
UNIVERSITÉ PARIS XI
U. E. R. MATHÉMATIQUE

91405 ORSAY FRANCE

PRIORITY QUEUES

Jean VUILLEMIN

Département d I Informatique
Université de Paris-Sud

91405 - ORSAY (France)

(Publications Mathématiques d'Orsay)

A DATA STRUCTURE FOR MANIPULA.TING PRIORITY QUEUES

Abstract:

Jean VUILLEMIN

Département d'Informatique
Université de Paris-Sud

91405 - ORSAY (France)

We describe a data structure which can be used for representing a collection
of priority queues. The primitive operations are insertion, deletion, union,
update and search for an item of earliest priority.

Keywords :

Data structures - Implementation of set operations - Priority queues -
Mergeable heaps - Binary trees •

CR categories 4.0, 4.34, 5.24, 5.25, 5.32, 8.1.

- 2 -

1. INTRODUCTION.

In order to design correct and efficient algorithms for solving a specific

problem, it is often helpful to describe our first approaches to a solution in a

language close to that in which the problem was formulated. One such language

is that of set theory, augmented by primitive set manipulation operations. Once

the algorithm is outlined in terms of the se set operations, one can then look for

data structures best fitted for representing each of the sets involved. This choice

only de pends upon the collection of primitive operations required for each set. It

is thus important to establish a good catalogue of such data structures, and a

summary of the state of the art on this question can be found in A.HU [2] • In

this paper, we add to this catalogue a data structure which allows efficient manipu

lation of priority queues.

A priority queue is a set ; each element of such a set has a ~ and a label.

Names are used to uniquely identify set elements. Labels, or priorities are

drawn from a totally ordered set. Elements of the priority queue can be thought

of as awaiting service, the item with the smallest label always being served next.

Ordinary stacks and queues are special cases of priority queues.

A variety of applications directly require using priority queues : job

scheduling and page replacement in operating systems, discrete simulation lan

guages where labels represent the time at which even1s are to occur,as well as

various sorting problems. The se are discussed for example in A.HU [2] , C [4] ,

G [11], JD [15], K [17], MS [19] , VD [24Jand W [27] • Priorityqueues

also play a central role in several good algorithms such as Huffman' s and Hu' s

optimal code constructions (see K [17] and C [4]) , Chartres' s prime number

generator and Brown' s power series multiplication (described in K [17]) ;

- 3 -

applications have also been found in numerical analysis algorithms (see G [10] and

MS [19] for example) and in graph algorithms, for finding shortest paths (see

D [5] , AHU [2] and J [13]) .and minimum cost spanning tree (see AHU [2] ,

C TY [3] , P [_22] and V [2 5]) among others.

Typical applications require primitive operations among the following five :

INSERT, DELETE, MIN, UPDATE and UNION. The operation INSERT (name, label,

g) adds an element to queue Q while DELETE (name) removes the element having

that name. Operation MIN (Q) returns the name of the element in Q having the

least label, and UPDA TE (name, label) changes the label of the element named.

Finally, UNION (Q
1

, Q
2

) merges into QJ all elements of Q
1

and Q
2

; the sets a
1

anctQ
2

become empty. In what follows, we assume that names are handled in a separate

dictionnary (see AHU [2 J and K [17 ~) such as a hash-table or a balanced tree.

If deletions are restricted to elements extracted by MIN, such an auxiliary symbol

table can be dispensed with.

A truly elegant data structure, called a heap (see F [7] , GR [12] , K [17] ,

PS [21]) has been discovered by J. W. Williams and R. W. Floyd ; it handles a

sequence of n primitives INSERT, DELETE and MIN in 0 (n log n) elementary

operations* and absolutely minimal storage. For applications in which UNION is

necessary, more sophisticated data structures have been devised, such as 3-2 trees

(see AHU [2] and K [17]) , AVL trees (AL [1] and K [17]) , leftist trees

(C [4]) , p-trees (JD [1 5]) and binary heap (F [9]) •

The data structure we present here handles an arbitrary sequence of n pri

mitives, each drawn among the five described above, in 0(n log n) machine opera

tions and 0(n) memory cells. It also allows for an efficient treatment of a large

number of updates, which is crucial in connection with spanning tree algorithms :

:!E We assume here that indexing through the symbol table is done in constant time.

-4-

our data structure provides an implementation (described in V [25]) of the

Cheriton - Tarjan - Yao (CTY [3 J) minimum cost spanning tree algorithm which

is much more straightforward than the original one.

The proposed data structure uses less storage than leftist, AVL or 3-2 trees;

in addition, when the primitive operations are carefully machine coded from the

programs given in paragraph 4, they yield worst case running times which compare

favorably to those of their competitors.

Besides the se technical advantages, we feel the data·

structure to be interesting in itself, because of its conceptual simplicity and of

the connections it establishes between various data manipulation problems.

2. BINOMIAL TREES AND FORESTS.

We de scribe here the underlying combinatorial structure, called binomial

trees. The se are defined inductively by :

B =
0 0

Thus B2 =

and for p 20.

example. In order to discover some of the many combinatorial properties of the

Bi I s, Knuth (K ~ 8 J) suggests that we first label the nodes of the tree in

for

- 5 -

post-order, starting at zero, then associate with each node the binary representa

tion of its label.

Binary numbering of B
4

Figure 1.

From this numbering, it is easy to establish that

- each B has 2P nodes ;
p

15

14

- there are (~) nodes at depth k in B which correspond to the various sequences
p

of p bits having exactly k zeros

- the maximum depth of a node in B is p ;
p

- the number of children of a node is equal to the number of 1 's following the last 0

in its binary numbering ; leaves thus correspond to even numbers ;

- in B , there is exactly one node, the root, having p children ; for O ~ k < p
p

p-k-1
there are 2 nodes having k children.

I

- 6 -

There are manv ways of drawing B in particular
p

8 = p

Figure 2

=

\
/ 8 \,

'°"- O'
\Dl -

./

In order to use binomial trees for representing sets whose number n of

elements is not always a power of two, we consider the binary decomposition

b. 2i with b. E { O, 1 } of the number n and de fine a binomial
l l

i ~ 0
forest F of order n as a finite collection of binomial trees, one B. for each 1 in

n l

the binary decomposition of n. In symbols, F = { B. ji >. O, b. ,,, 1, n"" n l ,.. l

we define the i-th component of F to be B. if b. = 1 and empty otherwise.
n l l

example (12) 10 = (1100)
2

thus F
12

= {8
3

, 8
2

} ; the first component of F
12

is if;

and its third 8
3

.

Figure 2 bis shows some small binomial forests,

• l

Figure 2 bis .

•

-7-

Binomial trees and forests appear in various data manipulation problems.

They are used by Fisher (F [6 ~) in the worst case analysis of a simple data

structure for manipulating disjoint set unions (see also K [18]) • They play a

crucial role in the linear time median algorithm of Paterson-Pippinger-Schonhage

(PPS [20]) • The Ford-Johnson (FJ [8]) sorting algorithm can also be nicely

described (non-recursively) with the help of binomial trees : the algorithm first

builds a binomial forest, then sorts the partial order thus obtained through a

sequence of repeated "foldings" ; the data structure presented here can actually

by used for implementing the sorting algorithm intime O(n log n). An efficient

machine coding of binary search (see V [25]) uses binomial search trees.

J. BINOMIAL QUEUES.

A priority queue consisting of

p items is represented by a labeled binomial forest F : each item < name, label >
p

is stored in a different node of F subject to the constraint that, if node i is a
p

child of node j in F , the labels "'A •• and À. of the items respectively associated
p 1 J

must satisfy À • ~ À.. • This is called the "heap condition" by Knuth (K [17]),
1 J

and it arises through the natural "contraction" of perfect tournaments as shown in

figure 3 a) and b).

-8-

(b)

The collection {503, 87, 512, 61,908, 170,897,275,653,426} of labels

represented as :

(a) a "perfect" tournament

(b) the same tournament "contracted" into a binomial queue F 10

Figure 3.

- 9 -

Such a labeled binomial forest will be called a binomial queue.

W e now de scribe how to perform the UNION of two binomial queues F n and F n 1

First consider the special case n = n' = 2i, that is each priority queue is repre-

sented by a single labeled binomial tree, say B. for F and B'. for F , • The
1 n 1 n

resulting forest B.
1

= UNION (B., B' .) also consists of a single labeled binomial
1+ 1 1

tree with 2i+
1 = n + n' nodes, defined as B.

1
=

1+

label of the root of B'. is smaller than the corresponding label in B. and
1 1

if the

otherwise, in order to preserve the heap

condition. we refer to this operation as coupling, and the general UNION

procedure is a sequence of COtJ.pling.

Fo:r treating the general case, i.e. for n and n' arbitrary , it is

convenient to use an analogy with the ordinary scheme for the binary addition of

n and n' • The UNION proceeds from low order bits to high order bits, i.e. it

treats the binomial trees composing F and F
I

in order of increasing size. A
n n

- 10 -

carry is propagated at each step ; at the i-th step of the algorithm, the carry is

either empty or it is a labeled binomial tree B.. The initial carry is empty. Step
1

i bas three operands which play a symmetric role. Each operand is either empty

or it is a labeled binomial B.. One of the operands is the carry, and the other two
1

are the i-th components of F and F
I

respectively. If all three operands are
n n

empty, the i-th component of the result UNION (F , F 1) is empty as well as the
Il n

carry propagated to the next step. If exactly one operand is non-empty, it constitutes

the i-th component of the result and the carry is empty. If two operands are non

empty , they are coupled according to the procedure described earlier in order to

constitute the (i+1)-th carry ; the i-th component of the result is empty. When all

three operands are non-empty, one of them arbitrarely constitutes the i-th component

of the result and the remaining two are coupled in order to form the carry. The

procedure starts at the 0-th step and stops when i ~· 1 + min (L log
2

n j , L log
2

n 'j)

and no carry is propagated any further. The algorithm is pictured below with

n = 7 and n' = 5.

1 0 1 5
+ 1 1 1

carry 1 1 1 + 7

= 1 1 0 0 = 12

(a)

B2 ~ B
0

+ B2 B1 B
0

carry B3 B2 B1 ~

=
~ ~ B3 B2

(b)

- 11 -

+

carry ' </)

= </)

Binary addition (a) of 7 and 5, scheme (b) for UNION (F
7

, F
5
) and actual example (c)

Figure 4

- 12 -

By considering a single item as forming a F
1

binomial queue,

INSERT can be treated as a special case of UNION. A forest F is naturally
n

constructed as the result of a sequence of n INSERT operations. The number of

comparisons required by this construction is equal, on one hand to the number of

carries propagated in the addition 1 + 1 + ••. + 1 , and, on the other hand, to
~

n times

the number of edges in the graph of F • If \/ (n) denotes the number of ones in the
n

binary decomposition of n, this last number is clearly equal to n - v (n). It follows

that F is constructed in n-v(n)
n

comparisonS which is of linear order O(n).

As for UNION (n, n') exactly v(n)+v(n 1)-v(n+n') - comparisonS are required,

which is of order 0(log (n + n 1)) •

In order to find the minimal label of F , we merely have to explore the
n

roots of the binomial trees composing F , and keep the name of a node having
n

minimal label among the se. This involves v (n) - 1 comparisons, which is of order

0(log n).

In many applications, DELETE is restricted to extracting the item m found

by MIN. Let B. be the labeled binomial tree in F of which m is the root. We
1 n

first remove B. from F , thus forming a labeled binomial forest F
• 1 n n 1

with

1
n

1
= n - 2 • Then the root of B. is eut. As we can see from Figure 2, what

1

remains is a "complete" forest F with n
2

= 2i - 1. One then call UNION (F ,
n2 n1

in order to restore F n- 1 in 0(log n) comparisons again. This procedure is

described on the example below (Figure 5).

F 1 = n-

653

- 13 -

61

426 87

512

503

(a) A labeled F
12

;

,

(b) Broken up into a F
4

and a F
7

after removal of 61

(c) F
11

= UNION (F
4

, F
7

) reconstituted.

Figure 5

- 14 -

If the item m to be removed by DELETE is not the root of one of the

components of F , the algorithm is slightly more complex. First, we determine
n

the component of F in which m lies, say B.. As before, we remove B. thus
n 1 1

forming F n
1

with n
1

:::: n - 2i. We then consider Bi =

f.,
If m is in B.

1
, we start constructing F = {B~

1
} and decompose B.

1
by the

1- n
2

1- 1-

h . h . r d /., same tee mque ; ot erw1se, we further decompose B.
1

an set F to B.
1

•
1- n

2
1-

This continues until m becomes the root of the subtree B. to be decomposed.
J

It is then "eut" from B., thus leaving a complete F . which is added to the
J 2J-1

binomial queue F = {B.
1

, B.
2

, ... , B . } already constructed in order to n
2

1- 1- J

forma complete F . . This forest is then merged with F , using the UNION
21-1 n1

procedure, in order to construct the resulting F 1 . Again, this algorithm is n-

illustrated by an example in Figure 6.

F = n

F = n-1

- 15 -

(a) A labeled F
12

;

(b) Broken up into a F
4

and a F
7

after removal of 170 ;

(c) F
11

= UNION (F
4

, F
7

) reconstituted

Figure 6

_ 16 _

As for our last primitive, UPDATE, the obvious way to realize it is to

perform DELETE then INSERT in sequence. This requires 0(log n) operations

for each UPDA TE • If we have to service an arbitrary sequence of primitive

operations in which MIN is required less often than UPDATE and DELETE,

there is a better way to proceed. The procedure UPDA TE does not attempt to

restore the structure, but merely changes the label and marks the node. The

DELETE procedure proceeds in the same way, changing the label to, say + co.

The algorithm for MIN then becomes more complicated : it explores all binomial

trees in the forest F until finding unmarked nodes on all paths from the root of
n

the tree to the leaves ; this cuts some subtrees and the forest is then reconstructed

by merging all these subtrees together with the marked nodes having labels different

from + 00 • If µ marked nodes are met, it follows (see V [2 5]) from the

n
properties described in section 2 that the number of trees eut is a most µ, log µ,

If we consider an arbitrary sequence of n INSERT or UNION, u UPDATE or

DELETE, and m MIN, an elementary analysis (see V [25] again) shows that

such a sequence is treated in at most 0(n log n) + 0(u) + 0(u log nu m) operations

which is better than the naive method for m ~ u.

Yet another way of treating UPDATE is described in J [14] •

4. IMPLEMENTATION OF BINOMIAL FORESTS AS BINARY TREES.

While the above discussion constitutes an adequate presentation of the

priority queue primitives if our machine model is rather abstract (decision

trees for example) it is by no means complete if one 'is to actually code these

algorithms on a real life computer. One still has to salve some problems, the

first of which concerns the machine representation of labeled binomial forests.

- 17 -

For this purpose, we represent binomial forests as binary trees through the

well known "natural correspondence" described in K [16] : each node has fields

llink and rlink such that llink points to the leftmost child of the node and rlink

to the node' s right sibling. This leaves some freedom for defining a node' s right

sibling. For the purpose of the UNION procedure, it is crucial to link small trees

to larger siblings on the top level, i.e, for nodes having no parent, and to link

large trees to smaller siblings on lower levels, as shown in Figure 7.

R

4

N

10

- 18-

Gv
(a) A binomial queue F 10 ;

(b) The same F
10

as a binary tree ;

INFO LLINK RLINK

1
2
3
4
5
6
7
8
9

10

512
87
61

426
275
653
897
908
503
170

0 0
9 1

10 0
6 3
7 8
0 0
0 0
0 0
0 0
5 2

(c) A possible machine representation for this binary tree, using arrays

memory cells R and N contain respectively a pointer to the root of the tree

and its number of elements.

We can now give a formal description of our algorithms in an Algol-like

language. Following Knuth (K [16]) , we represent binary tree with three arrays

INFO, LLINK, RLINK containing respectively the label, llink and rlink of the node

under consideration. The value 0 represents an empty pointer.

We first describe the UNION procedure:

proc UNION(R1 ,N1 ,R2,N2)➔(R3,N3):

{ This procedure merges the two binomial queues F 1 and F 2 , yielding F 3 for

result. Each Fi is represented as a binary tree: R. is a pointer toits
1

root and N. represents the number of elements in Fi.
1

The initial carry C is zero. Variable RES points to the part of F 3 being

currently constructed. Location RLINK[0] is used to keep R
3

and thus

should be available upon calling the procedure. }

(N3 ,C,RES)«N1+N2,0,0);

while (min(N1 ,N2)/o)v(C/o)

do NEXTBIT;(N1,N2)«LN1/2J,LN2/2J) od;

RLINK[RES]aj N1#) then R1 else R2 g;

R3~LINK[0]

endproc UNION.

Here NEXTBIT stands for a fragment of program that treats the eight

possible cases for the carry and the relevant component of F 1 and F2 :

- 20-

macro NEXTBIT:

BITC~_g C::::O ~ 0 ~ 1 g;

case < N1 mod 2, N2 mod 2, BITC> - - -
000:

001: (C,RES,RLINK[RES])~(o,c,c)

010: PROPRES(R2)

011: PROPCARRY(R2)

100: PROPRES(R1)

101: PROPCARRY(R1)

110: CONSTRUCTCARRY

111: PROPRES(R1);PROPCARRY(R2)

endcase

endmacro NEXTBIT.

We then have to describe the various macro procedures composing NEXTBIT :

macro PROPRES(R):

{The number of bits is odd and one of then, namely R, must be added to the result.}

(R,RES ,RLINK[RES])~(RLINK[R] ,R,R)

endmacro PROPRES.

macro PROPCARRY(R):

{ Bit R must be added to the carry and the carry propagated. }

_gINFO[R]<INFO[C]

then (C,R,LLINK[R],RLINK[C])~(R,RLINK[R] ,C,LLINK[R]) - .

else (R,LLINK[C] ,RLINK[R])~(RLINK[R], R,LLINK[C])

fi

endmacro PROPCARRY.

- 21 -

macro CONSTRUCTCARRY :

{ Bits R 1 and R2 are on and a carry must be constructed. }

!_f INFO[R1]< INFO[R2]

then (C ,R1 ,R2 ,LLINK[R1] ,RLINK[R2])~(R1 ,RLINK[R1], RLINK[R2] ,R2 ,LLINK[R1])

else (C, R2 ,R1 ,LLINK[R2] ,RLINK[R1])~(R2,RLINK[R2], RLINK[R1] ,R1 ,LLINK[R2])

fi

endmacro CONSTRUCTCARRY.

This terminates the description of UNION. The procedure MIN being straight

forward, we omit its description. (If very frequent uses of MIN are requested, we

can keep the value of the minimal label in a special register.)

As for DELETE, we simply treat EXTRACTMIN where the elemerit having

least label is first found, then removed. (The DELETE procedure for which we give

no formal code, is very similar. A little complication arises from the necessity of

keeping and updating upward parent links.)

- 22 -

proc EXTRACTMIN(R, N)➔ (R 1 , N 1):

{ This procedure extracts from the non-empty labeled binomial forest F, the

element having minimal label. The resulting forest F ' is obtained by merging

two forests F 1 and F 2 which we first construct. }

(M, PRED,R2, P ,R) ~ (R,0,R,R,RLINK[R]);

while R/o

do g INFO[R]< INFO[M] then (M, PRED) ~ (R, P) g;

(R, P) ~ (RLINK [R], R)

od {INFO[M] is the minimal label in F.}

(R1 ,N1) ~ CONSTRUCT(LLINK[M]); N2~ N-N1-1;

g PRE D=O then R2 ~ RLINK [M] else RLINK [PRE D] ~ RLINK [M] g;

(R 1 ,N ') ~ UNION(R1 ,N1 ,R2,N2)

endproc EXTRACTMIN.

The procedure EXTRACTMIN uses CONSTRUCT which transforme the

binary tree representations of a Bp into the binary tree representation of the complete

forest F obtained by removing the root of B .
2P-1 p

macro CONSTRUCT(RAC)➔ (R,N):

if RAC=O

fi

~(R,N) ~ (o,o)

else (R, SUCC,RLINK[RAC], P) ~ (RAC,RLINK[RAC] ,0, 1);

while SUCC/o

do (R, SUCC,RLINK[SUCC], P) ~ (SUCC,RLINK[SUCC],R,2xP) od;

N~2xP-1

endmacro CONSTRUCT.

- 23 -

5. REFERENCES, BIBLIOGRAPHY.

AL [1] : Adel'son - Vel'skii G.M. and Landis Y.M.

AHU [2]

CTY

C [4 J

D [5]

F

F [7]

FJ

F [9 J

An Algorithm for the Organisation of Information.
Dokl. Akad. Nauk. SSSR 146, 1962, p. 263-266.

: Abo A. V. , Hopcroft J. E. and Ullman J. D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974.

: Cheriton D., Tarjan R. E., Yao A. C.
Finding Minimum Spanning Trees.
Research. Rep. Computer Science, Stanford U., 1975.

: Crane C.A.
Linear Lists and Priority Queues as Balanced Binary Trees.
Rep. Stan-CS-72-259, Dpmt of Comp. Sei., Stanford U. 1972.

: Dijkstra E. W.
A Note on Two Problems in Connexion with Graphs.
Num. Math. 1, 1959, p. 269-271.

: Fisher M. J.
Efficiency of Equivalence Algorithms
in Miller R.E. , Thatcher J. W. (eds.)
Complexity of Computer Computations.
Plenum Press, N~· York, 1972, p. 158-168.

: Floyd R.W.
Algorithm 24 5.
Comm. ACM 7, 12, 1 964, p. 701 .

: Ford L.R. and Johnson S.M.
A Tournament Problem.
Amer. Math. Monthly 66, 1959, p. 387-389.

: Françon J.
Représentation d'une File de Priorités par un Arbre Binaire.
Université de Strasbourg, Dpmt. de Maths., Rapport 1975,,

G [10 J: Gentleman W .M.
Row Elimination for Solving Sparse Linear Systems and Least Squares
Problems.
Dundee Biennial Conf. on Numerical Analysis, 1975.

G (11]: GonnetG.H.
Heaps Applied to Event Driven Mechanisms.
Comm. ACM 19, 7, 1976, p. 417-41 8.

GR [12]: Gonnet G.H. and Rogers L.D.
An Algorithmic and Complexity Analysis of the Heap as a Data Structure.
Research Rep. CS 75-20 U. of Waterloo, 1975.

- 24-

J [13]: Johnson D.B.
Algorithms for Shortest Paths.
Ph. D. Thesis, Cornell U., Ithaca N.Y., 1973.

J [14]: Johnson D.B.
Priority Queues with Update and Finding Minimum Spanning Trees.
Penn. State U. Tech. Rep. 170, 1975.

JD [15]: Jonassen A. and Dahl O.J.

K

Analysis of an Algorithm for Priority Queue Administration.
BIT 15, 1975, p. 409-422.

[16]: Knuth D.E.
The Art of Computer Programming Vol. 1 •
Addison-Wesley, Reading Mass., 1968.

K [17] : Knuth D.E.
The Art of Computer Programming Vol. 3.
Addison Wesley, Reading Mass., 1973.

K [1 8] : Knuth D. E.
Selected Tapies in Computer Science.
Lecture Notes Series, Institute of Mathematics, U. of Oslo, 1973.

MS [19] Malcolm M.A. and Simpson R.B.
Local versus Global Strategies for Adaptative Quadrature.
ACMTrans.Math. Soft.1, 2, 1975, p.129-146.

PPS ~O]: Paterson M., Pippenger N., Schonhage A.
Finding the Median.

U. of Warwick Theory of Comp. Rep. n2 6, 1975.

PS [21] : Porter T. and Simon I.
Random Insertion into a Priority Queue Structure.
Rep. Stan-Cs-74-460, Dpmt. of Comp. Sei. Stanford U. 1974.

P ~ 2] : Prim R • C •
Shortest Connection Networks and Sorne Generalizations.
Bell. Sys. Tech. J. 36, 6, 1957, p. 1389-1401.

VKZ ~3]: Van Emde Boas P., Kaas R. and Zijlstra E.
Design and Implementation of an Efficient Priority Queue.
Mathematisch Centrum Report ZW 60/75, Amsterdam 1975.

VD r4]: VaucherJ.G.andDuvalP.
A Comparison of Simulation Event List Algorithms.
Comm. ACM 4, 18, 1975, p. 223-230.

V ~5] : Vuillemin J.
Structures de Données.
Notes de cours de 11 école d'été CEA-EDF-IRIA 1975.

- 25 -

W ~6] : Williams J. W. J.
Algorithm 232.
Comm. ACM 7, 6, 1964, p. 347-348.

W [27] : Wyman F. P.
Improved Event-Scanning Mechanisms for Discrete Event Simulation.
Comm. ACM 18, 6, 1975, p. 350-35.3.

	1. Introduction
	2. Binomial trees and forests
	3. Binomial queues
	4. Implementation of binomial forests as binary trees
	5. References, bibliography

