log 2 y)) 

and ex/M xM-2 = g (yx- 1 log 2 y). Hence, by (2.2), (206) and (2.11) 

y (a) = cxy + Q (H) + Q (ex/H) + Q (yx- 1 log 2 y). 
x,y 

X 
The choice H = log(x/log x) now gives the desired conclusion. 

The case M
0 

=Ma+ 1. write M for Ma. Then, by (2.10), 

I(o) - r(a) = (a-1) JH ex/v xv- 2 dv 
M+1 

J M+1 1 / 2 
- ( v - IVJ: - a - 2)ex v XV- dv 

M+a 

0 ( x/(M+a) (fü' )-2) + e x !'1+a • 

Now proceeding as in the previous case we obtain 

Since M = M + 1, this with (2.6) and (2.2) and the choice 
o a 

X 
H = log(x/log x) gives the required result once more. 

4. 

2.2. ()ne might expect that the theorem holds even when y is close to -
but this is false. In fact the next theorem indicates that Theorem 1 is 

essentially best possible, at least as for as th€ upper bound on y is 

concerned. 

X 
e ' 



5. 

THEOREH 2. Suppose that 1 < e < 1 and 
2 -

r-,· 
lim sup - (a) = 1 

"-"""" 

,--, 
lim inf W (a) = O. 

X_.. <X> x,y X --,.<X> x,y 

Proof. we begin by following the proof of Theorem 1 as far as (2.1). 

suppose that o < ~ < 1, 

and 

H = x. 

Then, by ( 2. 4), 

( x }> x-1 ( 1 og y) 2 = x 28-1 • 
Mfl + 2)(r✓1~ + 3) 

Thus, by (2.13), 

Hence, by (2.7) and (2.13), 

T( o) - T(a) = 
x/ÜI + 1) x/(M + 1 + a) 

=(e O -e a )(1+g(x- 1))+g(x). 

To obtain the inferior limi t, let N be a làrge natural number and let 

1 

x = x = (N+a) 1- 0 • 
N 

Then, by (2.4) and (2.12), M
0 

= I\x == N. Hence, by (2.2), (2.6), (2.12), 

(2.14) and (2.15), 

as N --+=. 

r--, 
y -....__. 

x,y 



For the superior limit, take instead 
1 

1-e 
X= X = N N • 

6. 

Then, by (2.4) and (2.12), M = M - 1 = N-1, so that, by (2.2), (2.6), a o 

as N->oo. 

..--, 
y -L--,.a 

x,y 
(rv) x/(N+a) 
"""--e +Y~Y 

2. 3. The latter part of the paper is devoted to h(n) = log n. It is well -
knovm that the se~uence log n is not uniformly distributed modulo 1, and 

in view of this the next theorem is perhaps rather surprising. However, 

one can take the view that x being permitted to go to infinity, however 

slowly by comparison wi th y, crushes a.ny unruly behaviour of the loga­

rithmic function. 

Let 

(2. 17) Q (a)=y- 1 ~c(xlogn). 
X y L_ a , n5.y 

" 

THEOREM 3. Suppose that O < a < 1, x ~ 2 and y ~ 2. Then 

COROLLARY 3.1. Suppose that x 1/ 2log x = o(y) as x -> oo • Then 

Q (a) ..... a 
x,y 

as X -> oo 

Proof. Let 

Then, by Theorem 1 of [2] and (2.17), 



Let 

( 2. 20) 

and 

Q (a) - a 4_ x,y 

y= [Y] 1 
+ -2 

T = 4nkx. 

Then, by Lemma 3.12 of Titchmarsh [4], 

Le(kxlog n) = 
n~y 

iT 
s 

ç(s-2nikx)Lds + O ((l + 1)log xy) 
s - T 

7. 

where ç is the Riemann zeta function. By moving the path of integration 

to the line o = 1/log y, one obtains 

L. e(kxlog n) = 
n~y 

1 
1+2nikx J log y + y 1 - ----+ -- 1+2nikx 2ni 

1 . 

Hence, by (2.21), 

-- - J.T log y 

iT 
s 

ç( s-2nikx)Lds + 
s 



Le(kxlog n) { 
n~y 

{ (be) 1/2 I T dt 1 

0 t + log y 

(lac)-1/ 2 y 1 og kx 
+ + lac 

<( (be) 1/ 2(1oglog y + log kx) + y(log lac) (1acr 1• 

Thus 

Therefore, by (2.1s) and (2.19), we have the theorem. 



9. 
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