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1. INTRODUCTION. 

In order to design correct and efficient algorithms for solving a specific 

problem, it is often helpful to describe our first approaches to a solution in a 

language close to that in which the problem was formulated. One such language 

is that of set theory, augmented by primitive set manipulation operations. Once 

the algorithm is outlined in terms of the se set operations, one can then look for 

data structures best fitted for representing each of the sets involved. This choice 

only de pends upon the collection of primitive operations required for each set. It 

is thus important to establish a good catalogue of such data structures, and a 

summary of the state of the art on this question can be found in A.HU [ 2 ] • In 

this paper, we add to this catalogue a data structure which allows efficient manipu

lation of priority queues. 

A priority queue is a set ; each element of such a set has a ~ and a label. 

Names are used to uniquely identify set elements. Labels, or priorities are 

drawn from a totally ordered set. Elements of the priority queue can be thought 

of as awaiting service, the item with the smallest label always being served next. 

Ordinary stacks and queues are special cases of priority queues. 

A variety of applications directly require using priority queues : job 

scheduling and page replacement in operating systems, discrete simulation lan

guages where labels represent the time at which even1s are to occur,as well as 

various sorting problems. The se are discussed for example in A.HU [2 ] , C [ 4 ] , 

G [11], JD [15], K [ 17], MS [19] , VD [24Jand W [27] • Priorityqueues 

also play a central role in several good algorithms such as Huffman' s and Hu' s 

optimal code constructions (see K [17] and C [ 4] ) , Chartres' s prime number 

generator and Brown' s power series multiplication (described in K [17] ) ; 
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applications have also been found in numerical analysis algorithms (see G [10] and 

MS [ 19] for example) and in graph algorithms, for finding shortest paths (see 

D [ 5] , AHU [ 2 ] and J [13] ) .and minimum cost spanning tree (see AHU [2] , 

C TY [3] , P [_22] and V [ 2 5] ) among others. 

Typical applications require primitive operations among the following five : 

INSERT, DELETE, MIN, UPDATE and UNION. The operation INSERT (name, label, 

g) adds an element to queue Q while DELETE (name) removes the element having 

that name. Operation MIN (Q) returns the name of the element in Q having the 

least label, and UPDA TE (name, label) changes the label of the element named. 

Finally, UNION (Q
1

, Q
2

) merges into QJ all elements of Q
1 

and Q
2 

; the sets a
1 

anctQ
2 

become empty. In what follows, we assume that names are handled in a separate 

dictionnary (see AHU [2 J and K [ 17 ~ ) such as a hash-table or a balanced tree. 

If deletions are restricted to elements extracted by MIN, such an auxiliary symbol 

table can be dispensed with. 

A truly elegant data structure, called a heap (see F [ 7] , GR [ 12] , K [17] , 

PS [21] ) has been discovered by J. W. Williams and R. W. Floyd ; it handles a 

sequence of n primitives INSERT, DELETE and MIN in 0 (n log n) elementary 

operations* and absolutely minimal storage. For applications in which UNION is 

necessary, more sophisticated data structures have been devised, such as 3-2 trees 

(see AHU [ 2 ] and K [ 17 ] ) , AVL trees (AL [ 1] and K [17] ) , leftist trees 

( C [ 4] ) , p-trees (JD [ 1 5 ] ) and binary heap (F [9] ) • 

The data structure we present here handles an arbitrary sequence of n pri

mitives, each drawn among the five described above, in 0(n log n) machine opera

tions and 0(n) memory cells. It also allows for an efficient treatment of a large 

number of updates, which is crucial in connection with spanning tree algorithms : 

:!E We assume here that indexing through the symbol table is done in constant time. 
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our data structure provides an implementation (described in V [ 25 ] ) of the 

Cheriton - Tarjan - Yao (CTY [3 J ) minimum cost spanning tree algorithm which 

is much more straightforward than the original one. 

The proposed data structure uses less storage than leftist, AVL or 3-2 trees; 

in addition, when the primitive operations are carefully machine coded from the 

programs given in paragraph 4, they yield worst case running times which compare 

favorably to those of their competitors. 

Besides the se technical advantages, we feel the data· 

structure to be interesting in itself, because of its conceptual simplicity and of 

the connections it establishes between various data manipulation problems. 

2. BINOMIAL TREES AND FORESTS. 

We de scribe here the underlying combinatorial structure, called binomial 

trees. The se are defined inductively by : 

B = 
0 0 

Thus B2 = 

and for p 20. 

example. In order to discover some of the many combinatorial properties of the 

Bi I s, Knuth (K ~ 8 J) suggests that we first label the nodes of the tree in 

for 
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post-order, starting at zero, then associate with each node the binary representa

tion of its label. 

Binary numbering of B 
4 

Figure 1. 

From this numbering, it is easy to establish that 

- each B has 2P nodes ; 
p 

15 

14 

- there are ( ~ ) nodes at depth k in B which correspond to the various sequences 
p 

of p bits having exactly k zeros 

- the maximum depth of a node in B is p ; 
p 

- the number of children of a node is equal to the number of 1 's following the last 0 

in its binary numbering ; leaves thus correspond to even numbers ; 

- in B , there is exactly one node, the root, having p children ; for O ~ k < p 
p 

p-k-1 
there are 2 nodes having k children. 
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There are manv ways of drawing B in particular 
p 

8 = p 

Figure 2 

= 

\ 
/ 8 \, 

'°"- O' 
\Dl -

./ 

In order to use binomial trees for representing sets whose number n of 

elements is not always a power of two, we consider the binary decomposition 

b. 2i with b. E { O, 1 } of the number n and de fine a binomial 
l l 

i ~ 0 
forest F of order n as a finite collection of binomial trees, one B. for each 1 in 

n l 

the binary decomposition of n. In symbols, F = { B. ji >. O, b. ,,, 1, n"" n l ,.. l 

we define the i-th component of F to be B. if b. = 1 and empty otherwise. 
n l l 

example (12) 10 = (1100)
2 

thus F 
12 

= {8
3

, 8
2

} ; the first component of F 
12 

is if; 

and its third 8
3

. 

Figure 2 bis shows some small binomial forests, 

• l 

Figure 2 bis . 

• 
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Binomial trees and forests appear in various data manipulation problems. 

They are used by Fisher (F [ 6 ~ ) in the worst case analysis of a simple data 

structure for manipulating disjoint set unions (see also K [ 18 ] ) • They play a 

crucial role in the linear time median algorithm of Paterson-Pippinger-Schonhage 

(PPS [ 20 ] ) • The Ford-Johnson (FJ [ 8 ] ) sorting algorithm can also be nicely 

described (non-recursively) with the help of binomial trees : the algorithm first 

builds a binomial forest, then sorts the partial order thus obtained through a 

sequence of repeated "foldings" ; the data structure presented here can actually 

by used for implementing the sorting algorithm intime O(n log n). An efficient 

machine coding of binary search (see V [25] ) uses binomial search trees. 

J. BINOMIAL QUEUES. 

A priority queue consisting of 

p items is represented by a labeled binomial forest F : each item < name, label > 
p 

is stored in a different node of F subject to the constraint that, if node i is a 
p 

child of node j in F , the labels "'A •• and À. of the items respectively associated 
p 1 J 

must satisfy À • ~ À.. • This is called the "heap condition" by Knuth (K [ 17] ), 
1 J 

and it arises through the natural "contraction" of perfect tournaments as shown in 

figure 3 a) and b). 
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(b) 

The collection {503, 87, 512, 61,908, 170,897,275,653,426} of labels 

represented as : 

(a) a "perfect" tournament 

(b) the same tournament "contracted" into a binomial queue F 10 

Figure 3. 
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Such a labeled binomial forest will be called a binomial queue. 

W e now de scribe how to perform the UNION of two binomial queues F n and F n 1 

First consider the special case n = n' = 2i, that is each priority queue is repre-

sented by a single labeled binomial tree, say B. for F and B'. for F , • The 
1 n 1 n 

resulting forest B. 
1 

= UNION (B., B' .) also consists of a single labeled binomial 
1+ 1 1 

tree with 2i+
1 = n + n' nodes, defined as B. 

1 
= 

1+ 

label of the root of B'. is smaller than the corresponding label in B. and 
1 1 

if the 

otherwise, in order to preserve the heap 

condition. we refer to this operation as coupling, and the general UNION 

procedure is a sequence of COtJ.pling. 

Fo:r treating the general case, i.e. for n and n' arbitrary , it is 

convenient to use an analogy with the ordinary scheme for the binary addition of 

n and n' • The UNION proceeds from low order bits to high order bits, i.e. it 

treats the binomial trees composing F and F 
I 

in order of increasing size. A 
n n 
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carry is propagated at each step ; at the i-th step of the algorithm, the carry is 

either empty or it is a labeled binomial tree B.. The initial carry is empty. Step 
1 

i bas three operands which play a symmetric role. Each operand is either empty 

or it is a labeled binomial B.. One of the operands is the carry, and the other two 
1 

are the i-th components of F and F 
I 

respectively. If all three operands are 
n n 

empty, the i-th component of the result UNION (F , F 1 ) is empty as well as the 
Il n 

carry propagated to the next step. If exactly one operand is non-empty, it constitutes 

the i-th component of the result and the carry is empty. If two operands are non 

empty , they are coupled according to the procedure described earlier in order to 

constitute the (i+1 )-th carry ; the i-th component of the result is empty. When all 

three operands are non-empty, one of them arbitrarely constitutes the i-th component 

of the result and the remaining two are coupled in order to form the carry. The 

procedure starts at the 0-th step and stops when i ~· 1 + min ( L log
2 

n j , L log
2 

n 'j ) 

and no carry is propagated any further. The algorithm is pictured below with 

n = 7 and n' = 5. 

1 0 1 5 
+ 1 1 1 

carry 1 1 1 + 7 

= 1 1 0 0 = 12 

(a) 

B2 ~ B 
0 

+ B2 B1 B 
0 

carry B3 B2 B1 ~ 

= 
~ ~ B3 B2 

(b) 
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+ 

carry ' </) 

= </) 

Binary addition (a) of 7 and 5, scheme (b) for UNION (F 
7

, F 
5
) and actual example (c) 

Figure 4 



- 12 -

By considering a single item as forming a F 
1 

binomial queue, 

INSERT can be treated as a special case of UNION. A forest F is naturally 
n 

constructed as the result of a sequence of n INSERT operations. The number of 

comparisons required by this construction is equal, on one hand to the number of 

carries propagated in the addition 1 + 1 + ••. + 1 , and, on the other hand, to 
~ 

n times 

the number of edges in the graph of F • If \/ (n) denotes the number of ones in the 
n 

binary decomposition of n, this last number is clearly equal to n - v (n). It follows 

that F is constructed in n-v(n) 
n 

comparisonS which is of linear order O(n). 

As for UNION (n, n') exactly v(n)+v(n 1 )-v(n+n') - comparisonS are required, 

which is of order 0(log (n + n 1 ) ) • 

In order to find the minimal label of F , we merely have to explore the 
n 

roots of the binomial trees composing F , and keep the name of a node having 
n 

minimal label among the se. This involves v (n) - 1 comparisons, which is of order 

0(log n). 

In many applications, DELETE is restricted to extracting the item m found 

by MIN. Let B. be the labeled binomial tree in F of which m is the root. We 
1 n 

first remove B. from F , thus forming a labeled binomial forest F 
• 1 n n 1 

with 

1 
n

1 
= n - 2 • Then the root of B. is eut. As we can see from Figure 2, what 

1 

remains is a "complete" forest F with n
2 

= 2i - 1. One then call UNION (F , 
n2 n1 

in order to restore F n- 1 in 0(log n) comparisons again. This procedure is 

described on the example below (Figure 5). 
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61 

426 87 

512 

503 

(a) A labeled F 
12 

; 

, 

(b) Broken up into a F 
4 

and a F 
7 

after removal of 61 

(c) F
11 

= UNION (F
4

, F
7

) reconstituted. 

Figure 5 
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If the item m to be removed by DELETE is not the root of one of the 

components of F , the algorithm is slightly more complex. First, we determine 
n 

the component of F in which m lies, say B.. As before, we remove B. thus 
n 1 1 

forming F n
1 

with n
1 

:::: n - 2i. We then consider Bi = 

f., 
If m is in B. 

1 
, we start constructing F = {B~ 

1
} and decompose B. 

1 
by the 

1- n
2 

1- 1-

h . h . r d /., same tee mque ; ot erw1se, we further decompose B. 
1 

an set F to B. 
1

• 
1- n

2 
1-

This continues until m becomes the root of the subtree B. to be decomposed. 
J 

It is then "eut" from B., thus leaving a complete F . which is added to the 
J 2J-1 

binomial queue F = {B. 
1 

, B. 
2 

, ... , B . } already constructed in order to n
2 

1- 1- J 

forma complete F . . This forest is then merged with F , using the UNION 
21-1 n1 

procedure, in order to construct the resulting F 1 . Again, this algorithm is n-

illustrated by an example in Figure 6. 
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(a) A labeled F 
12 

; 

(b) Broken up into a F 
4 

and a F 
7 

after removal of 170 ; 

(c) F 
11 

= UNION (F 
4

, F 
7

) reconstituted 

Figure 6 
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As for our last primitive, UPDATE, the obvious way to realize it is to 

perform DELETE then INSERT in sequence. This requires 0(log n) operations 

for each UPDA TE • If we have to service an arbitrary sequence of primitive 

operations in which MIN is required less often than UPDATE and DELETE, 

there is a better way to proceed. The procedure UPDA TE does not attempt to 

restore the structure, but merely changes the label and marks the node. The 

DELETE procedure proceeds in the same way, changing the label to, say + co. 

The algorithm for MIN then becomes more complicated : it explores all binomial 

trees in the forest F until finding unmarked nodes on all paths from the root of 
n 

the tree to the leaves ; this cuts some subtrees and the forest is then reconstructed 

by merging all these subtrees together with the marked nodes having labels different 

from + 00 • If µ marked nodes are met, it follows (see V [ 2 5] ) from the 

n 
properties described in section 2 that the number of trees eut is a most µ, log µ, 

If we consider an arbitrary sequence of n INSERT or UNION, u UPDATE or 

DELETE, and m MIN, an elementary analysis (see V [25] again) shows that 

such a sequence is treated in at most 0(n log n) + 0(u) + 0(u log nu m) operations 

which is better than the naive method for m ~ u. 

Yet another way of treating UPDATE is described in J [14] • 

4. IMPLEMENTATION OF BINOMIAL FORESTS AS BINARY TREES. 

While the above discussion constitutes an adequate presentation of the 

priority queue primitives if our machine model is rather abstract ( decision 

trees for example) it is by no means complete if one 'is to actually code these 

algorithms on a real life computer. One still has to salve some problems, the 

first of which concerns the machine representation of labeled binomial forests. 
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For this purpose, we represent binomial forests as binary trees through the 

well known "natural correspondence" described in K [16] : each node has fields 

llink and rlink such that llink points to the leftmost child of the node and rlink 

to the node' s right sibling. This leaves some freedom for defining a node' s right 

sibling. For the purpose of the UNION procedure, it is crucial to link small trees 

to larger siblings on the top level, i.e, for nodes having no parent, and to link 

large trees to smaller siblings on lower levels, as shown in Figure 7. 
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4 

N 

10 
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Gv 
(a) A binomial queue F 10 ; 

(b) The same F 
10 

as a binary tree ; 

INFO LLINK RLINK 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

512 
87 
61 

426 
275 
653 
897 
908 
503 
170 

0 0 
9 1 

10 0 
6 3 
7 8 
0 0 
0 0 
0 0 
0 0 
5 2 

(c) A possible machine representation for this binary tree, using arrays 

memory cells R and N contain respectively a pointer to the root of the tree 

and its number of elements. 



We can now give a formal description of our algorithms in an Algol-like 

language. Following Knuth (K [ 16] ) , we represent binary tree with three arrays 

INFO, LLINK, RLINK containing respectively the label, llink and rlink of the node 

under consideration. The value 0 represents an empty pointer. 

We first describe the UNION procedure: 

proc UNION(R1 ,N1 ,R2,N2)➔(R3,N3): 

{ This procedure merges the two binomial queues F 1 and F 2 , yielding F 3 for 

result. Each Fi is represented as a binary tree: R. is a pointer toits 
1 

root and N. represents the number of elements in Fi. 
1 

The initial carry C is zero. Variable RES points to the part of F 3 being 

currently constructed. Location RLINK[0] is used to keep R
3 

and thus 

should be available upon calling the procedure. } 

(N3 ,C,RES)«N1+N2,0,0); 

while (min(N1 ,N2)/o)v(C/o) 

do NEXTBIT;(N1,N2)«LN1/2J,LN2/2J) od; 

RLINK[RES]aj N1#) then R1 else R2 g; 

R3~LINK[0] 

endproc UNION. 

Here NEXTBIT stands for a fragment of program that treats the eight 

possible cases for the carry and the relevant component of F 1 and F2 : 
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macro NEXTBIT: 

BITC~_g C::::O ~ 0 ~ 1 g; 

case < N1 mod 2, N2 mod 2, BITC> - - -
000: 

001: (C,RES,RLINK[RES])~(o,c,c) 

010: PROPRES(R2) 

011: PROPCARRY(R2) 

100: PROPRES(R1) 

101: PROPCARRY(R1) 

110: CONSTRUCTCARRY 

111: PROPRES(R1);PROPCARRY(R2) 

endcase 

endmacro NEXTBIT. 

We then have to describe the various macro procedures composing NEXTBIT : 

macro PROPRES(R): 

{The number of bits is odd and one of then, namely R, must be added to the result.} 

(R,RES ,RLINK[RES ])~(RLINK[R] ,R,R) 

endmacro PROPRES. 

macro PROPCARRY(R): 

{ Bit R must be added to the carry and the carry propagated. } 

_gINFO[R]<INFO[C] 

then (C,R,LLINK[R],RLINK[ C])~(R,RLINK[R] ,C,LLINK[R]) - . 

else (R,LLINK[C] ,RLINK[R])~(RLINK[R], R,LLINK[C ]) 

fi 

endmacro PROPCARRY. 
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macro CONSTRUCTCARRY : 

{ Bits R 1 and R2 are on and a carry must be constructed. } 

!_f INFO[R1 ]< INFO[R2] 

then (C ,R1 ,R2 ,LLINK[R1] ,RLINK[R2 ])~(R1 ,RLINK[R1], RLINK[R2] ,R2 ,LLINK[R1 ]) 

else (C, R2 ,R1 ,LLINK[R2] ,RLINK[R1 ])~(R2,RLINK[R2], RLINK[R1] ,R1 ,LLINK[R2]) 

fi 

endmacro CONSTRUCTCARRY. 

This terminates the description of UNION. The procedure MIN being straight

forward, we omit its description. (If very frequent uses of MIN are requested, we 

can keep the value of the minimal label in a special register.) 

As for DELETE, we simply treat EXTRACTMIN where the elemerit having 

least label is first found, then removed. (The DELETE procedure for which we give 

no formal code, is very similar. A little complication arises from the necessity of 

keeping and updating upward parent links.) 
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proc EXTRACTMIN(R, N)➔ (R 1 , N 1 ): 

{ This procedure extracts from the non-empty labeled binomial forest F, the 

element having minimal label. The resulting forest F ' is obtained by merging 

two forests F 1 and F 2 which we first construct. } 

(M, PRED,R2, P ,R) ~ (R,0,R,R,RLINK[R]); 

while R/o 

do g INFO[R]< INFO[M] then (M, PRED) ~ (R, P) g; 

(R, P) ~ (RLINK [R], R) 

od {INFO[M] is the minimal label in F.} 

(R1 ,N1) ~ CONSTRUCT(LLINK[M]); N2~ N-N1-1; 

g PRE D=O then R2 ~ RLINK [ M] else RLINK [ PRE D] ~ RLINK [ M] g; 

(R 1 ,N ') ~ UNION(R1 ,N1 ,R2,N2) 

endproc EXTRACTMIN. 

The procedure EXTRACTMIN uses CONSTRUCT which transforme the 

binary tree representations of a Bp into the binary tree representation of the complete 

forest F obtained by removing the root of B . 
2P-1 p 

macro CONSTRUCT(RAC)➔ (R,N): 

if RAC=O 

fi 

~(R,N) ~ (o,o) 

else (R, SUCC,RLINK[RAC], P) ~ (RAC,RLINK[RAC] ,0, 1); 

while SUCC/o 

do (R, SUCC,RLINK[SUCC], P) ~ (SUCC,RLINK[SUCC],R,2xP) od; 

N~2xP-1 

endmacro CONSTRUCT. 
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