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SUR LA TOPOLOGIE DU COMPLEMENTAIRE D'UNE HYPERSURFACE DANS Fn+l. 

INTRODUCTION. 

Soit f(z ,z 1, ... ,z 1) un polynôme homogène réduit et soit V l'hy-
o n+ 

persurface dans JP_n+l définie par f Pour étudier l'homotopie du complé-

mentaire de V dans Fn+l, nous considérons les deux fibrations : 

(i) La fibration de Milnor 

-1 ( f 1) est notée F • 

(ii) La fibration de Hopf. 

L'inclusion F ~ !Cn+2 - f- 1 (o) et la projection cp induisent les 

idomorphismes : 

Ce travail se divise en quatre chapitres. Les chapitres I et II sont con

sacrés à l'étude du groupe fondamental du complémentaire d'une courbe dans 

Dans le chapitre III nous étudions les groupes d'homotopie 

CilÙ V est une hypersurface dans ]?n+l . 

Le résultat principal du chapitre I est le Théorème : Soit V une courbe 

dans F
2 

. On suppose que les points singuliers de V sont des points doubles 

ordinaires. Alors la monodromie de la fibràtion de Milnor agit trivialement sur 



Ce théorème est motivé par la proposition 

Proposition Soit V une courbe dans JP2 . Alors les deux conditions sui-

vantes sont équivalentes. 

(i) 

(ii) 

2 n
1 

(JP - V) est abélien. 

n
1 

(F) est abélien et la monodromie h➔~ 

est l'identité. 

Dans le chapitre II, nous considérons des courbes irréductibles 

7l ) 

vj , 1 5 j 5 r , en position générale dans JP
2 

. Soit V = v1 U v2 U ... U Vr 

Théorème : Le groupe fondamental n
1 

(JP2 - V) est abélien si et seulement si 

les groupes fondamentaux n
1 

(JP
2 

- V j) , 1 5 j < r , sont abéliens. En par

ticulier on obtient le 

Corollaire : Le groupe fondamental 2 n
1 

(JP - V) est abélien, si l'on suppose 

que les courbes V., l<j<r 
J - -

, sont régulières. 

Au chapitre III, nous étendons au cas des hypersurfaces, le résultat 

suivant de A. Hattori. Théorème (Hattori [7]) . Soient L.(j = 1,2, ... ,r) 
J 

d h 1 d ]P
n+l . . , , l . es yperp ans ans en position genera e et soit 

. Alors le groupe fondamental TT (JPn+l - L) 
1 

et le revêtement universel de JPn+l _ L est n-connexe. 

Notre résultat est 

est abélien 

Théorème : Soient V.(j = 1,2, ... ,r) des hypersurfaces régulières en posi
J 

tion générale dans JPn+l. Soit V= v
1 

U v
2
u ... U Vr . Alors 

(i) Le groupe fondamental TT (JPn+l - V ) 
1 

(ii) Le revêtement universel de 

est abélien. 

est n-connexe. 



( iii) H. (F ; 7l ) est isomorphe à Zlk 
J 

où k = (r: 1 ) et la monodromie h·l} 
J 

]?2 

où 

agit trivialement sur 

Dans le chapitre IV, 

H. (F 
J 

ïl) pour 

nous donnerons un 

j ::; n 

example 

tel que le groupe fondamental 
2 

n1 (JP - V) est 

Zl est ïl/nïl 
n 

de la courbe 

isomorphe à 

C'est une extension du résultat de Zariski [19] . 

V dans 

Zl ➔~ 7l 
p q 

Le chapitre I est publié dans Inventiones Math. 27, 1974. Le chapitre II 

sera publié dans Journal of the London Math. Scociety. Les chapitres III et IV 

sont soumiS au journal Topology et Math. Annalen respectivement. 
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Ch.apter 1 THE MONODROMY OF A CURVE WITH ORDINARY DOUBLE POINTS 

§1. Introduction 

Let f(x,y,z) be a square-free homogeneous polynomial of degree d 

and let C 
2 be the projective curve in IP which is defined by 

-1 
C = f -: (0) 

We want to 2 study rr
1 
OP - C) For this we consider the Milnor fibering of 

= arg(f): s5- K ➔ s1 where K = f- 1(o) n s5 . The fiber F of 

this fibering is naturally diffeomorphic to any affine hypersurface 

X = f- 1(t) c œ3 (t + O) . Let h: F ➔ F be the monodromy map which is 
0 

defined by 

where !; = 2TTi The first monodromy h* : H
1

(F) ➔ H
1

(F) is deeply d expd 

related to 
·l 

TTl OP - C) . In fact, we have that h* is equal to the identity 

map if 2 rr
1 

(1p - C) is abelian (Proposition 5). 

The main purpose of this paper is to prove that h* ~s equal to 

I (identity map) modulo torsion if C adroits only ordinaly double points 

as singularities (Theorem 1). 

This is ill important step tu 

Zariski' s conjecture that n
1 

(lp
2 

- C) should be abelian if C .admits only 

ordinaly double points as singularities (~f], [%0]). 

'rhis re-s"'-1 t is also true if C adroits only a certain type of 

singularities (admissible singuhrities) (Theorem 2J in §4). 

§2. Preliminaties. 

Let arg(f) s5- K ➔ s1 be the Milnor fibering as above. There is 



a cannonical 2'ld-action on F by the monodromy map h which is compatible 

with the natural s 1-action on SS~ K 

Proposition 1. We have the following exact sequences and commutative diagrams. 

Proof: The law sequence is obtained from the Milnor fibering and the column 

is a result of the Hopf-bundle: Ss-.K ➔ JP2 - C and of the fact that j is 

injective. 

Proposition 2. Image(j) is contained in the Center of n1(s 5- K) 

Proof: Let ·a= (x ,y ,z) E F be a fixed base point. Then the generator 
0 0 0 

of Image(j) can be represented by the orbit loop S : I ➔ SS- K' defined by 

s(t) = (x exp 2TTit,y exp 2TTit, z exp 2TTit) . Let 
0 0 0 

s [w] E n1(s - K;a) be any 

element represented by a loop w . Then s-1ws is naturally homotopie to 

w by pulling back along the orbit of s1-action. Therefore we have 

[s)- 1[w][s] = [w]. This completes the proof. 

Let G be a group. By Z(G) and D(G) , we mean the center of G 

and the commutator group of G respectively. Then the following proposition 

is an immediate corollary of Propositions 1 and 2. 

- -Z-



Proposition 3. (i) 

have 

(ii) 

D(i\ (s
5 

- K)) 

2 
Z(T\ (]p - C)) 

D(nl (s 5- K)) 

2 
= D(n

1 
(]p - C)) 

= 1jr(Z(T\ (S 5 - K)) 

is a normal subgroup of n1(F) and we 

Now we consider the condition for n
1
âP2- C) to be abelian. Let 

t: I ➔ F be any fixed path from a to 

2TTi 2TTi 2TTi h(a) = (x exp-::;-d, y exp-::;-d, z exp-::;-d) • Then in the sequence of Proposition 1, 
0 0 · 0 

we can define a cross-section 'T' of 0 by the following loop: 

'T'(t) = ~ (xo exp 4:it' y o exp 47f t' 

(t-1(2t-l) = t(2-2t) 

4TTit 
z

0
ex~) 

Because n
1

(F,a) is a normal subgroup of TT (s 5- K,a) , we can define an 
1 

automorphism 'T'#: n
1

(F;a) ➔ n
1

(F;a) by 'T'#([w]) = [-r]- 1[w]·(-r] for 

[w] E T\(s 5-K;a) . It is easy to see that 'T'# is well-dèfined in 

Aut(rr
1

(F;a))/Int(T\(F;a)) where Aut 1\(F;a) is the groupof automorphisms 

and Int(n
1

(F,a)) is the group of inner-automorphisms. It is also easy to 

see that 1,n,<[w]) is represented by t· h(w) •t- 1 where h(w) is a loop de-

fined by h(w)(t) = h(w(t)) Since 'T'# preserves D(n1(F,a)) , it induces 

an isomorphism h'I" of H
1

(F) . By the above consideration, we have 

Proposition 4. h'T' is equal to the monodromy 

Now we can state a fondamental criterien for n1 OP2- C) to be abelian. 

Proposition 5. The following three conditions are equivalent. 

-3-



(i) 

(ii) 

(Hi) 

2 n1ÙP -.C) is an abelian group. 

T\ (SS- K) is an abelian group. 

n
1

(F) is an abelian group and h* 

map 

Proof: (i) ~ (il) is the result of Propositions 1,2 and 3. (ii) ~ (iii) 

can be obtained from the fact that n
1 

(SS_ K) is a semi-direct product of 

tt
1

(F) and Zl using the cross-section r 

Proposition 6. Assume that the curve C is irreducible. Then we have 

(i) D(17iÙP
2

- c)) = nl(F) 

(ii) n1 ÙP
2- C) is abelian if and only if n1 (F) is trivial. 

This is an immediate consequence of Proposition 1 and the fact that 

Hl (Jp2 - C) = Zld 

§3. Main result•about the monodromy. 

Let C = c1u c2 U ... U Cr be a curve in JP2 which bas only ordinary 

double points as singularities. Then we will prove the following theorems 

which are fundamental steps for n1(Jp2- C) to be abelian. We use the same 

notations as before. 

Theorem 1. (i) The first homology group H1 (F;Q) is equal to Q $ Q $ .. $ Q 

((r-1)-copies) 

(ii) The monodromy h* H1 (F;Q) ➔ H/F;Q) is equal to the identity map. 

- 4-



Proof of Theorem 1. Let f(x.y.z) be the fixed square-free homogeneous poly-

nomial defining C We consider a homogeneous polynomial 

g(x.y.z,w) = f(x,y,z) + wd and let V be the projective hypersurface of com

plex dimension 2 defined by V= g- 1 (o) CJP 3 • Then we can see easily that 

V n {w = O} = C and V - C is isomorphic to F . Moreover we have that the 

singular set EV of V is equal to the singular points E C of C There-

fore V has only isolated singularities. Now we want to compute H
1

(F) • By 

the Lefschetz duality, H
1

(F) is isomorphic to H3 (v,c) 

From the exact sequence 

we have a short exact sequence 

First we assume the following lennnas. 

Lemma 1. H3(v; 7l) is a finite group. 

Lemma 2.. The rank of H3 (v,c) is equal to or greater than r - 1 

Now by the sequence (A), we have that rank (Coker 0) is less or 

equal to r - l because H2(c;Q) is Q EBQ EB •·· EBQ Cr-copies) and the 

image of 0 contains the Euler class T of the Hopf-bundle K ➔ C and T 

is non-zero. (~f]). Therefore by Lennnas land 2 we have that 

3 H (V,C;Q) ==-Q Er,··· EBQ ((r - 1)-copies) 

Now we consider the Wang sequence of the Milnor fibering of f 

_.;-_ 



•••• ➔ 

h* ... I 
H1(F;Q) --- H1(F;Q) ➔ e1(s5- K;Q) ➔ Q ➔ O 

We know that H1(s
5- K) ~ H3(K) by the Alexander duality and therefore we 

5 have that H1 (S - K;Q) is isomorphic to Q EB • • • EB Q (r - copies) 

Thus we have that coker(h*-1} = Hl (F;Q). This implies that h* = I 

(identity map), completing the proof of (ii) of Theorem 1. 

Proof of Lennna 1. At ea.ch singular point p E E V = E C be a 

defining polynomial of V in a neighborhood of p and take a small disk D: . ,p 

centered at p 

Tl> O 

Let K = v n s5 
p e:,p 

and C 
p 

= V n n6 which is a cone of 
e:' p 

K • Take 
p 

small enough and let 

Since oV is diffeomorphic to K 
P,n P 

we can replace C 
p 

by V at each 
P,n 

singular point p . Then we have a non
....J 

V = 
p' 'Il 

singular surface V and it is easy to see 

~ that V is diffeomorphic to a non-sin-

gular projective hypersurface of degree 

d • Let V = v-Z:: Int C where 
C p 

means the disjoint sum at every singular 

-1 6 s <n> n n8 ,P 

Figure 1 

point p Then we have two Meyer-Vietories exact sequences . 

(B) ... ➔ 

(c) ... ➔ 

I 

Because V 
'll,P 

has a homotopy type of a 2-dimensional CW-complex, 

tt
3(E V ) = r. H3

(v~ ) = 0 • Therefore, in the sequence (C) 
Tl,P 1 1,P 

V 

tt3 (v ) ➔ u30:: K ) is injective because H3(v) = 0 • This means that 
C p 

K 
p 

{H\I: K ) ➔ H3(v) ➔ O} 
p is exact. Thus to prove Leroma 1 it is sufficient to 

prove that H3(K) 
p 

is a torsion group. Now by the assumption, at each singula1 



point p we can take 2 2 d 
x +y+ w as a defining polynomial . Identifying 

V as the fibre of the Milnor fibering of 
p, 11 

at p , we have a Wang 

sequence 

5 
• • • ➔ H (V ) - > H (V ) ➔ H (S - K ) ➔ 0 

2 P,11 h *-I* 2 p,'11 2 €,p p p 

By the join theorem of Brieskorn-Pham ( E11.]), we have 

((d-1)-copies) and h * p 
is represented by the matrix 

0, 1 0 .... 0 
• ' 

. 
' 

1, 
(d-1) .... . 

' 
0 

' ' Q __ _-0, ' 1 
' . - - . 

-1 
' 

1 ... - , ' -1, -1 

H (V ) '°"' tZ $ • • • $ tZ 
2 p, 'Il 

Thus 5 
H

2 
(S.,. - K ) = tZd ... ,p p 

by a slight computation. This means 

H
2

(Kp) =tZd by the Alexander duality. Thus 

pletes the proof. 

and this com-

Proof of Lemma 2. Conaider the Wang sequence of the Milnor fibering of· f 

We know that H
1 

(s 5
- K;Q) ;il!. H

3
(K;Q) .;: Q $ · · · $ Q (r-copies). Therefore the 

above exact sequence says that rank (!:\ (F;Q)) ? r-1 . This completes the proof 

of Theorem 1. 

§4. Generalization of the results in §3. 

Let C. be any curve of degree d and let p be a singular point 



of C • Let f be a local defining polynomial of C 
p 

Then we can consider 

the Milnor fibering of f 
p 

at 3 p : arg(f) : s
8 p ,P - K ➔ s1 

€ 
where 

K = s3 n C . Let F be the fibre of this fibering and let 6 (t) be the e: €,p p p 

characteristic polynomial defined by the determinant of t,I - h *: H1(F ;Q) 
p p 

where h * is the monodromy map of the fibering. 
p 

Definition. A singular point p E C is admissible if and only if the roots 

of !:. (t) 
p 

are distinct from 2ni 
l;d = exp d 0rdinary 

double points are clearly admissible. Now we can generalize Theorem 1 

as follows. 

Theorem 3. Let C be a projective curve which adroits only admissible singu-

larities. Then we have (i) H (F·Q) ~ Q EB • • • EB Q where r 
1 ' " / 

is the number 
- f-1 

of irreducible components of C 

(ii) The monodromy h*: H1(F;Q) ➔ H1(F;Q) is equal to the identity map. 

Proof of Theorem 3. The proof is essentially the same as that of Theorem 1. 

We used the fact that C has only ordinary double points to.prove that 

is a torsion group in the proof of Lennna 1. This is also the case if p is 

an admissible singularity of C because the local monodromy 
h * p 

in the proof 

of Lennna 1 is the tensor product of the local monodromy 

and the matrix. 

( 

o.. 1._ O ) . . . . 
0 . · . ·l 

. ·0 

-1 · · · · .·• · -1 

by the join theorem of Thom-Sebastiani• ([4 3]) 

h * of the curve p 

Therefore 

h * - I : H2 (V 'Yl) ➔ H2 (v ) has only a finite cokernel, because h * has p p,,, P,11 p 

not 1 as eignevalue. This completes the proof. 

Example. Let C = (xd + yd-q zq = o} (d ~ O). 

Case 1. Assume that q = 1 Then C has only one singular point 

p = [0,0,1] . As p C is defined by d d-1 
X + y = 0 and we have 

C 



/1 ( t) 
p 

Therefore p is admissible. In fact we have that n1(F) = 0 by the join 

theorem ([13]). 

Case 2. Assume that d-2 ~ q ~ 2 and (d,q) = 1 . C has two singular points 

p = [ O;O;l] 

and 

q = [ O;l;O] and we have that 

6 ( t) 
p 

Thus p and q are admissible. Similarly we have that n1(F) = 0 

Case 3. Assume that d-2 ~ q ~ 2 and r = (d,q) > 1 . Then C bas the 

same singular points p,q but we have 

6 (t) = 
(tµ-l)r (t-1) 

p ( t d - 1 ) ( t d -q - 1 ) 
µ = d(d-q) 

r 

and 

/:). ( t) = 
(t)..-ll (t-1) 

q (td-1) (tq-1) 

Thus neither p nor q are admissible. In this case we have that 

TT 
1

(F) = F((d-l)(r-1)) and not abelian. (The right side means a free group of 

rank (d-1) (r-1) .) 

Remark. Assume that a curve C = c1_u c2 ... U Cr adroits only admissible sin

gulari ties. Let µP be the multiplicity at a singular point p . As for the 

1 



Euler number x(c) of C , we have a formula, 

x<c) 

where d is the degree of C and ~ means the sum at each singular point p 

Then by [14], we have tha t 

X~F) = x(]l:>2 ) - x<c) 

= (3-3d+d 2) - ~ µ p 

We consider the zeta function Ç(t) of the monodromy map h F ➔ F . Then 

we have 

where P.(t) is the determinant of the linear map 
1. 

H. (F;Q) ➔ H. (F;Q). <EM) . 
1. 1. 

By theorem 3 we have that P
1

(t) = (1-t)r-l . Therefore we have 

that P
2

(t) = (1-td)k (l-t)r- 2 where k = 3 - 3d + a2 - ~ µp • This implies 

that (i) h/F;Q) ~ [d(3-3d+d 2 - I: µp) + r-2} Q and (ii) the rank of the 

kernel of the map 

is equal to l+r - 3d + a2 - L'. µ From this we can see that the total multi-p 

plicity I: µp has a upper-bound (d-l)(d-2) if C is an admissible, irre-

ducible curve. The curve of the above exa~ple is one of the such curves. 

v(tJ 



On the. fW'l<la.meY\to.l jrc~r t>~ :dle c..o-mpl~rne,+-\t cf A. xiedl,\..d blt 
ù.1-Y-11~ t" îP~ 

§ 1. Statement of results 

Let C = c
1 

U c
2 

U .•• U Cr be an algebraic curve in JP
2 

such 

that its irreducible components (c.} are in 
J 

general position i.e. 

and C. 
J 

meet transversely for each i, j (i t- j) and C • n C . n Ck = r/J 
1. J 

for each mutually distinct i,j and k . How can we decide the fundamental 

group n
1 
œ2 -C) in the words of (j=l,2, ... ,r) ? 

Zariski's conjecture says that n1œ
2-c) should be abelian if 

each irreducible component C. 
J 

has only ordinary double points as singula-

rities. ( (;ioJ). Our results are partial answers to this question. 

Theorem 1. Let C' be any curve in n>2 and let C be an irreducible 

curve such that C meets transversely with C ,· and n1 œ
2

-c) is abelian. 

Then we have the following central extension. 

i 
1 ➔ 7l ➔ ➔ TT œ2 

- C') ➔ 1 
1 

Moreover the composition homomorphism of i with the Hurewicz homomorphism 

is also injective. 

7l 4 TT œ2 - C U C 1 ) 
1 

➔ H œ2 
- C U C') 

1 

(By 1 we mean the trivial group.) 

In this paper, every homomorphism is induced by the respective inclusion 

map, unless otherwise stated. In [16], we have proved this theorem assuming 

that C is non-singular. As an immediate corollary, we have: 

Corollary 1, Under the same assumption, 

and only if 
2 n

1 
ÙP - C') is abelian. 

TT œ2- C U C 1 ) is abelian if 
1 



Using Corollary 1 inductively, we have the following reduction 

theorem. 

Corollary 2 (Reduction Theorem). Let C = c
1 

U c
2 

U • • . U Cr be a curve 

such that its irreducible components (cj} are in the general position. 

Then T\ (JP
2

-c) . is abelian if and only if is abelian for each 

j=l,2, ... ,r 

The only if partis the result of the general position property 

i.e. n1(JP
2 ~ C) ➔ n1(JP

2 - Cj) is surjective. This implies, for example, 

that Zariski's conjecture is true if it is true for irreducible curves. 

§ 2. A reduction lerrnna. 

In many cases, it is more convenient to study n1(Œ2 - C) rather 

than n1(JP
2

-c) • One of the reasons is that H1(JP2-c) has a torsion 

7l/d
0 

7l if, assuming that C has r-components (cj} (j=l,2, ••. ,r) 

the greatest common divisor d of their degrees {d.} is greater than 1. 
0 J 

For this, we prove the following lennna. (See also î1,J). 

Lennna 1. Let C be a curve in F 2 and let L be a general line to C 

Then we have a central extension 

such that the composition map 

is also injective. This implies that n1(JP
2- CUL) is abelian if and 

only if TT âP2 
- C) 

1 
is abelian. 



Proof, Let Lco be another Une which is general to C U L • Without 

losing generality, we can assume that Lco is defined by Z = O and L 

is defined by Y = 0 • Let t
11 

be the line Y - '11 Z = O • This is a 

pencil centered at 00 = [l; O; 0 J ~ We can take a positive number e so 

that L
11 

is general to C for each • Let N = 

and take a base point * on Le - C U L
00 

• Then we have a following 

Van Kampen diagram. 

1\ (N-C U L, 

Considering t.he fibering map h : N - Lco ➔ n; = tri E Il:, 1111 s: e} which 

is .defined by h[X; Y; zJ = Y/Z , we have that N - C U L is 

diff eomorphic to (Le - C U { 00 }) X (D! - [o }) and N-C is homeomorphic 

to the quotient space of (Le - C) X n! identified [oo } X n! to a point. 

Therefore Le - C is a deformation retract of N-C • We can take 

generators [gj} (j = 1,2, ••• ,d) of 1\(N-C, *) so that their generating 

relation is on~y g1 o g2 ••• gd =l (d is the degree of C .) (See Figure 1) 

Q 

• . 
Q~ : 

- ( )-1 *· -. T - 81 g2 ... gd gd 

Figure 1. 

-4J-
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l\(N - C U L, *) is isomorphic to F(g 1, ... ,gd) X 7Z • The first part 

F(g 1, ... , gd) is the free group generated by (gi) which corresponds to 

T\ (L€ - C U (00 ), *) and each generator gj is mapped to gj by cp • 

The generator of 7Z (say t ) is expressed by [t- 1. v . t] where v 
p p 

is a small loop which revolves round 1 starting at p E 1€ - CU (00 ) 

and .f.. is a path in N- C U L connecting p to ➔~ • Because t is con-

tained in the center of T\ (N - C U L, *) , we can take p and t 

arbitrarily. Thus in the above diagram we have that cp is surjective and 

Ker cp is the minimal normal subgroup containing t and g1 g7 ••• gn 

Therefore we obtain the following exact sequence. 

where N(ljf(t), 1jf(g1g2 •.. gd)) is the minimal normal subgroup containing 

• First we assert that 

(under a suitable orientation of t ). We can represent t by a loop 

sufficiently near 00 

to L , we have 

Projecting t on 1€ in the direction parallel 

-1 ) that ljf( t) = 'T" = 1jf(g1 g2 ... gd) (See Figure 2 . 

\ 
Figure 2. 
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Now we prove that 1/1 is surjective. By the general position property, 

T\CIP2- CUL UL(X), *) ➔ T\CIP2 - CUL,*) is surjective. Therefore we need 

only prove that 1/1 : T\ (N - C U L, *) ➔ T\CIP2 - C U L U Loo> *) is surjective. 

Let I: be the set defined by { 17 E a:; L
11 

and C are not in the general 

position}. By the elimination theory, we can see that I: is a fini te set. 

Let I: = {p1, P
2

, •.. , Pµ} and let h : 1P
2 

- C U Lex> ➔ a: be defined by 

h[X; Y; Z] = Y/Z • Then, using a controlled vector field near C U L
00 

we have that h : h -l(a: - I:) ➔ a: - I: is a fiber bundle. Tà.ke 

a positive number ô so that {n~(pj)} are mutually disjoint and included 

in a: - n2 
e 

Take paths 

(i) 

(ii) 

(iii) 

Let r. = 
l. 

where ni( pj) is the disk defined by {p E a:; 1 P - pj 1 ~ ô) 

{.t
1

} (j=l,2, ... ,µ) which satisfy the following conditions. 
., 

2 
.t. (O) = e and -t.. ( 1) is a point of the boundary of n 6( pJ.) 

J J 

-t.. n n~(p,) = .t.(l) or ~ for j=i or j i i respectively. 
J l. l. J 

-t.. nt.= {e) for each i,j (i1j) 
J J 

.t. Uni( P.) and W. = (n! - {o )) U U rk . (See Figure 3.) 
J J J k~j 

/ 
/ 

; 
; 

i 
/ 

/ 
i 
' ., 

Figure 3. 



Then one can see that h-
1

(wµ) is a deformation retract of 

JP
2 

- C U L U Lco using the above fibering, Now we consider the following 

exact sequence. 

1 ➔ rr
1 

(L
8 

- C U {co}, *) ➔ rr
1 

(h-l(I'j)-LP., *) 

J 

Take an element •r. of rr
1

(h-
1

(r.)-L , *) such that h,H='TJ.) is a 
J J pj 

generator of n/I'. - {p. }, e) !:!"7l and a. ( T.) = 1 where a. is the 
J J a J J J 

homomorphism rr
1 

(h-
1(r. )-Lp , *) _i> n

1
(h -\r.), *) • We can define a cross-

J . J 
J -1 

so that n
1 

(h (I'. )-L , *) is a semi.-product of 
J pj 

section cr. of h.JL using T. 
J V J 

is surjective by the general rr
1

(L
8
-C U {co},*) and 7l • Because a. 

J 

position property, it is clear that cpj: T\(L
8
-C U {co},*) ➔ rr1 (h-

1 (ri),*) 

is surjective. Now consider the following Van Kampen diagram 

Because is surjective, we have that 

by the induction on j we obtain that 

ljr. 1 J-
is also surjective. Thus 

ljrµ...l 0 1jrµ_2 ° ••. o tjf 0: rr1 (N- C U L, *) ➔ n1 (h -l(Wµ), *) 

~ 

is surjective. This implies- that tjT (and therefore 1jr) is surjective. 

Going back to the exact sequence (A), we have proved that N(ljr(t), 

$(g
1
g

2 
••• gd)) is the cyclic group generated by ljr(t) because the sur

jectivity of 1jr implies that ljr(t) · is contained in the center of 

1\ œ2 
-C U L, *) 



Let S : n1 œ
2

- C U L, *) ➔ H
1 

(IP
2 

- C U L) be the Hurewicz homomorphism. 

Then by Lefschetz duality we have Hl (IP
2 

- C U L) ~ H3
(IP

2
, C U L) . By 

the exact sequence of the couple (C U L, JP
2

) 

➔ H
2 (c U L) ~ H

3 œ2
, C U L) 

1T 
➔ 0 

we have that H
1 

(IP
2 

-CU L) ~ H3 (IP2 , C U L) is isomorphic to coker TT which 

is clearly isomorphic to the quotient group l?l.(t~)©Z lt1)©·· Z.( tr)/tft d t 1..-· tcl~t"" 
w/iere. Z{t·) ,t's ;th Â1'1-fil1lte e.yu.(t, ~)'°G""r j-er\eNl.t~J by s (J"'o>-- ,r) a-?t,ç[ d,i =-

ci.l~ ( C.j) > a4,UW1.. i-11.j ~- rC J. 3 U-- i, · .. )y) o/tJl ),.uedt<.c.l../-6. ~~s 
1 C. . Using this isomorphism, So ~( t) corresponds to t,0 Thus 

SoW(t) is nota torsion element. Therefore by (A) we obtain a central 

extension with the desired property. 

This completes the proof of Lemma 1. 

§ 3. Preliminaries. 

Let C be a curve in n>
2 

identify n>2 
-L 

(X) 
with Let V 

0 

square-free polynomial which defines -

Taking a general line L
00 

, we 

= a:2 n C and let f(x, y) be a 

V 
0 

. Let 
,., 
L be the set of critical 

values of f . It is clear that L is a finite set. Therefore we put 
,.., 

I: = I: - [O} = [p
1

, •.. , Pµ} . Let e be a positive number so that 

n2 n I: = ~ • Let N = f- 1(n2) and take a base point * on f-
1

(e) 
€ € 

Lemma 2. (M. Kato) The following homomorphism is surjective. 

' -



Proof. The proof is parallel to that o·f 1j, in § 2. Let V = f-\p) 
p 

Then we have - n 1 :<= v. n 1 = -V C n 10) where V is the p (X) 0 0) p 
lPz -closure curve in Thus V is in the general position to Lex> . p 

Therefore using a controlled vector field near Lex> 

f : f-
1

(0: - D ➔ a: - L is a fiber bundle. Take a positive number ô 

and paths (t.} in the exact same way as in the proof of lemma 1 and 
J 

r. t. 2 let = U Dô(Pj) similarly. 
J J 

Let cpj rrl (Ve' *) ➔ rr
1 

(f- 1(rj), *) be the natural homomorphism and con-

sider the exact sequence: 

First observe that f has finite critical points on V • Otherwise 
pj 

f(x, y) - P. should have a square divisor which implies ~- n Lex> con tains 
J i 

strictly less than d points by Bezout 1 s Theorem. This is a contradiction. 

Thus we can take an element 'T'. such that 
J 

n
1
(ï..- [p.}, e) ~7l and T. is of the form 

fi 'l"j is a generator of 

c-i-1 .v.t] where v is a small 
J J J 

loop revolving .round in the normal plane of a non-singular point of 

V p. and t is a path in Ve which connects v(O) 
J 

Define a cross-section crj of f;; naturally using 

to the base point * 
'l". Then 
J 

T\ (f- 1(r. )-V , *) is a semi-product of 
J pj 

rr
1 

(V 
8

, *) and 7l It is clear that 

'l"j is mapped to the unit element 1 of rr
1

(f- 1 (rj), *) . Thus by the above 

argument, we can see that ~j is surjective. Then the proof is done by the 

exact same way as that of surjectivity of 1j, in Lemma 1. 

Lemma 3. Assume that V 
0 

is irreducible. Then 

if and only if K(V) 
0 

is equal to 

be a subgroup of rr
1 

(N-V 
0

, ➔~). 

is abelian 

considering to 



Proof, Consider the following diagrams. 

1 
+ 

K(V) 
0 

1 ➔ '\(Ve'~ a > '\ (:-: o' 

h ~T\(t2-Vo,*) 

+ 
1 

Take a cross-section T 
0 

of 

f" 
'If 

and let T = b o T 
0 

irreducible, is abelian if and only if 

➔ 1 

. Because 

TI (G:
2 

-V *) 
1 o' 

V 
0 

is 

is iso-

morphic to 7l . Therefore, by the diagram, TI (o:
2 -V *) is abelian if and 1 o' 

only if f" # is isomorphism. 

Assume that î\ («:
2-v

0
, *) is abelian. Then we have f~ 0 h = cp o fi, o a = 

the trivial map. This implies that h is trivial i.e. = K(V) 
0 

On the contrary, assuming n1(v
8
,*) = K(V

0
) , we have that T is isomorphic 

which implies n1(œ2-v
0

,*) is isomorphic to 7l • This completes the proof. 

§ 4. Proof of Theorem 1. 

Let C be an irreducible curve in JP
2 such that is 

abelian and let C' be any curve which is in the general position to C 

i.e. C and C'. meet transversely. Take a general line L to C U C' 
a, 

ldentifying JP
2

-Lco with 

curves C . n a:2 and 

the following theorem. 

, let V· and V' be the corresponding affine 

respectively. Actually we are going to prove 



Theorem 2. is naturally isomorphic to 

i,e, we have the following central extension which splits by the natural 

homomorphism: T\ (a:
2 

-V UV',*) ➔ rr
1 

(a:
2-v, *) 

Assuming this theorem, we can prove Theorem 1 as follows. Consider the 

following connnutative diagrams where the vertical sequences are obtained 

by Lennna 1. 

1 ➔ Ker a 
i 
➔ 

.,1\ 

• h 
• 

1 ➔ 
1 

7Z j 

1 1 
t t 

(]p2. rr1 ·-C U C', *) 
a > T\ (]p2 -C' '*) ➔ 

t b t d 

> TT (]p2 -C U CI u' L *) 
C 

1T. (]p2 -C' U L i~) ➔ 1 œ' 1 c:o' 

t k t t 

7Z 

t 
1 

id. ----------> 7Z 

t 
1 

1 

➔ 1 

Let h : 7Z ➔ Ker a be the canonical homomorphism induced by the above 

diagram. We assert that h is isomorphic. Take m E7Z and assume that 

h(m) = 1 . Then we can take an element m' of 7Z such thatj(m) = k(m') 

Then we have c,j(m) = t(m') = 1 which implies that m' = 0 and therefore 

m = O . (We consider 7Z as an additive group.) Thus we have that h is 

injective. Take an element w in Ker a. Then we can take an element w' 

of 1\ (]p2 -C U CI U Lw*) such that b( w') = i( w) • Because d Cc UJ') = 1 

we have an element m of 7Z such that -t(m) = c( w') . Now letting 

u.f' = w' k(m)-l , we have that b(uJ') = i(W) and c(uJ') = 1 

Therefore we can find an element n of 7Z so that j (n) :a: uJ' which 

implies h(n) = w • Thus we obtain that h is surjective. Now it is clear 

that Ker a· is included in the center of rr1 (]p
2-cu C', *) . This completes 

the proof of Theorem 1 modulo Theorem 2. 

-.:z.o-..l... 



Let f(x, y) and g(x, y) be square-free polynomials which 

define V and V' respectively. 

Let ~ be the set of critical values of f and let r; = 'f - {o) = { P1' Pz, ... , pµ ). 

Let D be a large disk which includes r; LI (o) • We can assume that 

ex>= [l; O; O] is contained in Lex>- C UC' • Consider pencil Unes LT'l 

centered at ex> where LT'l is defined by y = ri • (In IP2 ,:Cri is defined by 

Y = ri Z because x = X/Z and y = Y/Z ). 

We can take a positive number a large enough so that -1 
V p = f (p) and 

each p ED and ri< lnl ~ a) • Let D be Lri meet transversely for 

f- 1(D) nu L • Then D 
1111 ~ a ri 

2 is a compact subset o~ œ satisfying the 

following properties. 

(i) -D is a deformation,retract of and therefore it is also 

a deformation retract of œ2 
• 

(ii) f : D - f- 10:: u {o )) ➔ D - I: u {o) is a fiber bundle which is 

homotopically equivalent to the fibering 

f:f-l(D-I:U{o) ➔ D-I:U{o). 

Take a point P = (x, y) in œ2- VU V' • Let U(p) be a neighborhood 
0 0 0 0 

of P in œ2- VU V' • Now we consider radical deformations of V' 
0 

centered at P
0 

• More precisely, let V'(ri) be the affine curve defined 

by the polynomial equation g (x,y) = g(ri(x-x )+x, ri (y-y )+y)= 0 • 'Il O O O 0 
2 

Let hri be the liner transformation of Œ defined by hTl(x, y)= 

(T}(x-x )+x , ri(y-y )+y ) '.!!ben we have that (i) h'l"l(x
0

, y ) = (x , y ) 
0 0 · 0 0 'I O O 0 

for each ri E Œ and (ii) V'=V'(l) and V'(ri) = h~
1

(V') for each f\, 

(fl:f: O) 

-Let A be the set defined by { Tl E G: - (o) ; V' ( ri) and C are not in the 

general position). We consider that O is contained in A . 



Then we have the following lemma. 

Lemma 4. A is a 0-dimensional analytic subset of (t 

Proof. ·v•(tv is defined by the homogeneous polynomial 
d2 

G (X, Y, Z)= Z g(î)(X/Z-x )+x, rf,Y/Z-y )+y) where 
'l"j O O O 0 

is the degree 

of g(x,y) (î) f O) . Expressing G (X,Y,Z) as 
d î) 

IV 
G'rl(X, Y,O)+Z•Gî)(X, Y,Z) 

2 we can see that Gî)(X,Y,0)/17 does not depend on 'rJ ( Tl t= O) • This 

implies that V' ( ri) n Lco = V I n Lco . Thus each curve V' ( ri) ( 'r} f O) is 

controlled by Lco . Let F(X, Y, Z) be the homogeneous polynomial which 

corresponds to f(x,y) 

We consider an algebraic set 

equations. 

B 

F(X, Y, z) = 0 G'tl(X, Y, 

rank oF oF oF 
èlX ' cf'!. ' C1l 

cGî) ' cG'll ' cG11 
èlX cf'!. oZ 

2 
of JP X 0:: by the following polynomial 

z) = 0 and 

s; l 

Here ri is considered to be the variable of (t • Let rr : JP
2 

X (t ➔ (t be· 

the projection map. Then by the proper mapping theorem (p.162, f..q.J) 

rr(B) is an analytic set of a: and n(B) = A • Because 

V'(l) = V , we have that 1 is not contained in A . This means that A 

is a 0-dimensional analytic subset of (t completing the proof. 

Now we can take a number 11 in {t-A ( 1111 small enough) so 

that V1 ( 11) nn = ~ • This is done by taking 11, so that h~
1

(U(p
0

)) =>o 
Take a smooth path p in Œ-A such that p(O) = 1 and p(l) = 11, 

We can assume that p is an embedding of the unit interval I = [o, 1] 



Then we can prove the following lemma. 

Lennna S. There is a diffeomorphism o/: œ2 ➔ (1; 2 such that t(v) = V 

and t(V'(î"b)) = V' . Therefore in particular we have a diffeomorphism 

W : a:2 
-V U V 1 

( 7h) ➔ «:2 
- V U V 1 

Proof; Let w = u 
tEI 

[V U V 1 ( p ( t)) X t } and w = 1 
u (vnv 1 (p(t)) x t) 

tE I 

which are subsets of a:2 
X I . Let q : a:2 

X I ➔ I be the projection map. 

By à/àt , we mean the unit vector field with positive direction on I 

We can construct a connection vector field v(x,y,t) = v(x,y,t) + à/àt for 

q , where v(x,y,t) is the 2 a: -component of v(x,y,t) , satisfying the 

following conditions. Let 8 be a small number so that 
-1 

V = f ( p) 
p 

and 

V' ( ri) mee t transversely for each p( 1 p 1 $ E:) and ri which is con tained in 

the E:-neighborhood of p(I) in Œ-A 

(i) 

(ii) 

For any point (x,y,t) such that 1 gp ( t ) ( X ' y) 1 2 E: v(x,y,t) = 0 

For any point (x,y,t) such that 1 gp ( t) (X, y) 1 s; E: and 

lf(x, y) 1 s; e/2 , v(x,y,t) is tangent to V f(x,y) and in particular, 

if gp(t)(x,y) = 0 , v(x,y,t) is tangent to the curve w(s) which is 

defined by the corresponding component of Vf(x,y)nv 1 (p(s)) • v(x,y,t) 

is normalized so that the integral curves of v are stable in W and 

(iii) For any point (x,y~t) such that gp(t)(x,y) = 0 and 

jf(x,y) 1 2 E:/2 , v(x,y,t) is taken so that the integral curves are 

stable in W If jf(x,y) 1 ;;:_,; E: , we can take v(x,y, t) so that 

-1 ( its integral curve w(s) is hp(s)'hp(t) x,y) except near 

L
00 

n V' (p(t)) 



(iv) We can consider that (X)= [1; O; o] is contained in L
00 

- C U C' 

Considering the pencil lines LT) = (y=T)) centered at o:> ( lril is 

sufficiently large so that LT) and V'(p(t)) (t E I) meet transversely), 

we can construct v so that v(x,y, t) is controlled by (Lîl) near 

L
00 

nv•(p(t)) i.e. v(x 1 , y 1 , t) is tangent ta 

, v is tangent to the curve 

normalized so that W is integrably stable. 

L ' y 
and if 

L, nv•(p(s)) 
y 

and 

~ v is integrable and integral curves are stable in W and w
1 

Using the integral curves of v we obtain a desired diffeomorphism $ 

of œ2 
• This completes the proof. 

We are ready to prove Theorem 2. Take a positive number e and ô 

so that the following conditions are satisfied. 

(i) n! n I: = (/J and V p meets transversely w,th V' ( 11>) for each 

p E n2 
€ 

be the 4-disk of radius ô centered at which is included in D 

For each p E D2 , V meets transversely with the sphere oDô(pj) 
€ p 

2 fol -1 2 
and f:E. - V ➔ D - is a Milnor fibering where Ej=f (D8 )nnô(Pj) 

E: J 

Let F. be the fiber Ve 
J 

nnô{Pj) 

V f. 
J 

(See 

Figure 4. 

24-

Figure 4). 



Let and consider the following Van Kampen diagram. 

(V.K) 

Consider the following fibering: f:N-VU V' (71,) ➔ D~- [o J . Using the fact 
m o 

that f: N-(V'(71,) U U E.) ➔ n! is trivial fibering, we have a family 
j=l J 

of characteristic diffeomorphisms [Ts}: V
8
-V 1 (11:,) ➔ Ve(s)-V'(11:,) 

( e(s) = e. exp(2TT is) , 0 $; s ::;; 1) such that (i) T is the identity map 
0 

m 
and (ii) T

1 
jv

8
-V 1 (71,) U U f. is the identy map. 

j=l J 

0 

(E. is the interior 
J 

m 
of E. ) . We can assume that the base point {~ is contained in V n D - U E. 

J e j=l J 

Now consider the following exact sequence. 

(A) 

Let 'f be the element of n
1

(N-VUV 1 (71),*) which is represented by the loop 

w( s) = T / *) . We can de fine a cross-section CJ of f # using 'f 

thiscross-section a, T\(N-VUV'(71,),*) is a semi-productof 

n1 (v 8-V 1 (71,), ➔~) and 1\(D~-foJ, e)'°;;?Z By the above consideration, 
m 

Usine 

(V
8
-V'(fb)) U U E. is a deformation retract of N-V'(11:,) 

j=l J 

Let K
0 

be the kernel of [n
1

(v
8
-V'(71,),*) ➔ n

1
(N-V'('1,),*) J . First we prove 

the next lemma. 

Lemma 6. K is generatedi by elements of the form [t- 1.v.t] where v is 
0 

a loop contained in some F. 
J 

and such that 

t(O) = v(O) and t(l) = * 



Proof: Let rj = (V 
8 

- V' ( 'b)) U U Ei and consider tha following Van Kampen 
i :;;j 

diagram. 

where tj+l is a path such that (i) \+l (O) = * and tj+l (1) is a point 

(ii) The inclusion Fj+IG > F j+l U tj+l is a homotopy 

equivalence. This means tj+l makes no cycles. By the induction on j , we 

prove that Kernel Cn/V
8
-V'(fb),' ➔~) ➔ 17i(rj, *)] is generated by 

elements of the form [t- 1.v.t] where v is a loop contained in some 

F/i ~j) and t is a path in Ve:-V'(fb) which connects V(O) to {} •. Let 

K(r.) 
J 

be the latter group. Because is contractible, 

homomorphism. Thus we have an exact sequence from (Bj+l) 

where N(Image(bj+l)) is the normal closure of Image(bj+l) 

Putting j = 0 , we have 

Assume the exact sequence 

1 

Then using (Bj+l 1
) , we have that the sequence 

is·exact, completing the proof. 

is the trivial 



Now we return to the diagram (V.K) • By the above argument, we 

have that is surjective and Ker cp
1 is normally generated by T and 

K • Therefore we obtain the following exact sequence. 
0 

where N("'2(r) , "'2(K
0

)) is the minimàl normal subgroup which contains 

cp2 ( 'T) and every element of "'2 (K
0

) 

Assertion 1. "'2(K
0

) is the trivial group. 

For this, we consider the following diagrams 

>'\<v.-}11,l, *)C >TT1(N-vuvFl,*l 

------> n/f- 1
(D)-V' <Tb), ➔~) --> 11i (œ

2 -vu v 1 < 11), *) 

C 

.,.,, 
By Lemma 3 and the definition of D , we have that a is the trivial 

homomorphism. On the other band, by Lemma 6, K is 
0 

included in the normal closure of Image c. Thus we have that 

trivial group which implies cp
2

(K
0

) is also the trivial group. 

Assertion 2. In (V.K), cp
2 

is surjective. 

For this, let be the set defined by 

b(K) 
0 

is the 

and 

V' (11,) are not in the general position} • By the elimination theory, this 

is a finite set. Let I:: = I:: U }:' U [o} and consider 
0 

f : f-\a: - I:
0

) - V'(fb) ➔ a: - 1:
0 

• l!sing a controlled vector field rw:ir 

L(X) and V 1 
( i'b) this is a fiber bundle. Then the 

proof is completely parallel to that of Lemma 2. 

-.2r-



Assertion 3. 

For this, we cousider the geometric picture of V 
8 

n D and V B-V' ( 11,) 

Let d1 and d2 be the respective degrees of v
8 

and V1 (11,) • Then V
8 

is a Riemann surface punctured at d1-points. By the definition of D , 

V
8 

-V
8 

n D has d1-connected components each of which is diffeomorphic to 

a punctured disk. By Bezout 1 s theorem, v
8 

nv 1 (11,) contains exactly 

d1 d2 points. It is easy to see 
d 

= Z 2.g(x y) (see Lennna 4). o' o 

... 
that G (X, Y, Z) s lim G (X, Y, Z) = 

0 ~ 0 ri 

This implies that lim .V' (ri) is d2-fold L
00 

• Thus we have 
rr-70 

N 

that, in each component of V 
8 

- V 
8
n D , there are exactly d

2
-points which 

are contained in V 
8 

n V' <11,) • (See Figure 5.) 

;.. 

.... - - - - ...... 

Figure 5· 



Let V8 nv•(~) = (a 1 , a
2

, ••. ,ad d } • By Van Kampen's theorem, we can 
1 2 

take loops {bj} (j = 1, 2, ••• ,d
1

d
2

) so that the following conditions are 

satisfied. 

(i) 

round a. 
J 

-1 9 b. is of the form t. v. ~. 
J J J J 

and t. is a path such that 
J 

where v. is a small loop revolving 
J 

t. (o) = v(o) and t. (1) = * 
J J 

(ii) TT
1 

(V 
8
-V' (~), *) is generated by ((bj ]} (j=l,2, .•• ,d

1
d

2
) and 

Image [TTl (Ve n D, *) ➔ î\ (V €-V'(~), ➔~) J 

(iii) Because V is irredu.cible, V r. - U F. is connected. Therefore 
i J 

we can also assume that t. is a path in Ve- U F. 
J j J 

Recall the exact sequence: 

Take any element [w] of TT
1 

(Ve-V' ( ~), -l!') • By' pulling back by characteristic 

diffeomorphisms (Ts} , ,--1 [w}r is nothing but 

diagrams of the propf of Assertion 1, it is easy to see that Image ('Pi) is 

generated by ~([bj ]) (j = 1,2, ••• ,d
1

d
2

) and ~( r) • Thus we obtain that 

~ ( 'f') is contained in the center of Image ~ which is equal to 

1\ (a:
2 

-V UV' ( ~), *) by Assertion 2. This completes the proof of Assertion 3. 

Returning to the sequence (E), we have just proved that N(~('î), ~(K
0

)) 

is isomorphic to the cyclic group generated by 4'.l.2 ( '1") • By the following 

diagram, it is clear that 4'.li(r) is nota torsion element. 

- ..27 -



Thus we can reduce (E) as follows. 

Identifying n1 (a:
2 

-V, *) with 7l , one obtainsf that 

1\ (a:
2 

-V U V' ( ~), *) ➔ 1\ (a:
2 -V, *) is a splitting of the above sequence. 

Since 7l is included in the center of n1 (a:
2-v U V'(fb), ➔~) , this gives 

us a natural isomorphism. 

Now by Lemma 5, we have the following diagrams. 

1 ➔ n1 (a:
2 -V,*) ➔ n1 (a:

2 -V UV 1 ( fb), *) ➔ nl (a:2 -V' ( 11:,)' ➔~) ➔ 1 

1 v1 ~ t#~ }* ~ 
1 ➔ T\(<1:2-v, ➔H) ➔ nl (a:2 -V U V'; *') ➔ nl (a:2-v•, ➔H) ➔ 1 

This completes the proof of Theorem 2. 

Remark. Let C be a non-irreducible curve. It is not always necessary that 

its irreducible components are in the general position for n1(]P
2

-c) to be 

abelian. 

Example. Let c
1 

be the non-singular curve Xd + Yd - Zd = O and let L 

be the line Y-Z = 0 • (d ~ 2) • Then c1 n L = ([o; 1; 1 ]} and the inter-

section multiplicity is d • We can see that is isomorphic 

to 7l as follows. Let Lcxi = [ Z = 0 J and consider the map 

cp : JP
2-1

00 
-U c1 U L ➔ a: - [O} defined by qf.. [X; Y; Z ]) = Y/Z • Then cp has 

(d-1)-critical values ~ = [C, 'f;, ... , (1-l) where C = exp(2TTi/ d) 

cp : cp-1(a:-I: U [o }) ➔ a: - I: U [o) is a fiber bundle. At 
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each critical value, we have topologically the same situation. The general 

fiber F :is diffeomorphic to 0: - {ri; 'lld = 1 J and the characteristic map 

T. around c1-<T.: F ➔ F) can be considered to be the rotation of the angle 
J J 

2TT/d • Therefore we have that· 

to 7l EB7l • This implies by Lemma 1 that 

is essentially due to Zariski ( [ .. 11]). 

- J1 - 1 

is isomorphic 

• This example 



n+l On the topology of the complement of a hypersurface in lP 

§ O. Introduction. 

The purpose of this paper is to describe the similarity of IPn+l_V to 

K(TT, 1) where V n+l 
is a hypersurface in 1P and TT is the fundamental 

group of IPn+l_V in the case that TT is abelian. This paper is organized 

as follows. 

§ 1. Statement of results 

§ 2. A Zariski type theorem 

§ 3. A Lefschetz type theorem 

§ 4. Fundamental groups 

§ 5. Criterions for TT. ÔPn+l -V) 
1 

to be abelian 

§ 6. Proof of Theorem 3 

§ 7. Proof of Theorem 4 

§ 8. Algebra structures and examples · 

§ 1. Statement of results 

Let fj(z
0

, z1, .•. ,zn+l) (j=l,2, .•• ,r) be mutually distinct irreducible 

homogeneous polynomials and let Vj be the projective hypersurface defined 

by Vj = {[z] EIPn+l; f/z) = O} (j=l, ••• ,r) • Let V be v1 UV2 U ••• UVr 

1 b f d by F -- {z E ,.,n+2,, and et F e the af ine hypersurface define ~ 

f
1

(z).f
2

(z) ••• fr(z) = 1} • Then F is a d-fold cyclic covering space of 
r 

IPn+l_V where d = r degree (fj) • We have that 1\(F) is a free abelian 
j=l 

group of rank r - 1 if TT. ÔPn+l_V) is abelian. (See§ 4). We assume that 
1 

r~ 2. (For r=l, see Example 1 in§ 8.) 

We define a map ~ : F ➔ (Q: *)r-l by 

J2 -



Then we can express our results as follows. 

Theorem 3. Assume that v
1 

n v
2 

••• n Vr is non-singular and complete 

(i.e. dimŒ V l n V 2 n ... 0 V r = n-r + 1) and that n (lpn+l_v) 
1 is abelian. 

Then S is an (n-r+2)-equivalence. (Actually it is not necessary to assume 

that 11 ÔPn+l -V) is abelian if (v. } (j=l, 2, •• ., r) are in a general position. 
J 

For the assumption that V l O V 
2 

0 ••• 0 V r is non-singular implies that 

and we know that 

and Corollary 1 of Theorem 2 in§ 5.) 

is abelian by Theorem 1 

Corollary · 1. 

Corollary 2, 

By the Whitehead theorem, we have the following; 

TT. (Ipn+l -V) = TT. (F) = 0 for 2 ~ j :s;; n-r+l 
J J 

Hj (F; 7l) is isomorphic to (r7l) 7l and the monodromy map 
J 

h* : Hj (F; ?Z) ➔ Hj (F; tl) is equal to the identity map for j s: n-r+l • 

Rere k 7l means the direct sum 7l EB7l EB ••• EB7l. (k-copies) and the monodromy 

map h : F ➔ F is defined by 

Let v
1

, v2, ••• ,vr be non-singu1ar nypersurfaces. We assume that 

is non-singular and complete for each sequence 

• Then we say briefly that 

meet transversely in the strict sense, 

(v.} (j=l,2, ••• ,r) 
_.J_ 

Theorem 4. Assume that {V.} (j=l, ••• ,r) are non-singular and meet transverse
J 

ly in the strict sense. Then ~ is an (n+l)-equivalence. 

As a corollary, we have the followf.ng. 

Corolla.ry. (i) 

(ii) 

TT (Ipn+l -V) = TT (F) = 0 for 2 S: j S: n 
j j 

Hj (F; ?Z) t:f (r-l) 7l and the monodromy map 
j 



---> Hj (F; _?Z) is the identity map for j s; n 

Theorem 4 was essentially proved by Hattori-Kimura ([R]) and Hattori <[t"D 
in the case of each Vj being a hyperplane. 

§ 2. A Zariski t~e theorem. 

Let f(z, zl, ••• ,zn+l) 0 
be a square-free polynomial such that f(O) = 0. 

Let H be the affine hypersurface in a:n+2 defined by H = {z E a:n+2; f(z)=o} 
0 0 

and let K be H n S2n+3 
0 E: 

where s2n+3 
€ 

is the (2n+3)-dimensional sphere of 

radius e centered at the origin and € is a small positive nurnber which is 

a stable radius of the Milnor fibering of f at the origin. Let L be a 

general hyperplane which contains the origin. Then we have the following 

theorem. 

Theorem Z • (Hamm; Lê (6] • The honiomorphism 

defined by the inclusion map is 

(Here 

(i) bijective for j s; n-1 

(ii) surjective for j = n • 

s = s2n+3 and the base point* is chosen on 
€ € 

. ) 

Roughly speaking, a plane L is general if L meets transversely for each 

stratum X of a good stratification g of H
0 

(or K ) so that {Ln X 1x E g 

should be a good stratification of H nL • For the precise definition and 
0 

the proof of Theorem Z, we refer to [t) 



The following corollary will be used to prove Theorem 4. 

Assume that f(z) is a homogeneous polynomial and let V be the projective 

~ hypersurface defined by {(z] EJPn+\ f(z) = 0} • Le.t L be the corresponding 

projective hyperplane to L • Then we have: 

Corollary. The natural homomorphism 

rr. ( (]pn+l - V) n L, *) 
J 

is (i) bijective for j ·s;; n-1 

and 

(ii) surjective for j = n 

Proof. Let cp : s2n+3 - K ➔]Pn+l_V be· the restriction of the Hopf fibering 

• Put S = S2n+3 and P = lPn+l • Take base points X 
0 

and 

~ X 
0 

respectively so that X E (P-V) n L and 
0 

<p.X ) = X 
0 0 

• Using the homotopy 

exact sequence of a fibration, we obtain that 

X ) 
0 

is bijective for j ~ 3 For j = 2 

S - K ➔ s1 

we consider the Milnor fibering 

f ( -l( ) x~ ) Identi ying rr
1 

<p x
0 

, 
0 

and 
l 1\ (S , *) with the infinite cyclic group 

7l , we see that the composition homomorphism 

n:
1
(cp-1 (x ) , x ) ➔ n. (S-K, x ) 

0 0 1 0 

l > rr
1 

(S , *) 

is the multiplication with d = degree (f) under a suitable orientation 

(* = v<x >. > 
0 

This implies that the homomorphism 

( -1 ) ~ n
1 

<p (x , x ) ➔ 
0 0 

is injective. Combining this and the homotopy exact sequence of the fibration 



is also bijective. Considering f J1 in the case of (S-K) n L , the above 

Corollary is an immediate consequence of Theorem Z and the above arguments 

using the following commutative diagram and the five lemma: 

n.(s - K, x) 
'Pi 

> J 
î 

0 S' 

n/ (S-K) n L,x
0

) 
!:!" 

> 
cp# 

0 ➔ 

0 ➔ 

n.m>n+l_V, X ) 

Ji 
0 

fT ( œn+l -v) n L, 
j 

X ) 
0 

--> TT. OI>n+l_ V, 

1 î 

j ~ 2 

X ) 
0 

-> 0 

X)-> 0 
0 

This. completes the proof of the Corollary. (This corollary was proved by 

Zariski [11] for the fundamental groups.) 

§ 3. A Lefschetz type theorem. 

homogeneous polynomials and let X be the projective variety defined by 

X = {(z J EJPn+l = f ( ) 0 } L •• X ➔-mn+l be ... = z = . et a ~ r 

the inclusion map. Then we have the following theorem (Kato, [q], Lemma 6.1 

of§ 6) • 

Theorem L. a : X ➔JPn+l is (n.-r+l)-equivalence i.e. 

aJJ.: n.(X, *) ➔ TT.OI>n+l, *) 
7r J J 

is bijective for j :s; n-r · and surjective for j = n-r+l • 

Proof: {z E "'n+2; ( ) f ( ) ( ) ) Let H be the affine variety ~ f 1 z = 2 z :o •• =fr z = 0 

-· 36' -



and let K = H n s2n+3 • Then we know that (s2n+3, K) is (n-r+l)-connected 

by Hamm, Satz 2.9, [S]. Now considering the homotopy exact sequence of the 

s1-bundle pair cp : (s2n+3, K) ➔ Cn?n+l, X) , we obtain the desired result. 

By virtue of the Whitehead theorem, we have the following corollary. 

Corollary 1. ( Oka, [1(1--]) 

is bijective for j ~ n-r+l • (Unless otherwise stated, every homology is 

with ?l-coefficient.) 

In the case of X being a non-singular, complete intersection variety 

(i.e. dimœ X= n-r+l), we can decide H*(X; Q) as follows. 

Corollary 2. Assume that X is a non-singular and complete intersection 

variety. Then we have: 

Hj (X; Q) s- ( Q O :s;; j :s;; 2(n+l-r) , j : even, j 'f n+l-r 

(µr(d 1, ••• ,dr) + e(n+l-r))Q j = n+l-r 

0 otherwise 

where e(j) = 1 or O for j even or odd respectively and d. = degree (f.) 
J J 

n-r+l ( ) - (-1) n-r+2 

Proof. In the case of j 'f n-r+l, Corollary 2 is an immediate consequence 

of Corollary 1 and Poincaré duality. µr is computed by the adjunction 

formula of the normal bundle. For the algebra structure of H*(X; Q) , see 



§4. Fundamental groups 

Let f(z, zl'''''zn+l) be a square-free homogeneous polynomial 
0 

of degree d . Let V= {[z ] E Fn+ 1; f (z) = 0) and K = {z E œn+2 ; f(z) = 0 ' 

llz Il = 1 J Consider the Milnor fibering ~ = fi If 1 . 82n+3_K ➔ s1 and let . . 
F 1 be the fiber t-1

(1) • F' is naturally diffeomorphic to the affine 

hypersurface F = {z E œn+2 ; f(z) = 1) by the diffeomorphism k : F ➔ F' 

defined by 

The monodromy maps h : F ➔ F and h 1 : F 1 ➔ F I are defined by the coor'dinate-

wise multiplication with exp 
2TT i 

d 
These maps define free 

?l/cYl-actions on F and F' so that k is ?l/cYl-compatible (i.e. 

h I ok = koh) • The orbit space F' /ll/d?l is clearly diffeomorphic to 

lPn+l_V • Therefore we have: 

Proposition 1. F 
n+l 

is a d-fold cyclic covering space of lP - V • 

Next we consider the case that V = V 
1 

U V 
2 

U ••• U V r and 

f(z) = f
1

(z) f
2

(z) ••• fr(z) where Vj is irreducible and defined by 

{ ) "'"n+l_V ) b b li fj = 0 for j = 1,2, ••• ,r • Assume that 1\\,lr' , * e a e an. 

Then TT. ÔPn+l _ V,*) is decided as follows. 
1 

TT1 ÔPn+l _V' *) ~ Hl ÔPn+l _V) 

~ H2n+lÔPn+1, V) (Lefschetz duality) 

Considering the following exact sequence 

➔ H2n(Ipn+l) ➔ H2n(V) ➔ H2n+l·(Ipn+l, V) ➔ O 

t/J 

we have that H2n+l(Ipn+l, V) ~ Coker (/) • Using the canonical isomorphism: 



2ni<mn+l) r/ . 2n( "' 2n 2n /V H vr = Zl and H V) = H (V
1

) $ ••• $ H (V ) = Zl ŒZl $ •.• ŒZl , 
. r 

0 is defined by 0(1) = (d 1, d2 , ••• ,dr) where dj = degree (fj) (j = l, ••• ,r). 

Therefore we can take canonical generators e (j = 1,2, ••• ,r) 
j 

of 

,.,.,_n+l 
111,1.1."' -V, *) as follows. Take a non-singular point Pj of Vj - U v1 and 

1 i~j 
let sj be a small loop defined by a S -fibre in the normal bundle of Vj 

at P j • Let tj be a path in Fn+l _V such that -tj (O) = * and 

t/1) = s/0) • Define ej by [.tj sj .tj
1

] • (Figure l) 

V. 

' 

Figure 1. 

-

J, 
By the above isomorphisms, ej corresponds to (0, ••• ,1, ••• ,0) • Note 

that {ej } (j = t, 2, ••• , r) have one generating relation 

r 
(G) I; dj ej = 0 • 

j=l 

Let P : F ➔ Fn+l _ V be the above covering map. Because P # : rr
1 

(F, ~ ➔ 

➔ rr1 ôPn+l_V, *) is an injection, we can consider rr
1

(F, 7> to be a 

subgroup of rr
1 

ÔJ:ln+l -V; *) • (P(~ = * ) • 

Lenuna 1. Assume that ~ ôPn+l _V, *) be abelian. Then 1\ (F, 1) is a free 

abelian group of rank r-1 and P ,lrr1 (F, *)) is generated by {e1-ej} 

(j = 2,3, ••• ,r) • 

Proof. Let L be a general plane to V • Because e
3 

is independent of 

,-1 
(j=l, ••• ,r) we can assume that ,{,lJ'l,.,j 



n+l 
is a loop in 1P - V UL for j=l,2, ••• ,r • If necessary, by a suitable 

transformation of coordinates, we can assume that L is defined by (z =o) • 
0 

'" ( ) (,V ~ ~ ) Let * the fixed base point = z
0

, z1, ••• ,zn+l • Consider the canonical 

diffeomorphism a : (a:n+2_f- 1(o)) n (z =---:_ } ➔]Pn+l_V U L defined by 
0 0 

a(~o' zl, ••• ,zn+l) = 
,V 

[~
0

; z1; ••• ;zn+l] • By virtue of a, we have a canonical 

element e. of e. 
J J 

in TT..(a:n+Z_f-1(0), r-1,.* (· 1 2 ) C id h . ï ·*J J = , , ••• , r • ons er t e 

following exact sequence derived from the Milnor fibering: 

f : a:n+2_ f-1(0) ➔ il:* 

Under the canonical orientation of 

---> TT.
1

(a:*, f(~) ➔ 0 
f# 

7l 

s. (j=l, ••• ,r) , we can assume 
J 

that 

rJ 
f 4/ej) = 1 (identifying 

/V "' 

T\ (a:*, f(~S} with 7l ) for each j = 1, 2, ••• , r 

This implies fle1 - ej) = 0 for j =2, ••• , 3 and therefore they are contained 

in the image of cr. . By the definition we have that cpl-:j > = e. . Thus by 
J 

the commutability of the above diagram, we have that e 1-ej (j=2, ••• ,r) 

are contained in the image of p# • Let N be the subgroup of 'f\ (IPn+l_V, 

generated by (e1-e j } (j=2, ••• ,r) • Using the generating relatioû (G) , we 

have that TT. (IPn+l _V, 
1 *)/N is isomorphic to 7l/ d 7l which implies, by the 

n+l *)) ';;7l/d7l N = P ,lTT/F, ~)) fact that T\ (IP -V' *)/Pl TT/F' ' 
that 

Now we prove that (e1-ej} (j=2,3, ••• ,r) are linearly independent, Assume 

a. E ?l ( j =2, •• , , r) • 
J 

Eliminating e1 using (G) and the above equation, we obtain the following 

equation using the independence of e
2

, ••• ,er 

*) 



r-1 . . . . . . .... 

d, d
1
+d 

r r a r 

0 

• 

= 0 

0 

This implies that aj = 0 by çhe nextsublennna, completing the proof. 

Sublemma. Let A be the following matrix. 
n 

l+x1, 1, ••• , 1 

1, l+x2, 1, ••• ,1 

(xj > 0 for j=l,2, •• .,n) 

1, ••• ,1, l+x n 

Then the determinant of A is always positive. n 

Proof. Let f (x 1, •.• ,x) be the determinant of A 
n n n 

Then f (x
1

, ••. ,x) 1s a synnnetric polynomial of {x.} . The coefficient 
n n J 

of the monomial is clearly the constant term of f j(x.+ 1, •.• ,x) n- J n 

i.e. fn-j(O) • But fn-j(O) is O except j = n or n-1. Thus we have 

n 
A 

f (x) = x 1x 2 ••• x + X: x 1 x 2 ••• xj ••• xn 
n n j=l 

Therefore fn(x) >O if ~j is positive for each j=l, •.• ,n • 

Now recall that ~: F ➔ (tt*)r-l is defined by 

~(z) = (f 2(z), ••• ,fr(z)). Then we have: 
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Lemma n+l ) 2: Assume that T\ (Il> -V, * be abelian. 

Then ""' r-1 "' g#: T\ (F, *' ➔ T\ ((a: ➔f) , g(*)) is bijective. 

Proof. Let g : a:n+l _f- 1 (0) ➔ (a:*)r-l be defined by 
I" 
$(z)=(f

2
(z), ••• ,fr(z)) • 

Then it is clear that ÎIF =· S • 

r 1 "' Identifying n
1

((0:*) - , $(*)) with in a natural way, we 

-èJ 
put crj = (0, ••• ,1, ••• O) 

1f,JLCe.)=cr. for j=2, ••• ,r 

/V 
• Then by definition of ej , we have that 

N N 

1r J J 
and S,le 1) = 0 • This implies that 

§ 5. Criterions for to be abelian. 

Again assume that v1, ••• ,Vj be irreducible hypersurfaces in lPn+l 

and let V = V 1 U V 2 U ••• U V 1; • Generally V j may have singulari ties. 

Definition: Vl' v2 , ••• ,Vr are said to be in a general position (in the weak 

sense) if they satisfy the following inductive conditions. 

(c
1

) If n=l , each two curves Vj and Vk (jfk) meet transversely 

and Vin V j n Vk = </J for mutually distinct i, j, k 

(en) There is a hyperplane L which is general to Vj (j=l, ••• ,r) and V 

in the sense of Theorem. Z (§2) such that v
1 

OL , v2 0L, ••• ,Vr0L 

satisfy (Cn_ 1) 

It is clear that if {vj} are non-singular and meet transversely 

in the strict sen se, then {V j } are in a general position. 

We have the following cri ter ion for t'ti. (n>n+l -V, *) to be abelian. 



Theorem 1. Assume that v1, v2, ... ,Vr are in a general position. Then 

is abelian if and only if îT ÔPn+l _V *) 
1 j' is abelian for 

each j = 1,2, ••• ,r 

Proof: Applying the Corollary of Theorem Z inductively, we can take a 

general IP
2 for v

1
, ••• ,Vr and V which satisfies the following conditions. 

Let C. = V. nn>2 (j=l, ••• ,r) and 
J J 

(i) TT âP2- C., *) ➔ TT (Ipn+l _ V j, *) 
1 J 1 

(j=l, ••• ,r) 

and 

are bijective. 

2 
No;., by Corollary 2 of Theorem 1 in Oka [l'l ], we know that 1\ (Ip -C, *) is abelian 

if and only if 
2 1\ÔP -Cj,*) .is abelian for each j=l, ••• ,r. This completes the 

proof. As for the irreducible curves, we have the following criterion. 

Theorem 2. Assume that V is irreducible (i.e. r=l ). Then 1\Ôl?n+l_V, *) 
,., 

is abelian if and only if TI_i_(F, *) = 0 • 

Proof: Let F ➔lPn+l_ V be the covering map. Then we have that the quotient 

group TT
1 

(Ipn+l -V, *) /P # rr
1 

(F 
1 

~) is isomorphic to the cyclic group 71./ d 71. 

(d = degree f ) , while H
1 

Ôl?n+l -V) is also isomorphic to 71./ d 71. by the 
'V 

Lefschetz duality. This implies that P# TT1(F, *) is the connnutator group of 

TT
1

Œ?n+l_V, *) , completing the proof. 

Corollary 1. Let EV be the singular points of V • Assume that 

di " V s: 2 • Then TI. "'"n+ l -V, *) m(t .., n-
1 

\.Ir is abelian. 
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Proof: This is an immediate consequence of Theorem 2 and the Theorem of 

Kato-Matsumoto ftv] because F is (n-s-1)-connected where s = dimœ I: V • 

(This can also be proved by the Corollary of Theorem z.) 

As a special case of Theorem 1 and Theorem 2, we have the following 

Corollary 2. Assume that {V.} (j=l,2, ••• ,r) are non-singular and meet 
J 

1 i h i h Tt. ""'n+l_V, *). b 1 transverse y nt e str et sense. T en .îv.i:- is a e ian. 

§ 6. Proof of Theorem 3. 

Assume that 1\ (lpn+l -V, *) is abelian. Recall that S : F ➔ (Œ*)r-l 

is defined by s(z) = (f
2

(z), ••• ,fr(z)) where F is the affine hypersurface 

( n~ } z E tt ; f 1(z).f 2(z) ••• fr(z) = 1 • 

The following lemma is essential for the proof of Theorem 3. 

Lemma. 3. Under the same assumption as in Theorem 3, we have that 

for j s: n-r+l and for each where 

N 
H. (F ) = 0 

J a. 

Proof: Let a.=('½, a.
3

, ••• ,a.r) • Then by the definition we can express 

Fa. = H1 n H2 n .•. n Hr where [Hj } are affine hypersurfaces in a:n+2 defined 

( n+2 )-1) ( n+2 ) } by H
1
= z E a: ; f

1
(z) = (°'>.a

3 
••• o. and H. = zE Œ ; fj(z = a. 

- r J . J 

for j=2, 3, ••• ,r. Consider the projective hypersurfaces Hj in ll?n+2 de-

""={[ J n+2 -1 d fined by H1 z; w Eli? ; f
1 

(z) = (a
2 

••• o.r) w 1} and 

,V {[ ] n+2 d. Hj = z; w EF ; f/z) = o.j w J ) for j=2, •. .,r. (dj= degree (fj).) 

Hj is the closure of Hj • in ]?n+2 by th·e inclusion Hj c a:n+2 CFn+ 2 • Let 

Lc:o be the hyperplane {w = 0} • Then we have natural homeomorphisms 
f"' ,-.,· /V l"V IV A.I ,.., 

F O. = H1 n H2 n •.. n Hr - H1 (î u2 (î ••• n Ur (î L= and 



/V ,,..., rJ 

H1 n H2 n ... n Hr n Lo:> 'i:" V ln V 2 n •• , n V r • 

By the assumption, v 1 n v
2
n •.. n Vr is non-singular and complete, Let N be 

n+2 tv ~ ""' a tubular neighbourhood of Le0 in 'D? • Because H
1 
n H

2 
n ... n Hrn Le0 

,v ~ IV ,4 
is non-singular and complete, we can assume that N = N n Hl n H

2 
n .•• () Hr is 

/V IV /V ,v N /V 
a tubular neighbourhood of Hl n H2 n •.. n Hr n Le0 in H1 n H2 n .•. n Hr • 

n+2 /V .,..., .,..., ~ /V 
Putting P = 'D? , H = H

1 
n H2 n , .. n Hr and C = H n L , we have the follo-

wing commutative diagram • 

/V ,V 

H. (H) -----'----> 
J 

a 0 
"" ,V 

N 
H. (P) -b-> H. (P,P-Lj <---

J J e2 

' d IV /V 
<- H (N, N - C) 

~ :1½ 
<

c 

(V 

Here e.(j=l, 2) are excision isomorphisms and 
J 

t and t are Thom-isomorphisms, 

Because P -L t; (tn+Z 
Cl) 

b is·bijective. By the corollary of Theorem L, a is 

bijective for j :S: n-r+l and surjective for j = n-r+2 • Similarly c (there

fore d ) is bijective for j s: n-r+2 and surjective for j=n-r+3 

Therefore we obtain from the diagram that r/J is bijective for j s: n-r+l 

and surjective for j=n-r+2 • Considering the homology exact sequence of the 

pair 

proof. 

I"./ 

(H, F ) 
a. 

~· , we have that Hj (Fa.) = 0 for j :S: n-r+l • This completes the 

Now we are ready to prove Theorem 3. 

Let TT : R. ➔ (<t*)r-l be the universal covering map and let f 1
R be the 

pull back of '!T: R ➔ («:*)r-l i,e, Ç 1R = {(z,y)E FX R; S(z) = n(y)} • 



f 1
R 

N 
g-lR Let p : ➔ F and g : ➔ R be the respective projection maps. 

By Lemma 2 of § 4, p . f 1
R ➔ F is the universal covering map i.e, . 

f 1
R is simply connected. 

For each y E R , we have 

By the above lennna, we have 

r-r_1 ~ -1 1 
tha t g (y) = g ( TI( y) ) = F Tl( y) = S ( Tl( y) ) 

tv.1 
that H/ f (y)) = 0 for each j s: n-r+l 

Now we consider the Leray's spectral sequence for g , (See for example VI, 

6 of (3). We have a convergent E
2 

- spectral sequence: 

where )!I(g) is the associated sheaf to the presheaf defined by 
/V 

• Now note that g is locally equivalent to S and 

that S can be considered to be a proper map. (For a given compact set 

K C (Œ:*)r-l , we can take a tubular neighbourhood N of L
00 

in the proof of 

Lennna 3 so that Fa. n N is a tubular neighbourhood of F a.n LC0 in Fa. for 

each a. E K where Fa. is the closure of Fa. in Fn+Z • This implies that 

0 0 
Fa. - N c Fa. is a homotopy equivalence for each a. E K , N being the interior 

of N .) Therefore we have that • Then Lemrna 3 imp 1 ie s 

that Ep' q = 0 for O < q s: n-r+l and EO' n-r+Z is torsion-free, Thus we 
2 2 

obtain that Î* : Hj (R: 2l) ➔ Hj c'~-1
R; ll) is bijective for j s; n-r+l and 

Hn-r+ 2 {~-lR; ll) is torsion-free. By the universal coefficient theorem, we have 

~ ,..., 1 
that g*: H.(( R; ll) ➔ H.(R; ll) is bijective for j :S:n-r+l which implies 

J J 
,:V 

that g (therefore g) is (n+r+2)-equivalence by the Whitehead theorem. 

This completes the proof of Theorem 3. 

Proof of Corollary 2. The first partis clear. By the spectral sequence of a 

covering _space ( see [1.]), Hj Ôl'n+l -V; Q) is isomorphic to (Hj (F; Q) J 2l/ d ll 

which is the kernel of h* - id:Hj(F; Q) ➔ Hj(F; Q) • Because 



H1UPn+l _V; Q) = (r-l)Q , this implies that h*: H1(F; Q) ➔ H 1(F; Q) is the 

identity map. Therefore h* = id : H 1(F; 7l) ➔ H 1(F; 7l) by the universal coeffi-

cient theorem. By Theorem 3, . rt1H 1(F; 7l) ➔ H\F; :?l) is bijective for j s;n-r+1 

Therefore the multiplicative property of h* implies the desired result, 

completing the proof. 

§ 7. Proof of Theorem 4. 

Let {V. } (j=l, 2, ••• , r) be non-singular hypersurfaces, meeting trans
J 

versely in the strict sense. Let V= v
1

Uv 2U ••• U.Vr 

Lennna 4. n+l 
The topology of lP -V is decided by the respective degtee dj 

(j=l, ••• ,r) 

(j=l,. ••,y) 

and it does not depend on the particular choice of V.' s 
J 

N 
Proof. Let lP j be the parameter space of hypersurfaces of degree dj where 

N 
each point t EJP j corresponds to a homogeneous polynomial ft(z) of degree 

( h f {f } (n+dJ.+l) ..:.. l) dj or a ypersur ace Vt = t = 0 • Nj = 
d. 

J 

Let U = {t {v t } 
j 

non-singular and meet transversely in the strict sense.} 

(j=l,. ••'y) 

Then we have that U is Zariski-open and therefore path-connected, Let 

are 

V' = Vi U v2U ••• U v; be another hypersurface satisfying the assumption of 

Theorem 4 such that degree Vi' ~ degree v1 (i=l, ••• ,y) 

Then we can find a smooth family of hypersurfaces {V( t)} (O :s; t s: 1) such 

that V(O) = V and V(l) = V' and V(t) can be written as 

V( t) = V 
1 

( t) UV 
2 

( t) U ••• UV r ( t) satisfying the assumption of Theorem 4. 

Therefore we can construct (using the technique of vector fields) an isotopy 

of JPn+l such that CP, = id 
0 

and 'Pi_(V)=V' 

- 41-

• This completes the proof. 



Proof of Theorem 4. 

Take a positive integer N (N-r+l~n) and let 

non-singular hypersurfaces in lPN such that degree and 

Wj) (j=l,2, ••• ,r) meet transversely in the strict sense. By Theorem 3 and 

"" ,.., ~ ,., 
Corollary 2 of Theorem 2 in § 5, putting V = V 1 UV 2 U ••• UV r we have that 

N .-v 
TTj OP - V) = 0 for 2 s: j S:N-r+l, Taking a sequence of general hyperplanes Lj 

(j=l,2, ••• ,N-n-1) 

in§ 2 inductively, 

where L ~ lPN-j and applying the Corollary of Theorem Z 
.1 

I"-' -we have that TTj (L-L n V) = O for 2 :;;; j :;;; n where 

L = Ti_ ,;;;;' lPn+l 
~-n-1 • By Lenuna 4 this implies that 

2 S.: j S.: n • This completes the proof of Theorem 4, combining Lemma 2 in § 5. 

§ 8. The algebra structure and examples 

In this section, we assume that v1, ••• ,Vr are non-singular and meet 

transversely in the strict sense. 

Because F n+2 is a non-singular affine hypersurface in ~ , F has the homo-

topy type of a CW-complex of dimension (n+l). Therefore we obtain the follo

wing theorem as a corollary of Theorem 4. 

Theorem S. H*(F; Zl) is isomorphic as an algebra to the quotient algebra 

of the exterior algebra 

by the ideal °'n+2 which is generated by the monomials of degree ~ n+ 2 

where degree xj = 1 (j=l,2, ••• ,r-1) and degree yj = n+l, (j=l, ••• ,µ) 

(µ is a polynomial of d1, d2,~ •• ,dr • See Remark 1) 

n+l Using the Corollary of Theorèm 4 and the fact that H*OP -V; Q) 

r;f [H*(F; Q) JZl/d Zl , we have the follow:l.ng theorem. 

-4!-



Theorem 6. H*Ol>n+l_V; Q). is isomorphic to the quotient algebra of the 

exterior algebra E' = A(x1, ••• ,xr_ 1; y• 1, ••• ,y'À) by the ideal 'b+ 2 

generated by the monomials of degree ~ n+2 where degree xj = 1 (j=l, ••• ,r-1) 

and degree yj = n+l (j=l,2, ••• ,À) 

( À is a polynomial of d1, d2 , ••• ,dr • See Remark 1) 

Example 1. Let V be a non-singular hypersurface of degree d in ]Pn+l 

Then F has the homotopy type of a bouquet 

(d-l)n+ 2-copies) • Therefore TT cn.,n+l_V) 
j 

for 1 .S. j < 2n + 1 • 

Sn+ l V Sn+ l V ••• V 

~ TT (F) ~ TT (Sn+l) 
j j 

Example 2. Assume that (Lj} (j=l,2, ••• ,r) are hyperplanes which meet trans

versely in the strict sense. 

Case 1. r ~ n +2 • In this case we have that S is an (Q.equivalence i.e. 

Case 2. r :.i: n+3 In this case lPn:L is nota K((r-1)7l, 1) space but -- ~ 

Hattori prove that H ( lPn+l_L) = 0 for j f 0 , n+l where lPn+l is the j -L 

universal covering space of lPn+l -L (See [f ]) . 

Remark 1. In general, H*( lPn+l _V; 7l) has a torsion. 

The number À in Theorem 6 is decided by a direct computation of H*( lPn+l _V; Q) 

as follows: 

where (µj } are the polynomials defined in Corollary 2 of Theorem L in § 3. 

The number µ in Theorem 5 is decided by the following equation of the Euler

Poincaré characteristics. 
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Non-trivial exar1ples of projective curves 

In [2], O. Zariski gave an example of a projective curve C 

of degree 6 such that the fundamental group itl (r
2 

- C) is 

isomorphic to 22 * .z3 where Z is a cyclic group of order n 
n 

and ·k is the free product~ This curve C has six cusps on a 

conic. Each of them is locally described by the following equation 

(in the sense of topological equivalence). 

,/ + y3 = 0 . 

The purpose of this note is to propose a·family of curves 

of degree pq (p, q : coprime integers), enjoying the following 

properties. 

(I) C p,q 
has pq cusp singularities each of which is locally 

defined by the equation: 

(II) 

~ -,r:2 
p q 

xp + yq = 0. 

2 The fundamen ta 1 group -rc1 (!P - C ) p,q 
is isomorphic to 

C p,q 

(III) Therefore the commutator group of 1r:
1 

(IP2 - C ) is a free p,q 

group of rank (p-1) • (q-1). 

For the calculation we use the method of so-called pencil 

section introduced by Zariski [2]. In the remark (8.1), we wil1 

give another family of curves o2q of degree 2q: o2q has q cusps 

and the fLindamenta 1 group -rc1 (iP
2 - n2q) is isomorphic to z2q 

(ther~fore abelian). 



1. Definition of C p,q 

Let C be the 
p,q 

(1.1) C p,q 

following projective curve. 

(Xp + Yp)q + (Yq + Zq) p = 0 . 

Here X, y and z are homogeneous coordinates of IP2 and p 

and q are coprime integers. Then the possible singularities of 

C must satisfy these three equations: 
p,q 

(1.?) xp-l(xP+yP)q-1 = O 

(1. 3) yP-l(XP+yP)q-1 + yq-l(Yq+Zq)p-1 = O 

(1.4) zq - l (Yq + zq) p- l = o . 

Thus solving (1.2), (1.3) and (1.4), we find pq singularities in 

C (if p G 2, q ~ 2): p,q 

(1.5) ~q = -1. 

To study the local oehavior in a neighborhood of we cons ider · 

-the affine coordinates x = X/Y and z = Z/Y then we put x = x - IX 

and -z = z - ~ Then it turns out that the equation (1.1) is 

locally equivalent to the following 

(1.6) xq + C • Zp = 0 , (c : non-zero constant). 

2. Pencil section 

Consider the family of lines 1,.l : X = ~Y, 11_ € C. Each 

line L'>l passes 

as a base point 

through the point [O; O; lJ. We take 

of IP2 - C p,q Since the intersection tif 

O<) 

and 

C is contained in the affine éhart {Y f o}, we consider the p,q 



affine coordinates x = X/Y and z = Z/Y. In these coordinates, 

the equation of the intersection points 0f Li : lx = ~ ~ and 

C is the following 
p,q 

(2.1) 

By solving (2.1), we have: 

(2.2) zq = -1+ \)- (l+ 7tp)q 

These roots have two special cases. 

Case (i). Assume that 11.p = -1. Then we have that zq = -1: 

Namely 1 1 passes through the singular points P~,~' 

of (1. 5) . At each the intersection multiplicity is exactly 

P. 

Case ( i i) . As s urne t ha t ( 1 + ~ p) q = -1 i. e . p 9,.-;-12 =-l+v-1. 

In this case, one of the roots of (2.2) is zero. This implies that 

L~ is tangent to C at -~ non-singular point 
p,q ( 1 , O) with 

the intersection multiplicity q. 

For the other and C p,q 
meet at exactly pq -points .. 

Let 

= x. Let 

o/ : q;2 - C 
p,q 

L be 

~ a:: be the projection map i.e. r (x, z) 

~ p == -1 or 1 p = - 1 + ri}. Then 

it is clear that the restriction of to o/-l(Œ -Z::) is a 

locally trivial fibration. 

By Van Kampen [1], we have the following properties. 

(I) Every loop l in JP
2 

- C is deformed in to a loop in the 
p,q 

compactified fiber 'f-l ( ~) u {t>:>} = 1
7 

- <\ ,q for any 1 .j i.. 
(II) If we f ix 1

0 
E t - Z. , and if we choose genera tors of 

;rl ( 'i"-l ( 1 O) u { oo} , oo), tr.e genera ting relations are obtained by 



one torsion relation plus monodromy relations i.e. relations 

derived from the deformations of the generators along the fibers on 

the small circ le I x - ,Z I = é for every Y/. € 2. . 

It is important to see that these monodrorny relations depend 

upon only the value of iJ. p by virtue of (2. 2) and the fact: 

Oi«:-~ 

We take ~O so that i'/.ci = - 1 + t O exp ( rci/q) where 

is·a srnall positive number. We take generators 

1 ~ j ~ p in the way sketched in Figure 2.1. 

\ 
\ 

\ 
\ 

\ 

1---
1 
1 

Figure 2.1 

..... ..... 

a .. ' 1.J 

........... 

PO 

In Figure 2.1~ each a .. 
1.J 

is oriented in the positive (= counter-

c lockwise) direction and is j oined to the base point oo a long 



the half line: argument (z) = TC/q 

The torsion relation is this: 

(2. 3) · • · · w = e 1 

where e is the unit element and W. is defined by the following 
1. 

(2.4).: 
. l. 

W. == a. •a. • • • · ·a. 1. 1.,p 1.,p-l 1.,l 

where 1 ~ i ~ q. 

3. Local model I 

Figure 3 .1 shows the dis tribut ion of bad points { 1l. p E. C; i € Z) 
in ">J.p -plane . 

and 

(3.1) 

(3.2) 

'l P-plane 

Figure 3.1 

First we consider the case (i) i.e. Then C p,q 

Li are written as f olJ.ows in a small neighborhood of 

= -1). 

C . xq + C Zp == Ü (c 'f O) p,q . 

1~ x=t 
' 

t = t - n . 
·• l 

We may assume that: 



(3.3) q = mp + r) 1 ~ r ~ p-1 and (p, r) = 1 . 

Choosing a small positive number ê , we take generators a 1 ) a 2 , 

... ' a p 
in the plane -X = f.. • See Figure 3.2. 

-- _-_ -_ -_ -_ ----=~ ~:-:::-~ 
X -.... l\i 

~ ' , a1 
I "'z 

€1.t { : 
f ! • "' 1 
\ 1 0 : 

' ~~' ~ ; K ... _. 
~ .,. -- -- ttr . 

Z -p!"""e 1 ( x = ê. ) 

Figure 3.2 

When t moves around the small circle 1 t l = e.. in the positive 

direction, a. is transfor~ed into a! in Figure 3.3. 
i i 

Figure 3.3 

Thus we get the following relations. 



a' m -m 
= al = w al+r û) 1 

a' m -m 
= a2 = w ·a2+r lt.) 

2 

(3.3) a - a = Wm a (..lj-m 
p-r p-r p 

a , 
. p-r+l 

= a = wm+l a w-(m+l) 
p-r+l 1 

. 
a' = a p p 

where 

(3.4) 

4. Loca 1 model II 

Now we consider the case (ii). Fix ~ 
1 

. such that 1/, { = 
q 

- 1 + 'y-i . Then in the neighborhood of the tangent point ( 'l• , O) 

of and C p,q' we can consider that C p,q 
and 1

12 
are 

described by these equations: 

(4 .1) 

(4.2) 

C p,q 

Take generators 

1 • 
\ \ 

\ \ 

' 

• 
0 

'-

Figure 4.1 

zq = ex 

X= 't • 

.. "' ' b q 

~ 

(c =/= O) 

as in ?igure 4.1. 

! . 
' 

1 

·,-~* 
. ~Ut 

' 

Figure 4.2 



Figure 4.2 shows the transformation of ... , b 
q 

along a small 

circle centered at 1::::: 17. 
1

. Namely we get the following monodromy 

relations .. 

b =b' =b q-1 q-1 q 

-1 
b = b 1 = (b b · · · b ) b (b b · · · b ) . q q q q-1 1 1 q q-1 1 

Thus we obtain the relations: 

(4. 3) 

5. Generating relations 

= b 
q 

Now we are ready to write down the generating relations between 

a .. 
l.J 

i!i = 

(1 ~ i ~ q; 1 ~ j ~ p) of Figure 2.1. Take ~l such that 

-1. By the de formation over the circle 1 11. p - 1 -{ 1 = €. 

( ê small enough), each group of the elements { a.l'a. 2' 1., 1., 

... , a. } (1 -a i 'â q) gets the same relations as (3.3) and (3.4). 
l. 'p . 

Therefore we get the following relations. 

(5.1). 
l. 

m -m 
a. l = W. a. l+ W. 

i, i i., r l. 

m -m 
a. 2 = w . a. 2+ wl.. 

i, · i i, r 

m -m 
a. = · w a w 

i,p-r i i,p i 

m+l 
a. +l = w. i,p·-r 1. 

a. 
l. 'p 

m+l 
= (J.). 

l. 



where 1 ~ i ~ q. 

Now we take -;zk such that ;zJ = -1 + exp (-(2k-l) ïCi/q) 

where O ~ k ~ q-1. We consider the following path l,k Sk in 

'2 p-plane for the translation of the monodromy relations at 'l. = 'l k 

into the words of a .. (1 ~ i ~ q; 1 ~ j ~ p). 
1.J 

!igure 5 .1 ( "{ P -plane) 

Here S k is an arc of the spherè 

following line segment. 

(5. 2) 

where e
0 
~ t ~ 1- ~l ( e.

1 
is a small positive number). The 

intersection of Li and 

lowing 

(5. 3) 

C ( 7 satisfies (5.2)) is the fol-p,q 

... , b 
q 

in 



I 

I' 

f 

( 

I 
, I 

I / 
~ I 
i / 

\ / 

"-t. / ~ 

l 
-'· ' 

,, 
4 

,,_,/ 
1 

1 

1 

1 

' l 
,, 
1, 

,, 

1 
I 

J 

I 

Figure 5.2 

Each b. is chosen so that the other roots of (5.3) do not meet 
l. 

any b. when 
]. 

t moves for 

By the consideration in the local model II, we have: 

(5.4) bl = b2 = 

When t moves from 1 - €.
1 

to €
0

, 

into b! as in Figure 5.3. 
l. 

= :'.) 
q 

b., l~i~q, 
l. 

are transformed 



,... .,. 
/ 

/ 

I 

I 

I 

I 

l , 
\ 
\ 

\ 
\ 

Figure 5.3 

Now we must pull back bi, ... , b~ along S k to 'f-l(~ 0) 

U{e..:i}· Let 1+ ~p = t.0 exp (i8) where -(2k-1)7t/q ~ B ~ ;c/q. 

By (2.2), we have: 

(5.5) 

Thus it is ea.sy to see that each is rotated along the respective 

small circle in Figure 5.3. These deforwations are sketched in 

Figure 5.4. 



I 
I 

\ 

\ 
\ 

\ 

\ 

I 

( 

I 

....... ----- .,,.,... 

,,.. 

Figure 5.4 

Translating in the words of {a 1j} and 

b" = a 1 l,l+k 

b" 
2 

,I 

{ w i1 we have: 

0 :i, k1'. p-1 

bll 
q 

-1 
= ( W 1W 2 ... W,) a l+k ( W 1 W 2 ... wl) . q- q- .L q, q- q-

Thus (5.4) implies the following rela tiot1s 

(5.5) w- 1 w 8 1,j = 1 8 2,j j = 
. )-1 (. ·•• = (W ···W a . w ···w 

q-1 1 q,J q-1 1 

for 1 ~ j ~ p. 

-t3-



6. Representation of the group 

Thus 
2 rc

1 
(lP - C , oo) is generated by pq + q elements 

p,q 

a •. , W. 
1J l. 

(1 ~ i ~ q; 1 ~ j ~ p) and the generating relations are 

these: 

(2.4). 
1. 

(2. 3) 

(5.1). 
]. 

and 

(5.5) 

W. = a. a. 1 · · · a. 1 , 
1. i,p 1.,p- 1., 

fJ) ·w w =e q q-1· · · · · 1 

a. 1 
1., 

a. 2 
1. ' 

a. 

m -m 
= W. a. l+ w. 

i i, r 1. 

m -m 
= w. a. 2+ w. 

i i, r i 

m -m -
l. 'p-r W. a. W• 

1. 1.,p l. 1~ 

ai ,p-r+l 
m+l w'-(m-1-1) 

= w. a. 1 . 
1. l.' l. 

a. 
). 'p 

i ~ q 

-1 . 
= ( W l W 2 · · · w1) a . ( t.û l W z • · · tv 1), 1 ~ j ~ p. q- q- q,J q- q-

(5. 5) is equivalent to the following 

-1 
a2 . = w., a 1 . u.\ ,J l. , J 

. -1 
a3 . = w2a2,jw2 

(6.1) ,J 1 <:: . ~ p - J . 

-1 
a . = w a w 

q,J q-1 q-1,j q-1 

Assume that '-»i = €.4.\_1 = · · ~ = W 1 . Then we have 



==== a •a · · · · ·a i+l,p i+l,p-1 i+l,l 

(6.1) 

(2 .4). 
1. 

-1 -1 -1 
(w. a. w. )·(w. a. 

1
w. )···(W. a. 

1 
w. ) 

1. 1.,p l. l. i,p- l. 1. 1., l. 

-1 w. a. a. ·····a. 1 - W. 
1. 1.,p 1.,p-l i, 1. 

w . . 
l. 

Therefore by the induction "i-ve get: 

(6.2): 

or 

(6.2}.: 
l. 

w =w =··•=()) 
q q-1 1 

Conversely we can see that (6.2)i+l + (6.1) + (2.4)i implies (2.4)i+l· 

Thus an induction argument gives us the following equivalence 

(6.3) (2.4)i (1~ i-;q) + (6.1) <==7 (2.4)1 + (6.1) + (6.2) . 

Now we consider the relations (5 .1) i :_ 

For each k, 1 ~ k ~ p-r, we have: 

m -m 
W. a. k+ w. 

l. i, r i 

(6 .1) 
a. k 

1., 

Similarly for each k (p-r+l ~ k -fi p), (6.1), (6~2) 8nd (5.1}. l 1.-

implies (5.1) .. Therefore by the induction and (6.3), the gener-
1. 

ating relations are equivalent to (2.3)+ (2.4)
1 

+ (5.1)
1 

+ (6.1)+ (6.2). 

Now (~.l) and (6.2) implies that each a. . (i ~ 2) and W. (i ~ 2) 
l.,J 1. 

can be expressed in the words of a 1 , 1 , a
1

,
2

, ..• , al,p and W1 -



Therefore is generated by and 

The generating relations are reducèd to (2.4)
1 

+ (5.1) 1 plus 

(2.3)': 

Putting a j = alj (1 S j ~ p) and 

lowing. 

W = w
1

, we obtain the fol-

Lemma6.l. The fundamental group 1t1 (œ
2 -cp,q' oo) has the 

following representation: 

al, az, 

(6.4) 

(6.5) 

(6.6) 

7 

(7 .1) 

(7.2) 

... , a 
p 

and 2 w generate 1t1 (iP - C , p,q 

al = 

a2 = 

a p-r 

W=aa •••a 
p p-1 1 

wq = e 

m -m 
w al+:r c.v 

m -m 
W aZ+r W 

a p-r+l 

Group structure 

00 ) and 

First we introduc.e elements a. Eor any integer i E ~ by 
J. 

k -k 
a.,k =w a.w J, p J 

for l ~ j ~ p , k E 7l 

Then one can see that (7.1) implfos 

a = w a .w . j+p 1 
-1 

for J E 7l 



Using (7.2), we can rewrite (6.6) by this 

(7 .3) a. = a. 
J+q J 

for j E 7l 

Therefore we get the representati0n: 

'Tl ( JP 1c ' 00 ) = < w ' a .. < i E 7l) ; ( 6 . 4) ' ( 6 . 5 ) ' (7 . 2 ) ' ( 7 • 3 ) > . pq 1. 

Because p and q are coprime, we can write 

(7.4) for some p,,q
1 

E ZZ: 

Then 

by (7.2) and (7;l) . 

Thus one gets. 

(7.5) for i E 7l 

By (7.5) and (6.4) , 

'Namely by (7.4) and. (6.5) , 

(7.6) 

Conversely (ô.5), C'.5) a:rd 0.6) ~m?lies (6.4), 0.2) and 

(7. 3) 

by (7.5) 

=w by (6.5) 

= Ul by ( 7. 6) . 

(i+q-l)p
1 

-(i+q-l)pl 
ai+q =-. w a 1 w by (7.5) 



= a. 
l. 

(i+p-l)p 1 -(i+p-l)p 
a• == W a w 1 

i+p 1 

=w 

Therefore one gets 

~ 

by (6.5) and (7.5) . 

by (7 .5) 

by (7. 5) 

by (7.9) and (6.5) 

= <w,a 1 (6.5) , (7.6) > 

b 1 . . . 
y e 1.m1nat1ng generators 

Taking w and b 
-p, 

.L 
::: i.J.: a, 

l 
as gencrators, we obtain 

( 2 rv 
TT. r C • co) =: < m h 

L pq' -, ~ 

G D ; w ' ,... e , b' = · e ;;;, 

~ 

8. Conclusion 

Let us restate the result. 

Let C : (Xp + Yp)q + (Yq + Zq)p = 0 where · p and. q are 
p,q 

coprime, p ~ 2, q ~ 2. 

Theorem. The fundamental group 

to '11 * '11 • p q 

1ti (IP
2 

- C ) is isomorphic 
.L p,q 

Corollary. The commut.s,tor group D of -rt. (\P
2 - C ) is a 

l p,q 

free group of rank (p-1) (q-·l). 

Proof. This is a well-known'fact. A geometric sketch of the 



proof is the following: Let X be { a 2-disk minus two small 

o.Pen 2-disks }-

Figure 8.1 

Let Y be the space obtained by attaching two 2-disks along aP 

and bq. Then the fundamental group of X is a free group generated 

by x and y in Figure 8.1 and the fundamental group of Y is 

isomorphic to 'll * 2% • Consider a surjective homomorphism (.J) : 

p q ' 
1'C1 (X) ~ 2%p@ Zq. such that 'f (x) and o/ (y) are respective 

generators of 
.....,, 

'll 
p 

and We can construct a finite covering 

space 1(. : X __,. X corresponding to the kernel of <f . Then the 

lift of ap (bq respectively) is q-copies (p-copies respectively) 

of embedded circles. Attaching (p + q) 2-disks a long these circ les 

-we obtain a Riemann surface Y with boundary. (We may assume that 

the attaching maps are compatible with tne action of ïr
1 

(X).) By 

the construction, we can ex tend { îC : X---+ X J to ? ît 1 
: Y --> Y } 

so that:; i TC' : Y ~Y} is a covering space corresponding to the 

commutator group of ;c1 (Y), Therefore one can see that the corn-

mutator group of 7t
1

(Y) 1 which is isomorphic to ~ ;r 1 (Y) J is a free 
IV 

group. The rank of 1C 1 (Y) is easily ca.lculated by the Hurewicz 

-61--



formula. (One can also prove the corollary purely group theoreti-

cally: If a and b are generators of 2 and z respectively, 
p q 

then = i j p-i q-j l ç i ~ p-1 and 1 ~ . ~ q-1, free X•• a b a b , - J are 
l.J 

basis of D.) 

Remark (8.1). Consider the following curve: 

D2q : x2q- ly + (Yq + zq) 2 = 0 

where q 6 2. This curve has q cusps at 

~ q- = -1. Using the same pencil L~ X = 'Y/_Y ( 1 E tt) , one can 

see easily that 2 
1rl (IP - D2 ) ' q 

is isomorphic to ~zq· The calcula-

tion is done in the similar way. What is important is the technique 

to minimize the generating relations and generators. 

Question 1. Take any irreducible curve C in IP
2

. Is there 

a normal subgroup of the fundamental group n:1 (fP
2 - C) with a fini te 

index which is isomorphic to a finitely generated free group? 

Question l'. If 1t
1 

(iP2 - C) is infini te, is the commutator 

group of ïC 1 (IP
2 

- C) a free group? (cf. [ 2]) 

References 

[1] Kampen, E. R. Van: On the fundamental group of an algebraic 

curve, Amer. J. Math. 55 (1933), 255-260. 

(2] Zariski, O.: On the problem of existence of algebraic function 

of two variables possessing a given branch curve, Amer. J. 

Math. 51 (1929), 305-328. 


	Chapter I. The monodromy of a curve with ordinary double points (pp 1 ~ 10)
	Chapter II. On the fundamental group of the complement of a reducible curve in ... (pp. 11 ~ 31)
	Chapter III. On the topology of the complement of a hypersurface in ... (pp. 32 ~ 52)
	Chapter IV. Non-trivial examples of projective curves. (pp. 53 ~ 70)

